renamed ex/SVC_Oracle.ML to ex/svc_oracle.ML;
authorwenzelm
Sun, 01 Oct 2006 18:29:36 +0200
changeset 20817 7ec9b692183c
parent 20816 1cf97e0bba57
child 20818 cb7ec413f95d
renamed ex/SVC_Oracle.ML to ex/svc_oracle.ML;
src/HOL/ex/SVC_Oracle.ML
src/HOL/ex/svc_oracle.ML
--- a/src/HOL/ex/SVC_Oracle.ML	Sun Oct 01 18:29:35 2006 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,105 +0,0 @@
-(*  Title:      HOL/SVC_Oracle.ML
-    ID:         $Id$
-    Author:     Lawrence C Paulson
-    Copyright   1999  University of Cambridge
-
-Installing the oracle for SVC (Stanford Validity Checker)
-
-The following code merely CALLS the oracle;
-  the soundness-critical functions are at HOL/Tools/svc_funcs.ML
-
-Based upon the work of Soren T. Heilmann
-*)
-
-
-(*Generalize an Isabelle formula, replacing by Vars
-  all subterms not intelligible to SVC.*)
-fun svc_abstract t =
-  let
-    (*The oracle's result is given to the subgoal using compose_tac because
-      its premises are matched against the assumptions rather than used
-      to make subgoals.  Therefore , abstraction must copy the parameters
-      precisely and make them available to all generated Vars.*)
-    val params = Term.strip_all_vars t
-    and body   = Term.strip_all_body t
-    val Us = map #2 params
-    val nPar = length params
-    val vname = ref "V_a"
-    val pairs = ref ([] : (term*term) list)
-    fun insert t =
-        let val T = fastype_of t
-            val v = Logic.combound (Var ((!vname,0), Us--->T), 0, nPar)
-        in  vname := Symbol.bump_string (!vname);
-            pairs := (t, v) :: !pairs;
-            v
-        end;
-    fun replace t =
-        case t of
-            Free _  => t  (*but not existing Vars, lest the names clash*)
-          | Bound _ => t
-          | _ => (case AList.lookup Pattern.aeconv (!pairs) t of
-                      SOME v => v
-                    | NONE   => insert t)
-    (*abstraction of a numeric literal*)
-    fun lit (t as Const("0", _)) = t
-      | lit (t as Const("1", _)) = t
-      | lit (t as Const("Numeral.number_of", _) $ w) = t
-      | lit t = replace t
-    (*abstraction of a real/rational expression*)
-    fun rat ((c as Const("HOL.plus", _)) $ x $ y) = c $ (rat x) $ (rat y)
-      | rat ((c as Const("HOL.minus", _)) $ x $ y) = c $ (rat x) $ (rat y)
-      | rat ((c as Const("HOL.divide", _)) $ x $ y) = c $ (rat x) $ (rat y)
-      | rat ((c as Const("HOL.times", _)) $ x $ y) = c $ (rat x) $ (rat y)
-      | rat ((c as Const("HOL.uminus", _)) $ x) = c $ (rat x)
-      | rat t = lit t
-    (*abstraction of an integer expression: no div, mod*)
-    fun int ((c as Const("HOL.plus", _)) $ x $ y) = c $ (int x) $ (int y)
-      | int ((c as Const("HOL.minus", _)) $ x $ y) = c $ (int x) $ (int y)
-      | int ((c as Const("HOL.times", _)) $ x $ y) = c $ (int x) $ (int y)
-      | int ((c as Const("HOL.uminus", _)) $ x) = c $ (int x)
-      | int t = lit t
-    (*abstraction of a natural number expression: no minus*)
-    fun nat ((c as Const("HOL.plus", _)) $ x $ y) = c $ (nat x) $ (nat y)
-      | nat ((c as Const("HOL.times", _)) $ x $ y) = c $ (nat x) $ (nat y)
-      | nat ((c as Const("Suc", _)) $ x) = c $ (nat x)
-      | nat t = lit t
-    (*abstraction of a relation: =, <, <=*)
-    fun rel (T, c $ x $ y) =
