--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Data_Structures/Brother12_Set.thy Fri Dec 04 14:39:39 2015 +0100
@@ -0,0 +1,491 @@
+(* Author: Tobias Nipkow *)
+
+section \<open>A 1-2 Brother Tree Implementation of Sets\<close>
+
+theory Brother12_Set
+imports
+ Cmp
+ Set_by_Ordered
+begin
+
+subsection \<open>Data Type and Operations\<close>
+
+datatype 'a bro =
+ N0 |
+ N1 "'a bro" |
+ N2 "'a bro" 'a "'a bro" |
+ (* auxiliary constructors: *)
+ L2 'a |
+ N3 "'a bro" 'a "'a bro" 'a "'a bro"
+
+fun inorder :: "'a bro \<Rightarrow> 'a list" where
+"inorder N0 = []" |
+"inorder (N1 t) = inorder t" |
+"inorder (N2 l a r) = inorder l @ a # inorder r" |
+"inorder (L2 a) = [a]" |
+"inorder (N3 t1 a1 t2 a2 t3) = inorder t1 @ a1 # inorder t2 @ a2 # inorder t3"
+
+fun isin :: "'a bro \<Rightarrow> 'a::cmp \<Rightarrow> bool" where
+"isin N0 x = False" |
+"isin (N1 t) x = isin t x" |
+"isin (N2 l a r) x =
+ (case cmp x a of
+ LT \<Rightarrow> isin l x |
+ EQ \<Rightarrow> True |
+ GT \<Rightarrow> isin r x)"
+
+fun n1 :: "'a bro \<Rightarrow> 'a bro" where
+"n1 (L2 a) = N2 N0 a N0" |
+"n1 (N3 t1 a1 t2 a2 t3) = N2 (N2 t1 a1 t2) a2 (N1 t3)" |
+"n1 t = N1 t"
+
+hide_const (open) insert
+
+locale insert
+begin
+
+fun n2 :: "'a bro \<Rightarrow> 'a \<Rightarrow> 'a bro \<Rightarrow> 'a bro" where
+"n2 (L2 a1) a2 t = N3 N0 a1 N0 a2 t" |
+"n2 (N3 t1 a1 t2 a2 t3) a3 (N1 t4) = N2 (N2 t1 a1 t2) a2 (N2 t3 a3 t4)" |
+"n2 (N3 t1 a1 t2 a2 t3) a3 t4 = N3 (N2 t1 a1 t2) a2 (N1 t3) a3 t4" |
+"n2 t1 a1 (L2 a2) = N3 t1 a1 N0 a2 N0" |
+"n2 (N1 t1) a1 (N3 t2 a2 t3 a3 t4) = N2 (N2 t1 a1 t2) a2 (N2 t3 a3 t4)" |
+"n2 t1 a1 (N3 t2 a2 t3 a3 t4) = N3 t1 a1 (N1 t2) a2 (N2 t3 a3 t4)" |
+"n2 t1 a t2 = N2 t1 a t2"
+
+fun ins :: "'a::cmp \<Rightarrow> 'a bro \<Rightarrow> 'a bro" where
+"ins a N0 = L2 a" |
+"ins a (N1 t) = n1 (ins a t)" |
+"ins a (N2 l b r) =
+ (case cmp a b of
+ LT \<Rightarrow> n2 (ins a l) b r |
+ EQ \<Rightarrow> N2 l b r |
+ GT \<Rightarrow> n2 l b (ins a r))"
+
+fun tree :: "'a bro \<Rightarrow> 'a bro" where
+"tree (L2 a) = N2 N0 a N0" |
+"tree (N3 t1 a1 t2 a2 t3) = N2 (N2 t1 a1 t2) a2 (N1 t3)" |
+"tree t = t"
+
+definition insert :: "'a::cmp \<Rightarrow> 'a bro \<Rightarrow> 'a bro" where
+"insert x t = tree(ins x t)"
+
+end
+
+locale delete
+begin
+
+fun n2 :: "'a bro \<Rightarrow> 'a \<Rightarrow> 'a bro \<Rightarrow> 'a bro" where
+"n2 (N1 t1) a1 (N1 t2) = N1 (N2 t1 a1 t2)" |
+"n2 (N1 (N1 t1)) a1 (N2 (N1 t2) a2 (N2 t3 a3 t4)) =
+ N1 (N2 (N2 t1 a1 t2) a2 (N2 t3 a3 t4))" |
+"n2 (N1 (N1 t1)) a1 (N2 (N2 t2 a2 t3) a3 (N1 t4)) =
+ N1 (N2 (N2 t1 a1 t2) a2 (N2 t3 a3 t4))" |
+"n2 (N1 (N1 t1)) a1 (N2 (N2 t2 a2 t3) a3 (N2 t4 a4 t5)) =
+ N2 (N2 (N1 t1) a1 (N2 t2 a2 t3)) a3 (N1 (N2 t4 a4 t5))" |
+"n2 (N2 (N1 t1) a1 (N2 t2 a2 t3)) a3 (N1 (N1 t4)) =
+ N1 (N2 (N2 t1 a1 t2) a2 (N2 t3 a3 t4))" |
+"n2 (N2 (N2 t1 a1 t2) a2 (N1 t3)) a3 (N1 (N1 t4)) =
+ N1 (N2 (N2 t1 a1 t2) a2 (N2 t3 a3 t4))" |
+"n2 (N2 (N2 t1 a1 t2) a2 (N2 t3 a3 t4)) a5 (N1 (N1 t5)) =
+ N2 (N1 (N2 t1 a1 t2)) a2 (N2 (N2 t3 a3 t4) a5 (N1 t5))" |
