--- a/doc-src/AxClass/generated/Group.tex Sat Oct 27 00:09:59 2001 +0200
+++ b/doc-src/AxClass/generated/Group.tex Sat Oct 27 23:13:42 2001 +0200
@@ -4,7 +4,9 @@
%
\isamarkupheader{Basic group theory%
}
-\isacommand{theory}\ Group\ {\isacharequal}\ Main{\isacharcolon}%
+\isamarkuptrue%
+\isacommand{theory}\ Group\ {\isacharequal}\ Main{\isacharcolon}\isamarkupfalse%
+%
\begin{isamarkuptext}%
\medskip\noindent The meta-level type system of Isabelle supports
\emph{intersections} and \emph{inclusions} of type classes. These
@@ -14,34 +16,41 @@
illustration, we use the well-known example of semigroups, monoids,
general groups and Abelian groups.%
\end{isamarkuptext}%
+\isamarkuptrue%
%
\isamarkupsubsection{Monoids and Groups%
}
+\isamarkuptrue%
%
\begin{isamarkuptext}%
First we declare some polymorphic constants required later for the
signature parts of our structures.%
\end{isamarkuptext}%
+\isamarkuptrue%
\isacommand{consts}\isanewline
\ \ times\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a{\isachardoublequote}\ \ \ \ {\isacharparenleft}\isakeyword{infixl}\ {\isachardoublequote}{\isasymodot}{\isachardoublequote}\ {\isadigit{7}}{\isadigit{0}}{\isacharparenright}\isanewline
\ \ invers\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a{\isachardoublequote}\ \ \ \ {\isacharparenleft}{\isachardoublequote}{\isacharparenleft}{\isacharunderscore}{\isasyminv}{\isacharparenright}{\isachardoublequote}\ {\isacharbrackleft}{\isadigit{1}}{\isadigit{0}}{\isadigit{0}}{\isadigit{0}}{\isacharbrackright}\ {\isadigit{9}}{\isadigit{9}}{\isadigit{9}}{\isacharparenright}\isanewline
-\ \ one\ {\isacharcolon}{\isacharcolon}\ {\isacharprime}a\ \ \ \ {\isacharparenleft}{\isachardoublequote}{\isasymunit}{\isachardoublequote}{\isacharparenright}%
+\ \ one\ {\isacharcolon}{\isacharcolon}\ {\isacharprime}a\ \ \ \ {\isacharparenleft}{\isachardoublequote}{\isasymunit}{\isachardoublequote}{\isacharparenright}\isamarkupfalse%
+%
\begin{isamarkuptext}%
\noindent Next we define class \isa{monoid} of monoids with
operations \isa{{\isasymodot}} and \isa{{\isasymunit}}. Note that multiple class
axioms are allowed for user convenience --- they simply represent the
conjunction of their respective universal closures.%
\end{isamarkuptext}%
+\isamarkuptrue%
\isacommand{axclass}\ monoid\ {\isasymsubseteq}\ {\isachardoublequote}term{\isachardoublequote}\isanewline
\ \ assoc{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}x\ {\isasymodot}\ y{\isacharparenright}\ {\isasymodot}\ z\ {\isacharequal}\ x\ {\isasymodot}\ {\isacharparenleft}y\ {\isasymodot}\ z{\isacharparenright}{\isachardoublequote}\isanewline
\ \ left{\isacharunderscore}unit{\isacharcolon}\ {\isachardoublequote}{\isasymunit}\ {\isasymodot}\ x\ {\isacharequal}\ x{\isachardoublequote}\isanewline
-\ \ right{\isacharunderscore}unit{\isacharcolon}\ {\isachardoublequote}x\ {\isasymodot}\ {\isasymunit}\ {\isacharequal}\ x{\isachardoublequote}%
+\ \ right{\isacharunderscore}unit{\isacharcolon}\ {\isachardoublequote}x\ {\isasymodot}\ {\isasymunit}\ {\isacharequal}\ x{\isachardoublequote}\isamarkupfalse%
+%
\begin{isamarkuptext}%
\noindent So class \isa{monoid} contains exactly those types \isa{{\isasymtau}} where \isa{{\isasymodot}\ {\isasymColon}\ {\isasymtau}\ {\isasymRightarrow}\ {\isasymtau}\ {\isasymRightarrow}\ {\isasymtau}} and \isa{{\isasymunit}\ {\isasymColon}\ {\isasymtau}} are
specified appropriately, such that \isa{{\isasymodot}} is associative and
\isa{{\isasymunit}} is a left and right unit element for the \isa{{\isasymodot}}
operation.%
\end{isamarkuptext}%
+\isamarkuptrue%
%
\begin{isamarkuptext}%
\medskip Independently of \isa{monoid}, we now define a linear
@@ -49,24 +58,30 @@
that the names of class axioms are automatically qualified with each
class name, so we may re-use common names such as \isa{assoc}.%
\end{isamarkuptext}%
+\isamarkuptrue%
\isacommand{axclass}\ semigroup\ {\isasymsubseteq}\ {\isachardoublequote}term{\isachardoublequote}\isanewline
\ \ assoc{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}x\ {\isasymodot}\ y{\isacharparenright}\ {\isasymodot}\ z\ {\isacharequal}\ x\ {\isasymodot}\ {\isacharparenleft}y\ {\isasymodot}\ z{\isacharparenright}{\isachardoublequote}\isanewline
\isanewline
+\isamarkupfalse%
\isacommand{axclass}\ group\ {\isasymsubseteq}\ semigroup\isanewline
\ \ left{\isacharunderscore}unit{\isacharcolon}\ {\isachardoublequote}{\isasymunit}\ {\isasymodot}\ x\ {\isacharequal}\ x{\isachardoublequote}\isanewline
\ \ left{\isacharunderscore}inverse{\isacharcolon}\ {\isachardoublequote}x{\isasyminv}\ {\isasymodot}\ x\ {\isacharequal}\ {\isasymunit}{\isachardoublequote}\isanewline
\isanewline
+\isamarkupfalse%
\isacommand{axclass}\ agroup\ {\isasymsubseteq}\ group\isanewline
-\ \ commute{\isacharcolon}\ {\isachardoublequote}x\ {\isasymodot}\ y\ {\isacharequal}\ y\ {\isasymodot}\ x{\isachardoublequote}%
+\ \ commute{\isacharcolon}\ {\isachardoublequote}x\ {\isasymodot}\ y\ {\isacharequal}\ y\ {\isasymodot}\ x{\isachardoublequote}\isamarkupfalse%
+%
\begin{isamarkuptext}%
\noindent Class \isa{group} inherits associativity of \isa{{\isasymodot}}
from \isa{semigroup} and adds two further group axioms. Similarly,
\isa{agroup} is defined as the subset of \isa{group} such that
