moved quantifier elimination tools to Tools/Qelim/;
authorwenzelm
Thu, 21 Jun 2007 20:48:48 +0200
changeset 23466 886655a150f6
parent 23465 8f8835aac299
child 23467 d1b97708d5eb
moved quantifier elimination tools to Tools/Qelim/;
src/HOL/Dense_Linear_Order.thy
src/HOL/IsaMakefile
src/HOL/Tools/Ferrante_Rackoff/ferrante_rackoff.ML
src/HOL/Tools/Ferrante_Rackoff/ferrante_rackoff_data.ML
src/HOL/Tools/Presburger/cooper.ML
src/HOL/Tools/Presburger/cooper_data.ML
src/HOL/Tools/Presburger/generated_cooper.ML
src/HOL/Tools/Presburger/presburger.ML
src/HOL/Tools/Qelim/cooper.ML
src/HOL/Tools/Qelim/cooper_data.ML
src/HOL/Tools/Qelim/ferrante_rackoff.ML
src/HOL/Tools/Qelim/ferrante_rackoff_data.ML
src/HOL/Tools/Qelim/generated_cooper.ML
src/HOL/Tools/Qelim/presburger.ML
src/HOL/Tools/Qelim/qelim.ML
src/HOL/Tools/qelim.ML
--- a/src/HOL/Dense_Linear_Order.thy	Thu Jun 21 20:48:47 2007 +0200
+++ b/src/HOL/Dense_Linear_Order.thy	Thu Jun 21 20:48:48 2007 +0200
@@ -9,9 +9,9 @@
 theory Dense_Linear_Order
 imports Finite_Set
 uses
-  "Tools/qelim.ML"
-  "Tools/Ferrante_Rackoff/ferrante_rackoff_data.ML"
-  ("Tools/Ferrante_Rackoff/ferrante_rackoff.ML")
+  "Tools/Qelim/qelim.ML"
+  "Tools/Qelim/ferrante_rackoff_data.ML"
+  ("Tools/Qelim/ferrante_rackoff.ML")
 begin
 
 setup Ferrante_Rackoff_Data.setup
@@ -415,7 +415,7 @@
 
 end
 
-use "Tools/Ferrante_Rackoff/ferrante_rackoff.ML"
+use "Tools/Qelim/ferrante_rackoff.ML"
 
 method_setup dlo = {*
   Method.ctxt_args (Method.SIMPLE_METHOD' o FerranteRackoff.dlo_tac)
--- a/src/HOL/IsaMakefile	Thu Jun 21 20:48:47 2007 +0200
+++ b/src/HOL/IsaMakefile	Thu Jun 21 20:48:48 2007 +0200
@@ -92,14 +92,13 @@
   Predicate.thy Product_Type.thy ROOT.ML Recdef.thy			\
   Record.thy Refute.thy Relation.thy Relation_Power.thy			\
   Ring_and_Field.thy SAT.thy Set.thy SetInterval.thy Sum_Type.thy	\
-  Tools/ATP/reduce_axiomsN.ML Tools/ATP/watcher.ML			\
-  Tools/Ferrante_Rackoff/ferrante_rackoff_data.ML			\
-  Tools/Ferrante_Rackoff/ferrante_rackoff.ML				\
+  Groebner_Basis.thy Tools/ATP/reduce_axiomsN.ML Tools/ATP/watcher.ML	\
   Tools/Groebner_Basis/groebner.ML Tools/Groebner_Basis/misc.ML		\
-  Tools/Groebner_Basis/normalizer.ML Groebner_Basis.thy			\
-  Tools/Groebner_Basis/normalizer_data.ML				\
-  Tools/Presburger/cooper.ML Tools/Presburger/presburger.ML 		\
-  Tools/Presburger/generated_cooper.ML Tools/Presburger/cooper_data.ML	\
+  Tools/Groebner_Basis/normalizer.ML					\
+  Tools/Groebner_Basis/normalizer_data.ML Tools/Qelim/cooper.ML		\
+  Tools/Qelim/cooper_data.ML Tools/Qelim/ferrante_rackoff.ML		\
+  Tools/Qelim/ferrante_rackoff_data.ML Tools/Qelim/generated_cooper.ML	\
+  Tools/Qelim/presburger.ML Tools/Qelim/qelim.ML			\
   Tools/TFL/dcterm.ML Tools/TFL/post.ML Tools/TFL/rules.ML		\
   Tools/TFL/tfl.ML Tools/TFL/thms.ML Tools/TFL/thry.ML			\
   Tools/TFL/usyntax.ML Tools/TFL/utils.ML Tools/cnf_funcs.ML		\
@@ -122,7 +121,7 @@
   Tools/inductive_package.ML Tools/inductive_realizer.ML Tools/meson.ML	\
   Tools/metis_tools.ML Tools/numeral_syntax.ML 				\
   Tools/old_inductive_package.ML Tools/polyhash.ML 			\
-  Tools/primrec_package.ML Tools/prop_logic.ML Tools/qelim.ML		\
+  Tools/primrec_package.ML Tools/prop_logic.ML 	\
   Tools/recdef_package.ML Tools/recfun_codegen.ML			\
   Tools/record_package.ML Tools/refute.ML Tools/refute_isar.ML		\
   Tools/res_atp.ML Tools/res_atp_methods.ML Tools/res_atp_provers.ML	\
--- a/src/HOL/Tools/Ferrante_Rackoff/ferrante_rackoff.ML	Thu Jun 21 20:48:47 2007 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,263 +0,0 @@
-(* Title:      HOL/Tools/ferrante_rackoff.ML
-   ID:         $Id$
-   Author:     Amine Chaieb, TU Muenchen
-
-Ferrante and Rackoff's algorithm for quantifier elimination in dense
-linear orders.  Proof-synthesis and tactic.
-*)
-
-signature FERRANTE_RACKOFF = 
-sig
-  val dlo_tac: Proof.context -> int -> tactic
-end;
-
-structure FerranteRackoff: FERRANTE_RACKOFF =
-struct
-
-open Ferrante_Rackoff_Data;
-open Conv;
-
-type entry = {minf: thm list, pinf: thm list, nmi: thm list, npi: thm list,  
-   ld: thm list, qe: thm, atoms : cterm list} *
-  {isolate_conv: cterm list -> cterm -> thm, 
-                 whatis : cterm -> cterm -> ord,
-                 simpset : simpset};
-
-fun binop_cong b th1 th2 = Thm.combination (Drule.arg_cong_rule b th1) th2;
-val is_refl = op aconv o Logic.dest_equals o Thm.prop_of;
-fun C f x y = f y x
-
-fun get_p1 th = 
- let 
-    fun appair f (x,y) = (f x, f y)
-  in funpow 2 (Thm.dest_arg o snd o Thm.dest_abs NONE) 
-     (funpow 2 Thm.dest_arg (cprop_of th)) |> Thm.dest_arg 
-end;
-
-fun ferrack_conv
-   (entr as ({minf = minf, pinf = pinf, nmi = nmi, npi = npi, 
-              ld = ld, qe = qe, atoms = atoms},
-             {isolate_conv = icv, whatis = wi, simpset = simpset}):entry) = 
-let 
- fun uset (vars as (x::vs)) p = case term_of p of
-   Const("op &", _)$ _ $ _ => 
-     let 
-       val ((b,l),r) = Thm.dest_comb p |>> Thm.dest_comb 
-       val (lS,lth) = uset vars l  val (rS, rth) = uset vars r
-     in (lS@rS, binop_cong b lth rth) end
- |  Const("op |", _)$ _ $ _ => 
-     let 
-       val ((b,l),r) = Thm.dest_comb p |>> Thm.dest_comb 
-       val (lS,lth) = uset vars l  val (rS, rth) = uset vars r
-     in (lS@rS, binop_cong b lth rth) end
- | _ => 
-    let 
-      val th = icv vars p 
-      val p' = Thm.rhs_of th
-      val c = wi x p'
-      val S = (if c mem [Lt, Le, Eq] then single o Thm.dest_arg
-               else if c mem [Gt, Ge] then single o Thm.dest_arg1
-               else if c = NEq then single o Thm.dest_arg o Thm.dest_arg 
-               else K []) p'
-    in (S,th) end
-
- val ((p1_v,p2_v),(mp1_v,mp2_v)) = 
-  let
-   fun appair f (x,y) = (f x, f y)
-  in funpow 2 (Thm.dest_arg o snd o Thm.dest_abs NONE) 
-       (funpow 4 Thm.dest_arg (cprop_of (hd minf))) 
-     |> Thm.dest_binop |> appair Thm.dest_binop |> apfst (appair Thm.dest_fun)  
-  end
-
- fun myfwd (th1, th2, th3, th4, th5) p1 p2 
-      [(th_1,th_2,th_3,th_4,th_5), (th_1',th_2',th_3',th_4',th_5')] = 
-  let  
-   val (mp1, mp2) = (get_p1 th_1, get_p1 th_1')
-   val (pp1, pp2) = (get_p1 th_2, get_p1 th_2')
-   fun fw mi th th' th'' = 
-     let 
-      val th0 = if mi then 
-           instantiate ([],[(p1_v, p1),(p2_v, p2),(mp1_v, mp1), (mp2_v, mp2)]) th
-        else instantiate ([],[(p1_v, p1),(p2_v, p2),(mp1_v, pp1), (mp2_v, pp2)]) th
-     in implies_elim (implies_elim th0 th') th'' end
-  in (fw true th1 th_1 th_1', fw false th2 th_2 th_2', 
-      fw true th3 th_3 th_3', fw false th4 th_4 th_4', fw true th5 th_5 th_5') 
-  end
- val U_v = (Thm.dest_arg o Thm.dest_arg o Thm.dest_arg1) (cprop_of qe)
- fun main vs p = 
-  let 
-   val ((xn,ce),(x,fm)) = (case term_of p of 
-                   Const("Ex",_)$Abs(xn,xT,_) =>  
-                        Thm.dest_comb p ||> Thm.dest_abs (SOME xn) |>> pair xn
-                 | _ => error "main QE only trats existential quantifiers!")
-   val cT = ctyp_of_term x
-   val (u,nth) = uset (x::vs) fm |>> distinct (op aconvc)
-   val nthx = Thm.abstract_rule xn x nth
-   val q = Thm.rhs_of nth
-   val qx = Thm.rhs_of nthx
-   val enth = Drule.arg_cong_rule ce nthx
-   val [th0,th1] = map (instantiate' [SOME cT] []) @{thms "finite.intros"}
-   fun ins x th = 
-      implies_elim (instantiate' [] [(SOME o Thm.dest_arg o Thm.dest_arg) 
-                                       (Thm.cprop_of th), SOME x] th1) th
-   val fU = fold ins u th0
-   val cU = funpow 2 Thm.dest_arg (Thm.cprop_of fU)
-   local 
-     val insI1 = instantiate' [SOME cT] [] @{thm "insertI1"}
-     val insI2 = instantiate' [SOME cT] [] @{thm "insertI2"}
-   in
-    fun provein x S = 
-     case term_of S of
-        Const("{}",_) => error "provein : not a member!"
-      | Const("insert",_)$y$_ => 
-         let val (cy,S') = Thm.dest_binop S
-         in if term_of x aconv y then instantiate' [] [SOME x, SOME S'] insI1
-         else implies_elim (instantiate' [] [SOME x, SOME S', SOME cy] insI2) 
-                           (provein x S')
-         end
-   end
-   val tabU = fold (fn t => fn tab => Termtab.update (term_of t, provein t cU) tab) 
-                   u Termtab.empty
-   val U = valOf o Termtab.lookup tabU o term_of
-   val [minf_conj, minf_disj, minf_eq, minf_neq, minf_lt, 
-        minf_le, minf_gt, minf_ge, minf_P] = minf
-   val [pinf_conj, pinf_disj, pinf_eq, pinf_neq, pinf_lt, 
-        pinf_le, pinf_gt, pinf_ge, pinf_P] = pinf
-   val [nmi_conj, nmi_disj, nmi_eq, nmi_neq, nmi_lt, 
-        nmi_le, nmi_gt, nmi_ge, nmi_P] = map (instantiate ([],[(U_v,cU)])) nmi
-   val [npi_conj, npi_disj, npi_eq, npi_neq, npi_lt, 
-        npi_le, npi_gt, npi_ge, npi_P] = map (instantiate ([],[(U_v,cU)])) npi
-   val [ld_conj, ld_disj, ld_eq, ld_neq, ld_lt, 
-        ld_le, ld_gt, ld_ge, ld_P] = map (instantiate ([],[(U_v,cU)])) ld
-  
-   fun decomp_mpinf fm = 
-     case term_of fm of
-       Const("op &",_)$_$_ => 
-        let val (p,q) = Thm.dest_binop fm 
-        in ([p,q], myfwd (minf_conj,pinf_conj, nmi_conj, npi_conj,ld_conj) 
-                         (Thm.cabs x p) (Thm.cabs x q))
-        end
-     | Const("op |",_)$_$_ => 
-        let val (p,q) = Thm.dest_binop fm 
-        in ([p,q],myfwd (minf_disj, pinf_disj, nmi_disj, npi_disj,ld_disj)
-                         (Thm.cabs x p) (Thm.cabs x q))
-        end
-     | _ => 
-        (let val c = wi x fm
-             val t = (if c=Nox then I 
-                      else if c mem [Lt, Le, Eq] then Thm.dest_arg
-                      else if c mem [Gt,Ge] then Thm.dest_arg1
-                      else if c = NEq then (Thm.dest_arg o Thm.dest_arg) 
-                      else error "decomp_mpinf: Impossible case!!") fm
-             val [mi_th, pi_th, nmi_th, npi_th, ld_th] = 
-               if c = Nox then map (instantiate' [] [SOME fm]) 
-                                    [minf_P, pinf_P, nmi_P, npi_P, ld_P]
-               else 
-                let val [mi_th,pi_th,nmi_th,npi_th,ld_th] = 
-                 map (instantiate' [] [SOME t])
-                 (case c of Lt => [minf_lt, pinf_lt, nmi_lt, npi_lt, ld_lt]
-                          | Le => [minf_le, pinf_le, nmi_le, npi_le, ld_le]
-                          | Gt => [minf_gt, pinf_gt, nmi_gt, npi_gt, ld_gt]
-                          | Ge => [minf_ge, pinf_ge, nmi_ge, npi_ge, ld_ge]
-                          | Eq => [minf_eq, pinf_eq, nmi_eq, npi_eq, ld_eq]
-                          | NEq => [minf_neq, pinf_neq, nmi_neq, npi_neq, ld_neq])
-                    val tU = U t
-                    fun Ufw th = implies_elim th tU
-                 in [mi_th, pi_th, Ufw nmi_th, Ufw npi_th, Ufw ld_th]
-                 end
-         in ([], K (mi_th, pi_th, nmi_th, npi_th, ld_th)) end)
-   val (minf_th, pinf_th, nmi_th, npi_th, ld_th) = divide_and_conquer decomp_mpinf q
-   val qe_th = fold (C implies_elim)  [fU, ld_th, nmi_th, npi_th, minf_th, pinf_th] 
-                  ((fconv_rule (Thm.beta_conversion true)) 
-                   (instantiate' [] (map SOME [cU, qx, get_p1 minf_th, get_p1 pinf_th]) 
-                        qe))
-    val bex_conv = 
-      Simplifier.rewrite (HOL_basic_ss addsimps simp_thms@(@{thms "bex_simps" (1-5)}))
-    val result_th = fconv_rule (arg_conv bex_conv) (transitive enth qe_th)
-   in result_th
-   end
-
-in main
-end;
-
-val grab_atom_bop = 
- let 
-  fun h bounds tm =
-   (case term_of tm of
-     Const ("op =", T) $ _ $ _ =>
-       if domain_type T = HOLogic.boolT then find_args bounds tm 
-       else Thm.dest_fun2 tm
-   | Const ("Not", _) $ _ => h bounds (Thm.dest_arg tm)
-   | Const ("All", _) $ _ => find_body bounds (Thm.dest_arg tm)
-   | Const ("Ex", _) $ _ => find_body bounds (Thm.dest_arg tm)
-   | Const ("op &", _) $ _ $ _ => find_args bounds tm
-   | Const ("op |", _) $ _ $ _ => find_args bounds tm
-   | Const ("op -->", _) $ _ $ _ => find_args bounds tm
-   | Const ("==>", _) $ _ $ _ => find_args bounds tm
-   | Const ("==", _) $ _ $ _ => find_args bounds tm
-   | Const ("Trueprop", _) $ _ => h bounds (Thm.dest_arg tm)
-   | _ => Thm.dest_fun2 tm)
-  and find_args bounds tm = 
-           (h bounds (Thm.dest_arg tm) handle CTERM _ => Thm.dest_arg1 tm)
- and find_body bounds b =
-   let val (_, b') = Thm.dest_abs (SOME (Name.bound bounds)) b
-   in h (bounds + 1) b' end;
-in h end;
-
-local
-fun cterm_frees ct = 
- let fun h acc t = 
-   case (term_of t) of 
-    _$_ => h (h acc (Thm.dest_arg t)) (Thm.dest_fun t)
-  | Abs(_,_,_) => Thm.dest_abs NONE t ||> h acc |> uncurry (remove (op aconvc))
-  | Free _ => insert (op aconvc) t acc
-  | _ => acc
- in h [] ct end;
-in
-
-fun raw_ferrack_qe_conv ctxt (thy, {isolate_conv, whatis, simpset}) tm = 
- let 
-   val ss = simpset
-   val pcv = Simplifier.rewrite 
-     (merge_ss (HOL_basic_ss addsimps (simp_thms @ ex_simps @ all_simps)
-              @ [not_all,@{thm "all_not_ex"}, ex_disj_distrib], ss))
-    val postcv = Simplifier.rewrite ss
-    val nnf = K (nnf_conv then_conv postcv)
-    val qe_conv = Qelim.gen_qelim_conv ctxt pcv postcv pcv cons (cterm_frees tm) 
-                  (isolate_conv ctxt) nnf
-                  (fn vs => ferrack_conv (thy,{isolate_conv = isolate_conv ctxt, 
-                                               whatis = whatis, simpset = simpset}) vs
-                   then_conv postcv)
- in (Simplifier.rewrite ss then_conv qe_conv) tm
- end
-
-fun ferrackqe_conv ctxt tm = 
- case Ferrante_Rackoff_Data.match ctxt (grab_atom_bop 0 tm) of
-  NONE => error "ferrackqe_conv : no corresponding instance in context!"