+"n2 t1 a1 t2 = N2 t1 a1 t2"
+
+fun del_min :: "'a bro \<Rightarrow> ('a \<times> 'a bro) option" where
+"del_min N0 = None" |
+"del_min (N1 t) =
+ (case del_min t of
+ None \<Rightarrow> None |
+ Some (a, t') \<Rightarrow> Some (a, N1 t'))" |
+"del_min (N2 t1 a t2) =
+ (case del_min t1 of
+ None \<Rightarrow> Some (a, N1 t2) |
+ Some (b, t1') \<Rightarrow> Some (b, n2 t1' a t2))"
+
+fun del :: "'a::cmp \<Rightarrow> 'a bro \<Rightarrow> 'a bro" where
+"del _ N0 = N0" |
+"del x (N1 t) = N1 (del x t)" |
+"del x (N2 l a r) =
+ (case cmp x a of
+ LT \<Rightarrow> n2 (del x l) a r |
+ GT \<Rightarrow> n2 l a (del x r) |
+ EQ \<Rightarrow> (case del_min r of
+ None \<Rightarrow> N1 l |
+ Some (b, r') \<Rightarrow> n2 l b r'))"
+
+fun tree :: "'a bro \<Rightarrow> 'a bro" where
+"tree (N1 t) = t" |
+"tree t = t"
+
+definition delete :: "'a::cmp \<Rightarrow> 'a bro \<Rightarrow> 'a bro" where
+"delete a t = tree (del a t)"
+
+end
+
+subsection \<open>Invariants\<close>
+
+fun B :: "nat \<Rightarrow> 'a bro set"
+and U :: "nat \<Rightarrow> 'a bro set" where
+"B 0 = {N0}" |
+"B (Suc h) = { N2 t1 a t2 | t1 a t2.
+ t1 \<in> B h \<union> U h \<and> t2 \<in> B h \<or> t1 \<in> B h \<and> t2 \<in> B h \<union> U h}" |
+"U 0 = {}" |
+"U (Suc h) = N1 ` B h"
+
+abbreviation "T h \<equiv> B h \<union> U h"
+
+fun Bp :: "nat \<Rightarrow> 'a bro set" where
+"Bp 0 = B 0 \<union> L2 ` UNIV" |
+"Bp (Suc 0) = B (Suc 0) \<union> {N3 N0 a N0 b N0|a b. True}" |
+"Bp (Suc(Suc h)) = B (Suc(Suc h)) \<union>
+ {N3 t1 a t2 b t3 | t1 a t2 b t3. t1 \<in> B (Suc h) \<and> t2 \<in> U (Suc h) \<and> t3 \<in> B (Suc h)}"
+
+fun Um :: "nat \<Rightarrow> 'a bro set" where
+"Um 0 = {}" |
+"Um (Suc h) = N1 ` T h"
+
+
+subsection "Functional Correctness Proofs"
+
+subsubsection "Proofs for isin"
+
+lemma
+ "t \<in> T h \<Longrightarrow> sorted(inorder t) \<Longrightarrow> isin t x = (x \<in> elems(inorder t))"
+by(induction h arbitrary: t) (fastforce simp: elems_simps1 split: if_splits)+
+
+lemma isin_set: "t \<in> T h \<Longrightarrow>
+ sorted(inorder t) \<Longrightarrow> isin t x = (x \<in> elems(inorder t))"
+by(induction h arbitrary: t) (auto simp: elems_simps2 split: if_splits)
+
+subsubsection "Proofs for insertion"
+
+lemma inorder_n1: "inorder(n1 t) = inorder t"
+by(induction t rule: n1.induct) (auto simp: sorted_lems)
+
+context insert
+begin
+
+lemma inorder_n2: "inorder(n2 l a r) = inorder l @ a # inorder r"
+by(cases "(l,a,r)" rule: n2.cases) (auto simp: sorted_lems)
+
+lemma inorder_tree: "inorder(tree t) = inorder t"
+by(cases t) auto
+
+lemma inorder_ins: "t \<in> T h \<Longrightarrow>
+ sorted(inorder t) \<Longrightarrow> inorder(ins a t) = ins_list a (inorder t)"
+by(induction h arbitrary: t) (auto simp: ins_list_simps inorder_n1 inorder_n2)
+
+lemma inorder_insert: "t \<in> T h \<Longrightarrow>
+ sorted(inorder t) \<Longrightarrow> inorder(insert a t) = ins_list a (inorder t)"
+by(simp add: insert_def inorder_ins inorder_tree)
+
+end
+
+subsubsection \<open>Proofs for deletion\<close>