for all of its elements \isa{{\isasymtau}}, the operation \isa{{\isasymodot}\ {\isasymColon}\ {\isasymtau}\ {\isasymRightarrow}\ {\isasymtau}\ {\isasymRightarrow}\ {\isasymtau}} is even commutative.%
\end{isamarkuptext}%
+\isamarkuptrue%
%
\isamarkupsubsection{Abstract reasoning%
}
+\isamarkuptrue%
%
\begin{isamarkuptext}%
In a sense, axiomatic type classes may be viewed as \emph{abstract
@@ -84,50 +99,100 @@
``abstract theorems''. For example, we may now derive the following
well-known laws of general groups.%
\end{isamarkuptext}%
+\isamarkuptrue%
\isacommand{theorem}\ group{\isacharunderscore}right{\isacharunderscore}inverse{\isacharcolon}\ {\isachardoublequote}x\ {\isasymodot}\ x{\isasyminv}\ {\isacharequal}\ {\isacharparenleft}{\isasymunit}{\isasymColon}{\isacharprime}a{\isasymColon}group{\isacharparenright}{\isachardoublequote}\isanewline
+\isamarkupfalse%
\isacommand{proof}\ {\isacharminus}\isanewline
-\ \ \isacommand{have}\ {\isachardoublequote}x\ {\isasymodot}\ x{\isasyminv}\ {\isacharequal}\ {\isasymunit}\ {\isasymodot}\ {\isacharparenleft}x\ {\isasymodot}\ x{\isasyminv}{\isacharparenright}{\isachardoublequote}\isanewline
-\ \ \ \ \isacommand{by}\ {\isacharparenleft}simp\ only{\isacharcolon}\ group{\isachardot}left{\isacharunderscore}unit{\isacharparenright}\isanewline
-\ \ \isacommand{also}\ \isacommand{have}\ {\isachardoublequote}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ {\isasymunit}\ {\isasymodot}\ x\ {\isasymodot}\ x{\isasyminv}{\isachardoublequote}\isanewline
-\ \ \ \ \isacommand{by}\ {\isacharparenleft}simp\ only{\isacharcolon}\ semigroup{\isachardot}assoc{\isacharparenright}\isanewline
-\ \ \isacommand{also}\ \isacommand{have}\ {\isachardoublequote}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ {\isacharparenleft}x{\isasyminv}{\isacharparenright}{\isasyminv}\ {\isasymodot}\ x{\isasyminv}\ {\isasymodot}\ x\ {\isasymodot}\ x{\isasyminv}{\isachardoublequote}\isanewline
-\ \ \ \ \isacommand{by}\ {\isacharparenleft}simp\ only{\isacharcolon}\ group{\isachardot}left{\isacharunderscore}inverse{\isacharparenright}\isanewline
-\ \ \isacommand{also}\ \isacommand{have}\ {\isachardoublequote}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ {\isacharparenleft}x{\isasyminv}{\isacharparenright}{\isasyminv}\ {\isasymodot}\ {\isacharparenleft}x{\isasyminv}\ {\isasymodot}\ x{\isacharparenright}\ {\isasymodot}\ x{\isasyminv}{\isachardoublequote}\isanewline
-\ \ \ \ \isacommand{by}\ {\isacharparenleft}simp\ only{\isacharcolon}\ semigroup{\isachardot}assoc{\isacharparenright}\isanewline
-\ \ \isacommand{also}\ \isacommand{have}\ {\isachardoublequote}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ {\isacharparenleft}x{\isasyminv}{\isacharparenright}{\isasyminv}\ {\isasymodot}\ {\isasymunit}\ {\isasymodot}\ x{\isasyminv}{\isachardoublequote}\isanewline
-\ \ \ \ \isacommand{by}\ {\isacharparenleft}simp\ only{\isacharcolon}\ group{\isachardot}left{\isacharunderscore}inverse{\isacharparenright}\isanewline
-\ \ \isacommand{also}\ \isacommand{have}\ {\isachardoublequote}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ {\isacharparenleft}x{\isasyminv}{\isacharparenright}{\isasyminv}\ {\isasymodot}\ {\isacharparenleft}{\isasymunit}\ {\isasymodot}\ x{\isasyminv}{\isacharparenright}{\isachardoublequote}\isanewline
-\ \ \ \ \isacommand{by}\ {\isacharparenleft}simp\ only{\isacharcolon}\ semigroup{\isachardot}assoc{\isacharparenright}\isanewline
-\ \ \isacommand{also}\ \isacommand{have}\ {\isachardoublequote}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ {\isacharparenleft}x{\isasyminv}{\isacharparenright}{\isasyminv}\ {\isasymodot}\ x{\isasyminv}{\isachardoublequote}\isanewline
-\ \ \ \ \isacommand{by}\ {\isacharparenleft}simp\ only{\isacharcolon}\ group{\isachardot}left{\isacharunderscore}unit{\isacharparenright}\isanewline
-\ \ \isacommand{also}\ \isacommand{have}\ {\isachardoublequote}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ {\isasymunit}{\isachardoublequote}\isanewline
-\ \ \ \ \isacommand{by}\ {\isacharparenleft}simp\ only{\isacharcolon}\ group{\isachardot}left{\isacharunderscore}inverse{\isacharparenright}\isanewline
-\ \ \isacommand{finally}\ \isacommand{show}\ {\isacharquery}thesis\ \isacommand{{\isachardot}}\isanewline
-\isacommand{qed}%
+\ \ \isamarkupfalse%
+\isacommand{have}\ {\isachardoublequote}x\ {\isasymodot}\ x{\isasyminv}\ {\isacharequal}\ {\isasymunit}\ {\isasymodot}\ {\isacharparenleft}x\ {\isasymodot}\ x{\isasyminv}{\isacharparenright}{\isachardoublequote}\isanewline
+\ \ \ \ \isamarkupfalse%
+\isacommand{by}\ {\isacharparenleft}simp\ only{\isacharcolon}\ group{\isachardot}left{\isacharunderscore}unit{\isacharparenright}\isanewline
+\ \ \isamarkupfalse%
+\isacommand{also}\ \isamarkupfalse%
+\isacommand{have}\ {\isachardoublequote}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ {\isasymunit}\ {\isasymodot}\ x\ {\isasymodot}\ x{\isasyminv}{\isachardoublequote}\isanewline
+\ \ \ \ \isamarkupfalse%
+\isacommand{by}\ {\isacharparenleft}simp\ only{\isacharcolon}\ semigroup{\isachardot}assoc{\isacharparenright}\isanewline
+\ \ \isamarkupfalse%
+\isacommand{also}\ \isamarkupfalse%