-| SOME res => raw_ferrack_qe_conv ctxt res tm
-end;
-
-fun core_ferrack_tac ctxt res i st =
- let val p = nth (cprems_of st) (i - 1)
-     val th = symmetric (arg_conv (raw_ferrack_qe_conv ctxt res) p)
-     val p' = Thm.lhs_of th
-     val th' = implies_intr p' (equal_elim th (assume p')) 
-     val _ = print_thm th
-  in (rtac th' i) st 
-  end
-
-fun dlo_tac ctxt i st = 
- let 
-   val instance = (case Ferrante_Rackoff_Data.match ctxt 
-                           (grab_atom_bop 0 (nth (cprems_of st) (i - 1))) of 
-                    NONE => error "ferrackqe_conv : no corresponding instance in context!"
-                  | SOME r => r)
-   val ss = #simpset (snd instance)
-   in
-   (ObjectLogic.full_atomize_tac i THEN 
-    simp_tac ss i THEN
-    core_ferrack_tac ctxt instance i THEN 
-    (TRY (simp_tac (Simplifier.local_simpset_of ctxt) i))) st
-  end;
-
-end;
--- a/src/HOL/Tools/Ferrante_Rackoff/ferrante_rackoff_data.ML	Thu Jun 21 20:48:47 2007 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,149 +0,0 @@
-(* Title:      HOL/Tools/ferrante_rackoff_data.ML
-   ID:         $Id$
-   Author:     Amine Chaieb, TU Muenchen
-
-Context data for Ferrante and Rackoff's algorithm for quantifier
-elimination in dense linear orders.
-*)
-
-signature FERRANTE_RACKOF_DATA =
-sig
-  datatype ord = Lt | Le | Gt | Ge | Eq | NEq | Nox
-  type entry
-  val get: Proof.context -> (thm * entry) list
-  val del: attribute
-  val add: entry -> attribute 
-  val funs: thm -> 
-    {isolate_conv: morphism -> Proof.context -> cterm list -> cterm -> thm,
-     whatis: morphism -> cterm -> cterm -> ord,
-     simpset: morphism -> simpset}
-             -> morphism -> Context.generic -> Context.generic
-  val match: Proof.context -> cterm -> entry option
-  val setup: theory -> theory
-end;
-
-structure Ferrante_Rackoff_Data: FERRANTE_RACKOF_DATA = 
-struct
-
-(* data *)
-
-datatype ord = Lt | Le | Gt | Ge | Eq | NEq | Nox
-
-type entry = 
-  {minf: thm list, pinf: thm list, nmi: thm list, npi: thm list,  
-   ld: thm list, qe: thm, atoms : cterm list} *
-   {isolate_conv: Proof.context -> cterm list -> cterm -> thm, 
-    whatis : cterm -> cterm -> ord, 
-    simpset : simpset};
-
-val eq_key = Thm.eq_thm;
-fun eq_data arg = eq_fst eq_key arg;
-
-structure Data = GenericDataFun
-(
-  type T = (thm * entry) list;
-  val empty = [];
-  val extend = I;
-  fun merge _ = AList.merge eq_key (K true);
-);
-
-val get = Data.get o Context.Proof;
-
-fun del_data key = remove eq_data (key, []);
-
-val del = Thm.declaration_attribute (Data.map o del_data);
-
-fun undefined x = error "undefined";
-
-fun add entry = 
-    Thm.declaration_attribute (fn key => fn context => context |> Data.map 
-      (del_data key #> cons (key, entry)));
-
-
-(* extra-logical functions *)
-
-fun funs raw_key {isolate_conv = icv, whatis = wi, simpset = ss} phi = Data.map (fn data =>
-  let
-    val key = Morphism.thm phi raw_key;
-    val _ = AList.defined eq_key data key orelse
-      raise THM ("No data entry for structure key", 0, [key]);
-    val fns = {isolate_conv = icv phi, whatis = wi phi, simpset = ss phi};
-  in AList.map_entry eq_key key (apsnd (K fns)) data end);
-
-fun match ctxt tm =
-  let
-    fun match_inst
-        ({minf, pinf, nmi, npi, ld, qe, atoms},
-         fns as {isolate_conv, whatis, simpset}) pat =
-       let
-        fun h instT =
-          let
-            val substT = Thm.instantiate (instT, []);
-            val substT_cterm = Drule.cterm_rule substT;
-
-            val minf' = map substT minf
-            val pinf' = map substT pinf
-            val nmi' = map substT nmi
-            val npi' = map substT npi
-            val ld' = map substT ld
-            val qe' = substT qe
-            val atoms' = map substT_cterm atoms
-            val result = ({minf = minf', pinf = pinf', nmi = nmi', npi = npi', 
-                           ld = ld', qe = qe', atoms = atoms'}, fns)
-          in SOME result end
-      in (case try Thm.match (pat, tm) of
-           NONE => NONE
-         | SOME (instT, _) => h instT)
-      end;
-
-    fun match_struct (_,
-        entry as ({atoms = atoms, ...}, _): entry) =
-      get_first (match_inst entry) atoms;
-  in get_first match_struct (get ctxt) end;
-
-
-(* concrete syntax *)
-
-local
-val minfN = "minf";
-val pinfN = "pinf";
-val nmiN = "nmi";
-val npiN = "npi";
-val lin_denseN = "lindense";
-val qeN = "qe"
-val atomsN = "atoms"
-val simpsN = "simps"
-fun keyword k = Scan.lift (Args.$$$ k -- Args.colon) >> K ();
-val any_keyword =
-  keyword minfN || keyword pinfN || keyword nmiN 
-|| keyword npiN || keyword lin_denseN || keyword qeN 
-|| keyword atomsN || keyword simpsN;
-
-val thms = Scan.repeat (Scan.unless any_keyword Attrib.multi_thm) >> flat;
-val terms = thms >> map Drule.dest_term;
-in
-
-fun att_syntax src = src |> Attrib.syntax
-    ((keyword minfN |-- thms)
-     -- (keyword pinfN |-- thms)
-     -- (keyword nmiN |-- thms)
-     -- (keyword npiN |-- thms)
-     -- (keyword lin_denseN |-- thms)
-     -- (keyword qeN |-- thms)
-     -- (keyword atomsN |-- terms) >> 
-     (fn ((((((minf,pinf),nmi),npi),lin_dense),qe), atoms)=> 
-     if length qe = 1 then
-       add ({minf = minf, pinf = pinf, nmi = nmi, npi = npi, ld = lin_dense, 
-            qe = hd qe, atoms = atoms},
-           {isolate_conv = undefined, whatis = undefined, simpset = HOL_ss})
-     else error "only one theorem for qe!"))
-
-end;
-
-
-(* theory setup *)
-
-val setup =
-  Attrib.add_attributes [("dlo", att_syntax, "Ferrante Rackoff data")];
-
-end;
--- a/src/HOL/Tools/Presburger/cooper.ML	Thu Jun 21 20:48:47 2007 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,661 +0,0 @@
-(*  Title:      HOL/Tools/Presburger/cooper.ML
-    ID:         $Id$
-    Author:     Amine Chaieb, TU Muenchen
-*)
-
-signature COOPER =
- sig
-  val cooper_conv : Proof.context -> Conv.conv
-  exception COOPER of string * exn
-end;
-
-structure Cooper: COOPER =
-struct
-open Conv;
-open Normalizer;
-structure Integertab = TableFun(type key = integer val ord = Integer.cmp);
-exception COOPER of string * exn;
-val simp_thms_conv = Simplifier.rewrite (HOL_basic_ss addsimps simp_thms);
-
-fun C f x y = f y x;
-
-val FWD = C (fold (C implies_elim));
-
-val true_tm = @{cterm "True"};
-val false_tm = @{cterm "False"};
-val zdvd1_eq = @{thm "zdvd1_eq"};
-val presburger_ss = @{simpset} addsimps [zdvd1_eq];
-val lin_ss = presburger_ss addsimps (@{thm "dvd_eq_mod_eq_0"}::zdvd1_eq::@{thms zadd_ac});
-(* Some types and constants *)
-val iT = HOLogic.intT
-val bT = HOLogic.boolT;
-val dest_numeral = HOLogic.dest_number #> snd;
-
-val [miconj, midisj, mieq, mineq, milt, mile, migt, mige, midvd, mindvd, miP] = 
-    map(instantiate' [SOME @{ctyp "int"}] []) @{thms "minf"};
-
-val [infDconj, infDdisj, infDdvd,infDndvd,infDP] = 
-    map(instantiate' [SOME @{ctyp "int"}] []) @{thms "inf_period"};
-
-val [piconj, pidisj, pieq,pineq,pilt,pile,pigt,pige,pidvd,pindvd,piP] = 
-    map (instantiate' [SOME @{ctyp "int"}] []) @{thms "pinf"};
-
-val [miP, piP] = map (instantiate' [SOME @{ctyp "bool"}] []) [miP, piP];
-
-val infDP = instantiate' (map SOME [@{ctyp "int"}, @{ctyp "bool"}]) [] infDP;
-
-val [[asetconj, asetdisj, aseteq, asetneq, asetlt, asetle, 
-      asetgt, asetge, asetdvd, asetndvd,asetP],
-     [bsetconj, bsetdisj, bseteq, bsetneq, bsetlt, bsetle, 
-      bsetgt, bsetge, bsetdvd, bsetndvd,bsetP]]  = [@{thms "aset"}, @{thms "bset"}];
-
-val [miex, cpmi, piex, cppi] = [@{thm "minusinfinity"}, @{thm "cpmi"}, 
-                                @{thm "plusinfinity"}, @{thm "cppi"}];
-
-val unity_coeff_ex = instantiate' [SOME @{ctyp "int"}] [] @{thm "unity_coeff_ex"};
-
-val [zdvd_mono,simp_from_to,all_not_ex] = 
-     [@{thm "zdvd_mono"}, @{thm "simp_from_to"}, @{thm "all_not_ex"}];
-
-val [dvd_uminus, dvd_uminus'] = @{thms "uminus_dvd_conv"};
-
-val eval_ss = presburger_ss addsimps [simp_from_to] delsimps [insert_iff,bex_triv];
-val eval_conv = Simplifier.rewrite eval_ss;
-
-(* recongnising cterm without moving to terms *)
-
-datatype fm = And of cterm*cterm| Or of cterm*cterm| Eq of cterm | NEq of cterm 
-            | Lt of cterm | Le of cterm | Gt of cterm | Ge of cterm
-            | Dvd of cterm*cterm | NDvd of cterm*cterm | Nox
-
-fun whatis x ct = 
-( case (term_of ct) of 
-  Const("op &",_)$_$_ => And (Thm.dest_binop ct)
-| Const ("op |",_)$_$_ => Or (Thm.dest_binop ct)
-| Const ("op =",ty)$y$_ => if term_of x aconv y then Eq (Thm.dest_arg ct) else Nox
-| Const("Not",_) $ (Const ("op =",_)$y$_) => 
-  if term_of x aconv y then NEq (funpow 2 Thm.dest_arg ct) else Nox
-| Const ("Orderings.ord_class.less",_)$y$z =>
-   if term_of x aconv y then Lt (Thm.dest_arg ct) 
-   else if term_of x aconv z then Gt (Thm.dest_arg1 ct) else Nox
-| Const ("Orderings.ord_class.less_eq",_)$y$z => 
-   if term_of x aconv y then Le (Thm.dest_arg ct) 
-   else if term_of x aconv z then Ge (Thm.dest_arg1 ct) else Nox
-| Const ("Divides.dvd",_)$_$(Const(@{const_name "HOL.plus"},_)$y$_) =>
-   if term_of x aconv y then Dvd (Thm.dest_binop ct ||> Thm.dest_arg) else Nox 
-| Const("Not",_) $ (Const ("Divides.dvd",_)$_$(Const(@{const_name "HOL.plus"},_)$y$_)) =>
-   if term_of x aconv y then 
-   NDvd (Thm.dest_binop (Thm.dest_arg ct) ||> Thm.dest_arg) else Nox 
-| _ => Nox)
-  handle CTERM _ => Nox; 
-
-fun get_pmi_term t = 
-  let val (x,eq) = 
-     (Thm.dest_abs NONE o Thm.dest_arg o snd o Thm.dest_abs NONE o Thm.dest_arg)
-        (Thm.dest_arg t)
-in (Thm.cabs x o Thm.dest_arg o Thm.dest_arg) eq end;
-
-val get_pmi = get_pmi_term o cprop_of;
-
-val p_v' = @{cpat "?P' :: int => bool"}; 
-val q_v' = @{cpat "?Q' :: int => bool"};
-val p_v = @{cpat "?P:: int => bool"};
-val q_v = @{cpat "?Q:: int => bool"};
-
-fun myfwd (th1, th2, th3) p q 
-      [(th_1,th_2,th_3), (th_1',th_2',th_3')] = 
-  let  
-   val (mp', mq') = (get_pmi th_1, get_pmi th_1')
-   val mi_th = FWD (instantiate ([],[(p_v,p),(q_v,q), (p_v',mp'),(q_v',mq')]) th1) 
-                   [th_1, th_1']
-   val infD_th = FWD (instantiate ([],[(p_v,mp'), (q_v, mq')]) th3) [th_3,th_3']
-   val set_th = FWD (instantiate ([],[(p_v,p), (q_v,q)]) th2) [th_2, th_2']
-  in (mi_th, set_th, infD_th)
-  end;
-
-val inst' = fn cts => instantiate' [] (map SOME cts);
-val infDTrue = instantiate' [] [SOME true_tm] infDP;
-val infDFalse = instantiate' [] [SOME false_tm] infDP;
-
-val cadd =  @{cterm "op + :: int => _"}
-val cmulC =  @{cterm "op * :: int => _"}
-val cminus =  @{cterm "op - :: int => _"}
-val cone =  @{cterm "1:: int"}
-val cneg = @{cterm "uminus :: int => _"}
-val [addC, mulC, subC, negC] = map term_of [cadd, cmulC, cminus, cneg]
-val [zero, one] = [@{term "0::int"}, @{term "1::int"}];
-
-val is_numeral = can dest_numeral; 
-
-fun numeral1 f n = HOLogic.mk_number iT (f (dest_numeral n)); 
-fun numeral2 f m n = HOLogic.mk_number iT (f (dest_numeral m) (dest_numeral n));
-
-val [minus1,plus1] = 
-    map (fn c => fn t => Thm.capply (Thm.capply c t) cone) [cminus,cadd];
-
-fun decomp_pinf x dvd inS [aseteq, asetneq, asetlt, asetle, 
-                           asetgt, asetge,asetdvd,asetndvd,asetP,
-                           infDdvd, infDndvd, asetconj,
-                           asetdisj, infDconj, infDdisj] cp =
- case (whatis x cp) of
-  And (p,q) => ([p,q], myfwd (piconj, asetconj, infDconj) (Thm.cabs x p) (Thm.cabs x q))
-| Or (p,q) => ([p,q], myfwd (pidisj, asetdisj, infDdisj) (Thm.cabs x p) (Thm.cabs x q))
