author nipkow Fri, 04 Dec 2015 14:39:39 +0100 changeset 61785 7a461602a218 parent 61783 7f36a8bfa822 (current diff) parent 61784 21b34a2269e5 (diff) child 61786 6c42d55097c1
merged
```--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Data_Structures/Brother12_Set.thy	Fri Dec 04 14:39:39 2015 +0100
@@ -0,0 +1,491 @@
+(* Author: Tobias Nipkow *)
+
+section \<open>A 1-2 Brother Tree Implementation of Sets\<close>
+
+theory Brother12_Set
+imports
+  Cmp
+  Set_by_Ordered
+begin
+
+subsection \<open>Data Type and Operations\<close>
+
+datatype 'a bro =
+  N0 |
+  N1 "'a bro" |
+  N2 "'a bro" 'a "'a bro" |
+  (* auxiliary constructors: *)
+  L2 'a |
+  N3 "'a bro" 'a "'a bro" 'a "'a bro"
+
+fun inorder :: "'a bro \<Rightarrow> 'a list" where
+"inorder N0 = []" |
+"inorder (N1 t) = inorder t" |
+"inorder (N2 l a r) = inorder l @ a # inorder r" |
+"inorder (L2 a) = [a]" |
+"inorder (N3 t1 a1 t2 a2 t3) = inorder t1 @ a1 # inorder t2 @ a2 # inorder t3"
+
+fun isin :: "'a bro \<Rightarrow> 'a::cmp \<Rightarrow> bool" where
+"isin N0 x = False" |
+"isin (N1 t) x = isin t x" |
+"isin (N2 l a r) x =
+  (case cmp x a of
+     LT \<Rightarrow> isin l x |
+     EQ \<Rightarrow> True |
+     GT \<Rightarrow> isin r x)"
+
+fun n1 :: "'a bro \<Rightarrow> 'a bro" where
+"n1 (L2 a) = N2 N0 a N0" |
+"n1 (N3 t1 a1 t2 a2 t3) = N2 (N2 t1 a1 t2) a2 (N1 t3)" |
+"n1 t = N1 t"
+
+hide_const (open) insert
+
+locale insert
+begin
+
+fun n2 :: "'a bro \<Rightarrow> 'a \<Rightarrow> 'a bro \<Rightarrow> 'a bro" where
+"n2 (L2 a1) a2 t = N3 N0 a1 N0 a2 t" |
+"n2 (N3 t1 a1 t2 a2 t3) a3 (N1 t4) = N2 (N2 t1 a1 t2) a2 (N2 t3 a3 t4)" |
+"n2 (N3 t1 a1 t2 a2 t3) a3 t4 = N3 (N2 t1 a1 t2) a2 (N1 t3) a3 t4" |
+"n2 t1 a1 (L2 a2) = N3 t1 a1 N0 a2 N0" |
+"n2 (N1 t1) a1 (N3 t2 a2 t3 a3 t4) = N2 (N2 t1 a1 t2) a2 (N2 t3 a3 t4)" |
+"n2 t1 a1 (N3 t2 a2 t3 a3 t4) = N3 t1 a1 (N1 t2) a2 (N2 t3 a3 t4)" |
+"n2 t1 a t2 = N2 t1 a t2"
+
+fun ins :: "'a::cmp \<Rightarrow> 'a bro \<Rightarrow> 'a bro" where
+"ins a N0 = L2 a" |
+"ins a (N1 t) = n1 (ins a t)" |
+"ins a (N2 l b r) =
+  (case cmp a b of
+     LT \<Rightarrow> n2 (ins a l) b r |
+     EQ \<Rightarrow> N2 l b r |
+     GT \<Rightarrow> n2 l b (ins a r))"
+
+fun tree :: "'a bro \<Rightarrow> 'a bro" where
