removed ZF_Lemmas and added qed_goal
authorclasohm
Fri, 09 Dec 1994 13:39:52 +0100
changeset 775 7b60621e2bad
parent 774 ea19f22ed23c
child 776 df8f91c0e57c
removed ZF_Lemmas and added qed_goal
src/ZF/ZF.ML
--- a/src/ZF/ZF.ML	Fri Dec 09 13:05:03 1994 +0100
+++ b/src/ZF/ZF.ML	Fri Dec 09 13:39:52 1994 +0100
@@ -8,107 +8,33 @@
 
 open ZF;
 
-signature ZF_LEMMAS = 
-  sig
-  val ballE		: thm
-  val ballI		: thm
-  val ball_cong		: thm
-  val ball_simp		: thm
-  val ball_tac		: int -> tactic
-  val bexCI		: thm
-  val bexE		: thm
-  val bexI		: thm
-  val bex_cong		: thm
-  val bspec		: thm
-  val cantor		: thm
-  val CollectD1		: thm
-  val CollectD2		: thm
-  val CollectE		: thm
-  val CollectI		: thm
-  val Collect_cong	: thm
-  val emptyE		: thm
-  val empty_subsetI	: thm
-  val equalityCE	: thm
-  val equalityD1	: thm
-  val equalityD2	: thm
-  val equalityE		: thm
-  val equalityI		: thm
-  val equality_iffI	: thm
-  val equals0D		: thm
-  val equals0I		: thm
-  val InterD		: thm
-  val InterE		: thm
-  val InterI		: thm
-  val Inter_iff 	: thm
-  val INT_E		: thm
-  val INT_I		: thm
-  val INT_cong		: thm
-  val INT_iff		: thm
-  val lemmas_cs		: claset
-  val PowD		: thm
-  val PowI		: thm
-  val RepFunE		: thm
-  val RepFunI		: thm
-  val RepFun_eqI	: thm
-  val RepFun_cong	: thm
-  val RepFun_iff	: thm
-  val ReplaceE		: thm
-  val ReplaceE2		: thm
-  val ReplaceI		: thm
-  val Replace_iff	: thm
-  val Replace_cong	: thm
-  val rev_ballE		: thm
-  val rev_bspec		: thm
-  val rev_subsetD	: thm
-  val separation	: thm
-  val setup_induction	: thm
-  val set_mp_tac	: int -> tactic
-  val subset0_cs	: claset
-  val subsetCE		: thm
-  val subsetD		: thm
-  val subsetI		: thm
-  val subset_iff	: thm
-  val subset_refl	: thm
-  val subset_trans	: thm
-  val UnionE		: thm
-  val UnionI		: thm
-  val Union_in_Pow	: thm
-  val UN_E		: thm
-  val UN_I		: thm
-  val UN_cong		: thm
-  val UN_iff		: thm
-  end;
-
-
-structure ZF_Lemmas : ZF_LEMMAS = 
-struct
 
 (*** Bounded universal quantifier ***)
 
-val ballI = prove_goalw ZF.thy [Ball_def]
+qed_goalw "ballI" ZF.thy [Ball_def]
     "[| !!x. x:A ==> P(x) |] ==> ALL x:A. P(x)"
  (fn prems=> [ (REPEAT (ares_tac (prems @ [allI,impI]) 1)) ]);
 
-val bspec = prove_goalw ZF.thy [Ball_def]
+qed_goalw "bspec" ZF.thy [Ball_def]
     "[| ALL x:A. P(x);  x: A |] ==> P(x)"
  (fn major::prems=>
   [ (rtac (major RS spec RS mp) 1),
     (resolve_tac prems 1) ]);
 
-val ballE = prove_goalw ZF.thy [Ball_def]
+qed_goalw "ballE" ZF.thy [Ball_def]
     "[| ALL x:A. P(x);  P(x) ==> Q;  x~:A ==> Q |] ==> Q"
  (fn major::prems=>
   [ (rtac (major RS allE) 1),
     (REPEAT (eresolve_tac (prems@[asm_rl,impCE]) 1)) ]);
 