-| Eq t => ([], K (inst' [t] pieq, FWD (inst' [t] aseteq) [inS (plus1 t)], infDFalse))
-| NEq t => ([], K (inst' [t] pineq, FWD (inst' [t] asetneq) [inS t], infDTrue))
-| Lt t => ([], K (inst' [t] pilt, FWD (inst' [t] asetlt) [inS t], infDFalse))
-| Le t => ([], K (inst' [t] pile, FWD (inst' [t] asetle) [inS (plus1 t)], infDFalse))
-| Gt t => ([], K (inst' [t] pigt, (inst' [t] asetgt), infDTrue))
-| Ge t => ([], K (inst' [t] pige, (inst' [t] asetge), infDTrue))
-| Dvd (d,s) => 
-   ([],let val dd = dvd d
-	     in K (inst' [d,s] pidvd, FWD (inst' [d,s] asetdvd) [dd],FWD (inst' [d,s] infDdvd) [dd]) end)
-| NDvd(d,s) => ([],let val dd = dvd d
-	      in K (inst' [d,s] pindvd, FWD (inst' [d,s] asetndvd) [dd], FWD (inst' [d,s] infDndvd) [dd]) end)
-| _ => ([], K (inst' [cp] piP, inst' [cp] asetP, inst' [cp] infDP));
-
-fun decomp_minf x dvd inS [bseteq,bsetneq,bsetlt, bsetle, bsetgt,
-                           bsetge,bsetdvd,bsetndvd,bsetP,
-                           infDdvd, infDndvd, bsetconj,
-                           bsetdisj, infDconj, infDdisj] cp =
- case (whatis x cp) of
-  And (p,q) => ([p,q], myfwd (miconj, bsetconj, infDconj) (Thm.cabs x p) (Thm.cabs x q))
-| Or (p,q) => ([p,q], myfwd (midisj, bsetdisj, infDdisj) (Thm.cabs x p) (Thm.cabs x q))
-| Eq t => ([], K (inst' [t] mieq, FWD (inst' [t] bseteq) [inS (minus1 t)], infDFalse))
-| NEq t => ([], K (inst' [t] mineq, FWD (inst' [t] bsetneq) [inS t], infDTrue))
-| Lt t => ([], K (inst' [t] milt, (inst' [t] bsetlt), infDTrue))
-| Le t => ([], K (inst' [t] mile, (inst' [t] bsetle), infDTrue))
-| Gt t => ([], K (inst' [t] migt, FWD (inst' [t] bsetgt) [inS t], infDFalse))
-| Ge t => ([], K (inst' [t] mige,FWD (inst' [t] bsetge) [inS (minus1 t)], infDFalse))
-| Dvd (d,s) => ([],let val dd = dvd d
-	      in K (inst' [d,s] midvd, FWD (inst' [d,s] bsetdvd) [dd] , FWD (inst' [d,s] infDdvd) [dd]) end)
-| NDvd (d,s) => ([],let val dd = dvd d
-	      in K (inst' [d,s] mindvd, FWD (inst' [d,s] bsetndvd) [dd], FWD (inst' [d,s] infDndvd) [dd]) end)
-| _ => ([], K (inst' [cp] miP, inst' [cp] bsetP, inst' [cp] infDP))
-
-    (* Canonical linear form for terms, formulae etc.. *)
-fun provelin ctxt t = Goal.prove ctxt [] [] t 
-                          (fn _ => EVERY [simp_tac lin_ss 1, TRY (simple_arith_tac 1)]);
-fun linear_cmul 0 tm =  zero 
-  | linear_cmul n tm = 
-    case tm of  
-      Const("HOL.plus_class.plus",_)$a$b => addC$(linear_cmul n a)$(linear_cmul n b)
-    | Const ("HOL.times_class.times",_)$c$x => mulC$(numeral1 (Integer.mult n) c)$x
-    | Const("HOL.minus_class.minus",_)$a$b => subC$(linear_cmul n a)$(linear_cmul n b)
-    | (m as Const("HOL.minus_class.uminus",_))$a => m$(linear_cmul n a)
-    | _ =>  numeral1 (Integer.mult n) tm;
-fun earlier [] x y = false 
-	| earlier (h::t) x y = 
-    if h aconv y then false else if h aconv x then true else earlier t x y; 
-
-fun linear_add vars tm1 tm2 = 
- case (tm1,tm2) of 
-	 (Const("HOL.plus_class.plus",_)$(Const("HOL.times_class.times",_)$c1$x1)$r1,
-    Const("HOL.plus_class.plus",_)$(Const("HOL.times_class.times",_)$c2$x2)$r2) => 
-   if x1 = x2 then 
-     let val c = numeral2 Integer.add c1 c2
-	   in if c = zero then linear_add vars r1  r2  
-	      else addC$(mulC$c$x1)$(linear_add vars  r1 r2)
-     end 
-	 else if earlier vars x1 x2 then addC$(mulC$ c1 $ x1)$(linear_add vars r1 tm2)
-   else addC$(mulC$c2$x2)$(linear_add vars tm1 r2)
- | (Const("HOL.plus_class.plus",_) $ (Const("HOL.times_class.times",_)$c1$x1)$r1 ,_) => 
-    	  addC$(mulC$c1$x1)$(linear_add vars r1 tm2)
- | (_, Const("HOL.plus_class.plus",_)$(Const("HOL.times_class.times",_)$c2$x2)$r2) => 
-      	  addC$(mulC$c2$x2)$(linear_add vars tm1 r2) 
- | (_,_) => numeral2 Integer.add tm1 tm2;
- 
-fun linear_neg tm = linear_cmul ~1 tm; 
-fun linear_sub vars tm1 tm2 = linear_add vars tm1 (linear_neg tm2); 
-
-
-fun lint vars tm = 
-if is_numeral tm then tm 
-else case tm of 
- Const("HOL.minus_class.uminus",_)$t => linear_neg (lint vars t)
-| Const("HOL.plus_class.plus",_) $ s $ t => linear_add vars (lint vars s) (lint vars t) 
-| Const("HOL.minus_class.minus",_) $ s $ t => linear_sub vars (lint vars s) (lint vars t)
-| Const ("HOL.times_class.times",_) $ s $ t => 
-  let val s' = lint vars s  
-      val t' = lint vars t  
-  in if is_numeral s' then (linear_cmul (dest_numeral s') t') 
-     else if is_numeral t' then (linear_cmul (dest_numeral t') s') 
-     else raise COOPER ("Cooper Failed", TERM ("lint: not linear",[tm]))
-  end 
- | _ => addC$(mulC$one$tm)$zero;
-
-fun lin (vs as x::_) (Const("Not",_)$(Const("Orderings.ord_class.less",T)$s$t)) = 
-    lin vs (Const("Orderings.ord_class.less_eq",T)$t$s)
-  | lin (vs as x::_) (Const("Not",_)$(Const("Orderings.ord_class.less_eq",T)$s$t)) = 
-    lin vs (Const("Orderings.ord_class.less",T)$t$s)
-  | lin vs (Const ("Not",T)$t) = Const ("Not",T)$ (lin vs t)
-  | lin (vs as x::_) (Const("Divides.dvd",_)$d$t) = 
-    HOLogic.mk_binrel "Divides.dvd" (numeral1 abs d, lint vs t)
-  | lin (vs as x::_) ((b as Const("op =",_))$s$t) = 
-     (case lint vs (subC$t$s) of 
-      (t as a$(m$c$y)$r) => 
-        if x <> y then b$zero$t
-        else if dest_numeral c < 0 then b$(m$(numeral1 ~ c)$y)$r
-        else b$(m$c$y)$(linear_neg r)
-      | t => b$zero$t)
-  | lin (vs as x::_) (b$s$t) = 
-     (case lint vs (subC$t$s) of 
-      (t as a$(m$c$y)$r) => 
-        if x <> y then b$zero$t
-        else if dest_numeral c < 0 then b$(m$(numeral1 ~ c)$y)$r
-        else b$(linear_neg r)$(m$c$y)
-      | t => b$zero$t)
-  | lin vs fm = fm;
-
-fun lint_conv ctxt vs ct = 
-let val t = term_of ct
-in (provelin ctxt ((HOLogic.eq_const iT)$t$(lint vs t) |> HOLogic.mk_Trueprop))
-             RS eq_reflection
-end;
-
-fun is_intrel (b$_$_) = domain_type (fastype_of b) = HOLogic.intT
-  | is_intrel (@{term "Not"}$(b$_$_)) = domain_type (fastype_of b) = HOLogic.intT
-  | is_intrel _ = false;
- 
-fun linearize_conv ctxt vs ct =  
- case (term_of ct) of 
-  Const("Divides.dvd",_)$d$t => 
-  let 
-    val th = binop_conv (lint_conv ctxt vs) ct
-    val (d',t') = Thm.dest_binop (Thm.rhs_of th)
-    val (dt',tt') = (term_of d', term_of t')
-  in if is_numeral dt' andalso is_numeral tt' 
-     then Conv.fconv_rule (arg_conv (Simplifier.rewrite presburger_ss)) th
-     else 
-     let 
-      val dth = 
-      ((if dest_numeral (term_of d') < 0 then 
-          Conv.fconv_rule (arg_conv (arg1_conv (lint_conv ctxt vs)))
-                           (Thm.transitive th (inst' [d',t'] dvd_uminus))
-        else th) handle TERM _ => th)
-      val d'' = Thm.rhs_of dth |> Thm.dest_arg1
-     in
-      case tt' of 
-        Const("HOL.plus_class.plus",_)$(Const("HOL.times_class.times",_)$c$_)$_ => 
-        let val x = dest_numeral c
-        in if x < 0 then Conv.fconv_rule (arg_conv (arg_conv (lint_conv ctxt vs)))
-                                       (Thm.transitive dth (inst' [d'',t'] dvd_uminus'))
-        else dth end
-      | _ => dth
-     end
-  end
-| Const("Not",_)$(Const("Divides.dvd",_)$_$_) => arg_conv (linearize_conv ctxt vs) ct
-| t => if is_intrel t 
-      then (provelin ctxt ((HOLogic.eq_const bT)$t$(lin vs t) |> HOLogic.mk_Trueprop))
-       RS eq_reflection
-      else reflexive ct;
-
-val dvdc = @{cterm "op dvd :: int => _"};
-
-fun unify ctxt q = 
- let
-  val (e,(cx,p)) = q |> Thm.dest_comb ||> Thm.dest_abs NONE
-  val x = term_of cx 
-  val ins = insert (op = : integer*integer -> bool)
-  fun h (acc,dacc) t = 
-   case (term_of t) of
-    Const(s,_)$(Const("HOL.times_class.times",_)$c$y)$ _ => 
-    if x aconv y 
-       andalso s mem ["op =", "Orderings.ord_class.less", "Orderings.ord_class.less_eq"] 
-    then (ins (dest_numeral c) acc,dacc) else (acc,dacc)
-  | Const(s,_)$_$(Const("HOL.times_class.times",_)$c$y) => 
-    if x aconv y 
-       andalso s mem ["Orderings.ord_class.less", "Orderings.ord_class.less_eq"] 
-    then (ins (dest_numeral c) acc, dacc) else (acc,dacc)
-  | Const("Divides.dvd",_)$_$(Const("HOL.plus_class.plus",_)$(Const("HOL.times_class.times",_)$c$y)$_) => 
-    if x aconv y then (acc,ins (dest_numeral c) dacc) else (acc,dacc)
-  | Const("op &",_)$_$_ => h (h (acc,dacc) (Thm.dest_arg1 t)) (Thm.dest_arg t)
-  | Const("op |",_)$_$_ => h (h (acc,dacc) (Thm.dest_arg1 t)) (Thm.dest_arg t)
-  | Const("Not",_)$_ => h (acc,dacc) (Thm.dest_arg t)
-  | _ => (acc, dacc)
-  val (cs,ds) = h ([],[]) p
-  val l = fold (curry lcm) (cs union ds) 1
-  fun cv k ct = 
-    let val (tm as b$s$t) = term_of ct 
-    in ((HOLogic.eq_const bT)$tm$(b$(linear_cmul k s)$(linear_cmul k t))
-         |> HOLogic.mk_Trueprop |> provelin ctxt) RS eq_reflection end
-  fun nzprop x = 
-   let 
-    val th = 
-     Simplifier.rewrite lin_ss 
-      (Thm.capply @{cterm Trueprop} (Thm.capply @{cterm "Not"} 
-           (Thm.capply (Thm.capply @{cterm "op = :: int => _"} (mk_cnumber @{ctyp "int"} x)) 
-           @{cterm "0::int"})))
-   in equal_elim (Thm.symmetric th) TrueI end;
-  val notz = let val tab = fold Integertab.update 
-                               (ds ~~ (map (fn x => nzprop (Integer.div l x)) ds)) Integertab.empty 
-            in 
-             (fn ct => (valOf (Integertab.lookup tab (ct |> term_of |> dest_numeral)) 
-                handle Option => (writeln "noz: Theorems-Table contains no entry for"; 
-                                    print_cterm ct ; raise Option)))
-           end
-  fun unit_conv t = 
-   case (term_of t) of
-   Const("op &",_)$_$_ => binop_conv unit_conv t
-  | Const("op |",_)$_$_ => binop_conv unit_conv t
-  | Const("Not",_)$_ => arg_conv unit_conv t
-  | Const(s,_)$(Const("HOL.times_class.times",_)$c$y)$ _ => 
-    if x=y andalso s mem ["op =", "Orderings.ord_class.less", "Orderings.ord_class.less_eq"] 
-    then cv (Integer.div l (dest_numeral c)) t else Thm.reflexive t
-  | Const(s,_)$_$(Const("HOL.times_class.times",_)$c$y) => 
-    if x=y andalso s mem ["Orderings.ord_class.less", "Orderings.ord_class.less_eq"] 
-    then cv (Integer.div l (dest_numeral c)) t else Thm.reflexive t
-  | Const("Divides.dvd",_)$d$(r as (Const("HOL.plus_class.plus",_)$(Const("HOL.times_class.times",_)$c$y)$_)) => 
-    if x=y then 
-      let 
-       val k = Integer.div l (dest_numeral c)
-       val kt = HOLogic.mk_number iT k
-       val th1 = inst' [Thm.dest_arg1 t, Thm.dest_arg t] 
-             ((Thm.dest_arg t |> funpow 2 Thm.dest_arg1 |> notz) RS zdvd_mono)
-       val (d',t') = (mulC$kt$d, mulC$kt$r)
-       val thc = (provelin ctxt ((HOLogic.eq_const iT)$d'$(lint [] d') |> HOLogic.mk_Trueprop))
-                   RS eq_reflection
-       val tht = (provelin ctxt ((HOLogic.eq_const iT)$t'$(linear_cmul k r) |> HOLogic.mk_Trueprop))
-                 RS eq_reflection
-      in Thm.transitive th1 (Thm.combination (Drule.arg_cong_rule dvdc thc) tht) end                 
-    else Thm.reflexive t
-  | _ => Thm.reflexive t
-  val uth = unit_conv p
-  val clt =  mk_cnumber @{ctyp "int"} l
-  val ltx = Thm.capply (Thm.capply cmulC clt) cx
-  val th = Drule.arg_cong_rule e (Thm.abstract_rule (fst (dest_Free x )) cx uth)
-  val th' = inst' [Thm.cabs ltx (Thm.rhs_of uth), clt] unity_coeff_ex
-  val thf = transitive th 
-      (transitive (symmetric (beta_conversion true (cprop_of th' |> Thm.dest_arg1))) th')
-  val (lth,rth) = Thm.dest_comb (cprop_of thf) |>> Thm.dest_arg |>> Thm.beta_conversion true
-                  ||> beta_conversion true |>> Thm.symmetric
- in transitive (transitive lth thf) rth end;
-
-
-val emptyIS = @{cterm "{}::int set"};