+\isacommand{have}\ {\isachardoublequote}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ {\isacharparenleft}x{\isasyminv}{\isacharparenright}{\isasyminv}\ {\isasymodot}\ x{\isasyminv}\ {\isasymodot}\ x\ {\isasymodot}\ x{\isasyminv}{\isachardoublequote}\isanewline
+\ \ \ \ \isamarkupfalse%
+\isacommand{by}\ {\isacharparenleft}simp\ only{\isacharcolon}\ group{\isachardot}left{\isacharunderscore}inverse{\isacharparenright}\isanewline
+\ \ \isamarkupfalse%
+\isacommand{also}\ \isamarkupfalse%
+\isacommand{have}\ {\isachardoublequote}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ {\isacharparenleft}x{\isasyminv}{\isacharparenright}{\isasyminv}\ {\isasymodot}\ {\isacharparenleft}x{\isasyminv}\ {\isasymodot}\ x{\isacharparenright}\ {\isasymodot}\ x{\isasyminv}{\isachardoublequote}\isanewline
+\ \ \ \ \isamarkupfalse%
+\isacommand{by}\ {\isacharparenleft}simp\ only{\isacharcolon}\ semigroup{\isachardot}assoc{\isacharparenright}\isanewline
+\ \ \isamarkupfalse%
+\isacommand{also}\ \isamarkupfalse%
+\isacommand{have}\ {\isachardoublequote}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ {\isacharparenleft}x{\isasyminv}{\isacharparenright}{\isasyminv}\ {\isasymodot}\ {\isasymunit}\ {\isasymodot}\ x{\isasyminv}{\isachardoublequote}\isanewline
+\ \ \ \ \isamarkupfalse%
+\isacommand{by}\ {\isacharparenleft}simp\ only{\isacharcolon}\ group{\isachardot}left{\isacharunderscore}inverse{\isacharparenright}\isanewline
+\ \ \isamarkupfalse%
+\isacommand{also}\ \isamarkupfalse%
+\isacommand{have}\ {\isachardoublequote}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ {\isacharparenleft}x{\isasyminv}{\isacharparenright}{\isasyminv}\ {\isasymodot}\ {\isacharparenleft}{\isasymunit}\ {\isasymodot}\ x{\isasyminv}{\isacharparenright}{\isachardoublequote}\isanewline
+\ \ \ \ \isamarkupfalse%
+\isacommand{by}\ {\isacharparenleft}simp\ only{\isacharcolon}\ semigroup{\isachardot}assoc{\isacharparenright}\isanewline
+\ \ \isamarkupfalse%
+\isacommand{also}\ \isamarkupfalse%
+\isacommand{have}\ {\isachardoublequote}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ {\isacharparenleft}x{\isasyminv}{\isacharparenright}{\isasyminv}\ {\isasymodot}\ x{\isasyminv}{\isachardoublequote}\isanewline
+\ \ \ \ \isamarkupfalse%
+\isacommand{by}\ {\isacharparenleft}simp\ only{\isacharcolon}\ group{\isachardot}left{\isacharunderscore}unit{\isacharparenright}\isanewline
+\ \ \isamarkupfalse%
+\isacommand{also}\ \isamarkupfalse%
+\isacommand{have}\ {\isachardoublequote}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ {\isasymunit}{\isachardoublequote}\isanewline
+\ \ \ \ \isamarkupfalse%
+\isacommand{by}\ {\isacharparenleft}simp\ only{\isacharcolon}\ group{\isachardot}left{\isacharunderscore}inverse{\isacharparenright}\isanewline
+\ \ \isamarkupfalse%
+\isacommand{finally}\ \isamarkupfalse%
+\isacommand{show}\ {\isacharquery}thesis\ \isamarkupfalse%
+\isacommand{{\isachardot}}\isanewline
+\isamarkupfalse%
+\isacommand{qed}\isamarkupfalse%
+%
\begin{isamarkuptext}%
\noindent With \isa{group{\isacharunderscore}right{\isacharunderscore}inverse} already available, \isa{group{\isacharunderscore}right{\isacharunderscore}unit}\label{thm:group-right-unit} is now established much
easier.%
\end{isamarkuptext}%
+\isamarkuptrue%
\isacommand{theorem}\ group{\isacharunderscore}right{\isacharunderscore}unit{\isacharcolon}\ {\isachardoublequote}x\ {\isasymodot}\ {\isasymunit}\ {\isacharequal}\ {\isacharparenleft}x{\isasymColon}{\isacharprime}a{\isasymColon}group{\isacharparenright}{\isachardoublequote}\isanewline
+\isamarkupfalse%
\isacommand{proof}\ {\isacharminus}\isanewline
-\ \ \isacommand{have}\ {\isachardoublequote}x\ {\isasymodot}\ {\isasymunit}\ {\isacharequal}\ x\ {\isasymodot}\ {\isacharparenleft}x{\isasyminv}\ {\isasymodot}\ x{\isacharparenright}{\isachardoublequote}\isanewline
-\ \ \ \ \isacommand{by}\ {\isacharparenleft}simp\ only{\isacharcolon}\ group{\isachardot}left{\isacharunderscore}inverse{\isacharparenright}\isanewline
-\ \ \isacommand{also}\ \isacommand{have}\ {\isachardoublequote}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ x\ {\isasymodot}\ x{\isasyminv}\ {\isasymodot}\ x{\isachardoublequote}\isanewline
-\ \ \ \ \isacommand{by}\ {\isacharparenleft}simp\ only{\isacharcolon}\ semigroup{\isachardot}assoc{\isacharparenright}\isanewline
-\ \ \isacommand{also}\ \isacommand{have}\ {\isachardoublequote}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ {\isasymunit}\ {\isasymodot}\ x{\isachardoublequote}\isanewline
-\ \ \ \ \isacommand{by}\ {\isacharparenleft}simp\ only{\isacharcolon}\ group{\isacharunderscore}right{\isacharunderscore}inverse{\isacharparenright}\isanewline
-\ \ \isacommand{also}\ \isacommand{have}\ {\isachardoublequote}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ x{\isachardoublequote}\isanewline
-\ \ \ \ \isacommand{by}\ {\isacharparenleft}simp\ only{\isacharcolon}\ group{\isachardot}left{\isacharunderscore}unit{\isacharparenright}\isanewline
-\ \ \isacommand{finally}\ \isacommand{show}\ {\isacharquery}thesis\ \isacommand{{\isachardot}}\isanewline
-\isacommand{qed}%
+\ \ \isamarkupfalse%
+\isacommand{have}\ {\isachardoublequote}x\ {\isasymodot}\ {\isasymunit}\ {\isacharequal}\ x\ {\isasymodot}\ {\isacharparenleft}x{\isasyminv}\ {\isasymodot}\ x{\isacharparenright}{\isachardoublequote}\isanewline