 (*Used in the datatype package*)
-val rev_bspec = prove_goal ZF.thy
+qed_goal "rev_bspec" ZF.thy
     "!!x A P. [| x: A;  ALL x:A. P(x) |] ==> P(x)"
  (fn _ =>
   [ REPEAT (ares_tac [bspec] 1) ]);
 
 (*Instantiates x first: better for automatic theorem proving?*)
-val rev_ballE = prove_goal ZF.thy
+qed_goal "rev_ballE" ZF.thy
     "[| ALL x:A. P(x);  x~:A ==> Q;  P(x) ==> Q |] ==> Q"
  (fn major::prems=>
   [ (rtac (major RS ballE) 1),
@@ -118,28 +44,28 @@
 val ball_tac = dtac bspec THEN' assume_tac;
 
 (*Trival rewrite rule;   (ALL x:A.P)<->P holds only if A is nonempty!*)
-val ball_simp = prove_goal ZF.thy "(ALL x:A. True) <-> True"
+qed_goal "ball_simp" ZF.thy "(ALL x:A. True) <-> True"
  (fn _=> [ (REPEAT (ares_tac [TrueI,ballI,iffI] 1)) ]);
 
 (*Congruence rule for rewriting*)
-val ball_cong = prove_goalw ZF.thy [Ball_def]
+qed_goalw "ball_cong" ZF.thy [Ball_def]
     "[| A=A';  !!x. x:A' ==> P(x) <-> P'(x) |] ==> Ball(A,P) <-> Ball(A',P')"
  (fn prems=> [ (simp_tac (FOL_ss addsimps prems) 1) ]);
 
 (*** Bounded existential quantifier ***)
 
-val bexI = prove_goalw ZF.thy [Bex_def]
+qed_goalw "bexI" ZF.thy [Bex_def]
     "[| P(x);  x: A |] ==> EX x:A. P(x)"
  (fn prems=> [ (REPEAT (ares_tac (prems @ [exI,conjI]) 1)) ]);
 
 (*Not of the general form for such rules; ~EX has become ALL~ *)
-val bexCI = prove_goal ZF.thy 
+qed_goal "bexCI" ZF.thy 
    "[| ALL x:A. ~P(x) ==> P(a);  a: A |] ==> EX x:A.P(x)"
  (fn prems=>
   [ (rtac classical 1),
     (REPEAT (ares_tac (prems@[bexI,ballI,notI,notE]) 1)) ]);
 
-val bexE = prove_goalw ZF.thy [Bex_def]
+qed_goalw "bexE" ZF.thy [Bex_def]
     "[| EX x:A. P(x);  !!x. [| x:A; P(x) |] ==> Q \
 \    |] ==> Q"
  (fn major::prems=>
@@ -148,25 +74,25 @@
 
 (*We do not even have (EX x:A. True) <-> True unless A is nonempty!!*)
 
-val bex_cong = prove_goalw ZF.thy [Bex_def]
+qed_goalw "bex_cong" ZF.thy [Bex_def]
     "[| A=A';  !!x. x:A' ==> P(x) <-> P'(x) \
 \    |] ==> Bex(A,P) <-> Bex(A',P')"
  (fn prems=> [ (simp_tac (FOL_ss addsimps prems addcongs [conj_cong]) 1) ]);
 
 (*** Rules for subsets ***)
 
-val subsetI = prove_goalw ZF.thy [subset_def]
+qed_goalw "subsetI" ZF.thy [subset_def]
     "(!!x.x:A ==> x:B) ==> A <= B"
  (fn prems=> [ (REPEAT (ares_tac (prems @ [ballI]) 1)) ]);
 
 (*Rule in Modus Ponens style [was called subsetE] *)
-val subsetD = prove_goalw ZF.thy [subset_def] "[| A <= B;  c:A |] ==> c:B"
+qed_goalw "subsetD" ZF.thy [subset_def] "[| A <= B;  c:A |] ==> c:B"
  (fn major::prems=>
   [ (rtac (major RS bspec) 1),
     (resolve_tac prems 1) ]);
 