-val insert_tm = @{cterm "insert :: int => _"};
-val mem_tm = Const("op :",[iT , HOLogic.mk_setT iT] ---> bT);
-fun mkISet cts = fold_rev (Thm.capply insert_tm #> Thm.capply) cts emptyIS;
-val cTrp = @{cterm "Trueprop"};
-val eqelem_imp_imp = (thm"eqelem_imp_iff") RS iffD1;
-val [A_tm,B_tm] = map (fn th => cprop_of th |> funpow 2 Thm.dest_arg |> Thm.dest_abs NONE |> snd |> Thm.dest_arg1 |> Thm.dest_arg 
-                                      |> Thm.dest_abs NONE |> snd |> Thm.dest_fun |> Thm.dest_arg)
-                      [asetP,bsetP];
-
-val D_tm = @{cpat "?D::int"};
-
-val int_eq = (op =):integer*integer -> bool;
-fun cooperex_conv ctxt vs q = 
-let 
-
- val uth = unify ctxt q
- val (x,p) = Thm.dest_abs NONE (Thm.dest_arg (Thm.rhs_of uth))
- val ins = insert (op aconvc)
- fun h t (bacc,aacc,dacc) = 
-  case (whatis x t) of
-    And (p,q) => h q (h p (bacc,aacc,dacc))
-  | Or (p,q) => h q  (h p (bacc,aacc,dacc))
-  | Eq t => (ins (minus1 t) bacc, 
-             ins (plus1 t) aacc,dacc)
-  | NEq t => (ins t bacc, 
-              ins t aacc, dacc)
-  | Lt t => (bacc, ins t aacc, dacc)
-  | Le t => (bacc, ins (plus1 t) aacc,dacc)
-  | Gt t => (ins t bacc, aacc,dacc)
-  | Ge t => (ins (minus1 t) bacc, aacc,dacc)
-  | Dvd (d,s) => (bacc,aacc,insert int_eq (term_of d |> dest_numeral) dacc)
-  | NDvd (d,s) => (bacc,aacc,insert int_eq (term_of d|> dest_numeral) dacc)
-  | _ => (bacc, aacc, dacc)
- val (b0,a0,ds) = h p ([],[],[])
- val d = fold (curry lcm) ds 1
- val cd = mk_cnumber @{ctyp "int"} d
- val dt = term_of cd
- fun divprop x = 
-   let 
-    val th = 
-     Simplifier.rewrite lin_ss 
-      (Thm.capply @{cterm Trueprop} 
-           (Thm.capply (Thm.capply dvdc (mk_cnumber @{ctyp "int"} x)) cd))
-   in equal_elim (Thm.symmetric th) TrueI end;
- val dvd = let val tab = fold Integertab.update
-                               (ds ~~ (map divprop ds)) Integertab.empty in 
-           (fn ct => (valOf (Integertab.lookup tab (term_of ct |> dest_numeral)) 
-                    handle Option => (writeln "dvd: Theorems-Table contains no entry for"; 
-                                      print_cterm ct ; raise Option)))
-           end
- val dp = 
-   let val th = Simplifier.rewrite lin_ss 
-      (Thm.capply @{cterm Trueprop} 
-           (Thm.capply (Thm.capply @{cterm "op < :: int => _"} @{cterm "0::int"}) cd))
-   in equal_elim (Thm.symmetric th) TrueI end;
-    (* A and B set *)
-   local 
-     val insI1 = instantiate' [SOME @{ctyp "int"}] [] @{thm "insertI1"}
-     val insI2 = instantiate' [SOME @{ctyp "int"}] [] @{thm "insertI2"}
-   in
-    fun provein x S = 
-     case term_of S of
-        Const("{}",_) => error "Unexpected error in Cooper please email Amine Chaieb"
-      | Const("insert",_)$y$_ => 
-         let val (cy,S') = Thm.dest_binop S
-         in if term_of x aconv y then instantiate' [] [SOME x, SOME S'] insI1
-         else implies_elim (instantiate' [] [SOME x, SOME S', SOME cy] insI2) 
-                           (provein x S')
-         end
-   end
- 
- val al = map (lint vs o term_of) a0
- val bl = map (lint vs o term_of) b0
- val (sl,s0,f,abths,cpth) = 
-   if length (distinct (op aconv) bl) <= length (distinct (op aconv) al) 
-   then  
-    (bl,b0,decomp_minf,
-     fn B => (map (fn th => implies_elim (Thm.instantiate ([],[(B_tm,B), (D_tm,cd)]) th) dp) 
-                     [bseteq,bsetneq,bsetlt, bsetle, bsetgt,bsetge])@
-                   (map (Thm.instantiate ([],[(B_tm,B), (D_tm,cd)])) 
-                        [bsetdvd,bsetndvd,bsetP,infDdvd, infDndvd,bsetconj,
-                         bsetdisj,infDconj, infDdisj]),
-                       cpmi) 
-     else (al,a0,decomp_pinf,fn A => 
-          (map (fn th => implies_elim (Thm.instantiate ([],[(A_tm,A), (D_tm,cd)]) th) dp)
-                   [aseteq,asetneq,asetlt, asetle, asetgt,asetge])@
-                   (map (Thm.instantiate ([],[(A_tm,A), (D_tm,cd)])) 
-                   [asetdvd,asetndvd, asetP, infDdvd, infDndvd,asetconj,
-                         asetdisj,infDconj, infDdisj]),cppi)
- val cpth = 
-  let
-   val sths = map (fn (tl,t0) => 
-                      if tl = term_of t0 
-                      then instantiate' [SOME @{ctyp "int"}] [SOME t0] refl
-                      else provelin ctxt ((HOLogic.eq_const iT)$tl$(term_of t0) 
-                                 |> HOLogic.mk_Trueprop)) 
-                   (sl ~~ s0)
-   val csl = distinct (op aconvc) (map (cprop_of #> Thm.dest_arg #> Thm.dest_arg1) sths)
-   val S = mkISet csl
-   val inStab = fold (fn ct => fn tab => Termtab.update (term_of ct, provein ct S) tab) 
-                    csl Termtab.empty
-   val eqelem_th = instantiate' [SOME @{ctyp "int"}] [NONE,NONE, SOME S] eqelem_imp_imp
-   val inS = 
-     let 
-      fun transmem th0 th1 = 
-       Thm.equal_elim 
-        (Drule.arg_cong_rule cTrp (Drule.fun_cong_rule (Drule.arg_cong_rule 
-               ((Thm.dest_fun o Thm.dest_fun o Thm.dest_arg o cprop_of) th1) th0) S)) th1
-      val tab = fold Termtab.update
-        (map (fn eq => 
-                let val (s,t) = cprop_of eq |> Thm.dest_arg |> Thm.dest_binop 
-                    val th = if term_of s = term_of t 
-                             then valOf(Termtab.lookup inStab (term_of s))
-                             else FWD (instantiate' [] [SOME s, SOME t] eqelem_th) 
-                                [eq, valOf(Termtab.lookup inStab (term_of s))]
-                 in (term_of t, th) end)
-                  sths) Termtab.empty
-        in fn ct => 
-          (valOf (Termtab.lookup tab (term_of ct))
-           handle Option => (writeln "inS: No theorem for " ; print_cterm ct ; raise Option))
-        end
-       val (inf, nb, pd) = divide_and_conquer (f x dvd inS (abths S)) p
-   in [dp, inf, nb, pd] MRS cpth
-   end
- val cpth' = Thm.transitive uth (cpth RS eq_reflection)
-in Thm.transitive cpth' ((simp_thms_conv then_conv eval_conv) (Thm.rhs_of cpth'))
-end;
-
-fun literals_conv bops uops env cv = 
- let fun h t =
-  case (term_of t) of 
-   b$_$_ => if member (op aconv) bops b then binop_conv h t else cv env t
- | u$_ => if member (op aconv) uops u then arg_conv h t else cv env t
- | _ => cv env t
- in h end;
-
-fun integer_nnf_conv ctxt env =
- nnf_conv then_conv literals_conv [HOLogic.conj, HOLogic.disj] [] env (linearize_conv ctxt);
-
-(* val my_term = ref (@{cterm "NOTHING"}); *)
-local
- val pcv = Simplifier.rewrite 
-     (HOL_basic_ss addsimps (simp_thms @ (List.take(ex_simps,4)) 
-                      @ [not_all,all_not_ex, ex_disj_distrib]))
- val postcv = Simplifier.rewrite presburger_ss
- fun conv ctxt p = 
-  let val _ = () (* my_term := p *)
-  in
-   Qelim.gen_qelim_conv ctxt pcv postcv pcv (cons o term_of) 
-      (term_frees (term_of p)) (linearize_conv ctxt) (integer_nnf_conv ctxt) 
-      (cooperex_conv ctxt) p 
-  end
-  handle  CTERM s => raise COOPER ("Cooper Failed", CTERM s)
-        | THM s => raise COOPER ("Cooper Failed", THM s) 
-in val cooper_conv = conv 
-end;
-end;
-
-
-
-structure Coopereif =
-struct
-
-open GeneratedCooper;
-fun cooper s = raise Cooper.COOPER ("Cooper Oracle Failed", ERROR s);
-fun i_of_term vs t = 
-    case t of
-	Free(xn,xT) => (case AList.lookup (op aconv) vs t of 
-			   NONE   => cooper "Variable not found in the list!!"
-			 | SOME n => Bound n)
-      | @{term "0::int"} => C 0
-      | @{term "1::int"} => C 1
-      | Term.Bound i => Bound i
-      | Const(@{const_name "HOL.uminus"},_)$t' => Neg (i_of_term vs t')
-      | Const(@{const_name "HOL.plus"},_)$t1$t2 => Add (i_of_term vs t1,i_of_term vs t2)
-      | Const(@{const_name "HOL.minus"},_)$t1$t2 => Sub (i_of_term vs t1,i_of_term vs t2)
-      | Const(@{const_name "HOL.times"},_)$t1$t2 => 
-	     (Mul (HOLogic.dest_number t1 |> snd |> Integer.machine_int,i_of_term vs t2)
-        handle TERM _ => 
-           (Mul (HOLogic.dest_number t2 |> snd |> Integer.machine_int,i_of_term vs t1)
-            handle TERM _ => cooper "Reification: Unsupported kind of multiplication"))
-      | _ => (C (HOLogic.dest_number t |> snd |> Integer.machine_int) 
-               handle TERM _ => cooper "Reification: unknown term");
-	
-fun qf_of_term ps vs t = 
-    case t of 
-	Const("True",_) => T
-      | Const("False",_) => F
-      | Const(@{const_name "Orderings.less"},_)$t1$t2 => Lt (Sub (i_of_term vs t1,i_of_term vs t2))
-      | Const(@{const_name "Orderings.less_eq"},_)$t1$t2 => Le (Sub(i_of_term vs t1,i_of_term vs t2))
-      | Const(@{const_name "Divides.dvd"},_)$t1$t2 => 
-	(Dvd(HOLogic.dest_number t1 |> snd |> Integer.machine_int, i_of_term vs t2) handle _ => cooper "Reification: unsupported dvd")
-      | @{term "op = :: int => _"}$t1$t2 => Eq (Sub (i_of_term vs t1,i_of_term vs t2))
-      | @{term "op = :: bool => _ "}$t1$t2 => Iff(qf_of_term ps vs t1,qf_of_term ps vs t2)
-      | Const("op &",_)$t1$t2 => And(qf_of_term ps vs t1,qf_of_term ps vs t2)
-      | Const("op |",_)$t1$t2 => Or(qf_of_term ps vs t1,qf_of_term ps vs t2)
-      | Const("op -->",_)$t1$t2 => Imp(qf_of_term ps vs t1,qf_of_term ps vs t2)
-      | Const("Not",_)$t' => NOT(qf_of_term ps vs t')
-      | Const("Ex",_)$Abs(xn,xT,p) => 
-         let val (xn',p') = variant_abs (xn,xT,p)
-             val vs' = (Free (xn',xT), nat 0) :: (map (fn(v,n) => (v,1+ n)) vs)
-         in E (qf_of_term ps vs' p')
-         end
-      | Const("All",_)$Abs(xn,xT,p) => 
-         let val (xn',p') = variant_abs (xn,xT,p)
-             val vs' = (Free (xn',xT), nat 0) :: (map (fn(v,n) => (v,1+ n)) vs)
-         in A (qf_of_term ps vs' p')
-         end
-      | _ =>(case AList.lookup (op aconv) ps t of 
-               NONE => cooper "Reification: unknown term!"
-             | SOME n => Closed n);
-
-local
- val ops = [@{term "op &"}, @{term "op |"}, @{term "op -->"}, @{term "op = :: bool => _"},
-             @{term "op = :: int => _"}, @{term "op < :: int => _"}, 
-             @{term "op <= :: int => _"}, @{term "Not"}, @{term "All:: (int => _) => _"}, 
-             @{term "Ex:: (int => _) => _"}, @{term "True"}, @{term "False"}]
-fun ty t = Bool.not (fastype_of t = HOLogic.boolT)
-in
-fun term_bools acc t =
-case t of 
-    (l as f $ a) $ b => if ty t orelse f mem ops then term_bools (term_bools acc l)b 
-            else insert (op aconv) t acc
-  | f $ a => if ty t orelse f mem ops then term_bools (term_bools acc f) a  
-            else insert (op aconv) t acc
-  | Abs p => term_bools acc (snd (variant_abs p))
-  | _ => if ty t orelse t mem ops then acc else insert (op aconv) t acc
-end;
- 
-
-fun start_vs t =
-let
- val fs = term_frees t
- val ps = term_bools [] t
-in (fs ~~ (0 upto  (length fs - 1)), ps ~~ (0 upto  (length ps - 1)))
-end ;
-
-val iT = HOLogic.intT;
-val bT = HOLogic.boolT;
-fun myassoc2 l v =
-    case l of
-	[] => NONE
-      | (x,v')::xs => if v = v' then SOME x
-		      else myassoc2 xs v;
-
-fun term_of_i vs t =
-    case t of 
-	C i => HOLogic.mk_number HOLogic.intT (Integer.int i)
-      | Bound n => valOf (myassoc2 vs n)
-      | Neg t' => @{term "uminus :: int => _"}$(term_of_i vs t')
-      | Add(t1,t2) => @{term "op +:: int => _"}$ (term_of_i vs t1)$(term_of_i vs t2)
-      | Sub(t1,t2) => Const(@{const_name "HOL.minus"},[iT,iT] ---> iT)$
-			   (term_of_i vs t1)$(term_of_i vs t2)
-      | Mul(i,t2) => Const(@{const_name "HOL.times"},[iT,iT] ---> iT)$
-			   (HOLogic.mk_number HOLogic.intT (Integer.int i))$(term_of_i vs t2)
-      | CX(i,t')=> term_of_i vs (Add(Mul (i,Bound (nat 0)),t'));
-
