--- a/src/HOL/ex/SVC_Oracle.ML Sun Oct 01 18:29:35 2006 +0200
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,105 +0,0 @@
-(* Title: HOL/SVC_Oracle.ML
- ID: $Id$
- Author: Lawrence C Paulson
- Copyright 1999 University of Cambridge
-
-Installing the oracle for SVC (Stanford Validity Checker)
-
-The following code merely CALLS the oracle;
- the soundness-critical functions are at HOL/Tools/svc_funcs.ML
-
-Based upon the work of Soren T. Heilmann
-*)
-
-
-(*Generalize an Isabelle formula, replacing by Vars
- all subterms not intelligible to SVC.*)
-fun svc_abstract t =
- let
- (*The oracle's result is given to the subgoal using compose_tac because
- its premises are matched against the assumptions rather than used
- to make subgoals. Therefore , abstraction must copy the parameters
- precisely and make them available to all generated Vars.*)
- val params = Term.strip_all_vars t
- and body = Term.strip_all_body t
- val Us = map #2 params
- val nPar = length params
- val vname = ref "V_a"
- val pairs = ref ([] : (term*term) list)
- fun insert t =
- let val T = fastype_of t
- val v = Logic.combound (Var ((!vname,0), Us--->T), 0, nPar)
- in vname := Symbol.bump_string (!vname);
- pairs := (t, v) :: !pairs;
- v
- end;
- fun replace t =
- case t of
- Free _ => t (*but not existing Vars, lest the names clash*)
- | Bound _ => t
- | _ => (case AList.lookup Pattern.aeconv (!pairs) t of
- SOME v => v
- | NONE => insert t)
- (*abstraction of a numeric literal*)
- fun lit (t as Const("0", _)) = t
- | lit (t as Const("1", _)) = t
- | lit (t as Const("Numeral.number_of", _) $ w) = t
- | lit t = replace t
- (*abstraction of a real/rational expression*)
- fun rat ((c as Const("HOL.plus", _)) $ x $ y) = c $ (rat x) $ (rat y)
- | rat ((c as Const("HOL.minus", _)) $ x $ y) = c $ (rat x) $ (rat y)
- | rat ((c as Const("HOL.divide", _)) $ x $ y) = c $ (rat x) $ (rat y)
- | rat ((c as Const("HOL.times", _)) $ x $ y) = c $ (rat x) $ (rat y)
- | rat ((c as Const("HOL.uminus", _)) $ x) = c $ (rat x)
- | rat t = lit t
- (*abstraction of an integer expression: no div, mod*)
- fun int ((c as Const("HOL.plus", _)) $ x $ y) = c $ (int x) $ (int y)
- | int ((c as Const("HOL.minus", _)) $ x $ y) = c $ (int x) $ (int y)
- | int ((c as Const("HOL.times", _)) $ x $ y) = c $ (int x) $ (int y)
- | int ((c as Const("HOL.uminus", _)) $ x) = c $ (int x)
- | int t = lit t
- (*abstraction of a natural number expression: no minus*)
- fun nat ((c as Const("HOL.plus", _)) $ x $ y) = c $ (nat x) $ (nat y)
- | nat ((c as Const("HOL.times", _)) $ x $ y) = c $ (nat x) $ (nat y)
- | nat ((c as Const("Suc", _)) $ x) = c $ (nat x)
- | nat t = lit t
- (*abstraction of a relation: =, <, <=*)
- fun rel (T, c $ x $ y) =
- if T = HOLogic.realT then c $ (rat x) $ (rat y)
- else if T = HOLogic.intT then c $ (int x) $ (int y)
- else if T = HOLogic.natT then c $ (nat x) $ (nat y)
- else if T = HOLogic.boolT then c $ (fm x) $ (fm y)