+"tree (L2 a) = N2 N0 a N0" |
+"tree (N3 t1 a1 t2 a2 t3) = N2 (N2 t1 a1 t2) a2 (N1 t3)" |
+"tree t = t"
+
+definition insert :: "'a::cmp \<Rightarrow> 'a bro \<Rightarrow> 'a bro" where
+"insert x t = tree(ins x t)"
+
+end
+
+locale delete
+begin
+
+fun n2 :: "'a bro \<Rightarrow> 'a \<Rightarrow> 'a bro \<Rightarrow> 'a bro" where
+"n2 (N1 t1) a1 (N1 t2) = N1 (N2 t1 a1 t2)" |
+"n2 (N1 (N1 t1)) a1 (N2 (N1 t2) a2 (N2 t3 a3 t4)) =
+  N1 (N2 (N2 t1 a1 t2) a2 (N2 t3 a3 t4))" |
+"n2 (N1 (N1 t1)) a1 (N2 (N2 t2 a2 t3) a3 (N1 t4)) =
+  N1 (N2 (N2 t1 a1 t2) a2 (N2 t3 a3 t4))" |
+"n2 (N1 (N1 t1)) a1 (N2 (N2 t2 a2 t3) a3 (N2 t4 a4 t5)) =
+  N2 (N2 (N1 t1) a1 (N2 t2 a2 t3)) a3 (N1 (N2 t4 a4 t5))" |
+"n2 (N2 (N1 t1) a1 (N2 t2 a2 t3)) a3 (N1 (N1 t4)) =
+  N1 (N2 (N2 t1 a1 t2) a2 (N2 t3 a3 t4))" |
+"n2 (N2 (N2 t1 a1 t2) a2 (N1 t3)) a3 (N1 (N1 t4)) =
+  N1 (N2 (N2 t1 a1 t2) a2 (N2 t3 a3 t4))" |
+"n2 (N2 (N2 t1 a1 t2) a2 (N2 t3 a3 t4)) a5 (N1 (N1 t5)) =
+  N2 (N1 (N2 t1 a1 t2)) a2 (N2 (N2 t3 a3 t4) a5 (N1 t5))" |
+"n2 t1 a1 t2 = N2 t1 a1 t2"
+
+fun del_min :: "'a bro \<Rightarrow> ('a \<times> 'a bro) option" where
+"del_min N0 = None" |
+"del_min (N1 t) =
+  (case del_min t of
+     None \<Rightarrow> None |
+     Some (a, t') \<Rightarrow> Some (a, N1 t'))" |
+"del_min (N2 t1 a t2) =
+  (case del_min t1 of
+     None \<Rightarrow> Some (a, N1 t2) |
+     Some (b, t1') \<Rightarrow> Some (b, n2 t1' a t2))"
+
+fun del :: "'a::cmp \<Rightarrow> 'a bro \<Rightarrow> 'a bro" where
+"del _ N0         = N0" |
+"del x (N1 t)     = N1 (del x t)" |
+"del x (N2 l a r) =
+  (case cmp x a of
+     LT \<Rightarrow> n2 (del x l) a r |
+     GT \<Rightarrow> n2 l a (del x r) |
+     EQ \<Rightarrow> (case del_min r of
+              None \<Rightarrow> N1 l |
+              Some (b, r') \<Rightarrow> n2 l b r'))"
+
+fun tree :: "'a bro \<Rightarrow> 'a bro" where
+"tree (N1 t) = t" |
+"tree t = t"
+
+definition delete :: "'a::cmp \<Rightarrow> 'a bro \<Rightarrow> 'a bro" where
+"delete a t = tree (del a t)"
+
+end
+
+subsection \<open>Invariants\<close>
+
+fun B :: "nat \<Rightarrow> 'a bro set"
+and U :: "nat \<Rightarrow> 'a bro set" where
+"B 0 = {N0}" |
+"B (Suc h) = { N2 t1 a t2 | t1 a t2.