-fun term_of_qf ps vs t = 
- case t of 
-   T => HOLogic.true_const 
- | F => HOLogic.false_const
- | Lt t' => @{term "op < :: int => _ "}$ term_of_i vs t'$ @{term "0::int"}
- | Le t' => @{term "op <= :: int => _ "}$ term_of_i vs t' $ @{term "0::int"}
- | Gt t' => @{term "op < :: int => _ "}$ @{term "0::int"}$ term_of_i vs t'
- | Ge t' => @{term "op <= :: int => _ "}$ @{term "0::int"}$ term_of_i vs t'
- | Eq t' => @{term "op = :: int => _ "}$ term_of_i vs t'$ @{term "0::int"}
- | NEq t' => term_of_qf ps vs (NOT(Eq t'))
- | Dvd(i,t') => @{term "op dvd :: int => _ "}$ 
-                 (HOLogic.mk_number HOLogic.intT (Integer.int i))$(term_of_i vs t')
- | NDvd(i,t')=> term_of_qf ps vs (NOT(Dvd(i,t')))
- | NOT t' => HOLogic.Not$(term_of_qf ps vs t')
- | And(t1,t2) => HOLogic.conj$(term_of_qf ps vs t1)$(term_of_qf ps vs t2)
- | Or(t1,t2) => HOLogic.disj$(term_of_qf ps vs t1)$(term_of_qf ps vs t2)
- | Imp(t1,t2) => HOLogic.imp$(term_of_qf ps vs t1)$(term_of_qf ps vs t2)
- | Iff(t1,t2) => (HOLogic.eq_const bT)$(term_of_qf ps vs t1)$ (term_of_qf ps vs t2)
- | Closed n => valOf (myassoc2 ps n)
- | NClosed n => term_of_qf ps vs (NOT (Closed n))
- | _ => cooper "If this is raised, Isabelle/HOL or generate_code is inconsistent!";
-
-(* The oracle *)
-fun cooper_oracle thy t = 
-    let val (vs,ps) = start_vs t
-    in (equals propT) $ (HOLogic.mk_Trueprop t) $ 
-            (HOLogic.mk_Trueprop (term_of_qf ps vs (pa (qf_of_term ps vs t))))
-    end;
-
-end;
--- a/src/HOL/Tools/Presburger/cooper_data.ML	Thu Jun 21 20:48:47 2007 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,91 +0,0 @@
-(*  Title:      HOL/Tools/Presburger/cooper_data.ML
-    ID:         $Id$
-    Author:     Amine Chaieb, TU Muenchen
-*)
-
-signature COOPER_DATA =
-sig
-  type entry
-  val get: Proof.context -> entry
-  val del: term list -> attribute
-  val add: term list -> attribute 
-  val setup: theory -> theory
-end;
-
-structure CooperData : COOPER_DATA =
-struct
-
-type entry = simpset * (term list);
-val start_ss = HOL_ss (* addsimps @{thms "Groebner_Basis.comp_arith"}
-               addcongs [if_weak_cong, @{thm "let_weak_cong"}];*)
-val allowed_consts = 
-  [@{term "op + :: int => _"}, @{term "op + :: nat => _"}, 
-   @{term "op - :: int => _"}, @{term "op - :: nat => _"}, 
-   @{term "op * :: int => _"}, @{term "op * :: nat => _"}, 
-   @{term "op div :: int => _"}, @{term "op div :: nat => _"}, 
-   @{term "op mod :: int => _"}, @{term "op mod :: nat => _"}, 
-   @{term "Numeral.Bit"},
-   @{term "op &"}, @{term "op |"}, @{term "op -->"}, 
-   @{term "op = :: int => _"}, @{term "op = :: nat => _"}, @{term "op = :: bool => _"}, 
-   @{term "op < :: int => _"}, @{term "op < :: nat => _"},
-   @{term "op <= :: int => _"}, @{term "op <= :: nat => _"},
-   @{term "op dvd :: int => _"}, @{term "op dvd :: nat => _"}, 
-   @{term "abs :: int => _"},  @{term "abs :: nat => _"}, 
-   @{term "max :: int => _"},  @{term "max :: nat => _"}, 
-   @{term "min :: int => _"},  @{term "min :: nat => _"}, 
-   @{term "HOL.uminus :: int => _"}, @{term "HOL.uminus :: nat => _"}, 
-   @{term "Not"}, @{term "Suc"}, 
-   @{term "Ex :: (int => _) => _"}, @{term "Ex :: (nat => _) => _"}, 
-   @{term "All :: (int => _) => _"}, @{term "All :: (nat => _) => _"}, 
-   @{term "nat"}, @{term "int"},
-   @{term "Numeral.bit.B0"},@{term "Numeral.bit.B1"}, 
-   @{term "Numeral.Bit"}, @{term "Numeral.Pls"}, @{term "Numeral.Min"},
-   @{term "Numeral.number_of :: int => int"}, @{term "Numeral.number_of :: int => nat"}, 
-   @{term "0::int"}, @{term "1::int"}, @{term "0::nat"}, @{term "1::nat"},
-   @{term "True"}, @{term "False"}];
-
-structure Data = GenericDataFun
-(
-  type T = simpset * (term list);
-  val empty = (start_ss, allowed_consts);
-  fun extend (ss, ts) = (MetaSimplifier.inherit_context empty_ss ss, ts);
-  fun merge _ ((ss1, ts1), (ss2, ts2)) =
-    (merge_ss (ss1, ss2), Library.merge (op aconv) (ts1, ts2));
-);
-
-val get = Data.get o Context.Proof;
-
-fun add ts = Thm.declaration_attribute (fn th => fn context => 
-  context |> Data.map (fn (ss,ts') => 
-     (ss addsimps [th], merge (op aconv) (ts',ts) ))) 
-
-fun del ts = Thm.declaration_attribute (fn th => fn context => 
-  context |> Data.map (fn (ss,ts') => 
-     (ss delsimps [th], subtract (op aconv) ts' ts ))) 
-
-
-(* concrete syntax *)
-
-local
-fun keyword k = Scan.lift (Args.$$$ k -- Args.colon) >> K ();
-
-val constsN = "consts";
-val any_keyword = keyword constsN
-val thms = Scan.repeat (Scan.unless any_keyword Attrib.multi_thm) >> flat;
-val terms = thms >> map (term_of o Drule.dest_term);
-
-fun optional scan = Scan.optional scan [];
-
-in
-fun att_syntax src = src |> Attrib.syntax
- ((Scan.lift (Args.$$$ "del") |-- optional (keyword constsN |-- terms)) >> del ||
-  optional (keyword constsN |-- terms) >> add)
-end;
-
-
-(* theory setup *)
-
-val setup =
-  Attrib.add_attributes [("presburger", att_syntax, "Cooper data")];
-
-end;
--- a/src/HOL/Tools/Presburger/generated_cooper.ML	Thu Jun 21 20:48:47 2007 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,1693 +0,0 @@
-structure GeneratedCooper =
-struct
-nonfix oo;
-fun nat i = if i < 0 then 0 else i;
-
-val one_def0 : int = (0 + 1);
-
-datatype num = C of int | Bound of int | CX of int * num | Neg of num
-  | Add of num * num | Sub of num * num | Mul of int * num;
-
-fun snd (a, b) = b;
-
-fun negateSnd x = (fn (q, r) => (q, ~ r)) x;
-
-fun minus_def2 z w = (z + ~ w);
-
-fun adjust b =
-  (fn (q, r) =>
-    (if (0 <= minus_def2 r b) then (((2 * q) + 1), minus_def2 r b)
-      else ((2 * q), r)));
-
-fun negDivAlg a b =
-    (if ((0 <= (a + b)) orelse (b <= 0)) then (~1, (a + b))
-      else adjust b (negDivAlg a (2 * b)));
-
-fun posDivAlg a b =
-    (if ((a < b) orelse (b <= 0)) then (0, a)
-      else adjust b (posDivAlg a (2 * b)));
-
-fun divAlg x =
-  (fn (a, b) =>
-    (if (0 <= a)
-      then (if (0 <= b) then posDivAlg a b
-             else (if (a = 0) then (0, 0)
-                    else negateSnd (negDivAlg (~ a) (~ b))))
-      else (if (0 < b) then negDivAlg a b
-             else negateSnd (posDivAlg (~ a) (~ b)))))
-    x;
-
-fun mod_def1 a b = snd (divAlg (a, b));
-
-fun dvd m n = (mod_def1 n m = 0);
-
-fun abs i = (if (i < 0) then ~ i else i);
-
-fun less_def3 m n = ((m) < (n));
-
-fun less_eq_def3 m n = Bool.not (less_def3 n m);
-
-fun numadd (Add (Mul (c1, Bound n1), r1), Add (Mul (c2, Bound n2), r2)) =
-    (if (n1 = n2)
-      then let val c = (c1 + c2)
-           in (if (c = 0) then numadd (r1, r2)
-                else Add (Mul (c, Bound n1), numadd (r1, r2)))
-           end
-      else (if less_eq_def3 n1 n2
-             then Add (Mul (c1, Bound n1),
-                        numadd (r1, Add (Mul (c2, Bound n2), r2)))
-             else Add (Mul (c2, Bound n2),
-                        numadd (Add (Mul (c1, Bound n1), r1), r2))))
-  | numadd (Add (Mul (c1, Bound n1), r1), C afq) =
-    Add (Mul (c1, Bound n1), numadd (r1, C afq))
-  | numadd (Add (Mul (c1, Bound n1), r1), Bound afr) =
-    Add (Mul (c1, Bound n1), numadd (r1, Bound afr))
-  | numadd (Add (Mul (c1, Bound n1), r1), CX (afs, aft)) =
-    Add (Mul (c1, Bound n1), numadd (r1, CX (afs, aft)))
-  | numadd (Add (Mul (c1, Bound n1), r1), Neg afu) =
-    Add (Mul (c1, Bound n1), numadd (r1, Neg afu))
-  | numadd (Add (Mul (c1, Bound n1), r1), Add (C agx, afw)) =
-    Add (Mul (c1, Bound n1), numadd (r1, Add (C agx, afw)))
-  | numadd (Add (Mul (c1, Bound n1), r1), Add (Bound agy, afw)) =
-    Add (Mul (c1, Bound n1), numadd (r1, Add (Bound agy, afw)))
-  | numadd (Add (Mul (c1, Bound n1), r1), Add (CX (agz, aha), afw)) =
-    Add (Mul (c1, Bound n1), numadd (r1, Add (CX (agz, aha), afw)))
-  | numadd (Add (Mul (c1, Bound n1), r1), Add (Neg ahb, afw)) =
-    Add (Mul (c1, Bound n1), numadd (r1, Add (Neg ahb, afw)))
-  | numadd (Add (Mul (c1, Bound n1), r1), Add (Add (ahc, ahd), afw)) =
-    Add (Mul (c1, Bound n1), numadd (r1, Add (Add (ahc, ahd), afw)))
-  | numadd (Add (Mul (c1, Bound n1), r1), Add (Sub (ahe, ahf), afw)) =
-    Add (Mul (c1, Bound n1), numadd (r1, Add (Sub (ahe, ahf), afw)))
-  | numadd (Add (Mul (c1, Bound n1), r1), Add (Mul (ahg, C aie), afw)) =
-    Add (Mul (c1, Bound n1), numadd (r1, Add (Mul (ahg, C aie), afw)))
-  | numadd (Add (Mul (c1, Bound n1), r1), Add (Mul (ahg, CX (aig, aih)), afw)) =
-    Add (Mul (c1, Bound n1), numadd (r1, Add (Mul (ahg, CX (aig, aih)), afw)))
-  | numadd (Add (Mul (c1, Bound n1), r1), Add (Mul (ahg, Neg aii), afw)) =
-    Add (Mul (c1, Bound n1), numadd (r1, Add (Mul (ahg, Neg aii), afw)))
-  | numadd
-      (Add (Mul (c1, Bound n1), r1), Add (Mul (ahg, Add (aij, aik)), afw)) =
-    Add (Mul (c1, Bound n1), numadd (r1, Add (Mul (ahg, Add (aij, aik)), afw)))
-  | numadd
-      (Add (Mul (c1, Bound n1), r1), Add (Mul (ahg, Sub (ail, aim)), afw)) =
-    Add (Mul (c1, Bound n1), numadd (r1, Add (Mul (ahg, Sub (ail, aim)), afw)))
-  | numadd
-      (Add (Mul (c1, Bound n1), r1), Add (Mul (ahg, Mul (ain, aio)), afw)) =
-    Add (Mul (c1, Bound n1), numadd (r1, Add (Mul (ahg, Mul (ain, aio)), afw)))
-  | numadd (Add (Mul (c1, Bound n1), r1), Sub (afx, afy)) =
-    Add (Mul (c1, Bound n1), numadd (r1, Sub (afx, afy)))
-  | numadd (Add (Mul (c1, Bound n1), r1), Mul (afz, aga)) =
-    Add (Mul (c1, Bound n1), numadd (r1, Mul (afz, aga)))
-  | numadd (C w, Add (Mul (c2, Bound n2), r2)) =
-    Add (Mul (c2, Bound n2), numadd (C w, r2))
-  | numadd (Bound x, Add (Mul (c2, Bound n2), r2)) =
-    Add (Mul (c2, Bound n2), numadd (Bound x, r2))
-  | numadd (CX (y, z), Add (Mul (c2, Bound n2), r2)) =
-    Add (Mul (c2, Bound n2), numadd (CX (y, z), r2))
-  | numadd (Neg ab, Add (Mul (c2, Bound n2), r2)) =
-    Add (Mul (c2, Bound n2), numadd (Neg ab, r2))
-  | numadd (Add (C li, ad), Add (Mul (c2, Bound n2), r2)) =
-    Add (Mul (c2, Bound n2), numadd (Add (C li, ad), r2))
-  | numadd (Add (Bound lj, ad), Add (Mul (c2, Bound n2), r2)) =
-    Add (Mul (c2, Bound n2), numadd (Add (Bound lj, ad), r2))
-  | numadd (Add (CX (lk, ll), ad), Add (Mul (c2, Bound n2), r2)) =
-    Add (Mul (c2, Bound n2), numadd (Add (CX (lk, ll), ad), r2))
-  | numadd (Add (Neg lm, ad), Add (Mul (c2, Bound n2), r2)) =
-    Add (Mul (c2, Bound n2), numadd (Add (Neg lm, ad), r2))
-  | numadd (Add (Add (ln, lo), ad), Add (Mul (c2, Bound n2), r2)) =
-    Add (Mul (c2, Bound n2), numadd (Add (Add (ln, lo), ad), r2))
-  | numadd (Add (Sub (lp, lq), ad), Add (Mul (c2, Bound n2), r2)) =
-    Add (Mul (c2, Bound n2), numadd (Add (Sub (lp, lq), ad), r2))
-  | numadd (Add (Mul (lr, C abv), ad), Add (Mul (c2, Bound n2), r2)) =
-    Add (Mul (c2, Bound n2), numadd (Add (Mul (lr, C abv), ad), r2))
-  | numadd (Add (Mul (lr, CX (abx, aby)), ad), Add (Mul (c2, Bound n2), r2)) =
-    Add (Mul (c2, Bound n2), numadd (Add (Mul (lr, CX (abx, aby)), ad), r2))
-  | numadd (Add (Mul (lr, Neg abz), ad), Add (Mul (c2, Bound n2), r2)) =
-    Add (Mul (c2, Bound n2), numadd (Add (Mul (lr, Neg abz), ad), r2))
-  | numadd (Add (Mul (lr, Add (aca, acb)), ad), Add (Mul (c2, Bound n2), r2)) =
-    Add (Mul (c2, Bound n2), numadd (Add (Mul (lr, Add (aca, acb)), ad), r2))
-  | numadd (Add (Mul (lr, Sub (acc, acd)), ad), Add (Mul (c2, Bound n2), r2)) =
-    Add (Mul (c2, Bound n2), numadd (Add (Mul (lr, Sub (acc, acd)), ad), r2))
-  | numadd (Add (Mul (lr, Mul (ace, acf)), ad), Add (Mul (c2, Bound n2), r2)) =
-    Add (Mul (c2, Bound n2), numadd (Add (Mul (lr, Mul (ace, acf)), ad), r2))
-  | numadd (Sub (ae, af), Add (Mul (c2, Bound n2), r2)) =