 (*Classical elimination rule*)
-val subsetCE = prove_goalw ZF.thy [subset_def]
+qed_goalw "subsetCE" ZF.thy [subset_def]
     "[| A <= B;  c~:A ==> P;  c:B ==> P |] ==> P"
  (fn major::prems=>
   [ (rtac (major RS ballE) 1),
@@ -176,17 +102,17 @@
 val set_mp_tac = dtac subsetD THEN' assume_tac;
 
 (*Sometimes useful with premises in this order*)
-val rev_subsetD = prove_goal ZF.thy "!!A B c. [| c:A; A<=B |] ==> c:B"
+qed_goal "rev_subsetD" ZF.thy "!!A B c. [| c:A; A<=B |] ==> c:B"
  (fn _=> [REPEAT (ares_tac [subsetD] 1)]);
 
-val subset_refl = prove_goal ZF.thy "A <= A"
+qed_goal "subset_refl" ZF.thy "A <= A"
  (fn _=> [ (rtac subsetI 1), atac 1 ]);
 
-val subset_trans = prove_goal ZF.thy "[| A<=B;  B<=C |] ==> A<=C"
+qed_goal "subset_trans" ZF.thy "[| A<=B;  B<=C |] ==> A<=C"
  (fn prems=> [ (REPEAT (ares_tac ([subsetI]@(prems RL [subsetD])) 1)) ]);
 
 (*Useful for proving A<=B by rewriting in some cases*)
-val subset_iff = prove_goalw ZF.thy [subset_def,Ball_def]
+qed_goalw "subset_iff" ZF.thy [subset_def,Ball_def]
      "A<=B <-> (ALL x. x:A --> x:B)"
  (fn _=> [ (rtac iff_refl 1) ]);
 
@@ -194,30 +120,30 @@
 (*** Rules for equality ***)
 
 (*Anti-symmetry of the subset relation*)
-val equalityI = prove_goal ZF.thy "[| A <= B;  B <= A |] ==> A = B"
+qed_goal "equalityI" ZF.thy "[| A <= B;  B <= A |] ==> A = B"
  (fn prems=> [ (REPEAT (resolve_tac (prems@[conjI, extension RS iffD2]) 1)) ]);
 
-val equality_iffI = prove_goal ZF.thy "(!!x. x:A <-> x:B) ==> A = B"
+qed_goal "equality_iffI" ZF.thy "(!!x. x:A <-> x:B) ==> A = B"
  (fn [prem] =>
   [ (rtac equalityI 1),
     (REPEAT (ares_tac [subsetI, prem RS iffD1, prem RS iffD2] 1)) ]);
 
-val equalityD1 = prove_goal ZF.thy "A = B ==> A<=B"
+qed_goal "equalityD1" ZF.thy "A = B ==> A<=B"
  (fn prems=>
   [ (rtac (extension RS iffD1 RS conjunct1) 1),
     (resolve_tac prems 1) ]);
 
-val equalityD2 = prove_goal ZF.thy "A = B ==> B<=A"
+qed_goal "equalityD2" ZF.thy "A = B ==> B<=A"
  (fn prems=>
   [ (rtac (extension RS iffD1 RS conjunct2) 1),
     (resolve_tac prems 1) ]);
 
-val equalityE = prove_goal ZF.thy
+qed_goal "equalityE" ZF.thy
     "[| A = B;  [| A<=B; B<=A |] ==> P |]  ==>  P"
  (fn prems=>
   [ (DEPTH_SOLVE (resolve_tac (prems@[equalityD1,equalityD2]) 1)) ]);
 
-val equalityCE = prove_goal ZF.thy
+qed_goal "equalityCE" ZF.thy
     "[| A = B;  [| c:A; c:B |] ==> P;  [| c~:A; c~:B |] ==> P |]  ==>  P"
  (fn major::prems=>
   [ (rtac (major RS equalityE) 1),
@@ -227,7 +153,7 @@
   To make the induction hypotheses usable, apply "spec" or "bspec" to
   put universal quantifiers over the free variables in p. 
   Would it be better to do subgoal_tac "ALL z. p = f(z) --> R(z)" ??*)
-val setup_induction = prove_goal ZF.thy
+qed_goal "setup_induction" ZF.thy
     "[| p: A;  !!z. z: A ==> p=z --> R |] ==> R"
  (fn prems=>
   [ (rtac mp 1),
@@ -236,7 +162,7 @@
 