-            if T = HOLogic.realT then c $ (rat x) $ (rat y)
-            else if T = HOLogic.intT then c $ (int x) $ (int y)
-            else if T = HOLogic.natT then c $ (nat x) $ (nat y)
-            else if T = HOLogic.boolT then c $ (fm x) $ (fm y)
-            else replace (c $ x $ y)   (*non-numeric comparison*)
-    (*abstraction of a formula*)
-    and fm ((c as Const("op &", _)) $ p $ q) = c $ (fm p) $ (fm q)
-      | fm ((c as Const("op |", _)) $ p $ q) = c $ (fm p) $ (fm q)
-      | fm ((c as Const("op -->", _)) $ p $ q) = c $ (fm p) $ (fm q)
-      | fm ((c as Const("Not", _)) $ p) = c $ (fm p)
-      | fm ((c as Const("True", _))) = c
-      | fm ((c as Const("False", _))) = c
-      | fm (t as Const("op =",  Type ("fun", [T,_])) $ _ $ _) = rel (T, t)
-      | fm (t as Const("Orderings.less",  Type ("fun", [T,_])) $ _ $ _) = rel (T, t)
-      | fm (t as Const("Orderings.less_eq", Type ("fun", [T,_])) $ _ $ _) = rel (T, t)
-      | fm t = replace t
-    (*entry point, and abstraction of a meta-formula*)
-    fun mt ((c as Const("Trueprop", _)) $ p) = c $ (fm p)
-      | mt ((c as Const("==>", _)) $ p $ q)  = c $ (mt p) $ (mt q)
-      | mt t = fm t  (*it might be a formula*)
-  in (list_all (params, mt body), !pairs) end;
-
-
-(*Present the entire subgoal to the oracle, assumptions and all, but possibly
-  abstracted.  Use via compose_tac, which performs no lifting but will
-  instantiate variables.*)
-
-fun svc_tac i st =
-  let
-    val (abs_goal, _) = svc_abstract (Logic.get_goal (Thm.prop_of st) i)
-    val th = svc_oracle (Thm.theory_of_thm st) abs_goal
-   in compose_tac (false, th, 0) i st end
-   handle TERM _ => no_tac st;
-
-
-(*check if user has SVC installed*)
-fun svc_enabled () = getenv "SVC_HOME" <> "";
-fun if_svc_enabled f x = if svc_enabled () then f x else ();
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/ex/svc_oracle.ML	Sun Oct 01 18:29:36 2006 +0200
@@ -0,0 +1,105 @@
+(*  Title:      HOL/SVC_Oracle.ML
+    ID:         $Id$
+    Author:     Lawrence C Paulson
+    Copyright   1999  University of Cambridge
+
+Installing the oracle for SVC (Stanford Validity Checker)
+
+The following code merely CALLS the oracle;
+  the soundness-critical functions are at HOL/Tools/svc_funcs.ML
+
+Based upon the work of Soren T. Heilmann
+*)
+
+
+(*Generalize an Isabelle formula, replacing by Vars
+  all subterms not intelligible to SVC.*)
+fun svc_abstract t =
+  let
+    (*The oracle's result is given to the subgoal using compose_tac because
+      its premises are matched against the assumptions rather than used
+      to make subgoals.  Therefore , abstraction must copy the parameters
+      precisely and make them available to all generated Vars.*)
+    val params = Term.strip_all_vars t
+    and body   = Term.strip_all_body t
+    val Us = map #2 params
+    val nPar = length params
+    val vname = ref "V_a"
+    val pairs = ref ([] : (term*term) list)
+    fun insert t =
+        let val T = fastype_of t
+            val v = Logic.combound (Var ((!vname,0), Us--->T), 0, nPar)
+        in  vname := Symbol.bump_string (!vname);
+            pairs := (t, v) :: !pairs;
+            v
+        end;
+    fun replace t =
+        case t of
+            Free _  => t  (*but not existing Vars, lest the names clash*)
+          | Bound _ => t