+  t1 \<in> B h \<union> U h \<and> t2 \<in> B h \<or> t1 \<in> B h \<and> t2 \<in> B h \<union> U h}" |
+"U 0 = {}" |
+"U (Suc h) = N1 ` B h"
+
+abbreviation "T h \<equiv> B h \<union> U h"
+
+fun Bp :: "nat \<Rightarrow> 'a bro set" where
+"Bp 0 = B 0 \<union> L2 ` UNIV" |
+"Bp (Suc 0) = B (Suc 0) \<union> {N3 N0 a N0 b N0|a b. True}" |
+"Bp (Suc(Suc h)) = B (Suc(Suc h)) \<union>
+  {N3 t1 a t2 b t3 | t1 a t2 b t3. t1 \<in> B (Suc h) \<and> t2 \<in> U (Suc h) \<and> t3 \<in> B (Suc h)}"
+
+fun Um :: "nat \<Rightarrow> 'a bro set" where
+"Um 0 = {}" |
+"Um (Suc h) = N1 ` T h"
+
+
+subsection "Functional Correctness Proofs"
+
+subsubsection "Proofs for isin"
+
+lemma
+  "t \<in> T h \<Longrightarrow> sorted(inorder t) \<Longrightarrow> isin t x = (x \<in> elems(inorder t))"
+by(induction h arbitrary: t) (fastforce simp: elems_simps1 split: if_splits)+
+
+lemma isin_set: "t \<in> T h \<Longrightarrow>
+  sorted(inorder t) \<Longrightarrow> isin t x = (x \<in> elems(inorder t))"
+by(induction h arbitrary: t) (auto simp: elems_simps2 split: if_splits)
+
+subsubsection "Proofs for insertion"
+
+lemma inorder_n1: "inorder(n1 t) = inorder t"
+by(induction t rule: n1.induct) (auto simp: sorted_lems)
+
+context insert
+begin
+
+lemma inorder_n2: "inorder(n2 l a r) = inorder l @ a # inorder r"
+by(cases "(l,a,r)" rule: n2.cases) (auto simp: sorted_lems)
+
+lemma inorder_tree: "inorder(tree t) = inorder t"
+by(cases t) auto
+
+lemma inorder_ins: "t \<in> T h \<Longrightarrow>
+  sorted(inorder t) \<Longrightarrow> inorder(ins a t) = ins_list a (inorder t)"
+by(induction h arbitrary: t) (auto simp: ins_list_simps inorder_n1 inorder_n2)
+
+lemma inorder_insert: "t \<in> T h \<Longrightarrow>
+  sorted(inorder t) \<Longrightarrow> inorder(insert a t) = ins_list a (inorder t)"
+
+end
+
+subsubsection \<open>Proofs for deletion\<close>
+
+context delete
+begin
+
+lemma inorder_tree: "inorder(tree t) = inorder t"
+by(cases t) auto
+
+lemma inorder_n2: "inorder(n2 l a r) = inorder l @ a # inorder r"
+by(induction l a r rule: n2.induct) (auto)
+
+lemma inorder_del_min:
+shows "t \<in> B h \<Longrightarrow> (del_min t = None \<longleftrightarrow> inorder t = []) \<and>
+  (del_min t = Some(a,t') \<longrightarrow> inorder t = a # inorder t')"
+and "t \<in> U h \<Longrightarrow> (del_min t = None \<longleftrightarrow> inorder t = []) \<and>
+  (del_min t = Some(a,t') \<longrightarrow> inorder t = a # inorder t')"
+by(induction h arbitrary: t a t') (auto simp: inorder_n2 split: option.splits)
+
+lemma inorder_del:
+  "t \<in> B h \<Longrightarrow> sorted(inorder t) \<Longrightarrow> inorder(del a t) = del_list a (inorder t)"
+  "t \<in> U h \<Longrightarrow> sorted(inorder t) \<Longrightarrow> inorder(del a t) = del_list a (inorder t)"
+by(induction h arbitrary: t)
+  (auto simp: del_list_simps inorder_n2 inorder_del_min split: option.splits)
+
+end
+
+
+subsection \<open>Invariant Proofs\<close>
+
+subsection \<open>Proofs for insertion\<close>
+
+lemma n1_type: "t \<in> Bp h \<Longrightarrow> n1 t \<in> T (Suc h)"
+by(cases h rule: Bp.cases) auto
+
+context insert
+begin
+
+lemma tree_type1: "t \<in> Bp h \<Longrightarrow> tree t \<in> B h \<union> B (Suc h)"
+by(cases h rule: Bp.cases) auto
+
+lemma tree_type2: "t \<in> T h \<Longrightarrow> tree t \<in> T h"
+by(cases h) auto
+
+lemma n2_type:
+  "(t1 \<in> Bp h \<and> t2 \<in> T h \<longrightarrow> n2 t1 a t2 \<in> Bp (Suc h)) \<and>
+   (t1 \<in> T h \<and> t2 \<in> Bp h \<longrightarrow> n2 t1 a t2 \<in> Bp (Suc h))"