 (*** Rules for Replace -- the derived form of replacement ***)
 
-val Replace_iff = prove_goalw ZF.thy [Replace_def]
+qed_goalw "Replace_iff" ZF.thy [Replace_def]
     "b : {y. x:A, P(x,y)}  <->  (EX x:A. P(x,b) & (ALL y. P(x,y) --> y=b))"
  (fn _=>
   [ (rtac (replacement RS iff_trans) 1),
@@ -244,7 +170,7 @@
         ORELSE eresolve_tac [conjE, spec RS mp, ex1_functional] 1)) ]);
 
 (*Introduction; there must be a unique y such that P(x,y), namely y=b. *)
-val ReplaceI = prove_goal ZF.thy
+qed_goal "ReplaceI" ZF.thy
     "[| P(x,b);  x: A;  !!y. P(x,y) ==> y=b |] ==> \
 \    b : {y. x:A, P(x,y)}"
  (fn prems=>
@@ -252,7 +178,7 @@
     (REPEAT (ares_tac (prems@[bexI,conjI,allI,impI]) 1)) ]);
 
 (*Elimination; may asssume there is a unique y such that P(x,y), namely y=b. *)
-val ReplaceE = prove_goal ZF.thy 
+qed_goal "ReplaceE" ZF.thy 
     "[| b : {y. x:A, P(x,y)};  \
 \       !!x. [| x: A;  P(x,b);  ALL y. P(x,y)-->y=b |] ==> R \
 \    |] ==> R"
@@ -262,7 +188,7 @@
     (REPEAT (ares_tac prems 1)) ]);
 
 (*As above but without the (generally useless) 3rd assumption*)
-val ReplaceE2 = prove_goal ZF.thy 
+qed_goal "ReplaceE2" ZF.thy 
     "[| b : {y. x:A, P(x,y)};  \
 \       !!x. [| x: A;  P(x,b) |] ==> R \
 \    |] ==> R"
@@ -270,7 +196,7 @@
   [ (rtac (major RS ReplaceE) 1),
     (REPEAT (ares_tac prems 1)) ]);
 
-val Replace_cong = prove_goal ZF.thy
+qed_goal "Replace_cong" ZF.thy
     "[| A=B;  !!x y. x:B ==> P(x,y) <-> Q(x,y) |] ==> \
 \    Replace(A,P) = Replace(B,Q)"
  (fn prems=>
@@ -284,16 +210,16 @@
 
 (*** Rules for RepFun ***)
 
-val RepFunI = prove_goalw ZF.thy [RepFun_def]
+qed_goalw "RepFunI" ZF.thy [RepFun_def]
     "!!a A. a : A ==> f(a) : {f(x). x:A}"
  (fn _ => [ (REPEAT (ares_tac [ReplaceI,refl] 1)) ]);
 
 (*Useful for coinduction proofs*)
-val RepFun_eqI = prove_goal ZF.thy
+qed_goal "RepFun_eqI" ZF.thy
     "!!b a f. [| b=f(a);  a : A |] ==> b : {f(x). x:A}"
  (fn _ => [ etac ssubst 1, etac RepFunI 1 ]);
 
-val RepFunE = prove_goalw ZF.thy [RepFun_def]
+qed_goalw "RepFunE" ZF.thy [RepFun_def]
     "[| b : {f(x). x:A};  \
 \       !!x.[| x:A;  b=f(x) |] ==> P |] ==> \
 \    P"
@@ -301,11 +227,11 @@
   [ (rtac (major RS ReplaceE) 1),
     (REPEAT (ares_tac prems 1)) ]);
 
-val RepFun_cong = prove_goalw ZF.thy [RepFun_def]
+qed_goalw "RepFun_cong" ZF.thy [RepFun_def]
     "[| A=B;  !!x. x:B ==> f(x)=g(x) |] ==> RepFun(A,f) = RepFun(B,g)"
  (fn prems=> [ (simp_tac (FOL_ss addcongs [Replace_cong] addsimps prems) 1) ]);
 