+\ \ \ \ \isamarkupfalse%
+\isacommand{by}\ {\isacharparenleft}simp\ only{\isacharcolon}\ group{\isachardot}left{\isacharunderscore}inverse{\isacharparenright}\isanewline
+\ \ \isamarkupfalse%
+\isacommand{also}\ \isamarkupfalse%
+\isacommand{have}\ {\isachardoublequote}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ x\ {\isasymodot}\ x{\isasyminv}\ {\isasymodot}\ x{\isachardoublequote}\isanewline
+\ \ \ \ \isamarkupfalse%
+\isacommand{by}\ {\isacharparenleft}simp\ only{\isacharcolon}\ semigroup{\isachardot}assoc{\isacharparenright}\isanewline
+\ \ \isamarkupfalse%
+\isacommand{also}\ \isamarkupfalse%
+\isacommand{have}\ {\isachardoublequote}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ {\isasymunit}\ {\isasymodot}\ x{\isachardoublequote}\isanewline
+\ \ \ \ \isamarkupfalse%
+\isacommand{by}\ {\isacharparenleft}simp\ only{\isacharcolon}\ group{\isacharunderscore}right{\isacharunderscore}inverse{\isacharparenright}\isanewline
+\ \ \isamarkupfalse%
+\isacommand{also}\ \isamarkupfalse%
+\isacommand{have}\ {\isachardoublequote}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ x{\isachardoublequote}\isanewline
+\ \ \ \ \isamarkupfalse%
+\isacommand{by}\ {\isacharparenleft}simp\ only{\isacharcolon}\ group{\isachardot}left{\isacharunderscore}unit{\isacharparenright}\isanewline
+\ \ \isamarkupfalse%
+\isacommand{finally}\ \isamarkupfalse%
+\isacommand{show}\ {\isacharquery}thesis\ \isamarkupfalse%
+\isacommand{{\isachardot}}\isanewline
+\isamarkupfalse%
+\isacommand{qed}\isamarkupfalse%
+%
\begin{isamarkuptext}%
\medskip Abstract theorems may be instantiated to only those types
\isa{{\isasymtau}} where the appropriate class membership \isa{{\isasymtau}\ {\isasymColon}\ c} is
known at Isabelle's type signature level. Since we have \isa{agroup\ {\isasymsubseteq}\ group\ {\isasymsubseteq}\ semigroup} by definition, all theorems of \isa{semigroup} and \isa{group} are automatically inherited by \isa{group} and \isa{agroup}.%
\end{isamarkuptext}%
+\isamarkuptrue%
%
\isamarkupsubsection{Abstract instantiation%
}
+\isamarkuptrue%
%
\begin{isamarkuptext}%
From the definition, the \isa{monoid} and \isa{group} classes
@@ -165,23 +230,40 @@
\end{center}
\end{figure}%
\end{isamarkuptext}%
+\isamarkuptrue%
\isacommand{instance}\ monoid\ {\isasymsubseteq}\ semigroup\isanewline
+\isamarkupfalse%
\isacommand{proof}\isanewline
-\ \ \isacommand{fix}\ x\ y\ z\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharprime}a{\isasymColon}monoid{\isachardoublequote}\isanewline
-\ \ \isacommand{show}\ {\isachardoublequote}x\ {\isasymodot}\ y\ {\isasymodot}\ z\ {\isacharequal}\ x\ {\isasymodot}\ {\isacharparenleft}y\ {\isasymodot}\ z{\isacharparenright}{\isachardoublequote}\isanewline
-\ \ \ \ \isacommand{by}\ {\isacharparenleft}rule\ monoid{\isachardot}assoc{\isacharparenright}\isanewline
+\ \ \isamarkupfalse%
+\isacommand{fix}\ x\ y\ z\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharprime}a{\isasymColon}monoid{\isachardoublequote}\isanewline
+\ \ \isamarkupfalse%
+\isacommand{show}\ {\isachardoublequote}x\ {\isasymodot}\ y\ {\isasymodot}\ z\ {\isacharequal}\ x\ {\isasymodot}\ {\isacharparenleft}y\ {\isasymodot}\ z{\isacharparenright}{\isachardoublequote}\isanewline
+\ \ \ \ \isamarkupfalse%
+\isacommand{by}\ {\isacharparenleft}rule\ monoid{\isachardot}assoc{\isacharparenright}\isanewline
+\isamarkupfalse%
\isacommand{qed}\isanewline
\isanewline
+\isamarkupfalse%
\isacommand{instance}\ group\ {\isasymsubseteq}\ monoid\isanewline
+\isamarkupfalse%
\isacommand{proof}\isanewline
-\ \ \isacommand{fix}\ x\ y\ z\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharprime}a{\isasymColon}group{\isachardoublequote}\isanewline
-\ \ \isacommand{show}\ {\isachardoublequote}x\ {\isasymodot}\ y\ {\isasymodot}\ z\ {\isacharequal}\ x\ {\isasymodot}\ {\isacharparenleft}y\ {\isasymodot}\ z{\isacharparenright}{\isachardoublequote}\isanewline
-\ \ \ \ \isacommand{by}\ {\isacharparenleft}rule\ semigroup{\isachardot}assoc{\isacharparenright}\isanewline
-\ \ \isacommand{show}\ {\isachardoublequote}{\isasymunit}\ {\isasymodot}\ x\ {\isacharequal}\ x{\isachardoublequote}\isanewline
-\ \ \ \ \isacommand{by}\ {\isacharparenleft}rule\ group{\isachardot}left{\isacharunderscore}unit{\isacharparenright}\isanewline
-\ \ \isacommand{show}\ {\isachardoublequote}x\ {\isasymodot}\ {\isasymunit}\ {\isacharequal}\ x{\isachardoublequote}\isanewline
-\ \ \ \ \isacommand{by}\ {\isacharparenleft}rule\ group{\isacharunderscore}right{\isacharunderscore}unit{\isacharparenright}\isanewline
-\isacommand{qed}%
+\ \ \isamarkupfalse%
+\isacommand{fix}\ x\ y\ z\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharprime}a{\isasymColon}group{\isachardoublequote}\isanewline
+\ \ \isamarkupfalse%
+\isacommand{show}\ {\isachardoublequote}x\ {\isasymodot}\ y\ {\isasymodot}\ z\ {\isacharequal}\ x\ {\isasymodot}\ {\isacharparenleft}y\ {\isasymodot}\ z{\isacharparenright}{\isachardoublequote}\isanewline
+\ \ \ \ \isamarkupfalse%
+\isacommand{by}\ {\isacharparenleft}rule\ semigroup{\isachardot}assoc{\isacharparenright}\isanewline
+\ \ \isamarkupfalse%
+\isacommand{show}\ {\isachardoublequote}{\isasymunit}\ {\isasymodot}\ x\ {\isacharequal}\ x{\isachardoublequote}\isanewline
+\ \ \ \ \isamarkupfalse%