+          | _ => (case AList.lookup Pattern.aeconv (!pairs) t of
+                      SOME v => v
+                    | NONE   => insert t)
+    (*abstraction of a numeric literal*)
+    fun lit (t as Const("0", _)) = t
+      | lit (t as Const("1", _)) = t
+      | lit (t as Const("Numeral.number_of", _) $ w) = t
+      | lit t = replace t
+    (*abstraction of a real/rational expression*)
+    fun rat ((c as Const("HOL.plus", _)) $ x $ y) = c $ (rat x) $ (rat y)
+      | rat ((c as Const("HOL.minus", _)) $ x $ y) = c $ (rat x) $ (rat y)
+      | rat ((c as Const("HOL.divide", _)) $ x $ y) = c $ (rat x) $ (rat y)
+      | rat ((c as Const("HOL.times", _)) $ x $ y) = c $ (rat x) $ (rat y)
+      | rat ((c as Const("HOL.uminus", _)) $ x) = c $ (rat x)
+      | rat t = lit t
+    (*abstraction of an integer expression: no div, mod*)
+    fun int ((c as Const("HOL.plus", _)) $ x $ y) = c $ (int x) $ (int y)
+      | int ((c as Const("HOL.minus", _)) $ x $ y) = c $ (int x) $ (int y)
+      | int ((c as Const("HOL.times", _)) $ x $ y) = c $ (int x) $ (int y)
+      | int ((c as Const("HOL.uminus", _)) $ x) = c $ (int x)
+      | int t = lit t
+    (*abstraction of a natural number expression: no minus*)
+    fun nat ((c as Const("HOL.plus", _)) $ x $ y) = c $ (nat x) $ (nat y)
+      | nat ((c as Const("HOL.times", _)) $ x $ y) = c $ (nat x) $ (nat y)
+      | nat ((c as Const("Suc", _)) $ x) = c $ (nat x)
+      | nat t = lit t
+    (*abstraction of a relation: =, <, <=*)
+    fun rel (T, c $ x $ y) =
+            if T = HOLogic.realT then c $ (rat x) $ (rat y)
+            else if T = HOLogic.intT then c $ (int x) $ (int y)
+            else if T = HOLogic.natT then c $ (nat x) $ (nat y)
+            else if T = HOLogic.boolT then c $ (fm x) $ (fm y)
+            else replace (c $ x $ y)   (*non-numeric comparison*)
+    (*abstraction of a formula*)
+    and fm ((c as Const("op &", _)) $ p $ q) = c $ (fm p) $ (fm q)
+      | fm ((c as Const("op |", _)) $ p $ q) = c $ (fm p) $ (fm q)
+      | fm ((c as Const("op -->", _)) $ p $ q) = c $ (fm p) $ (fm q)
+      | fm ((c as Const("Not", _)) $ p) = c $ (fm p)
+      | fm ((c as Const("True", _))) = c
+      | fm ((c as Const("False", _))) = c
+      | fm (t as Const("op =",  Type ("fun", [T,_])) $ _ $ _) = rel (T, t)
+      | fm (t as Const("Orderings.less",  Type ("fun", [T,_])) $ _ $ _) = rel (T, t)
+      | fm (t as Const("Orderings.less_eq", Type ("fun", [T,_])) $ _ $ _) = rel (T, t)
+      | fm t = replace t
+    (*entry point, and abstraction of a meta-formula*)
+    fun mt ((c as Const("Trueprop", _)) $ p) = c $ (fm p)
+      | mt ((c as Const("==>", _)) $ p $ q)  = c $ (mt p) $ (mt q)
+      | mt t = fm t  (*it might be a formula*)
+  in (list_all (params, mt body), !pairs) end;
+
+
+(*Present the entire subgoal to the oracle, assumptions and all, but possibly
+  abstracted.  Use via compose_tac, which performs no lifting but will
+  instantiate variables.*)
+
+fun svc_tac i st =
+  let
+    val (abs_goal, _) = svc_abstract (Logic.get_goal (Thm.prop_of st) i)
+    val th = svc_oracle (Thm.theory_of_thm st) abs_goal
+   in compose_tac (false, th, 0) i st end
+   handle TERM _ => no_tac st;
+
+
+(*check if user has SVC installed*)
+fun svc_enabled () = getenv "SVC_HOME" <> "";
+fun if_svc_enabled f x = if svc_enabled () then f x else ();