- else replace (c $ x $ y) (*non-numeric comparison*)
- (*abstraction of a formula*)
- and fm ((c as Const("op &", _)) $ p $ q) = c $ (fm p) $ (fm q)
- | fm ((c as Const("op |", _)) $ p $ q) = c $ (fm p) $ (fm q)
- | fm ((c as Const("op -->", _)) $ p $ q) = c $ (fm p) $ (fm q)
- | fm ((c as Const("Not", _)) $ p) = c $ (fm p)
- | fm ((c as Const("True", _))) = c
- | fm ((c as Const("False", _))) = c
- | fm (t as Const("op =", Type ("fun", [T,_])) $ _ $ _) = rel (T, t)
- | fm (t as Const("Orderings.less", Type ("fun", [T,_])) $ _ $ _) = rel (T, t)
- | fm (t as Const("Orderings.less_eq", Type ("fun", [T,_])) $ _ $ _) = rel (T, t)
- | fm t = replace t
- (*entry point, and abstraction of a meta-formula*)
- fun mt ((c as Const("Trueprop", _)) $ p) = c $ (fm p)
- | mt ((c as Const("==>", _)) $ p $ q) = c $ (mt p) $ (mt q)
- | mt t = fm t (*it might be a formula*)
- in (list_all (params, mt body), !pairs) end;
-
-
-(*Present the entire subgoal to the oracle, assumptions and all, but possibly
- abstracted. Use via compose_tac, which performs no lifting but will
- instantiate variables.*)
-
-fun svc_tac i st =
- let
- val (abs_goal, _) = svc_abstract (Logic.get_goal (Thm.prop_of st) i)
- val th = svc_oracle (Thm.theory_of_thm st) abs_goal
- in compose_tac (false, th, 0) i st end
- handle TERM _ => no_tac st;
-
-
-(*check if user has SVC installed*)
-fun svc_enabled () = getenv "SVC_HOME" <> "";
-fun if_svc_enabled f x = if svc_enabled () then f x else ();
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/ex/svc_oracle.ML Sun Oct 01 18:29:36 2006 +0200
@@ -0,0 +1,105 @@
+(* Title: HOL/SVC_Oracle.ML
+ ID: $Id$
+ Author: Lawrence C Paulson
+ Copyright 1999 University of Cambridge
+
+Installing the oracle for SVC (Stanford Validity Checker)
+
+The following code merely CALLS the oracle;
+ the soundness-critical functions are at HOL/Tools/svc_funcs.ML
+
+Based upon the work of Soren T. Heilmann
+*)
+
+
+(*Generalize an Isabelle formula, replacing by Vars
+ all subterms not intelligible to SVC.*)
+fun svc_abstract t =
+ let
+ (*The oracle's result is given to the subgoal using compose_tac because
+ its premises are matched against the assumptions rather than used
+ to make subgoals. Therefore , abstraction must copy the parameters
+ precisely and make them available to all generated Vars.*)
+ val params = Term.strip_all_vars t
+ and body = Term.strip_all_body t
+ val Us = map #2 params
+ val nPar = length params
+ val vname = ref "V_a"
+ val pairs = ref ([] : (term*term) list)
+ fun insert t =
+ let val T = fastype_of t
+ val v = Logic.combound (Var ((!vname,0), Us--->T), 0, nPar)
+ in vname := Symbol.bump_string (!vname);
+ pairs := (t, v) :: !pairs;
+ v
+ end;
+ fun replace t =
+ case t of
+ Free _ => t (*but not existing Vars, lest the names clash*)
+ | Bound _ => t
+ | _ => (case AList.lookup Pattern.aeconv (!pairs) t of
+ SOME v => v
+ | NONE => insert t)
+ (*abstraction of a numeric literal*)