+\isacommand{by}\ {\isacharparenleft}rule\ group{\isachardot}left{\isacharunderscore}unit{\isacharparenright}\isanewline
+\ \ \isamarkupfalse%
+\isacommand{show}\ {\isachardoublequote}x\ {\isasymodot}\ {\isasymunit}\ {\isacharequal}\ x{\isachardoublequote}\isanewline
+\ \ \ \ \isamarkupfalse%
+\isacommand{by}\ {\isacharparenleft}rule\ group{\isacharunderscore}right{\isacharunderscore}unit{\isacharparenright}\isanewline
+\isamarkupfalse%
+\isacommand{qed}\isamarkupfalse%
+%
\begin{isamarkuptext}%
\medskip The $\INSTANCE$ command sets up an appropriate goal that
represents the class inclusion (or type arity, see
@@ -193,9 +275,11 @@
to any class axioms encountered on the path upwards through the class
hierarchy.%
\end{isamarkuptext}%
+\isamarkuptrue%
%
\isamarkupsubsection{Concrete instantiation \label{sec:inst-arity}%
}
+\isamarkuptrue%
%
\begin{isamarkuptext}%
So far we have covered the case of the form $\INSTANCE$~\isa{c\isactrlsub {\isadigit{1}}\ {\isasymsubseteq}\ c\isactrlsub {\isadigit{2}}}, namely \emph{abstract instantiation} ---
@@ -210,10 +294,12 @@
exclusive-or as \isa{{\isasymodot}} operation, identity as \isa{{\isasyminv}}, and
\isa{False} as \isa{{\isasymunit}} forms an Abelian group.%
\end{isamarkuptext}%
+\isamarkuptrue%
\isacommand{defs}\ {\isacharparenleft}\isakeyword{overloaded}{\isacharparenright}\isanewline
\ \ times{\isacharunderscore}bool{\isacharunderscore}def{\isacharcolon}\ {\isachardoublequote}x\ {\isasymodot}\ y\ {\isasymequiv}\ x\ {\isasymnoteq}\ {\isacharparenleft}y{\isasymColon}bool{\isacharparenright}{\isachardoublequote}\isanewline
\ \ inverse{\isacharunderscore}bool{\isacharunderscore}def{\isacharcolon}\ {\isachardoublequote}x{\isasyminv}\ {\isasymequiv}\ x{\isasymColon}bool{\isachardoublequote}\isanewline
-\ \ unit{\isacharunderscore}bool{\isacharunderscore}def{\isacharcolon}\ {\isachardoublequote}{\isasymunit}\ {\isasymequiv}\ False{\isachardoublequote}%
+\ \ unit{\isacharunderscore}bool{\isacharunderscore}def{\isacharcolon}\ {\isachardoublequote}{\isasymunit}\ {\isasymequiv}\ False{\isachardoublequote}\isamarkupfalse%
+%
\begin{isamarkuptext}%
\medskip It is important to note that above $\DEFS$ are just
overloaded meta-level constant definitions, where type classes are
@@ -228,15 +314,28 @@
operations on type \isa{bool} appropriately, the class membership
\isa{bool\ {\isasymColon}\ agroup} may be now derived as follows.%
\end{isamarkuptext}%
+\isamarkuptrue%
\isacommand{instance}\ bool\ {\isacharcolon}{\isacharcolon}\ agroup\isanewline
+\isamarkupfalse%
\isacommand{proof}\ {\isacharparenleft}intro{\isacharunderscore}classes{\isacharcomma}\isanewline
\ \ \ \ unfold\ times{\isacharunderscore}bool{\isacharunderscore}def\ inverse{\isacharunderscore}bool{\isacharunderscore}def\ unit{\isacharunderscore}bool{\isacharunderscore}def{\isacharparenright}\isanewline
-\ \ \isacommand{fix}\ x\ y\ z\isanewline
-\ \ \isacommand{show}\ {\isachardoublequote}{\isacharparenleft}{\isacharparenleft}x\ {\isasymnoteq}\ y{\isacharparenright}\ {\isasymnoteq}\ z{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}x\ {\isasymnoteq}\ {\isacharparenleft}y\ {\isasymnoteq}\ z{\isacharparenright}{\isacharparenright}{\isachardoublequote}\ \isacommand{by}\ blast\isanewline
-\ \ \isacommand{show}\ {\isachardoublequote}{\isacharparenleft}False\ {\isasymnoteq}\ x{\isacharparenright}\ {\isacharequal}\ x{\isachardoublequote}\ \isacommand{by}\ blast\isanewline
-\ \ \isacommand{show}\ {\isachardoublequote}{\isacharparenleft}x\ {\isasymnoteq}\ x{\isacharparenright}\ {\isacharequal}\ False{\isachardoublequote}\ \isacommand{by}\ blast\isanewline
-\ \ \isacommand{show}\ {\isachardoublequote}{\isacharparenleft}x\ {\isasymnoteq}\ y{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}y\ {\isasymnoteq}\ x{\isacharparenright}{\isachardoublequote}\ \isacommand{by}\ blast\isanewline
-\isacommand{qed}%
+\ \ \isamarkupfalse%
+\isacommand{fix}\ x\ y\ z\isanewline
+\ \ \isamarkupfalse%
+\isacommand{show}\ {\isachardoublequote}{\isacharparenleft}{\isacharparenleft}x\ {\isasymnoteq}\ y{\isacharparenright}\ {\isasymnoteq}\ z{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}x\ {\isasymnoteq}\ {\isacharparenleft}y\ {\isasymnoteq}\ z{\isacharparenright}{\isacharparenright}{\isachardoublequote}\ \isamarkupfalse%
+\isacommand{by}\ blast\isanewline
+\ \ \isamarkupfalse%
+\isacommand{show}\ {\isachardoublequote}{\isacharparenleft}False\ {\isasymnoteq}\ x{\isacharparenright}\ {\isacharequal}\ x{\isachardoublequote}\ \isamarkupfalse%
+\isacommand{by}\ blast\isanewline
+\ \ \isamarkupfalse%
+\isacommand{show}\ {\isachardoublequote}{\isacharparenleft}x\ {\isasymnoteq}\ x{\isacharparenright}\ {\isacharequal}\ False{\isachardoublequote}\ \isamarkupfalse%
+\isacommand{by}\ blast\isanewline
+\ \ \isamarkupfalse%
+\isacommand{show}\ {\isachardoublequote}{\isacharparenleft}x\ {\isasymnoteq}\ y{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}y\ {\isasymnoteq}\ x{\isacharparenright}{\isachardoublequote}\ \isamarkupfalse%
+\isacommand{by}\ blast\isanewline
+\isamarkupfalse%
+\isacommand{qed}\isamarkupfalse%
+%
\begin{isamarkuptext}%
The result of an $\INSTANCE$ statement is both expressed as a theorem
of Isabelle's meta-logic, and as a type arity of the type signature.