+apply(cases h rule: Bp.cases)
+apply (auto)[2]
+apply(rule conjI impI | erule conjE exE imageE | simp | erule disjE)+
+done
+
+lemma Bp_if_B: "t \<in> B h \<Longrightarrow> t \<in> Bp h"
+by (cases h rule: Bp.cases) simp_all
+
+text{* An automatic proof: *}
+
+lemma
+  "(t \<in> B h \<longrightarrow> ins x t \<in> Bp h) \<and> (t \<in> U h \<longrightarrow> ins x t \<in> T h)"
+apply(induction h arbitrary: t)
+ apply (simp)
+apply (fastforce simp: Bp_if_B n2_type dest: n1_type)
+done
+
+text{* A detailed proof: *}
+
+lemma ins_type:
+shows "t \<in> B h \<Longrightarrow> ins x t \<in> Bp h" and "t \<in> U h \<Longrightarrow> ins x t \<in> T h"
+proof(induction h arbitrary: t)
+  case 0
+  { case 1 thus ?case by simp
+  next
+    case 2 thus ?case by simp }
+next
+  case (Suc h)
+  { case 1
+    then obtain t1 a t2 where [simp]: "t = N2 t1 a t2" and
+      t1: "t1 \<in> T h" and t2: "t2 \<in> T h" and t12: "t1 \<in> B h \<or> t2 \<in> B h"
+      by auto
+    { assume "x < a"
+      hence "?case \<longleftrightarrow> n2 (ins x t1) a t2 \<in> Bp (Suc h)" by simp
+      also have "\<dots>"
+      proof cases
+        assume "t1 \<in> B h"
+        with t2 show ?thesis by (simp add: Suc.IH(1) n2_type)
+      next
+        assume "t1 \<notin> B h"
+        hence 1: "t1 \<in> U h" and 2: "t2 \<in> B h" using t1 t12 by auto
+        show ?thesis by (metis Suc.IH(2)[OF 1] Bp_if_B[OF 2] n2_type)
+      qed
+      finally have ?case .
+    }
+    moreover
+    { assume "a < x"
+      hence "?case \<longleftrightarrow> n2 t1 a (ins x t2) \<in> Bp (Suc h)" by simp
+      also have "\<dots>"
+      proof cases
+        assume "t2 \<in> B h"
+        with t1 show ?thesis by (simp add: Suc.IH(1) n2_type)
+      next
+        assume "t2 \<notin> B h"
+        hence 1: "t1 \<in> B h" and 2: "t2 \<in> U h" using t2 t12 by auto
+        show ?thesis by (metis Bp_if_B[OF 1] Suc.IH(2)[OF 2] n2_type)
+      qed
+    }
+    moreover
+    { assume "x = a"
+      from 1 have "t \<in> Bp (Suc h)" by(rule Bp_if_B)
+      hence "?case" using `x = a` by simp
+    }
+    ultimately show ?case by auto
+  next
+    case 2 thus ?case using Suc(1) n1_type by fastforce }
+qed
+
+lemma insert_type:
+  "t \<in> T h \<Longrightarrow> insert x t \<in> T h \<union> T (Suc h)"
+unfolding insert_def by (metis Un_iff ins_type tree_type1 tree_type2)
+
+end
+
+subsection "Proofs for deletion"
+
+lemma B_simps[simp]:
+  "N1 t \<in> B h = False"
+  "L2 y \<in> B h = False"
+  "(N3 t1 a1 t2 a2 t3) \<in> B h = False"
+  "N0 \<in> B h \<longleftrightarrow> h = 0"
+by (cases h, auto)+
+
+context delete
+begin
+
+lemma n2_type1:
+  "\<lbrakk>t1 \<in> Um h; t2 \<in> B h\<rbrakk> \<Longrightarrow> n2 t1 a t2 \<in> T (Suc h)"
+apply(cases h rule: Bp.cases)
+apply auto[2]
+apply(erule exE bexE conjE imageE | simp | erule disjE)+
+done
+
+lemma n2_type2:
+  "\<lbrakk>t1 \<in> B h ; t2 \<in> Um h \<rbrakk> \<Longrightarrow> n2 t1 a t2 \<in> T (Suc h)"
+apply(cases h rule: Bp.cases)
+apply auto[2]
+apply(erule exE bexE conjE imageE | simp | erule disjE)+
+done
+
+lemma n2_type3:
+  "\<lbrakk>t1 \<in> T h ; t2 \<in> T h \<rbrakk> \<Longrightarrow> n2 t1 a t2 \<in> T (Suc h)"
+apply(cases h rule: Bp.cases)
+apply auto[2]
+apply(erule exE bexE conjE imageE | simp | erule disjE)+
+done
+
+lemma del_minNoneN0: "\<lbrakk>t \<in> B h; del_min t = None\<rbrakk> \<Longrightarrow>  t = N0"
+by (cases t) (auto split: option.splits)
+
+lemma del_minNoneN1 : "\<lbrakk>t \<in> U h; del_min t = None\<rbrakk> \<Longrightarrow> t = N1 N0"
