slightly tuning of some proofs involving case distinction and induction on natural numbers and similar
--- a/src/HOLCF/FOCUS/Buffer_adm.thy Mon Jun 09 17:39:35 2008 +0200
+++ b/src/HOLCF/FOCUS/Buffer_adm.thy Tue Jun 10 14:32:58 2008 +0200
@@ -68,7 +68,7 @@
prefer 2
apply ( intro strip)
apply ( drule slen_mono)
-apply ( drule (1) ile_trans)
+apply ( drule (1) order_trans)
apply (force)+
done
--- a/src/HOLCF/FOCUS/Stream_adm.thy Mon Jun 09 17:39:35 2008 +0200
+++ b/src/HOLCF/FOCUS/Stream_adm.thy Tue Jun 10 14:32:58 2008 +0200
@@ -53,13 +53,10 @@
apply (drule not_ex [THEN iffD1])
apply (subst slen_infinite)
apply (erule thin_rl)
-apply (drule spec)
-apply (unfold linorder_not_less)
-apply (erule ile_iless_trans [THEN Infty_eq [THEN iffD1]])
-apply (simp)
+apply (erule_tac x = j in allE)
+apply auto
done
-
(* should be without reference to stream length? *)
lemma flatstream_admI: "[|(!!Y. [| Porder.chain Y; !i. P (Y i);
!k. ? j. Fin k < #((Y j)::'a::flat stream)|] ==> P(lub (range Y)))|]==> adm P"
@@ -72,11 +69,7 @@
(* context (theory "Nat_InFinity");*)
lemma ile_lemma: "Fin (i + j) <= x ==> Fin i <= x"
-apply (rule ile_trans)
-prefer 2
-apply (assumption)
-apply (simp)
-done
+ by (rule order_trans) auto
lemma stream_monoP2I:
"!!X. stream_monoP F ==> !i. ? l. !x y.
@@ -91,7 +84,7 @@
apply (erule allE, erule all_dupE, drule mp, erule ile_lemma)
apply (drule_tac P="%x. x" in subst, assumption)
apply (erule allE, drule mp, rule ile_lemma) back
-apply ( erule ile_trans)
+apply ( erule order_trans)
apply ( erule slen_mono)
apply (erule ssubst)
apply (safe)
@@ -118,7 +111,7 @@
apply (erule allE, erule exE)
apply (erule allE, erule allE, drule mp) (* stream_monoP *)
apply ( drule ileI1)
-apply ( drule ile_trans)
+apply ( drule order_trans)
apply ( rule ile_iSuc)
apply ( drule iSuc_ile_mono [THEN iffD1])
apply ( assumption)