@@ -252,9 +351,11 @@
really become overloaded, i.e.\ have different meanings on different
types.%
\end{isamarkuptext}%
+\isamarkuptrue%
%
\isamarkupsubsection{Lifting and Functors%
}
+\isamarkuptrue%
%
\begin{isamarkuptext}%
As already mentioned above, overloading in the simply-typed HOL
@@ -267,30 +368,41 @@
products, direct sums or function spaces. Subsequently we lift
\isa{{\isasymodot}} component-wise to binary products \isa{{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}b}.%
\end{isamarkuptext}%
+\isamarkuptrue%
\isacommand{defs}\ {\isacharparenleft}\isakeyword{overloaded}{\isacharparenright}\isanewline
-\ \ times{\isacharunderscore}prod{\isacharunderscore}def{\isacharcolon}\ {\isachardoublequote}p\ {\isasymodot}\ q\ {\isasymequiv}\ {\isacharparenleft}fst\ p\ {\isasymodot}\ fst\ q{\isacharcomma}\ snd\ p\ {\isasymodot}\ snd\ q{\isacharparenright}{\isachardoublequote}%
+\ \ times{\isacharunderscore}prod{\isacharunderscore}def{\isacharcolon}\ {\isachardoublequote}p\ {\isasymodot}\ q\ {\isasymequiv}\ {\isacharparenleft}fst\ p\ {\isasymodot}\ fst\ q{\isacharcomma}\ snd\ p\ {\isasymodot}\ snd\ q{\isacharparenright}{\isachardoublequote}\isamarkupfalse%
+%
\begin{isamarkuptext}%
It is very easy to see that associativity of \isa{{\isasymodot}} on \isa{{\isacharprime}a}
and \isa{{\isasymodot}} on \isa{{\isacharprime}b} transfers to \isa{{\isasymodot}} on \isa{{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}b}. Hence the binary type constructor \isa{{\isasymodot}} maps semigroups to
semigroups. This may be established formally as follows.%
\end{isamarkuptext}%
+\isamarkuptrue%
\isacommand{instance}\ {\isacharasterisk}\ {\isacharcolon}{\isacharcolon}\ {\isacharparenleft}semigroup{\isacharcomma}\ semigroup{\isacharparenright}\ semigroup\isanewline
+\isamarkupfalse%
\isacommand{proof}\ {\isacharparenleft}intro{\isacharunderscore}classes{\isacharcomma}\ unfold\ times{\isacharunderscore}prod{\isacharunderscore}def{\isacharparenright}\isanewline
-\ \ \isacommand{fix}\ p\ q\ r\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharprime}a{\isasymColon}semigroup\ {\isasymtimes}\ {\isacharprime}b{\isasymColon}semigroup{\isachardoublequote}\isanewline
-\ \ \isacommand{show}\isanewline
+\ \ \isamarkupfalse%
+\isacommand{fix}\ p\ q\ r\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharprime}a{\isasymColon}semigroup\ {\isasymtimes}\ {\isacharprime}b{\isasymColon}semigroup{\isachardoublequote}\isanewline
+\ \ \isamarkupfalse%
+\isacommand{show}\isanewline
\ \ \ \ {\isachardoublequote}{\isacharparenleft}fst\ {\isacharparenleft}fst\ p\ {\isasymodot}\ fst\ q{\isacharcomma}\ snd\ p\ {\isasymodot}\ snd\ q{\isacharparenright}\ {\isasymodot}\ fst\ r{\isacharcomma}\isanewline
\ \ \ \ \ \ snd\ {\isacharparenleft}fst\ p\ {\isasymodot}\ fst\ q{\isacharcomma}\ snd\ p\ {\isasymodot}\ snd\ q{\isacharparenright}\ {\isasymodot}\ snd\ r{\isacharparenright}\ {\isacharequal}\isanewline
\ \ \ \ \ \ \ {\isacharparenleft}fst\ p\ {\isasymodot}\ fst\ {\isacharparenleft}fst\ q\ {\isasymodot}\ fst\ r{\isacharcomma}\ snd\ q\ {\isasymodot}\ snd\ r{\isacharparenright}{\isacharcomma}\isanewline
\ \ \ \ \ \ \ \ snd\ p\ {\isasymodot}\ snd\ {\isacharparenleft}fst\ q\ {\isasymodot}\ fst\ r{\isacharcomma}\ snd\ q\ {\isasymodot}\ snd\ r{\isacharparenright}{\isacharparenright}{\isachardoublequote}\isanewline
-\ \ \ \ \isacommand{by}\ {\isacharparenleft}simp\ add{\isacharcolon}\ semigroup{\isachardot}assoc{\isacharparenright}\isanewline
-\isacommand{qed}%
+\ \ \ \ \isamarkupfalse%
+\isacommand{by}\ {\isacharparenleft}simp\ add{\isacharcolon}\ semigroup{\isachardot}assoc{\isacharparenright}\isanewline
+\isamarkupfalse%
+\isacommand{qed}\isamarkupfalse%
+%
\begin{isamarkuptext}%
Thus, if we view class instances as ``structures'', then overloaded
constant definitions with recursion over types indirectly provide
some kind of ``functors'' --- i.e.\ mappings between abstract
theories.%
\end{isamarkuptext}%
-\isacommand{end}\end{isabellebody}%
+\isamarkuptrue%
+\isacommand{end}\isamarkupfalse%
+\end{isabellebody}%
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "root"
--- a/doc-src/AxClass/generated/NatClass.tex Sat Oct 27 00:09:59 2001 +0200
+++ b/doc-src/AxClass/generated/NatClass.tex Sat Oct 27 23:13:42 2001 +0200
@@ -4,7 +4,9 @@
%
\isamarkupheader{Defining natural numbers in FOL \label{sec:ex-natclass}%
}
-\isacommand{theory}\ NatClass\ {\isacharequal}\ FOL{\isacharcolon}%
+\isamarkuptrue%
+\isacommand{theory}\ NatClass\ {\isacharequal}\ FOL{\isacharcolon}\isamarkupfalse%
+%
\begin{isamarkuptext}%
\medskip\noindent Axiomatic type classes abstract over exactly one
type argument. Thus, any \emph{axiomatic} theory extension where each
@@ -15,11 +17,13 @@
Isabelle/FOL.\footnote{See also
\url{http://isabelle.in.tum.de/library/FOL/ex/NatClass.html}}%
\end{isamarkuptext}%
+\isamarkuptrue%
\isacommand{consts}\isanewline
\ \ zero\ {\isacharcolon}{\isacharcolon}\ {\isacharprime}a\ \ \ \ {\isacharparenleft}{\isachardoublequote}{\isasymzero}{\isachardoublequote}{\isacharparenright}\isanewline
\ \ Suc\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a{\isachardoublequote}\isanewline
\ \ rec\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharparenleft}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a{\isacharparenright}\ {\isasymRightarrow}\ {\isacharprime}a{\isachardoublequote}\isanewline
\isanewline
+\isamarkupfalse%
\isacommand{axclass}\ nat\ {\isasymsubseteq}\ {\isachardoublequote}term{\isachardoublequote}\isanewline
\ \ induct{\isacharcolon}\ {\isachardoublequote}P{\isacharparenleft}{\isasymzero}{\isacharparenright}\ {\isasymLongrightarrow}\ {\isacharparenleft}{\isasymAnd}x{\isachardot}\ P{\isacharparenleft}x{\isacharparenright}\ {\isasymLongrightarrow}\ P{\isacharparenleft}Suc{\isacharparenleft}x{\isacharparenright}{\isacharparenright}{\isacharparenright}\ {\isasymLongrightarrow}\ P{\isacharparenleft}n{\isacharparenright}{\isachardoublequote}\isanewline