+
+context delete
+begin
+
+lemma inorder_tree: "inorder(tree t) = inorder t"
+by(cases t) auto
+
+lemma inorder_n2: "inorder(n2 l a r) = inorder l @ a # inorder r"
+by(induction l a r rule: n2.induct) (auto)
+
+lemma inorder_del_min:
+shows "t \<in> B h \<Longrightarrow> (del_min t = None \<longleftrightarrow> inorder t = []) \<and>
+ (del_min t = Some(a,t') \<longrightarrow> inorder t = a # inorder t')"
+and "t \<in> U h \<Longrightarrow> (del_min t = None \<longleftrightarrow> inorder t = []) \<and>
+ (del_min t = Some(a,t') \<longrightarrow> inorder t = a # inorder t')"
+by(induction h arbitrary: t a t') (auto simp: inorder_n2 split: option.splits)
+
+lemma inorder_del:
+ "t \<in> B h \<Longrightarrow> sorted(inorder t) \<Longrightarrow> inorder(del a t) = del_list a (inorder t)"
+ "t \<in> U h \<Longrightarrow> sorted(inorder t) \<Longrightarrow> inorder(del a t) = del_list a (inorder t)"
+by(induction h arbitrary: t)
+ (auto simp: del_list_simps inorder_n2 inorder_del_min split: option.splits)
+
+end
+
+
+subsection \<open>Invariant Proofs\<close>
+
+subsection \<open>Proofs for insertion\<close>
+
+lemma n1_type: "t \<in> Bp h \<Longrightarrow> n1 t \<in> T (Suc h)"
+by(cases h rule: Bp.cases) auto
+
+context insert
+begin
+
+lemma tree_type1: "t \<in> Bp h \<Longrightarrow> tree t \<in> B h \<union> B (Suc h)"
+by(cases h rule: Bp.cases) auto
+
+lemma tree_type2: "t \<in> T h \<Longrightarrow> tree t \<in> T h"
+by(cases h) auto
+
+lemma n2_type:
+ "(t1 \<in> Bp h \<and> t2 \<in> T h \<longrightarrow> n2 t1 a t2 \<in> Bp (Suc h)) \<and>
+ (t1 \<in> T h \<and> t2 \<in> Bp h \<longrightarrow> n2 t1 a t2 \<in> Bp (Suc h))"
+apply(cases h rule: Bp.cases)
+apply (auto)[2]
+apply(rule conjI impI | erule conjE exE imageE | simp | erule disjE)+
+done
+
+lemma Bp_if_B: "t \<in> B h \<Longrightarrow> t \<in> Bp h"
+by (cases h rule: Bp.cases) simp_all
+
+text{* An automatic proof: *}
+
+lemma
+ "(t \<in> B h \<longrightarrow> ins x t \<in> Bp h) \<and> (t \<in> U h \<longrightarrow> ins x t \<in> T h)"
+apply(induction h arbitrary: t)
+ apply (simp)
+apply (fastforce simp: Bp_if_B n2_type dest: n1_type)
+done
+
+text{* A detailed proof: *}
+
+lemma ins_type:
+shows "t \<in> B h \<Longrightarrow> ins x t \<in> Bp h" and "t \<in> U h \<Longrightarrow> ins x t \<in> T h"
+proof(induction h arbitrary: t)
+ case 0
+ { case 1 thus ?case by simp
+ next
+ case 2 thus ?case by simp }
+next
+ case (Suc h)
+ { case 1
+ then obtain t1 a t2 where [simp]: "t = N2 t1 a t2" and
+ t1: "t1 \<in> T h" and t2: "t2 \<in> T h" and t12: "t1 \<in> B h \<or> t2 \<in> B h"
+ by auto
+ { assume "x < a"
+ hence "?case \<longleftrightarrow> n2 (ins x t1) a t2 \<in> Bp (Suc h)" by simp
+ also have "\<dots>"
+ proof cases
+ assume "t1 \<in> B h"
+ with t2 show ?thesis by (simp add: Suc.IH(1) n2_type)
+ next
+ assume "t1 \<notin> B h"
+ hence 1: "t1 \<in> U h" and 2: "t2 \<in> B h" using t1 t12 by auto
+ show ?thesis by (metis Suc.IH(2)[OF 1] Bp_if_B[OF 2] n2_type)
+ qed
+ finally have ?case .