-val RepFun_iff = prove_goalw ZF.thy [Bex_def]
+qed_goalw "RepFun_iff" ZF.thy [Bex_def]
     "b : {f(x). x:A} <-> (EX x:A. b=f(x))"
  (fn _ => [ (fast_tac (FOL_cs addIs [RepFunI] addSEs [RepFunE]) 1) ]);
 
@@ -313,46 +239,46 @@
 (*** Rules for Collect -- forming a subset by separation ***)
 
 (*Separation is derivable from Replacement*)
-val separation = prove_goalw ZF.thy [Collect_def]
+qed_goalw "separation" ZF.thy [Collect_def]
     "a : {x:A. P(x)} <-> a:A & P(a)"
  (fn _=> [ (fast_tac (FOL_cs addIs  [bexI,ReplaceI] 
 		             addSEs [bexE,ReplaceE]) 1) ]);
 
-val CollectI = prove_goal ZF.thy
+qed_goal "CollectI" ZF.thy
     "[| a:A;  P(a) |] ==> a : {x:A. P(x)}"
  (fn prems=>
   [ (rtac (separation RS iffD2) 1),
     (REPEAT (resolve_tac (prems@[conjI]) 1)) ]);
 
-val CollectE = prove_goal ZF.thy
+qed_goal "CollectE" ZF.thy
     "[| a : {x:A. P(x)};  [| a:A; P(a) |] ==> R |] ==> R"
  (fn prems=>
   [ (rtac (separation RS iffD1 RS conjE) 1),
     (REPEAT (ares_tac prems 1)) ]);
 
-val CollectD1 = prove_goal ZF.thy "a : {x:A. P(x)} ==> a:A"
+qed_goal "CollectD1" ZF.thy "a : {x:A. P(x)} ==> a:A"
  (fn [major]=>
   [ (rtac (major RS CollectE) 1),
     (assume_tac 1) ]);
 
-val CollectD2 = prove_goal ZF.thy "a : {x:A. P(x)} ==> P(a)"
+qed_goal "CollectD2" ZF.thy "a : {x:A. P(x)} ==> P(a)"
  (fn [major]=>
   [ (rtac (major RS CollectE) 1),
     (assume_tac 1) ]);
 
-val Collect_cong = prove_goalw ZF.thy [Collect_def] 
+qed_goalw "Collect_cong" ZF.thy [Collect_def] 
     "[| A=B;  !!x. x:B ==> P(x) <-> Q(x) |] ==> Collect(A,P) = Collect(B,Q)"
  (fn prems=> [ (simp_tac (FOL_ss addcongs [Replace_cong] addsimps prems) 1) ]);
 
 (*** Rules for Unions ***)
 
 (*The order of the premises presupposes that C is rigid; A may be flexible*)
-val UnionI = prove_goal ZF.thy "[| B: C;  A: B |] ==> A: Union(C)"
+qed_goal "UnionI" ZF.thy "[| B: C;  A: B |] ==> A: Union(C)"
  (fn prems=>
   [ (resolve_tac [Union_iff RS iffD2] 1),
     (REPEAT (resolve_tac (prems @ [bexI]) 1)) ]);
 
-val UnionE = prove_goal ZF.thy
+qed_goal "UnionE" ZF.thy
     "[| A : Union(C);  !!B.[| A: B;  B: C |] ==> R |] ==> R"
  (fn prems=>
   [ (resolve_tac [Union_iff RS iffD1 RS bexE] 1),
@@ -361,27 +287,27 @@
 (*** Rules for Inter ***)
 
 (*Not obviously useful towards proving InterI, InterD, InterE*)
-val Inter_iff = prove_goalw ZF.thy [Inter_def,Ball_def]
+qed_goalw "Inter_iff" ZF.thy [Inter_def,Ball_def]
     "A : Inter(C) <-> (ALL x:C. A: x) & (EX x. x:C)"
  (fn _=> [ (rtac (separation RS iff_trans) 1),
 	   (fast_tac (FOL_cs addIs [UnionI] addSEs [UnionE]) 1) ]);
 