\ \ Suc{\isacharunderscore}inject{\isacharcolon}\ {\isachardoublequote}Suc{\isacharparenleft}m{\isacharparenright}\ {\isacharequal}\ Suc{\isacharparenleft}n{\isacharparenright}\ {\isasymLongrightarrow}\ m\ {\isacharequal}\ n{\isachardoublequote}\isanewline
@@ -27,9 +31,11 @@
\ \ rec{\isacharunderscore}{\isadigit{0}}{\isacharcolon}\ {\isachardoublequote}rec{\isacharparenleft}{\isasymzero}{\isacharcomma}\ a{\isacharcomma}\ f{\isacharparenright}\ {\isacharequal}\ a{\isachardoublequote}\isanewline
\ \ rec{\isacharunderscore}Suc{\isacharcolon}\ {\isachardoublequote}rec{\isacharparenleft}Suc{\isacharparenleft}m{\isacharparenright}{\isacharcomma}\ a{\isacharcomma}\ f{\isacharparenright}\ {\isacharequal}\ f{\isacharparenleft}m{\isacharcomma}\ rec{\isacharparenleft}m{\isacharcomma}\ a{\isacharcomma}\ f{\isacharparenright}{\isacharparenright}{\isachardoublequote}\isanewline
\isanewline
+\isamarkupfalse%
\isacommand{constdefs}\isanewline
\ \ add\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharprime}a{\isacharcolon}{\isacharcolon}nat\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a{\isachardoublequote}\ \ \ \ {\isacharparenleft}\isakeyword{infixl}\ {\isachardoublequote}{\isacharplus}{\isachardoublequote}\ {\isadigit{6}}{\isadigit{0}}{\isacharparenright}\isanewline
-\ \ {\isachardoublequote}m\ {\isacharplus}\ n\ {\isasymequiv}\ rec{\isacharparenleft}m{\isacharcomma}\ n{\isacharcomma}\ {\isasymlambda}x\ y{\isachardot}\ Suc{\isacharparenleft}y{\isacharparenright}{\isacharparenright}{\isachardoublequote}%
+\ \ {\isachardoublequote}m\ {\isacharplus}\ n\ {\isasymequiv}\ rec{\isacharparenleft}m{\isacharcomma}\ n{\isacharcomma}\ {\isasymlambda}x\ y{\isachardot}\ Suc{\isacharparenleft}y{\isacharparenright}{\isacharparenright}{\isachardoublequote}\isamarkupfalse%
+%
\begin{isamarkuptext}%
This is an abstract version of the plain \isa{Nat} theory in
FOL.\footnote{See
@@ -55,7 +61,9 @@
re-used with some trivial changes only (mostly adding some type
constraints).%
\end{isamarkuptext}%
-\isacommand{end}\end{isabellebody}%
+\isamarkuptrue%
+\isacommand{end}\isamarkupfalse%
+\end{isabellebody}%
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "root"
--- a/doc-src/AxClass/generated/Product.tex Sat Oct 27 00:09:59 2001 +0200
+++ b/doc-src/AxClass/generated/Product.tex Sat Oct 27 23:13:42 2001 +0200
@@ -4,7 +4,9 @@
%
\isamarkupheader{Syntactic classes%
}
-\isacommand{theory}\ Product\ {\isacharequal}\ Main{\isacharcolon}%
+\isamarkuptrue%
+\isacommand{theory}\ Product\ {\isacharequal}\ Main{\isacharcolon}\isamarkupfalse%
+%
\begin{isamarkuptext}%
\medskip\noindent There is still a feature of Isabelle's type system
left that we have not yet discussed. When declaring polymorphic
@@ -17,10 +19,13 @@
The \isa{product} class below provides a less degenerate example of
syntactic type classes.%
\end{isamarkuptext}%
+\isamarkuptrue%
\isacommand{axclass}\isanewline
\ \ product\ {\isasymsubseteq}\ {\isachardoublequote}term{\isachardoublequote}\isanewline
+\isamarkupfalse%
\isacommand{consts}\isanewline
-\ \ product\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharprime}a{\isasymColon}product\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a{\isachardoublequote}\ \ \ \ {\isacharparenleft}\isakeyword{infixl}\ {\isachardoublequote}{\isasymodot}{\isachardoublequote}\ {\isadigit{7}}{\isadigit{0}}{\isacharparenright}%
+\ \ product\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharprime}a{\isasymColon}product\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a{\isachardoublequote}\ \ \ \ {\isacharparenleft}\isakeyword{infixl}\ {\isachardoublequote}{\isasymodot}{\isachardoublequote}\ {\isadigit{7}}{\isadigit{0}}{\isacharparenright}\isamarkupfalse%
+%
\begin{isamarkuptext}%
Here class \isa{product} is defined as subclass of \isa{term}
without any additional axioms. This effects in logical equivalence
@@ -49,9 +54,13 @@
This is done for class \isa{product} and type \isa{bool} as
follows.%
\end{isamarkuptext}%
-\isacommand{instance}\ bool\ {\isacharcolon}{\isacharcolon}\ product\ \isacommand{{\isachardot}{\isachardot}}\isanewline
+\isamarkuptrue%
+\isacommand{instance}\ bool\ {\isacharcolon}{\isacharcolon}\ product\ \isamarkupfalse%
+\isacommand{{\isachardot}{\isachardot}}\isanewline
+\isamarkupfalse%
\isacommand{defs}\ {\isacharparenleft}\isakeyword{overloaded}{\isacharparenright}\isanewline
-\ \ product{\isacharunderscore}bool{\isacharunderscore}def{\isacharcolon}\ {\isachardoublequote}x\ {\isasymodot}\ y\ {\isasymequiv}\ x\ {\isasymand}\ y{\isachardoublequote}%
+\ \ product{\isacharunderscore}bool{\isacharunderscore}def{\isacharcolon}\ {\isachardoublequote}x\ {\isasymodot}\ y\ {\isasymequiv}\ x\ {\isasymand}\ y{\isachardoublequote}\isamarkupfalse%
+%
\begin{isamarkuptext}%
The definition \isa{prod{\isacharunderscore}bool{\isacharunderscore}def} becomes syntactically
well-formed only after the arity \isa{bool\ {\isasymColon}\ product} is made
@@ -75,7 +84,9 @@
Isabelle's meta-logic, because there is no internal notion of
``providing operations'' or even ``names of functions''.%
\end{isamarkuptext}%
-\isacommand{end}\end{isabellebody}%
+\isamarkuptrue%
+\isacommand{end}\isamarkupfalse%
+\end{isabellebody}%
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "root"
--- a/doc-src/AxClass/generated/Semigroups.tex Sat Oct 27 00:09:59 2001 +0200
+++ b/doc-src/AxClass/generated/Semigroups.tex Sat Oct 27 23:13:42 2001 +0200
@@ -4,7 +4,9 @@
%
\isamarkupheader{Semigroups%
}
-\isacommand{theory}\ Semigroups\ {\isacharequal}\ Main{\isacharcolon}%
+\isamarkuptrue%
+\isacommand{theory}\ Semigroups\ {\isacharequal}\ Main{\isacharcolon}\isamarkupfalse%
+%
\begin{isamarkuptext}%
\medskip\noindent An axiomatic type class is simply a class of types
that all meet certain properties, which are also called \emph{class
@@ -17,10 +19,13 @@
We illustrate these basic concepts by the following formulation of
semigroups.%