+ }
+ moreover
+ { assume "a < x"
+ hence "?case \<longleftrightarrow> n2 t1 a (ins x t2) \<in> Bp (Suc h)" by simp
+ also have "\<dots>"
+ proof cases
+ assume "t2 \<in> B h"
+ with t1 show ?thesis by (simp add: Suc.IH(1) n2_type)
+ next
+ assume "t2 \<notin> B h"
+ hence 1: "t1 \<in> B h" and 2: "t2 \<in> U h" using t2 t12 by auto
+ show ?thesis by (metis Bp_if_B[OF 1] Suc.IH(2)[OF 2] n2_type)
+ qed
+ }
+ moreover
+ { assume "x = a"
+ from 1 have "t \<in> Bp (Suc h)" by(rule Bp_if_B)
+ hence "?case" using `x = a` by simp
+ }
+ ultimately show ?case by auto
+ next
+ case 2 thus ?case using Suc(1) n1_type by fastforce }
+qed
+
+lemma insert_type:
+ "t \<in> T h \<Longrightarrow> insert x t \<in> T h \<union> T (Suc h)"
+unfolding insert_def by (metis Un_iff ins_type tree_type1 tree_type2)
+
+end
+
+subsection "Proofs for deletion"
+
+lemma B_simps[simp]:
+ "N1 t \<in> B h = False"
+ "L2 y \<in> B h = False"
+ "(N3 t1 a1 t2 a2 t3) \<in> B h = False"
+ "N0 \<in> B h \<longleftrightarrow> h = 0"
+by (cases h, auto)+
+
+context delete
+begin
+
+lemma n2_type1:
+ "\<lbrakk>t1 \<in> Um h; t2 \<in> B h\<rbrakk> \<Longrightarrow> n2 t1 a t2 \<in> T (Suc h)"
+apply(cases h rule: Bp.cases)
+apply auto[2]
+apply(erule exE bexE conjE imageE | simp | erule disjE)+
+done
+
+lemma n2_type2:
+ "\<lbrakk>t1 \<in> B h ; t2 \<in> Um h \<rbrakk> \<Longrightarrow> n2 t1 a t2 \<in> T (Suc h)"
+apply(cases h rule: Bp.cases)
+apply auto[2]
+apply(erule exE bexE conjE imageE | simp | erule disjE)+
+done
+
+lemma n2_type3:
+ "\<lbrakk>t1 \<in> T h ; t2 \<in> T h \<rbrakk> \<Longrightarrow> n2 t1 a t2 \<in> T (Suc h)"
+apply(cases h rule: Bp.cases)
+apply auto[2]
+apply(erule exE bexE conjE imageE | simp | erule disjE)+
+done
+
+lemma del_minNoneN0: "\<lbrakk>t \<in> B h; del_min t = None\<rbrakk> \<Longrightarrow> t = N0"
+by (cases t) (auto split: option.splits)
+
+lemma del_minNoneN1 : "\<lbrakk>t \<in> U h; del_min t = None\<rbrakk> \<Longrightarrow> t = N1 N0"
+by (cases h) (auto simp: del_minNoneN0 split: option.splits)
+
+lemma del_min_type:
+ "t \<in> B h \<Longrightarrow> del_min t = Some (a, t') \<Longrightarrow> t' \<in> T h"
+ "t \<in> U h \<Longrightarrow> del_min t = Some (a, t') \<Longrightarrow> t' \<in> Um h"
+proof (induction h arbitrary: t a t')
+ case (Suc h)
+ { case 1
+ then obtain t1 a t2 where [simp]: "t = N2 t1 a t2" and
+ t12: "t1 \<in> T h" "t2 \<in> T h" "t1 \<in> B h \<or> t2 \<in> B h"
+ by auto
+ show ?case
+ proof (cases "del_min t1")
+ case None
+ show ?thesis
+ proof cases
+ assume "t1 \<in> B h"
+ with del_minNoneN0[OF this None] 1 show ?thesis by(auto)
+ next
+ assume "t1 \<notin> B h"
+ thus ?thesis using 1 None by (auto)
+ qed
+ next
+ case [simp]: (Some bt')
+ obtain b t1' where [simp]: "bt' = (b,t1')" by fastforce
+ show ?thesis