+by (cases h) (auto simp: del_minNoneN0  split: option.splits)
+
+lemma del_min_type:
+  "t \<in> B h \<Longrightarrow> del_min t = Some (a, t') \<Longrightarrow> t' \<in> T h"
+  "t \<in> U h \<Longrightarrow> del_min t = Some (a, t') \<Longrightarrow> t' \<in> Um h"
+proof (induction h arbitrary: t a t')
+  case (Suc h)
+  { case 1
+    then obtain t1 a t2 where [simp]: "t = N2 t1 a t2" and
+      t12: "t1 \<in> T h" "t2 \<in> T h" "t1 \<in> B h \<or> t2 \<in> B h"
+      by auto
+    show ?case
+    proof (cases "del_min t1")
+      case None
+      show ?thesis
+      proof cases
+        assume "t1 \<in> B h"
+        with del_minNoneN0[OF this None] 1 show ?thesis by(auto)
+      next
+        assume "t1 \<notin> B h"
+        thus ?thesis using 1 None by (auto)
+      qed
+    next
+      case [simp]: (Some bt')
+      obtain b t1' where [simp]: "bt' = (b,t1')" by fastforce
+      show ?thesis
+      proof cases
+        assume "t1 \<in> B h"
+        from Suc.IH(1)[OF this] 1 have "t1' \<in> T h" by simp
+        from n2_type3[OF this t12(2)] 1 show ?thesis by auto
+      next
+        assume "t1 \<notin> B h"
+        hence t1: "t1 \<in> U h" and t2: "t2 \<in> B h" using t12 by auto
+        from Suc.IH(2)[OF t1] have "t1' \<in> Um h" by simp
+        from n2_type1[OF this t2] 1 show ?thesis by auto
+      qed
+    qed
+  }
+  { case 2
+    then obtain t1 where [simp]: "t = N1 t1" and t1: "t1 \<in> B h" by auto
+    show ?case
+    proof (cases "del_min t1")
+      case None
+      with del_minNoneN0[OF t1 None] 2 show ?thesis by(auto)
+    next
+      case [simp]: (Some bt')
+      obtain b t1' where [simp]: "bt' = (b,t1')" by fastforce
+      from Suc.IH(1)[OF t1] have "t1' \<in> T h" by simp
+      thus ?thesis using 2 by auto
+    qed
+  }
+qed auto
+
+lemma del_type:
+  "t \<in> B h \<Longrightarrow> del x t \<in> T h"
+  "t \<in> U h \<Longrightarrow> del x t \<in> Um h"
+proof (induction h arbitrary: x t)
+  case (Suc h)
+  { case 1
+    then obtain l a r where [simp]: "t = N2 l a r" and
+      lr: "l \<in> T h" "r \<in> T h" "l \<in> B h \<or> r \<in> B h" by auto
+    { assume "x < a"
+      have ?case
+      proof cases
+        assume "l \<in> B h"
+        from n2_type3[OF Suc.IH(1)[OF this] lr(2)]
+        show ?thesis using `x<a` by(simp)
+      next
+        assume "l \<notin> B h"
+        hence "l \<in> U h" "r \<in> B h" using lr by auto
+        from n2_type1[OF Suc.IH(2)[OF this(1)] this(2)]
+        show ?thesis using `x<a` by(simp)
+      qed
+    } moreover
+    { assume "x > a"
+      have ?case
+      proof cases
+        assume "r \<in> B h"
+        from n2_type3[OF lr(1) Suc.IH(1)[OF this]]
+        show ?thesis using `x>a` by(simp)
+      next
+        assume "r \<notin> B h"
+        hence "l \<in> B h" "r \<in> U h" using lr by auto
+        from n2_type2[OF this(1) Suc.IH(2)[OF this(2)]]
+        show ?thesis using `x>a` by(simp)
+      qed
+    } moreover
+    { assume [simp]: "x=a"
+      have ?case
+      proof (cases "del_min r")
+        case None
+        show ?thesis
+        proof cases
+          assume "r \<in> B h"
+          with del_minNoneN0[OF this None] lr show ?thesis by(simp)
+        next
+          assume "r \<notin> B h"
+          hence "r \<in> U h" using lr by auto
+          with del_minNoneN1[OF this None] lr(3) show ?thesis by (simp)
+        qed
+      next
+        case [simp]: (Some br')
+        obtain b r' where [simp]: "br' = (b,r')" by fastforce
+        show ?thesis