 (* Intersection is well-behaved only if the family is non-empty! *)
-val InterI = prove_goalw ZF.thy [Inter_def]
+qed_goalw "InterI" ZF.thy [Inter_def]
     "[| !!x. x: C ==> A: x;  c:C |] ==> A : Inter(C)"
  (fn prems=>
   [ (DEPTH_SOLVE (ares_tac ([CollectI,UnionI,ballI] @ prems) 1)) ]);
 
 (*A "destruct" rule -- every B in C contains A as an element, but
   A:B can hold when B:C does not!  This rule is analogous to "spec". *)
-val InterD = prove_goalw ZF.thy [Inter_def]
+qed_goalw "InterD" ZF.thy [Inter_def]
     "[| A : Inter(C);  B : C |] ==> A : B"
  (fn [major,minor]=>
   [ (rtac (major RS CollectD2 RS bspec) 1),
     (rtac minor 1) ]);
 
 (*"Classical" elimination rule -- does not require exhibiting B:C *)
-val InterE = prove_goalw ZF.thy [Inter_def]
+qed_goalw "InterE" ZF.thy [Inter_def]
     "[| A : Inter(C);  A:B ==> R;  B~:C ==> R |] ==> R"
  (fn major::prems=>
   [ (rtac (major RS CollectD2 RS ballE) 1),
@@ -390,23 +316,23 @@
 (*** Rules for Unions of families ***)
 (* UN x:A. B(x) abbreviates Union({B(x). x:A}) *)
 
-val UN_iff = prove_goalw ZF.thy [Bex_def]
+qed_goalw "UN_iff" ZF.thy [Bex_def]
     "b : (UN x:A. B(x)) <-> (EX x:A. b : B(x))"
  (fn _=> [ (fast_tac (FOL_cs addIs [UnionI, RepFunI] 
                              addSEs [UnionE, RepFunE]) 1) ]);
 
 (*The order of the premises presupposes that A is rigid; b may be flexible*)
-val UN_I = prove_goal ZF.thy "[| a: A;  b: B(a) |] ==> b: (UN x:A. B(x))"
+qed_goal "UN_I" ZF.thy "[| a: A;  b: B(a) |] ==> b: (UN x:A. B(x))"
  (fn prems=>
   [ (REPEAT (resolve_tac (prems@[UnionI,RepFunI]) 1)) ]);
 
-val UN_E = prove_goal ZF.thy
+qed_goal "UN_E" ZF.thy
     "[| b : (UN x:A. B(x));  !!x.[| x: A;  b: B(x) |] ==> R |] ==> R"
  (fn major::prems=>
   [ (rtac (major RS UnionE) 1),
     (REPEAT (eresolve_tac (prems@[asm_rl, RepFunE, subst]) 1)) ]);
 
-val UN_cong = prove_goal ZF.thy
+qed_goal "UN_cong" ZF.thy
     "[| A=B;  !!x. x:B ==> C(x)=D(x) |] ==> (UN x:A.C(x)) = (UN x:B.D(x))"
  (fn prems=> [ (simp_tac (FOL_ss addcongs [RepFun_cong] addsimps prems) 1) ]);
 
@@ -414,35 +340,35 @@
 (*** Rules for Intersections of families ***)
 (* INT x:A. B(x) abbreviates Inter({B(x). x:A}) *)
 
-val INT_iff = prove_goal ZF.thy
+qed_goal "INT_iff" ZF.thy
     "b : (INT x:A. B(x)) <-> (ALL x:A. b : B(x)) & (EX x. x:A)"
  (fn _=> [ (simp_tac (FOL_ss addsimps [Inter_def, Ball_def, Bex_def, 
 				       separation, Union_iff, RepFun_iff]) 1),
 	   (fast_tac FOL_cs 1) ]);
 