+ proof cases
+ assume "t1 \<in> B h"
+ from Suc.IH(1)[OF this] 1 have "t1' \<in> T h" by simp
+ from n2_type3[OF this t12(2)] 1 show ?thesis by auto
+ next
+ assume "t1 \<notin> B h"
+ hence t1: "t1 \<in> U h" and t2: "t2 \<in> B h" using t12 by auto
+ from Suc.IH(2)[OF t1] have "t1' \<in> Um h" by simp
+ from n2_type1[OF this t2] 1 show ?thesis by auto
+ qed
+ qed
+ }
+ { case 2
+ then obtain t1 where [simp]: "t = N1 t1" and t1: "t1 \<in> B h" by auto
+ show ?case
+ proof (cases "del_min t1")
+ case None
+ with del_minNoneN0[OF t1 None] 2 show ?thesis by(auto)
+ next
+ case [simp]: (Some bt')
+ obtain b t1' where [simp]: "bt' = (b,t1')" by fastforce
+ from Suc.IH(1)[OF t1] have "t1' \<in> T h" by simp
+ thus ?thesis using 2 by auto
+ qed
+ }
+qed auto
+
+lemma del_type:
+ "t \<in> B h \<Longrightarrow> del x t \<in> T h"
+ "t \<in> U h \<Longrightarrow> del x t \<in> Um h"
+proof (induction h arbitrary: x t)
+ case (Suc h)
+ { case 1
+ then obtain l a r where [simp]: "t = N2 l a r" and
+ lr: "l \<in> T h" "r \<in> T h" "l \<in> B h \<or> r \<in> B h" by auto
+ { assume "x < a"
+ have ?case
+ proof cases
+ assume "l \<in> B h"
+ from n2_type3[OF Suc.IH(1)[OF this] lr(2)]
+ show ?thesis using `x<a` by(simp)
+ next
+ assume "l \<notin> B h"
+ hence "l \<in> U h" "r \<in> B h" using lr by auto
+ from n2_type1[OF Suc.IH(2)[OF this(1)] this(2)]
+ show ?thesis using `x<a` by(simp)
+ qed
+ } moreover
+ { assume "x > a"
+ have ?case
+ proof cases
+ assume "r \<in> B h"
+ from n2_type3[OF lr(1) Suc.IH(1)[OF this]]
+ show ?thesis using `x>a` by(simp)
+ next
+ assume "r \<notin> B h"
+ hence "l \<in> B h" "r \<in> U h" using lr by auto
+ from n2_type2[OF this(1) Suc.IH(2)[OF this(2)]]
+ show ?thesis using `x>a` by(simp)
+ qed
+ } moreover
+ { assume [simp]: "x=a"
+ have ?case
+ proof (cases "del_min r")
+ case None
+ show ?thesis
+ proof cases
+ assume "r \<in> B h"
+ with del_minNoneN0[OF this None] lr show ?thesis by(simp)
+ next
+ assume "r \<notin> B h"
+ hence "r \<in> U h" using lr by auto
+ with del_minNoneN1[OF this None] lr(3) show ?thesis by (simp)
+ qed
+ next
+ case [simp]: (Some br')
+ obtain b r' where [simp]: "br' = (b,r')" by fastforce
+ show ?thesis
+ proof cases
+ assume "r \<in> B h"
+ from del_min_type(1)[OF this] n2_type3[OF lr(1)]
+ show ?thesis by simp
+ next
+ assume "r \<notin> B h"
+ hence "l \<in> B h" and "r \<in> U h" using lr by auto
+ from del_min_type(2)[OF this(2)] n2_type2[OF this(1)]
+ show ?thesis by simp
+ qed
+ qed
+ } ultimately show ?case by auto
+ }
+ { case 2 with Suc.IH(1) show ?case by auto }
+qed auto
+
+lemma tree_type:
+ "t \<in> Um (Suc h) \<Longrightarrow> tree t : T h"
+ "t \<in> T (Suc h) \<Longrightarrow> tree t : T h \<union> T(h+1)"
+by(auto)
+
+lemma delete_type:
+ "t \<in> T h \<Longrightarrow> delete x t \<in> T h \<union> T(h-1)"
+unfolding delete_def
+by (cases h) (simp, metis del_type tree_type Un_iff Suc_eq_plus1 diff_Suc_1)
+
+end
+
+subsection "Overall correctness"
+
+interpretation Set_by_Ordered
+where empty = N0 and isin = isin and insert = insert.insert and delete = delete.delete
+and inorder = inorder and inv = "\<lambda>t. \<exists>h. t \<in> T h"
+proof (standard, goal_cases)
+ case 2 thus ?case by(auto intro!: isin_set)
+next
+ case 3 thus ?case by(auto intro!: insert.inorder_insert)
+next
+ case 4 thus ?case
+ by(auto simp: delete.delete_def delete.inorder_tree delete.inorder_del)
+next
+ case 6 thus ?case using insert.insert_type by blast
+next
+ case 7 thus ?case using delete.delete_type by blast
+qed auto
+
+end
--- a/src/HOL/Data_Structures/document/root.bib Fri Dec 04 14:15:17 2015 +0100
+++ b/src/HOL/Data_Structures/document/root.bib Fri Dec 04 14:39:39 2015 +0100
@@ -1,3 +1,8 @@
+@article{Hinze-bro12,author={Ralf Hinze},
+title={Purely Functional 1-2 Brother Trees},
+journal={J. Functional Programming},
+volume=19,number={6},pages={633--644},year=2009}
+
@article{Kahrs-JFP01,author={Stefan Kahrs},title={Red-Black Trees with Types},
journal={J. Functional Programming},volume=11,number=4,pages={425-432},year=2001}
@@ -7,6 +12,14 @@
@book{Okasaki,author={Chris Okasaki},title="Purely Functional Data Structures",
publisher="Cambridge University Press",year=1998}
+@article{OttmannS76,author={Thomas Ottmann and Hans-Werner Six},
+title={Eine neue {K}lasse von ausgeglichenen {B}in\"arb\"aumen},
+journal={Angewandte Informatik},volume=18,number=9,pages={395--400},year=1976}
+
+@article{OttmannW-CJ80,author={Thomas Ottmann and Derick Wood},
+title={1-2 Brother Trees or {AVL} Trees Revisited},journal={Comput. J.},
+volume=23,number=3,pages={248--255},year=1980}
+
@article{Schoenmakers-IPL93,author="Berry Schoenmakers",
title="A Systematic Analysis of Splaying",journal={Information Processing Letters},volume=45,pages={41-50},year=1993}
--- a/src/HOL/Data_Structures/document/root.tex Fri Dec 04 14:15:17 2015 +0100
+++ b/src/HOL/Data_Structures/document/root.tex Fri Dec 04 14:39:39 2015 +0100
@@ -45,6 +45,10 @@
The function definitions are based on the teaching material by
Turbak~\cite{Turbak230}.
+\paragraph{1-2 brother trees}
+They were invented by Ottmann and Six~\cite{OttmannS76,OttmannW-CJ80}.
+The functional version is due to Hinze~\cite{Hinze-bro12}.
+
\paragraph{Splay trees}
They were invented by Sleator and Tarjan \cite{SleatorT-JACM85}.
Our formalisation follows Schoenmakers \cite{Schoenmakers-IPL93}.
--- a/src/HOL/ROOT Fri Dec 04 14:15:17 2015 +0100
+++ b/src/HOL/ROOT Fri Dec 04 14:39:39 2015 +0100
@@ -178,6 +178,7 @@
RBT_Map
Tree23_Map
Tree234_Map
+ Brother12_Set
Splay_Map
document_files "root.tex" "root.bib"