--- a/src/HOL/Power.thy Tue Apr 10 18:09:58 2007 +0200
+++ b/src/HOL/Power.thy Tue Apr 10 21:50:08 2007 +0200
@@ -291,8 +291,7 @@
lemma power_le_imp_le_base:
assumes le: "a ^ Suc n \<le> b ^ Suc n"
- and xnonneg: "(0::'a::{ordered_semidom,recpower}) \<le> a"
- and ynonneg: "0 \<le> b"
+ and ynonneg: "(0::'a::{ordered_semidom,recpower}) \<le> b"
shows "a \<le> b"
proof (rule ccontr)
assume "~ a \<le> b"
--- a/src/HOL/Real/RealPow.thy Tue Apr 10 18:09:58 2007 +0200
+++ b/src/HOL/Real/RealPow.thy Tue Apr 10 21:50:08 2007 +0200
@@ -228,7 +228,7 @@
proof -
from sq have "x ^ Suc (Suc 0) \<le> y ^ Suc (Suc 0)"
by (simp only: numeral_2_eq_2)
- thus "x \<le> y" using xgt0 ygt0
+ thus "x \<le> y" using ygt0
by (rule power_le_imp_le_base)
qed