-val INT_I = prove_goal ZF.thy
+qed_goal "INT_I" ZF.thy
     "[| !!x. x: A ==> b: B(x);  a: A |] ==> b: (INT x:A. B(x))"
  (fn prems=>
   [ (REPEAT (ares_tac (prems@[InterI,RepFunI]) 1
      ORELSE eresolve_tac [RepFunE,ssubst] 1)) ]);
 
-val INT_E = prove_goal ZF.thy
+qed_goal "INT_E" ZF.thy
     "[| b : (INT x:A. B(x));  a: A |] ==> b : B(a)"
  (fn [major,minor]=>
   [ (rtac (major RS InterD) 1),
     (rtac (minor RS RepFunI) 1) ]);
 
-val INT_cong = prove_goal ZF.thy
+qed_goal "INT_cong" ZF.thy
     "[| A=B;  !!x. x:B ==> C(x)=D(x) |] ==> (INT x:A.C(x)) = (INT x:B.D(x))"
  (fn prems=> [ (simp_tac (FOL_ss addcongs [RepFun_cong] addsimps prems) 1) ]);
 
 
 (*** Rules for Powersets ***)
 
-val PowI = prove_goal ZF.thy "A <= B ==> A : Pow(B)"
+qed_goal "PowI" ZF.thy "A <= B ==> A : Pow(B)"
  (fn [prem]=> [ (rtac (prem RS (Pow_iff RS iffD2)) 1) ]);
 
-val PowD = prove_goal ZF.thy "A : Pow(B)  ==>  A<=B"
+qed_goal "PowD" ZF.thy "A : Pow(B)  ==>  A<=B"
  (fn [major]=> [ (rtac (major RS (Pow_iff RS iffD1)) 1) ]);
 
 
@@ -450,7 +376,7 @@
 
 (*The set {x:0.False} is empty; by foundation it equals 0 
   See Suppes, page 21.*)
-val emptyE = prove_goal ZF.thy "a:0 ==> P"
+qed_goal "emptyE" ZF.thy "a:0 ==> P"
  (fn [major]=>
   [ (rtac (foundation RS disjE) 1),
     (etac (equalityD2 RS subsetD RS CollectD2 RS FalseE) 1),
@@ -458,15 +384,15 @@
     (etac bexE 1),
     (etac (CollectD2 RS FalseE) 1) ]);
 
-val empty_subsetI = prove_goal ZF.thy "0 <= A"
+qed_goal "empty_subsetI" ZF.thy "0 <= A"
  (fn _ => [ (REPEAT (ares_tac [equalityI,subsetI,emptyE] 1)) ]);
 
-val equals0I = prove_goal ZF.thy "[| !!y. y:A ==> False |] ==> A=0"
+qed_goal "equals0I" ZF.thy "[| !!y. y:A ==> False |] ==> A=0"
  (fn prems=>
   [ (REPEAT (ares_tac (prems@[empty_subsetI,subsetI,equalityI]) 1 
       ORELSE eresolve_tac (prems RL [FalseE]) 1)) ]);
 
-val equals0D = prove_goal ZF.thy "[| A=0;  a:A |] ==> P"
+qed_goal "equals0D" ZF.thy "[| A=0;  a:A |] ==> P"
  (fn [major,minor]=>
   [ (rtac (minor RS (major RS equalityD1 RS subsetD RS emptyE)) 1) ]);
 
@@ -489,14 +415,10 @@
 
 (*The search is undirected; similar proof attempts may fail.
   b represents ANY map, such as (lam x:A.b(x)): A->Pow(A). *)
-val cantor = prove_goal ZF.thy "EX S: Pow(A). ALL x:A. b(x) ~= S"
+qed_goal "cantor" ZF.thy "EX S: Pow(A). ALL x:A. b(x) ~= S"
  (fn _ => [best_tac cantor_cs 1]);
 
 (*Lemma for the inductive definition in Zorn.thy*)
-val Union_in_Pow = prove_goal ZF.thy
+qed_goal "Union_in_Pow" ZF.thy
     "!!Y. Y : Pow(Pow(A)) ==> Union(Y) : Pow(A)"
  (fn _ => [fast_tac lemmas_cs 1]);
-
-end;
-
-open ZF_Lemmas;