-    Add (Mul (c2, Bound n2), numadd (Sub (ae, af), r2))
-  | numadd (Mul (ag, ah), Add (Mul (c2, Bound n2), r2)) =
-    Add (Mul (c2, Bound n2), numadd (Mul (ag, ah), r2))
-  | numadd (C b1, C b2) = C (b1 + b2)
-  | numadd (C ai, Bound bf) = Add (C ai, Bound bf)
-  | numadd (C ai, CX (bg, bh)) = Add (C ai, CX (bg, bh))
-  | numadd (C ai, Neg bi) = Add (C ai, Neg bi)
-  | numadd (C ai, Add (C ca, bk)) = Add (C ai, Add (C ca, bk))
-  | numadd (C ai, Add (Bound cb, bk)) = Add (C ai, Add (Bound cb, bk))
-  | numadd (C ai, Add (CX (cc, cd), bk)) = Add (C ai, Add (CX (cc, cd), bk))
-  | numadd (C ai, Add (Neg ce, bk)) = Add (C ai, Add (Neg ce, bk))
-  | numadd (C ai, Add (Add (cf, cg), bk)) = Add (C ai, Add (Add (cf, cg), bk))
-  | numadd (C ai, Add (Sub (ch, ci), bk)) = Add (C ai, Add (Sub (ch, ci), bk))
-  | numadd (C ai, Add (Mul (cj, C cw), bk)) =
-    Add (C ai, Add (Mul (cj, C cw), bk))
-  | numadd (C ai, Add (Mul (cj, CX (cy, cz)), bk)) =
-    Add (C ai, Add (Mul (cj, CX (cy, cz)), bk))
-  | numadd (C ai, Add (Mul (cj, Neg da), bk)) =
-    Add (C ai, Add (Mul (cj, Neg da), bk))
-  | numadd (C ai, Add (Mul (cj, Add (db, dc)), bk)) =
-    Add (C ai, Add (Mul (cj, Add (db, dc)), bk))
-  | numadd (C ai, Add (Mul (cj, Sub (dd, de)), bk)) =
-    Add (C ai, Add (Mul (cj, Sub (dd, de)), bk))
-  | numadd (C ai, Add (Mul (cj, Mul (df, dg)), bk)) =
-    Add (C ai, Add (Mul (cj, Mul (df, dg)), bk))
-  | numadd (C ai, Sub (bl, bm)) = Add (C ai, Sub (bl, bm))
-  | numadd (C ai, Mul (bn, bo)) = Add (C ai, Mul (bn, bo))
-  | numadd (Bound aj, C ds) = Add (Bound aj, C ds)
-  | numadd (Bound aj, Bound dt) = Add (Bound aj, Bound dt)
-  | numadd (Bound aj, CX (du, dv)) = Add (Bound aj, CX (du, dv))
-  | numadd (Bound aj, Neg dw) = Add (Bound aj, Neg dw)
-  | numadd (Bound aj, Add (C eo, dy)) = Add (Bound aj, Add (C eo, dy))
-  | numadd (Bound aj, Add (Bound ep, dy)) = Add (Bound aj, Add (Bound ep, dy))
-  | numadd (Bound aj, Add (CX (eq, er), dy)) =
-    Add (Bound aj, Add (CX (eq, er), dy))
-  | numadd (Bound aj, Add (Neg es, dy)) = Add (Bound aj, Add (Neg es, dy))
-  | numadd (Bound aj, Add (Add (et, eu), dy)) =
-    Add (Bound aj, Add (Add (et, eu), dy))
-  | numadd (Bound aj, Add (Sub (ev, ew), dy)) =
-    Add (Bound aj, Add (Sub (ev, ew), dy))
-  | numadd (Bound aj, Add (Mul (ex, C fk), dy)) =
-    Add (Bound aj, Add (Mul (ex, C fk), dy))
-  | numadd (Bound aj, Add (Mul (ex, CX (fm, fn')), dy)) =
-    Add (Bound aj, Add (Mul (ex, CX (fm, fn')), dy))
-  | numadd (Bound aj, Add (Mul (ex, Neg fo), dy)) =
-    Add (Bound aj, Add (Mul (ex, Neg fo), dy))
-  | numadd (Bound aj, Add (Mul (ex, Add (fp, fq)), dy)) =
-    Add (Bound aj, Add (Mul (ex, Add (fp, fq)), dy))
-  | numadd (Bound aj, Add (Mul (ex, Sub (fr, fs)), dy)) =
-    Add (Bound aj, Add (Mul (ex, Sub (fr, fs)), dy))
-  | numadd (Bound aj, Add (Mul (ex, Mul (ft, fu)), dy)) =
-    Add (Bound aj, Add (Mul (ex, Mul (ft, fu)), dy))
-  | numadd (Bound aj, Sub (dz, ea)) = Add (Bound aj, Sub (dz, ea))
-  | numadd (Bound aj, Mul (eb, ec)) = Add (Bound aj, Mul (eb, ec))
-  | numadd (CX (ak, al), C gg) = Add (CX (ak, al), C gg)
-  | numadd (CX (ak, al), Bound gh) = Add (CX (ak, al), Bound gh)
-  | numadd (CX (ak, al), CX (gi, gj)) = Add (CX (ak, al), CX (gi, gj))
-  | numadd (CX (ak, al), Neg gk) = Add (CX (ak, al), Neg gk)
-  | numadd (CX (ak, al), Add (C hc, gm)) = Add (CX (ak, al), Add (C hc, gm))
-  | numadd (CX (ak, al), Add (Bound hd, gm)) =
-    Add (CX (ak, al), Add (Bound hd, gm))
-  | numadd (CX (ak, al), Add (CX (he, hf), gm)) =
-    Add (CX (ak, al), Add (CX (he, hf), gm))
-  | numadd (CX (ak, al), Add (Neg hg, gm)) = Add (CX (ak, al), Add (Neg hg, gm))
-  | numadd (CX (ak, al), Add (Add (hh, hi), gm)) =
-    Add (CX (ak, al), Add (Add (hh, hi), gm))
-  | numadd (CX (ak, al), Add (Sub (hj, hk), gm)) =
-    Add (CX (ak, al), Add (Sub (hj, hk), gm))
-  | numadd (CX (ak, al), Add (Mul (hl, C hy), gm)) =
-    Add (CX (ak, al), Add (Mul (hl, C hy), gm))
-  | numadd (CX (ak, al), Add (Mul (hl, CX (ia, ib)), gm)) =
-    Add (CX (ak, al), Add (Mul (hl, CX (ia, ib)), gm))
-  | numadd (CX (ak, al), Add (Mul (hl, Neg ic), gm)) =
-    Add (CX (ak, al), Add (Mul (hl, Neg ic), gm))
-  | numadd (CX (ak, al), Add (Mul (hl, Add (id, ie)), gm)) =
-    Add (CX (ak, al), Add (Mul (hl, Add (id, ie)), gm))
-  | numadd (CX (ak, al), Add (Mul (hl, Sub (if', ig)), gm)) =
-    Add (CX (ak, al), Add (Mul (hl, Sub (if', ig)), gm))
-  | numadd (CX (ak, al), Add (Mul (hl, Mul (ih, ii)), gm)) =
-    Add (CX (ak, al), Add (Mul (hl, Mul (ih, ii)), gm))
-  | numadd (CX (ak, al), Sub (gn, go)) = Add (CX (ak, al), Sub (gn, go))
-  | numadd (CX (ak, al), Mul (gp, gq)) = Add (CX (ak, al), Mul (gp, gq))
-  | numadd (Neg am, C iu) = Add (Neg am, C iu)
-  | numadd (Neg am, Bound iv) = Add (Neg am, Bound iv)
-  | numadd (Neg am, CX (iw, ix)) = Add (Neg am, CX (iw, ix))
-  | numadd (Neg am, Neg iy) = Add (Neg am, Neg iy)
-  | numadd (Neg am, Add (C jq, ja)) = Add (Neg am, Add (C jq, ja))
-  | numadd (Neg am, Add (Bound jr, ja)) = Add (Neg am, Add (Bound jr, ja))
-  | numadd (Neg am, Add (CX (js, jt), ja)) = Add (Neg am, Add (CX (js, jt), ja))
-  | numadd (Neg am, Add (Neg ju, ja)) = Add (Neg am, Add (Neg ju, ja))
-  | numadd (Neg am, Add (Add (jv, jw), ja)) =
-    Add (Neg am, Add (Add (jv, jw), ja))
-  | numadd (Neg am, Add (Sub (jx, jy), ja)) =
-    Add (Neg am, Add (Sub (jx, jy), ja))
-  | numadd (Neg am, Add (Mul (jz, C km), ja)) =
-    Add (Neg am, Add (Mul (jz, C km), ja))
-  | numadd (Neg am, Add (Mul (jz, CX (ko, kp)), ja)) =
-    Add (Neg am, Add (Mul (jz, CX (ko, kp)), ja))
-  | numadd (Neg am, Add (Mul (jz, Neg kq), ja)) =
-    Add (Neg am, Add (Mul (jz, Neg kq), ja))
-  | numadd (Neg am, Add (Mul (jz, Add (kr, ks)), ja)) =
-    Add (Neg am, Add (Mul (jz, Add (kr, ks)), ja))
-  | numadd (Neg am, Add (Mul (jz, Sub (kt, ku)), ja)) =
-    Add (Neg am, Add (Mul (jz, Sub (kt, ku)), ja))
-  | numadd (Neg am, Add (Mul (jz, Mul (kv, kw)), ja)) =
-    Add (Neg am, Add (Mul (jz, Mul (kv, kw)), ja))
-  | numadd (Neg am, Sub (jb, jc)) = Add (Neg am, Sub (jb, jc))
-  | numadd (Neg am, Mul (jd, je)) = Add (Neg am, Mul (jd, je))
-  | numadd (Add (C lt, ao), C mp) = Add (Add (C lt, ao), C mp)
-  | numadd (Add (C lt, ao), Bound mq) = Add (Add (C lt, ao), Bound mq)
-  | numadd (Add (C lt, ao), CX (mr, ms)) = Add (Add (C lt, ao), CX (mr, ms))
-  | numadd (Add (C lt, ao), Neg mt) = Add (Add (C lt, ao), Neg mt)
-  | numadd (Add (C lt, ao), Add (C nl, mv)) =
-    Add (Add (C lt, ao), Add (C nl, mv))
-  | numadd (Add (C lt, ao), Add (Bound nm, mv)) =
-    Add (Add (C lt, ao), Add (Bound nm, mv))
-  | numadd (Add (C lt, ao), Add (CX (nn, no), mv)) =
-    Add (Add (C lt, ao), Add (CX (nn, no), mv))
-  | numadd (Add (C lt, ao), Add (Neg np, mv)) =
-    Add (Add (C lt, ao), Add (Neg np, mv))
-  | numadd (Add (C lt, ao), Add (Add (nq, nr), mv)) =
-    Add (Add (C lt, ao), Add (Add (nq, nr), mv))
-  | numadd (Add (C lt, ao), Add (Sub (ns, nt), mv)) =
-    Add (Add (C lt, ao), Add (Sub (ns, nt), mv))
-  | numadd (Add (C lt, ao), Add (Mul (nu, C oh), mv)) =
-    Add (Add (C lt, ao), Add (Mul (nu, C oh), mv))
-  | numadd (Add (C lt, ao), Add (Mul (nu, CX (oj, ok)), mv)) =
-    Add (Add (C lt, ao), Add (Mul (nu, CX (oj, ok)), mv))
-  | numadd (Add (C lt, ao), Add (Mul (nu, Neg ol), mv)) =
-    Add (Add (C lt, ao), Add (Mul (nu, Neg ol), mv))
-  | numadd (Add (C lt, ao), Add (Mul (nu, Add (om, on)), mv)) =
-    Add (Add (C lt, ao), Add (Mul (nu, Add (om, on)), mv))
-  | numadd (Add (C lt, ao), Add (Mul (nu, Sub (oo, op')), mv)) =
-    Add (Add (C lt, ao), Add (Mul (nu, Sub (oo, op')), mv))
-  | numadd (Add (C lt, ao), Add (Mul (nu, Mul (oq, or)), mv)) =
-    Add (Add (C lt, ao), Add (Mul (nu, Mul (oq, or)), mv))
-  | numadd (Add (C lt, ao), Sub (mw, mx)) = Add (Add (C lt, ao), Sub (mw, mx))
-  | numadd (Add (C lt, ao), Mul (my, mz)) = Add (Add (C lt, ao), Mul (my, mz))
-  | numadd (Add (Bound lu, ao), C pd) = Add (Add (Bound lu, ao), C pd)
-  | numadd (Add (Bound lu, ao), Bound pe) = Add (Add (Bound lu, ao), Bound pe)
-  | numadd (Add (Bound lu, ao), CX (pf, pg)) =
-    Add (Add (Bound lu, ao), CX (pf, pg))
-  | numadd (Add (Bound lu, ao), Neg ph) = Add (Add (Bound lu, ao), Neg ph)
-  | numadd (Add (Bound lu, ao), Add (C pz, pj)) =
-    Add (Add (Bound lu, ao), Add (C pz, pj))
-  | numadd (Add (Bound lu, ao), Add (Bound qa, pj)) =
-    Add (Add (Bound lu, ao), Add (Bound qa, pj))
-  | numadd (Add (Bound lu, ao), Add (CX (qb, qc), pj)) =
-    Add (Add (Bound lu, ao), Add (CX (qb, qc), pj))
-  | numadd (Add (Bound lu, ao), Add (Neg qd, pj)) =
-    Add (Add (Bound lu, ao), Add (Neg qd, pj))
-  | numadd (Add (Bound lu, ao), Add (Add (qe, qf), pj)) =
-    Add (Add (Bound lu, ao), Add (Add (qe, qf), pj))
-  | numadd (Add (Bound lu, ao), Add (Sub (qg, qh), pj)) =
-    Add (Add (Bound lu, ao), Add (Sub (qg, qh), pj))
-  | numadd (Add (Bound lu, ao), Add (Mul (qi, C qv), pj)) =
-    Add (Add (Bound lu, ao), Add (Mul (qi, C qv), pj))
-  | numadd (Add (Bound lu, ao), Add (Mul (qi, CX (qx, qy)), pj)) =
-    Add (Add (Bound lu, ao), Add (Mul (qi, CX (qx, qy)), pj))
-  | numadd (Add (Bound lu, ao), Add (Mul (qi, Neg qz), pj)) =
-    Add (Add (Bound lu, ao), Add (Mul (qi, Neg qz), pj))
-  | numadd (Add (Bound lu, ao), Add (Mul (qi, Add (ra, rb)), pj)) =
-    Add (Add (Bound lu, ao), Add (Mul (qi, Add (ra, rb)), pj))
-  | numadd (Add (Bound lu, ao), Add (Mul (qi, Sub (rc, rd)), pj)) =
-    Add (Add (Bound lu, ao), Add (Mul (qi, Sub (rc, rd)), pj))
-  | numadd (Add (Bound lu, ao), Add (Mul (qi, Mul (re, rf)), pj)) =
-    Add (Add (Bound lu, ao), Add (Mul (qi, Mul (re, rf)), pj))
-  | numadd (Add (Bound lu, ao), Sub (pk, pl)) =
-    Add (Add (Bound lu, ao), Sub (pk, pl))
-  | numadd (Add (Bound lu, ao), Mul (pm, pn)) =
-    Add (Add (Bound lu, ao), Mul (pm, pn))
-  | numadd (Add (CX (lv, lw), ao), C rr) = Add (Add (CX (lv, lw), ao), C rr)
-  | numadd (Add (CX (lv, lw), ao), Bound rs) =
-    Add (Add (CX (lv, lw), ao), Bound rs)
-  | numadd (Add (CX (lv, lw), ao), CX (rt, ru)) =
-    Add (Add (CX (lv, lw), ao), CX (rt, ru))
-  | numadd (Add (CX (lv, lw), ao), Neg rv) = Add (Add (CX (lv, lw), ao), Neg rv)
-  | numadd (Add (CX (lv, lw), ao), Add (C sn, rx)) =
-    Add (Add (CX (lv, lw), ao), Add (C sn, rx))
-  | numadd (Add (CX (lv, lw), ao), Add (Bound so, rx)) =
-    Add (Add (CX (lv, lw), ao), Add (Bound so, rx))
-  | numadd (Add (CX (lv, lw), ao), Add (CX (sp, sq), rx)) =
-    Add (Add (CX (lv, lw), ao), Add (CX (sp, sq), rx))
-  | numadd (Add (CX (lv, lw), ao), Add (Neg sr, rx)) =
-    Add (Add (CX (lv, lw), ao), Add (Neg sr, rx))
-  | numadd (Add (CX (lv, lw), ao), Add (Add (ss, st), rx)) =
-    Add (Add (CX (lv, lw), ao), Add (Add (ss, st), rx))
-  | numadd (Add (CX (lv, lw), ao), Add (Sub (su, sv), rx)) =
-    Add (Add (CX (lv, lw), ao), Add (Sub (su, sv), rx))
-  | numadd (Add (CX (lv, lw), ao), Add (Mul (sw, C tj), rx)) =
-    Add (Add (CX (lv, lw), ao), Add (Mul (sw, C tj), rx))
-  | numadd (Add (CX (lv, lw), ao), Add (Mul (sw, CX (tl, tm)), rx)) =
-    Add (Add (CX (lv, lw), ao), Add (Mul (sw, CX (tl, tm)), rx))
-  | numadd (Add (CX (lv, lw), ao), Add (Mul (sw, Neg tn), rx)) =
-    Add (Add (CX (lv, lw), ao), Add (Mul (sw, Neg tn), rx))
-  | numadd (Add (CX (lv, lw), ao), Add (Mul (sw, Add (to, tp)), rx)) =
-    Add (Add (CX (lv, lw), ao), Add (Mul (sw, Add (to, tp)), rx))
-  | numadd (Add (CX (lv, lw), ao), Add (Mul (sw, Sub (tq, tr)), rx)) =