+        proof cases
+          assume "r \<in> B h"
+          from del_min_type(1)[OF this] n2_type3[OF lr(1)]
+          show ?thesis by simp
+        next
+          assume "r \<notin> B h"
+          hence "l \<in> B h" and "r \<in> U h" using lr by auto
+          from del_min_type(2)[OF this(2)] n2_type2[OF this(1)]
+          show ?thesis by simp
+        qed
+      qed
+    } ultimately show ?case by auto
+  }
+  { case 2 with Suc.IH(1) show ?case by auto }
+qed auto
+
+lemma tree_type:
+  "t \<in> Um (Suc h) \<Longrightarrow> tree t : T h"
+  "t \<in> T (Suc h) \<Longrightarrow> tree t : T h \<union> T(h+1)"
+by(auto)
+
+lemma delete_type:
+  "t \<in> T h \<Longrightarrow> delete x t \<in> T h \<union> T(h-1)"
+unfolding delete_def
+by (cases h) (simp, metis del_type tree_type Un_iff Suc_eq_plus1 diff_Suc_1)
+
+end
+
+subsection "Overall correctness"
+
+interpretation Set_by_Ordered
+where empty = N0 and isin = isin and insert = insert.insert and delete = delete.delete
+and inorder = inorder and inv = "\<lambda>t. \<exists>h. t \<in> T h"
+proof (standard, goal_cases)
+  case 2 thus ?case by(auto intro!: isin_set)
+next
+  case 3 thus ?case by(auto intro!: insert.inorder_insert)
+next
+  case 4 thus ?case
+    by(auto simp: delete.delete_def delete.inorder_tree delete.inorder_del)
+next
+  case 6 thus ?case using insert.insert_type by blast
+next
+  case 7 thus ?case using delete.delete_type by blast
+qed auto
+
+end```
```--- a/src/HOL/Data_Structures/document/root.bib	Fri Dec 04 14:15:17 2015 +0100
+++ b/src/HOL/Data_Structures/document/root.bib	Fri Dec 04 14:39:39 2015 +0100
@@ -1,3 +1,8 @@
+@article{Hinze-bro12,author={Ralf Hinze},
+title={Purely Functional 1-2 Brother Trees},
+journal={J. Functional Programming},
+volume=19,number={6},pages={633--644},year=2009}
+
@article{Kahrs-JFP01,author={Stefan Kahrs},title={Red-Black Trees with Types},
journal={J. Functional Programming},volume=11,number=4,pages={425-432},year=2001}

@@ -7,6 +12,14 @@
@book{Okasaki,author={Chris Okasaki},title="Purely Functional Data Structures",
publisher="Cambridge University Press",year=1998}

+@article{OttmannS76,author={Thomas Ottmann and Hans-Werner Six},
+title={Eine neue {K}lasse von ausgeglichenen {B}in\"arb\"aumen},
+journal={Angewandte Informatik},volume=18,number=9,pages={395--400},year=1976}
+
+@article{OttmannW-CJ80,author={Thomas Ottmann and Derick Wood},
+title={1-2 Brother Trees or {AVL} Trees Revisited},journal={Comput. J.},
+volume=23,number=3,pages={248--255},year=1980}
+
@article{Schoenmakers-IPL93,author="Berry Schoenmakers",
title="A Systematic Analysis of Splaying",journal={Information Processing Letters},volume=45,pages={41-50},year=1993}
```
```--- a/src/HOL/Data_Structures/document/root.tex	Fri Dec 04 14:15:17 2015 +0100
+++ b/src/HOL/Data_Structures/document/root.tex	Fri Dec 04 14:39:39 2015 +0100
@@ -45,6 +45,10 @@
The function definitions are based on the teaching material by
Turbak~\cite{Turbak230}.

+\paragraph{1-2 brother trees}
+They were invented by Ottmann and Six~\cite{OttmannS76,OttmannW-CJ80}.
+The functional version is due to Hinze~\cite{Hinze-bro12}.
+
\paragraph{Splay trees}
They were invented by Sleator and Tarjan \cite{SleatorT-JACM85}.
Our formalisation follows Schoenmakers \cite{Schoenmakers-IPL93}.```
```--- a/src/HOL/ROOT	Fri Dec 04 14:15:17 2015 +0100
+++ b/src/HOL/ROOT	Fri Dec 04 14:39:39 2015 +0100
@@ -178,6 +178,7 @@
RBT_Map
Tree23_Map
Tree234_Map
+    Brother12_Set
Splay_Map
document_files "root.tex" "root.bib"
```