+ fun lit (t as Const("0", _)) = t
+ | lit (t as Const("1", _)) = t
+ | lit (t as Const("Numeral.number_of", _) $ w) = t
+ | lit t = replace t
+ (*abstraction of a real/rational expression*)
+ fun rat ((c as Const("HOL.plus", _)) $ x $ y) = c $ (rat x) $ (rat y)
+ | rat ((c as Const("HOL.minus", _)) $ x $ y) = c $ (rat x) $ (rat y)
+ | rat ((c as Const("HOL.divide", _)) $ x $ y) = c $ (rat x) $ (rat y)
+ | rat ((c as Const("HOL.times", _)) $ x $ y) = c $ (rat x) $ (rat y)
+ | rat ((c as Const("HOL.uminus", _)) $ x) = c $ (rat x)
+ | rat t = lit t
+ (*abstraction of an integer expression: no div, mod*)
+ fun int ((c as Const("HOL.plus", _)) $ x $ y) = c $ (int x) $ (int y)
+ | int ((c as Const("HOL.minus", _)) $ x $ y) = c $ (int x) $ (int y)
+ | int ((c as Const("HOL.times", _)) $ x $ y) = c $ (int x) $ (int y)
+ | int ((c as Const("HOL.uminus", _)) $ x) = c $ (int x)
+ | int t = lit t
+ (*abstraction of a natural number expression: no minus*)
+ fun nat ((c as Const("HOL.plus", _)) $ x $ y) = c $ (nat x) $ (nat y)
+ | nat ((c as Const("HOL.times", _)) $ x $ y) = c $ (nat x) $ (nat y)
+ | nat ((c as Const("Suc", _)) $ x) = c $ (nat x)
+ | nat t = lit t
+ (*abstraction of a relation: =, <, <=*)
+ fun rel (T, c $ x $ y) =
+ if T = HOLogic.realT then c $ (rat x) $ (rat y)
+ else if T = HOLogic.intT then c $ (int x) $ (int y)
+ else if T = HOLogic.natT then c $ (nat x) $ (nat y)
+ else if T = HOLogic.boolT then c $ (fm x) $ (fm y)
+ else replace (c $ x $ y) (*non-numeric comparison*)
+ (*abstraction of a formula*)
+ and fm ((c as Const("op &", _)) $ p $ q) = c $ (fm p) $ (fm q)
+ | fm ((c as Const("op |", _)) $ p $ q) = c $ (fm p) $ (fm q)
+ | fm ((c as Const("op -->", _)) $ p $ q) = c $ (fm p) $ (fm q)
+ | fm ((c as Const("Not", _)) $ p) = c $ (fm p)
+ | fm ((c as Const("True", _))) = c
+ | fm ((c as Const("False", _))) = c
+ | fm (t as Const("op =", Type ("fun", [T,_])) $ _ $ _) = rel (T, t)
+ | fm (t as Const("Orderings.less", Type ("fun", [T,_])) $ _ $ _) = rel (T, t)
+ | fm (t as Const("Orderings.less_eq", Type ("fun", [T,_])) $ _ $ _) = rel (T, t)
+ | fm t = replace t
+ (*entry point, and abstraction of a meta-formula*)
+ fun mt ((c as Const("Trueprop", _)) $ p) = c $ (fm p)
+ | mt ((c as Const("==>", _)) $ p $ q) = c $ (mt p) $ (mt q)
+ | mt t = fm t (*it might be a formula*)
+ in (list_all (params, mt body), !pairs) end;
+
+
+(*Present the entire subgoal to the oracle, assumptions and all, but possibly
+ abstracted. Use via compose_tac, which performs no lifting but will
+ instantiate variables.*)
+
+fun svc_tac i st =
+ let
+ val (abs_goal, _) = svc_abstract (Logic.get_goal (Thm.prop_of st) i)
+ val th = svc_oracle (Thm.theory_of_thm st) abs_goal
+ in compose_tac (false, th, 0) i st end
+ handle TERM _ => no_tac st;
+
+
+(*check if user has SVC installed*)
+fun svc_enabled () = getenv "SVC_HOME" <> "";
+fun if_svc_enabled f x = if svc_enabled () then f x else ();