-    Add (Add (CX (lv, lw), ao), Add (Mul (sw, Sub (tq, tr)), rx))
-  | numadd (Add (CX (lv, lw), ao), Add (Mul (sw, Mul (ts, tt)), rx)) =
-    Add (Add (CX (lv, lw), ao), Add (Mul (sw, Mul (ts, tt)), rx))
-  | numadd (Add (CX (lv, lw), ao), Sub (ry, rz)) =
-    Add (Add (CX (lv, lw), ao), Sub (ry, rz))
-  | numadd (Add (CX (lv, lw), ao), Mul (sa, sb)) =
-    Add (Add (CX (lv, lw), ao), Mul (sa, sb))
-  | numadd (Add (Neg lx, ao), C uf) = Add (Add (Neg lx, ao), C uf)
-  | numadd (Add (Neg lx, ao), Bound ug) = Add (Add (Neg lx, ao), Bound ug)
-  | numadd (Add (Neg lx, ao), CX (uh, ui)) = Add (Add (Neg lx, ao), CX (uh, ui))
-  | numadd (Add (Neg lx, ao), Neg uj) = Add (Add (Neg lx, ao), Neg uj)
-  | numadd (Add (Neg lx, ao), Add (C vb, ul)) =
-    Add (Add (Neg lx, ao), Add (C vb, ul))
-  | numadd (Add (Neg lx, ao), Add (Bound vc, ul)) =
-    Add (Add (Neg lx, ao), Add (Bound vc, ul))
-  | numadd (Add (Neg lx, ao), Add (CX (vd, ve), ul)) =
-    Add (Add (Neg lx, ao), Add (CX (vd, ve), ul))
-  | numadd (Add (Neg lx, ao), Add (Neg vf, ul)) =
-    Add (Add (Neg lx, ao), Add (Neg vf, ul))
-  | numadd (Add (Neg lx, ao), Add (Add (vg, vh), ul)) =
-    Add (Add (Neg lx, ao), Add (Add (vg, vh), ul))
-  | numadd (Add (Neg lx, ao), Add (Sub (vi, vj), ul)) =
-    Add (Add (Neg lx, ao), Add (Sub (vi, vj), ul))
-  | numadd (Add (Neg lx, ao), Add (Mul (vk, C vx), ul)) =
-    Add (Add (Neg lx, ao), Add (Mul (vk, C vx), ul))
-  | numadd (Add (Neg lx, ao), Add (Mul (vk, CX (vz, wa)), ul)) =
-    Add (Add (Neg lx, ao), Add (Mul (vk, CX (vz, wa)), ul))
-  | numadd (Add (Neg lx, ao), Add (Mul (vk, Neg wb), ul)) =
-    Add (Add (Neg lx, ao), Add (Mul (vk, Neg wb), ul))
-  | numadd (Add (Neg lx, ao), Add (Mul (vk, Add (wc, wd)), ul)) =
-    Add (Add (Neg lx, ao), Add (Mul (vk, Add (wc, wd)), ul))
-  | numadd (Add (Neg lx, ao), Add (Mul (vk, Sub (we, wf)), ul)) =
-    Add (Add (Neg lx, ao), Add (Mul (vk, Sub (we, wf)), ul))
-  | numadd (Add (Neg lx, ao), Add (Mul (vk, Mul (wg, wh)), ul)) =
-    Add (Add (Neg lx, ao), Add (Mul (vk, Mul (wg, wh)), ul))
-  | numadd (Add (Neg lx, ao), Sub (um, un)) =
-    Add (Add (Neg lx, ao), Sub (um, un))
-  | numadd (Add (Neg lx, ao), Mul (uo, up)) =
-    Add (Add (Neg lx, ao), Mul (uo, up))
-  | numadd (Add (Add (ly, lz), ao), C wt) = Add (Add (Add (ly, lz), ao), C wt)
-  | numadd (Add (Add (ly, lz), ao), Bound wu) =
-    Add (Add (Add (ly, lz), ao), Bound wu)
-  | numadd (Add (Add (ly, lz), ao), CX (wv, ww)) =
-    Add (Add (Add (ly, lz), ao), CX (wv, ww))
-  | numadd (Add (Add (ly, lz), ao), Neg wx) =
-    Add (Add (Add (ly, lz), ao), Neg wx)
-  | numadd (Add (Add (ly, lz), ao), Add (C xp, wz)) =
-    Add (Add (Add (ly, lz), ao), Add (C xp, wz))
-  | numadd (Add (Add (ly, lz), ao), Add (Bound xq, wz)) =
-    Add (Add (Add (ly, lz), ao), Add (Bound xq, wz))
-  | numadd (Add (Add (ly, lz), ao), Add (CX (xr, xs), wz)) =
-    Add (Add (Add (ly, lz), ao), Add (CX (xr, xs), wz))
-  | numadd (Add (Add (ly, lz), ao), Add (Neg xt, wz)) =
-    Add (Add (Add (ly, lz), ao), Add (Neg xt, wz))
-  | numadd (Add (Add (ly, lz), ao), Add (Add (xu, xv), wz)) =
-    Add (Add (Add (ly, lz), ao), Add (Add (xu, xv), wz))
-  | numadd (Add (Add (ly, lz), ao), Add (Sub (xw, xx), wz)) =
-    Add (Add (Add (ly, lz), ao), Add (Sub (xw, xx), wz))
-  | numadd (Add (Add (ly, lz), ao), Add (Mul (xy, C yl), wz)) =
-    Add (Add (Add (ly, lz), ao), Add (Mul (xy, C yl), wz))
-  | numadd (Add (Add (ly, lz), ao), Add (Mul (xy, CX (yn, yo)), wz)) =
-    Add (Add (Add (ly, lz), ao), Add (Mul (xy, CX (yn, yo)), wz))
-  | numadd (Add (Add (ly, lz), ao), Add (Mul (xy, Neg yp), wz)) =
-    Add (Add (Add (ly, lz), ao), Add (Mul (xy, Neg yp), wz))
-  | numadd (Add (Add (ly, lz), ao), Add (Mul (xy, Add (yq, yr)), wz)) =
-    Add (Add (Add (ly, lz), ao), Add (Mul (xy, Add (yq, yr)), wz))
-  | numadd (Add (Add (ly, lz), ao), Add (Mul (xy, Sub (ys, yt)), wz)) =
-    Add (Add (Add (ly, lz), ao), Add (Mul (xy, Sub (ys, yt)), wz))
-  | numadd (Add (Add (ly, lz), ao), Add (Mul (xy, Mul (yu, yv)), wz)) =
-    Add (Add (Add (ly, lz), ao), Add (Mul (xy, Mul (yu, yv)), wz))
-  | numadd (Add (Add (ly, lz), ao), Sub (xa, xb)) =
-    Add (Add (Add (ly, lz), ao), Sub (xa, xb))
-  | numadd (Add (Add (ly, lz), ao), Mul (xc, xd)) =
-    Add (Add (Add (ly, lz), ao), Mul (xc, xd))
-  | numadd (Add (Sub (ma, mb), ao), C zh) = Add (Add (Sub (ma, mb), ao), C zh)
-  | numadd (Add (Sub (ma, mb), ao), Bound zi) =
-    Add (Add (Sub (ma, mb), ao), Bound zi)
-  | numadd (Add (Sub (ma, mb), ao), CX (zj, zk)) =
-    Add (Add (Sub (ma, mb), ao), CX (zj, zk))
-  | numadd (Add (Sub (ma, mb), ao), Neg zl) =
-    Add (Add (Sub (ma, mb), ao), Neg zl)
-  | numadd (Add (Sub (ma, mb), ao), Add (C aad, zn)) =
-    Add (Add (Sub (ma, mb), ao), Add (C aad, zn))
-  | numadd (Add (Sub (ma, mb), ao), Add (Bound aae, zn)) =
-    Add (Add (Sub (ma, mb), ao), Add (Bound aae, zn))
-  | numadd (Add (Sub (ma, mb), ao), Add (CX (aaf, aag), zn)) =
-    Add (Add (Sub (ma, mb), ao), Add (CX (aaf, aag), zn))
-  | numadd (Add (Sub (ma, mb), ao), Add (Neg aah, zn)) =
-    Add (Add (Sub (ma, mb), ao), Add (Neg aah, zn))
-  | numadd (Add (Sub (ma, mb), ao), Add (Add (aai, aaj), zn)) =
-    Add (Add (Sub (ma, mb), ao), Add (Add (aai, aaj), zn))
-  | numadd (Add (Sub (ma, mb), ao), Add (Sub (aak, aal), zn)) =
-    Add (Add (Sub (ma, mb), ao), Add (Sub (aak, aal), zn))
-  | numadd (Add (Sub (ma, mb), ao), Add (Mul (aam, C aaz), zn)) =
-    Add (Add (Sub (ma, mb), ao), Add (Mul (aam, C aaz), zn))
-  | numadd (Add (Sub (ma, mb), ao), Add (Mul (aam, CX (abb, abc)), zn)) =
-    Add (Add (Sub (ma, mb), ao), Add (Mul (aam, CX (abb, abc)), zn))
-  | numadd (Add (Sub (ma, mb), ao), Add (Mul (aam, Neg abd), zn)) =
-    Add (Add (Sub (ma, mb), ao), Add (Mul (aam, Neg abd), zn))
-  | numadd (Add (Sub (ma, mb), ao), Add (Mul (aam, Add (abe, abf)), zn)) =
-    Add (Add (Sub (ma, mb), ao), Add (Mul (aam, Add (abe, abf)), zn))
-  | numadd (Add (Sub (ma, mb), ao), Add (Mul (aam, Sub (abg, abh)), zn)) =
-    Add (Add (Sub (ma, mb), ao), Add (Mul (aam, Sub (abg, abh)), zn))
-  | numadd (Add (Sub (ma, mb), ao), Add (Mul (aam, Mul (abi, abj)), zn)) =
-    Add (Add (Sub (ma, mb), ao), Add (Mul (aam, Mul (abi, abj)), zn))
-  | numadd (Add (Sub (ma, mb), ao), Sub (zo, zp)) =
-    Add (Add (Sub (ma, mb), ao), Sub (zo, zp))
-  | numadd (Add (Sub (ma, mb), ao), Mul (zq, zr)) =
-    Add (Add (Sub (ma, mb), ao), Mul (zq, zr))
-  | numadd (Add (Mul (mc, C acg), ao), C adc) =
-    Add (Add (Mul (mc, C acg), ao), C adc)
-  | numadd (Add (Mul (mc, C acg), ao), Bound add) =
-    Add (Add (Mul (mc, C acg), ao), Bound add)
-  | numadd (Add (Mul (mc, C acg), ao), CX (ade, adf)) =
-    Add (Add (Mul (mc, C acg), ao), CX (ade, adf))
-  | numadd (Add (Mul (mc, C acg), ao), Neg adg) =
-    Add (Add (Mul (mc, C acg), ao), Neg adg)
-  | numadd (Add (Mul (mc, C acg), ao), Add (C ady, adi)) =
-    Add (Add (Mul (mc, C acg), ao), Add (C ady, adi))
-  | numadd (Add (Mul (mc, C acg), ao), Add (Bound adz, adi)) =
-    Add (Add (Mul (mc, C acg), ao), Add (Bound adz, adi))
-  | numadd (Add (Mul (mc, C acg), ao), Add (CX (aea, aeb), adi)) =
-    Add (Add (Mul (mc, C acg), ao), Add (CX (aea, aeb), adi))
-  | numadd (Add (Mul (mc, C acg), ao), Add (Neg aec, adi)) =
-    Add (Add (Mul (mc, C acg), ao), Add (Neg aec, adi))
-  | numadd (Add (Mul (mc, C acg), ao), Add (Add (aed, aee), adi)) =
-    Add (Add (Mul (mc, C acg), ao), Add (Add (aed, aee), adi))
-  | numadd (Add (Mul (mc, C acg), ao), Add (Sub (aef, aeg), adi)) =
-    Add (Add (Mul (mc, C acg), ao), Add (Sub (aef, aeg), adi))
-  | numadd (Add (Mul (mc, C acg), ao), Add (Mul (aeh, C aeu), adi)) =
-    Add (Add (Mul (mc, C acg), ao), Add (Mul (aeh, C aeu), adi))
-  | numadd (Add (Mul (mc, C acg), ao), Add (Mul (aeh, CX (aew, aex)), adi)) =
-    Add (Add (Mul (mc, C acg), ao), Add (Mul (aeh, CX (aew, aex)), adi))
-  | numadd (Add (Mul (mc, C acg), ao), Add (Mul (aeh, Neg aey), adi)) =
-    Add (Add (Mul (mc, C acg), ao), Add (Mul (aeh, Neg aey), adi))
-  | numadd (Add (Mul (mc, C acg), ao), Add (Mul (aeh, Add (aez, afa)), adi)) =
-    Add (Add (Mul (mc, C acg), ao), Add (Mul (aeh, Add (aez, afa)), adi))
-  | numadd (Add (Mul (mc, C acg), ao), Add (Mul (aeh, Sub (afb, afc)), adi)) =
-    Add (Add (Mul (mc, C acg), ao), Add (Mul (aeh, Sub (afb, afc)), adi))
-  | numadd (Add (Mul (mc, C acg), ao), Add (Mul (aeh, Mul (afd, afe)), adi)) =
-    Add (Add (Mul (mc, C acg), ao), Add (Mul (aeh, Mul (afd, afe)), adi))
-  | numadd (Add (Mul (mc, C acg), ao), Sub (adj, adk)) =
-    Add (Add (Mul (mc, C acg), ao), Sub (adj, adk))
-  | numadd (Add (Mul (mc, C acg), ao), Mul (adl, adm)) =
-    Add (Add (Mul (mc, C acg), ao), Mul (adl, adm))
-  | numadd (Add (Mul (mc, CX (aci, acj)), ao), C ajl) =
-    Add (Add (Mul (mc, CX (aci, acj)), ao), C ajl)
-  | numadd (Add (Mul (mc, CX (aci, acj)), ao), Bound ajm) =
-    Add (Add (Mul (mc, CX (aci, acj)), ao), Bound ajm)
-  | numadd (Add (Mul (mc, CX (aci, acj)), ao), CX (ajn, ajo)) =
-    Add (Add (Mul (mc, CX (aci, acj)), ao), CX (ajn, ajo))
-  | numadd (Add (Mul (mc, CX (aci, acj)), ao), Neg ajp) =
-    Add (Add (Mul (mc, CX (aci, acj)), ao), Neg ajp)
-  | numadd (Add (Mul (mc, CX (aci, acj)), ao), Add (C akh, ajr)) =
-    Add (Add (Mul (mc, CX (aci, acj)), ao), Add (C akh, ajr))
-  | numadd (Add (Mul (mc, CX (aci, acj)), ao), Add (Bound aki, ajr)) =
-    Add (Add (Mul (mc, CX (aci, acj)), ao), Add (Bound aki, ajr))
-  | numadd (Add (Mul (mc, CX (aci, acj)), ao), Add (CX (akj, akk), ajr)) =
-    Add (Add (Mul (mc, CX (aci, acj)), ao), Add (CX (akj, akk), ajr))
-  | numadd (Add (Mul (mc, CX (aci, acj)), ao), Add (Neg akl, ajr)) =
-    Add (Add (Mul (mc, CX (aci, acj)), ao), Add (Neg akl, ajr))
-  | numadd (Add (Mul (mc, CX (aci, acj)), ao), Add (Add (akm, akn), ajr)) =
-    Add (Add (Mul (mc, CX (aci, acj)), ao), Add (Add (akm, akn), ajr))
-  | numadd (Add (Mul (mc, CX (aci, acj)), ao), Add (Sub (ako, akp), ajr)) =
-    Add (Add (Mul (mc, CX (aci, acj)), ao), Add (Sub (ako, akp), ajr))
-  | numadd (Add (Mul (mc, CX (aci, acj)), ao), Add (Mul (akq, C ald), ajr)) =
-    Add (Add (Mul (mc, CX (aci, acj)), ao), Add (Mul (akq, C ald), ajr))
-  | numadd
-      (Add (Mul (mc, CX (aci, acj)), ao), Add (Mul (akq, CX (alf, alg)), ajr)) =
-    Add (Add (Mul (mc, CX (aci, acj)), ao), Add (Mul (akq, CX (alf, alg)), ajr))
-  | numadd (Add (Mul (mc, CX (aci, acj)), ao), Add (Mul (akq, Neg alh), ajr)) =
-    Add (Add (Mul (mc, CX (aci, acj)), ao), Add (Mul (akq, Neg alh), ajr))
-  | numadd
-      (Add (Mul (mc, CX (aci, acj)), ao),
-        Add (Mul (akq, Add (ali, alj)), ajr)) =
-    Add (Add (Mul (mc, CX (aci, acj)), ao),
-          Add (Mul (akq, Add (ali, alj)), ajr))
-  | numadd
-      (Add (Mul (mc, CX (aci, acj)), ao),
-        Add (Mul (akq, Sub (alk, all)), ajr)) =
-    Add (Add (Mul (mc, CX (aci, acj)), ao),
-          Add (Mul (akq, Sub (alk, all)), ajr))
-  | numadd
-      (Add (Mul (mc, CX (aci, acj)), ao),
-        Add (Mul (akq, Mul (alm, aln)), ajr)) =
-    Add (Add (Mul (mc, CX (aci, acj)), ao),
-          Add (Mul (akq, Mul (alm, aln)), ajr))
-  | numadd (Add (Mul (mc, CX (aci, acj)), ao), Sub (ajs, ajt)) =
-    Add (Add (Mul (mc, CX (aci, acj)), ao), Sub (ajs, ajt))
-  | numadd (Add (Mul (mc, CX (aci, acj)), ao), Mul (aju, ajv)) =
-    Add (Add (Mul (mc, CX (aci, acj)), ao), Mul (aju, ajv))
-  | numadd (Add (Mul (mc, Neg ack), ao), C alz) =
-    Add (Add (Mul (mc, Neg ack), ao), C alz)
-  | numadd (Add (Mul (mc, Neg ack), ao), Bound ama) =