\end{isamarkuptext}%
+\isamarkuptrue%
\isacommand{consts}\isanewline
\ \ times\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a{\isachardoublequote}\ \ \ \ {\isacharparenleft}\isakeyword{infixl}\ {\isachardoublequote}{\isasymodot}{\isachardoublequote}\ {\isadigit{7}}{\isadigit{0}}{\isacharparenright}\isanewline
+\isamarkupfalse%
\isacommand{axclass}\ semigroup\ {\isasymsubseteq}\ {\isachardoublequote}term{\isachardoublequote}\isanewline
-\ \ assoc{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}x\ {\isasymodot}\ y{\isacharparenright}\ {\isasymodot}\ z\ {\isacharequal}\ x\ {\isasymodot}\ {\isacharparenleft}y\ {\isasymodot}\ z{\isacharparenright}{\isachardoublequote}%
+\ \ assoc{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}x\ {\isasymodot}\ y{\isacharparenright}\ {\isasymodot}\ z\ {\isacharequal}\ x\ {\isasymodot}\ {\isacharparenleft}y\ {\isasymodot}\ z{\isacharparenright}{\isachardoublequote}\isamarkupfalse%
+%
\begin{isamarkuptext}%
\noindent Above we have first declared a polymorphic constant \isa{{\isasymodot}\ {\isasymColon}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a} and then defined the class \isa{semigroup} of
all types \isa{{\isasymtau}} such that \isa{{\isasymodot}\ {\isasymColon}\ {\isasymtau}\ {\isasymRightarrow}\ {\isasymtau}\ {\isasymRightarrow}\ {\isasymtau}} is indeed an
@@ -36,15 +41,20 @@
\isa{{\isacharparenleft}{\isasymtau}{\isacharcomma}\ {\isasymoplus}\isactrlsup {\isasymtau}{\isacharparenright}}, while the original \isa{semigroup} would
correspond to semigroups of the form \isa{{\isacharparenleft}{\isasymtau}{\isacharcomma}\ {\isasymodot}\isactrlsup {\isasymtau}{\isacharparenright}}.%
\end{isamarkuptext}%
+\isamarkuptrue%
\isacommand{consts}\isanewline
\ \ plus\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a{\isachardoublequote}\ \ \ \ {\isacharparenleft}\isakeyword{infixl}\ {\isachardoublequote}{\isasymoplus}{\isachardoublequote}\ {\isadigit{7}}{\isadigit{0}}{\isacharparenright}\isanewline
+\isamarkupfalse%
\isacommand{axclass}\ plus{\isacharunderscore}semigroup\ {\isasymsubseteq}\ {\isachardoublequote}term{\isachardoublequote}\isanewline
-\ \ assoc{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}x\ {\isasymoplus}\ y{\isacharparenright}\ {\isasymoplus}\ z\ {\isacharequal}\ x\ {\isasymoplus}\ {\isacharparenleft}y\ {\isasymoplus}\ z{\isacharparenright}{\isachardoublequote}%
+\ \ assoc{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}x\ {\isasymoplus}\ y{\isacharparenright}\ {\isasymoplus}\ z\ {\isacharequal}\ x\ {\isasymoplus}\ {\isacharparenleft}y\ {\isasymoplus}\ z{\isacharparenright}{\isachardoublequote}\isamarkupfalse%
+%
\begin{isamarkuptext}%
\noindent Even if classes \isa{plus{\isacharunderscore}semigroup} and \isa{semigroup} both represent semigroups in a sense, they are certainly
not quite the same.%
\end{isamarkuptext}%
-\isacommand{end}\end{isabellebody}%
+\isamarkuptrue%
+\isacommand{end}\isamarkupfalse%
+\end{isabellebody}%
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "root"
--- a/doc-src/AxClass/generated/isabelle.sty Sat Oct 27 00:09:59 2001 +0200
+++ b/doc-src/AxClass/generated/isabelle.sty Sat Oct 27 23:13:42 2001 +0200
@@ -24,11 +24,12 @@
\newcommand{\isascriptstyle}{\def\isamath##1{##1}\def\isatext##1{\mbox{\isastylescript##1}}}
\newcommand{\isactrlsub}[1]{\emph{\isascriptstyle${}\sb{#1}$}}
\newcommand{\isactrlsup}[1]{\emph{\isascriptstyle${}\sp{#1}$}}
+\newcommand{\isactrlbold}[1]{{\bfseries\upshape\boldmath#1}}
\newdimen\isa@parindent\newdimen\isa@parskip
\newenvironment{isabellebody}{%
-\par%
+\isamarkuptrue\par%
\isa@parindent\parindent\parindent0pt%
\isa@parskip\parskip\parskip0pt%
\isastyle}{\par}
@@ -94,7 +95,8 @@
\newcommand{\isamarkupsubsect}[1]{\subsection{#1}}
\newcommand{\isamarkupsubsubsect}[1]{\subsubsection{#1}}
-\newcommand{\isabeginpar}{\par\medskip}
+\newif\ifisamarkup
+\newcommand{\isabeginpar}{\par\ifisamarkup\relax\else\medskip\fi}
\newcommand{\isaendpar}{\par\medskip}
\newenvironment{isapar}{\parindent\isa@parindent\parskip\isa@parskip\isabeginpar}{\isaendpar}
\newenvironment{isamarkuptext}{\isastyletext\begin{isapar}}{\end{isapar}}
--- a/doc-src/AxClass/generated/isabellesym.sty Sat Oct 27 00:09:59 2001 +0200
+++ b/doc-src/AxClass/generated/isabellesym.sty Sat Oct 27 23:13:42 2001 +0200
@@ -5,16 +5,6 @@
%% definitions of standard Isabelle symbols
%%
-% Required packages for unusual symbols -- see below for details.
-%\usepackage{latexsym}
-%\usepackage{amssymb}
-%\usepackage[english]{babel}
-%\usepackage[latin1]{inputenc}
-%\usepackage[only,bigsqcap]{stmaryrd}
-%\usepackage{wasysym}
-%\usepackage{eufrak}
-
-
% symbol definitions
\newcommand{\isasymA}{\isamath{\mathcal{A}}}
@@ -219,6 +209,8 @@
\newcommand{\isasymdiamond}{\isamath{\Diamond}} %requires latexsym
\newcommand{\isasymturnstile}{\isamath{\vdash}}
\newcommand{\isasymTurnstile}{\isamath{\models}}
+\newcommand{\isasymtturnstile}{\isamath{\vdash\!\!\!\vdash}}
+\newcommand{\isasymTTurnstile}{\isamath{\mid\!\models}}
\newcommand{\isasymstileturn}{\isamath{\dashv}}
\newcommand{\isasymsurd}{\isamath{\surd}}
\newcommand{\isasymle}{\isamath{\le}}
@@ -273,10 +265,10 @@
\newcommand{\isasymdiv}{\isamath{\div}}
\newcommand{\isasymcdot}{\isamath{\cdot}}
\newcommand{\isasymstar}{\isamath{\star}}
+\newcommand{\isasymbullet}{\boldmath\isamath{\mathchoice{\displaystyle{\cdot}}{\textstyle{\cdot}}{\scriptstyle{\bullet}}{\scriptscriptstyle{\bullet}}}}
+\newcommand{\isasymcirc}{\isamath{\circ}}
\newcommand{\isasymdagger}{\isamath{\dagger}}
\newcommand{\isasymddagger}{\isamath{\ddagger}}
-\newcommand{\isasymcirc}{\isamath{\circ}}
-\newcommand{\isasymbullet}{\isamath{\bullet}}
\newcommand{\isasymlhd}{\isamath{\lhd}}
\newcommand{\isasymrhd}{\isamath{\rhd}}
\newcommand{\isasymunlhd}{\isamath{\unlhd}}
@@ -347,4 +339,3 @@
\newcommand{\isasymdieresis}{\isatext{\"\relax}}
\newcommand{\isasymcedilla}{\isatext{\c\relax}}
\newcommand{\isasymhungarumlaut}{\isatext{\H\relax}}
-