-    Add (Add (Mul (mc, Neg ack), ao), Bound ama)
-  | numadd (Add (Mul (mc, Neg ack), ao), CX (amb, amc)) =
-    Add (Add (Mul (mc, Neg ack), ao), CX (amb, amc))
-  | numadd (Add (Mul (mc, Neg ack), ao), Neg amd) =
-    Add (Add (Mul (mc, Neg ack), ao), Neg amd)
-  | numadd (Add (Mul (mc, Neg ack), ao), Add (C amv, amf)) =
-    Add (Add (Mul (mc, Neg ack), ao), Add (C amv, amf))
-  | numadd (Add (Mul (mc, Neg ack), ao), Add (Bound amw, amf)) =
-    Add (Add (Mul (mc, Neg ack), ao), Add (Bound amw, amf))
-  | numadd (Add (Mul (mc, Neg ack), ao), Add (CX (amx, amy), amf)) =
-    Add (Add (Mul (mc, Neg ack), ao), Add (CX (amx, amy), amf))
-  | numadd (Add (Mul (mc, Neg ack), ao), Add (Neg amz, amf)) =
-    Add (Add (Mul (mc, Neg ack), ao), Add (Neg amz, amf))
-  | numadd (Add (Mul (mc, Neg ack), ao), Add (Add (ana, anb), amf)) =
-    Add (Add (Mul (mc, Neg ack), ao), Add (Add (ana, anb), amf))
-  | numadd (Add (Mul (mc, Neg ack), ao), Add (Sub (anc, and'), amf)) =
-    Add (Add (Mul (mc, Neg ack), ao), Add (Sub (anc, and'), amf))
-  | numadd (Add (Mul (mc, Neg ack), ao), Add (Mul (ane, C anr), amf)) =
-    Add (Add (Mul (mc, Neg ack), ao), Add (Mul (ane, C anr), amf))
-  | numadd (Add (Mul (mc, Neg ack), ao), Add (Mul (ane, CX (ant, anu)), amf)) =
-    Add (Add (Mul (mc, Neg ack), ao), Add (Mul (ane, CX (ant, anu)), amf))
-  | numadd (Add (Mul (mc, Neg ack), ao), Add (Mul (ane, Neg anv), amf)) =
-    Add (Add (Mul (mc, Neg ack), ao), Add (Mul (ane, Neg anv), amf))
-  | numadd (Add (Mul (mc, Neg ack), ao), Add (Mul (ane, Add (anw, anx)), amf)) =
-    Add (Add (Mul (mc, Neg ack), ao), Add (Mul (ane, Add (anw, anx)), amf))
-  | numadd (Add (Mul (mc, Neg ack), ao), Add (Mul (ane, Sub (any, anz)), amf)) =
-    Add (Add (Mul (mc, Neg ack), ao), Add (Mul (ane, Sub (any, anz)), amf))
-  | numadd (Add (Mul (mc, Neg ack), ao), Add (Mul (ane, Mul (aoa, aob)), amf)) =
-    Add (Add (Mul (mc, Neg ack), ao), Add (Mul (ane, Mul (aoa, aob)), amf))
-  | numadd (Add (Mul (mc, Neg ack), ao), Sub (amg, amh)) =
-    Add (Add (Mul (mc, Neg ack), ao), Sub (amg, amh))
-  | numadd (Add (Mul (mc, Neg ack), ao), Mul (ami, amj)) =
-    Add (Add (Mul (mc, Neg ack), ao), Mul (ami, amj))
-  | numadd (Add (Mul (mc, Add (acl, acm)), ao), C aon) =
-    Add (Add (Mul (mc, Add (acl, acm)), ao), C aon)
-  | numadd (Add (Mul (mc, Add (acl, acm)), ao), Bound aoo) =
-    Add (Add (Mul (mc, Add (acl, acm)), ao), Bound aoo)
-  | numadd (Add (Mul (mc, Add (acl, acm)), ao), CX (aop, aoq)) =
-    Add (Add (Mul (mc, Add (acl, acm)), ao), CX (aop, aoq))
-  | numadd (Add (Mul (mc, Add (acl, acm)), ao), Neg aor) =
-    Add (Add (Mul (mc, Add (acl, acm)), ao), Neg aor)
-  | numadd (Add (Mul (mc, Add (acl, acm)), ao), Add (C apj, aot)) =
-    Add (Add (Mul (mc, Add (acl, acm)), ao), Add (C apj, aot))
-  | numadd (Add (Mul (mc, Add (acl, acm)), ao), Add (Bound apk, aot)) =
-    Add (Add (Mul (mc, Add (acl, acm)), ao), Add (Bound apk, aot))
-  | numadd (Add (Mul (mc, Add (acl, acm)), ao), Add (CX (apl, apm), aot)) =
-    Add (Add (Mul (mc, Add (acl, acm)), ao), Add (CX (apl, apm), aot))
-  | numadd (Add (Mul (mc, Add (acl, acm)), ao), Add (Neg apn, aot)) =
-    Add (Add (Mul (mc, Add (acl, acm)), ao), Add (Neg apn, aot))
-  | numadd (Add (Mul (mc, Add (acl, acm)), ao), Add (Add (apo, app), aot)) =
-    Add (Add (Mul (mc, Add (acl, acm)), ao), Add (Add (apo, app), aot))
-  | numadd (Add (Mul (mc, Add (acl, acm)), ao), Add (Sub (apq, apr), aot)) =
-    Add (Add (Mul (mc, Add (acl, acm)), ao), Add (Sub (apq, apr), aot))
-  | numadd (Add (Mul (mc, Add (acl, acm)), ao), Add (Mul (aps, C aqf), aot)) =
-    Add (Add (Mul (mc, Add (acl, acm)), ao), Add (Mul (aps, C aqf), aot))
-  | numadd
-      (Add (Mul (mc, Add (acl, acm)), ao),
-        Add (Mul (aps, CX (aqh, aqi)), aot)) =
-    Add (Add (Mul (mc, Add (acl, acm)), ao),
-          Add (Mul (aps, CX (aqh, aqi)), aot))
-  | numadd (Add (Mul (mc, Add (acl, acm)), ao), Add (Mul (aps, Neg aqj), aot)) =
-    Add (Add (Mul (mc, Add (acl, acm)), ao), Add (Mul (aps, Neg aqj), aot))
-  | numadd
-      (Add (Mul (mc, Add (acl, acm)), ao),
-        Add (Mul (aps, Add (aqk, aql)), aot)) =
-    Add (Add (Mul (mc, Add (acl, acm)), ao),
-          Add (Mul (aps, Add (aqk, aql)), aot))
-  | numadd
-      (Add (Mul (mc, Add (acl, acm)), ao),
-        Add (Mul (aps, Sub (aqm, aqn)), aot)) =
-    Add (Add (Mul (mc, Add (acl, acm)), ao),
-          Add (Mul (aps, Sub (aqm, aqn)), aot))
-  | numadd
-      (Add (Mul (mc, Add (acl, acm)), ao),
-        Add (Mul (aps, Mul (aqo, aqp)), aot)) =
-    Add (Add (Mul (mc, Add (acl, acm)), ao),
-          Add (Mul (aps, Mul (aqo, aqp)), aot))
-  | numadd (Add (Mul (mc, Add (acl, acm)), ao), Sub (aou, aov)) =
-    Add (Add (Mul (mc, Add (acl, acm)), ao), Sub (aou, aov))
-  | numadd (Add (Mul (mc, Add (acl, acm)), ao), Mul (aow, aox)) =
-    Add (Add (Mul (mc, Add (acl, acm)), ao), Mul (aow, aox))
-  | numadd (Add (Mul (mc, Sub (acn, aco)), ao), C arb) =
-    Add (Add (Mul (mc, Sub (acn, aco)), ao), C arb)
-  | numadd (Add (Mul (mc, Sub (acn, aco)), ao), Bound arc) =
-    Add (Add (Mul (mc, Sub (acn, aco)), ao), Bound arc)
-  | numadd (Add (Mul (mc, Sub (acn, aco)), ao), CX (ard, are)) =
-    Add (Add (Mul (mc, Sub (acn, aco)), ao), CX (ard, are))
-  | numadd (Add (Mul (mc, Sub (acn, aco)), ao), Neg arf) =
-    Add (Add (Mul (mc, Sub (acn, aco)), ao), Neg arf)
-  | numadd (Add (Mul (mc, Sub (acn, aco)), ao), Add (C arx, arh)) =
-    Add (Add (Mul (mc, Sub (acn, aco)), ao), Add (C arx, arh))
-  | numadd (Add (Mul (mc, Sub (acn, aco)), ao), Add (Bound ary, arh)) =
-    Add (Add (Mul (mc, Sub (acn, aco)), ao), Add (Bound ary, arh))
-  | numadd (Add (Mul (mc, Sub (acn, aco)), ao), Add (CX (arz, asa), arh)) =
-    Add (Add (Mul (mc, Sub (acn, aco)), ao), Add (CX (arz, asa), arh))
-  | numadd (Add (Mul (mc, Sub (acn, aco)), ao), Add (Neg asb, arh)) =
-    Add (Add (Mul (mc, Sub (acn, aco)), ao), Add (Neg asb, arh))
-  | numadd (Add (Mul (mc, Sub (acn, aco)), ao), Add (Add (asc, asd), arh)) =
-    Add (Add (Mul (mc, Sub (acn, aco)), ao), Add (Add (asc, asd), arh))
-  | numadd (Add (Mul (mc, Sub (acn, aco)), ao), Add (Sub (ase, asf), arh)) =
-    Add (Add (Mul (mc, Sub (acn, aco)), ao), Add (Sub (ase, asf), arh))
-  | numadd (Add (Mul (mc, Sub (acn, aco)), ao), Add (Mul (asg, C ast), arh)) =
-    Add (Add (Mul (mc, Sub (acn, aco)), ao), Add (Mul (asg, C ast), arh))
-  | numadd
-      (Add (Mul (mc, Sub (acn, aco)), ao),
-        Add (Mul (asg, CX (asv, asw)), arh)) =
-    Add (Add (Mul (mc, Sub (acn, aco)), ao),
-          Add (Mul (asg, CX (asv, asw)), arh))
-  | numadd (Add (Mul (mc, Sub (acn, aco)), ao), Add (Mul (asg, Neg asx), arh)) =
-    Add (Add (Mul (mc, Sub (acn, aco)), ao), Add (Mul (asg, Neg asx), arh))
-  | numadd
-      (Add (Mul (mc, Sub (acn, aco)), ao),
-        Add (Mul (asg, Add (asy, asz)), arh)) =
-    Add (Add (Mul (mc, Sub (acn, aco)), ao),
-          Add (Mul (asg, Add (asy, asz)), arh))
-  | numadd
-      (Add (Mul (mc, Sub (acn, aco)), ao),
-        Add (Mul (asg, Sub (ata, atb)), arh)) =
-    Add (Add (Mul (mc, Sub (acn, aco)), ao),
-          Add (Mul (asg, Sub (ata, atb)), arh))
-  | numadd
-      (Add (Mul (mc, Sub (acn, aco)), ao),
-        Add (Mul (asg, Mul (atc, atd)), arh)) =
-    Add (Add (Mul (mc, Sub (acn, aco)), ao),
-          Add (Mul (asg, Mul (atc, atd)), arh))
-  | numadd (Add (Mul (mc, Sub (acn, aco)), ao), Sub (ari, arj)) =
-    Add (Add (Mul (mc, Sub (acn, aco)), ao), Sub (ari, arj))
-  | numadd (Add (Mul (mc, Sub (acn, aco)), ao), Mul (ark, arl)) =
-    Add (Add (Mul (mc, Sub (acn, aco)), ao), Mul (ark, arl))
-  | numadd (Add (Mul (mc, Mul (acp, acq)), ao), C atp) =
-    Add (Add (Mul (mc, Mul (acp, acq)), ao), C atp)
-  | numadd (Add (Mul (mc, Mul (acp, acq)), ao), Bound atq) =
-    Add (Add (Mul (mc, Mul (acp, acq)), ao), Bound atq)
-  | numadd (Add (Mul (mc, Mul (acp, acq)), ao), CX (atr, ats)) =
-    Add (Add (Mul (mc, Mul (acp, acq)), ao), CX (atr, ats))
-  | numadd (Add (Mul (mc, Mul (acp, acq)), ao), Neg att) =
-    Add (Add (Mul (mc, Mul (acp, acq)), ao), Neg att)
-  | numadd (Add (Mul (mc, Mul (acp, acq)), ao), Add (C aul, atv)) =
-    Add (Add (Mul (mc, Mul (acp, acq)), ao), Add (C aul, atv))
-  | numadd (Add (Mul (mc, Mul (acp, acq)), ao), Add (Bound aum, atv)) =
-    Add (Add (Mul (mc, Mul (acp, acq)), ao), Add (Bound aum, atv))
-  | numadd (Add (Mul (mc, Mul (acp, acq)), ao), Add (CX (aun, auo), atv)) =
-    Add (Add (Mul (mc, Mul (acp, acq)), ao), Add (CX (aun, auo), atv))
-  | numadd (Add (Mul (mc, Mul (acp, acq)), ao), Add (Neg aup, atv)) =
-    Add (Add (Mul (mc, Mul (acp, acq)), ao), Add (Neg aup, atv))
-  | numadd (Add (Mul (mc, Mul (acp, acq)), ao), Add (Add (auq, aur), atv)) =
-    Add (Add (Mul (mc, Mul (acp, acq)), ao), Add (Add (auq, aur), atv))
-  | numadd (Add (Mul (mc, Mul (acp, acq)), ao), Add (Sub (aus, aut), atv)) =
-    Add (Add (Mul (mc, Mul (acp, acq)), ao), Add (Sub (aus, aut), atv))
-  | numadd (Add (Mul (mc, Mul (acp, acq)), ao), Add (Mul (auu, C avh), atv)) =
-    Add (Add (Mul (mc, Mul (acp, acq)), ao), Add (Mul (auu, C avh), atv))
-  | numadd
-      (Add (Mul (mc, Mul (acp, acq)), ao),
-        Add (Mul (auu, CX (avj, avk)), atv)) =
-    Add (Add (Mul (mc, Mul (acp, acq)), ao),
-          Add (Mul (auu, CX (avj, avk)), atv))
-  | numadd (Add (Mul (mc, Mul (acp, acq)), ao), Add (Mul (auu, Neg avl), atv)) =
-    Add (Add (Mul (mc, Mul (acp, acq)), ao), Add (Mul (auu, Neg avl), atv))
-  | numadd
-      (Add (Mul (mc, Mul (acp, acq)), ao),
-        Add (Mul (auu, Add (avm, avn)), atv)) =
-    Add (Add (Mul (mc, Mul (acp, acq)), ao),
-          Add (Mul (auu, Add (avm, avn)), atv))
-  | numadd
-      (Add (Mul (mc, Mul (acp, acq)), ao),
-        Add (Mul (auu, Sub (avo, avp)), atv)) =
-    Add (Add (Mul (mc, Mul (acp, acq)), ao),
-          Add (Mul (auu, Sub (avo, avp)), atv))
-  | numadd
-      (Add (Mul (mc, Mul (acp, acq)), ao),
-        Add (Mul (auu, Mul (avq, avr)), atv)) =
-    Add (Add (Mul (mc, Mul (acp, acq)), ao),
-          Add (Mul (auu, Mul (avq, avr)), atv))
-  | numadd (Add (Mul (mc, Mul (acp, acq)), ao), Sub (atw, atx)) =
-    Add (Add (Mul (mc, Mul (acp, acq)), ao), Sub (atw, atx))
-  | numadd (Add (Mul (mc, Mul (acp, acq)), ao), Mul (aty, atz)) =
-    Add (Add (Mul (mc, Mul (acp, acq)), ao), Mul (aty, atz))
-  | numadd (Sub (ap, aq), C awd) = Add (Sub (ap, aq), C awd)
-  | numadd (Sub (ap, aq), Bound awe) = Add (Sub (ap, aq), Bound awe)
-  | numadd (Sub (ap, aq), CX (awf, awg)) = Add (Sub (ap, aq), CX (awf, awg))
-  | numadd (Sub (ap, aq), Neg awh) = Add (Sub (ap, aq), Neg awh)
-  | numadd (Sub (ap, aq), Add (C awz, awj)) =
-    Add (Sub (ap, aq), Add (C awz, awj))
-  | numadd (Sub (ap, aq), Add (Bound axa, awj)) =
-    Add (Sub (ap, aq), Add (Bound axa, awj))
-  | numadd (Sub (ap, aq), Add (CX (axb, axc), awj)) =
-    Add (Sub (ap, aq), Add (CX (axb, axc), awj))
-  | numadd (Sub (ap, aq), Add (Neg axd, awj)) =
-    Add (Sub (ap, aq), Add (Neg axd, awj))
-  | numadd (Sub (ap, aq), Add (Add (axe, axf), awj)) =
-    Add (Sub (ap, aq), Add (Add (axe, axf), awj))
-  | numadd (Sub (ap, aq), Add (Sub (axg, axh), awj)) =
-    Add (Sub (ap, aq), Add (Sub (axg, axh), awj))
-  | numadd (Sub (ap, aq), Add (Mul (axi, C axv), awj)) =
-    Add (Sub (ap, aq), Add (Mul (axi, C axv), awj))
-  | numadd (Sub (ap, aq), Add (Mul (axi, CX (axx, axy)), awj)) =
-    Add (Sub (ap, aq), Add (Mul (axi, CX (axx, axy)), awj))
-  | numadd (Sub (ap, aq), Add (Mul (axi, Neg axz), awj)) =
-    Add (Sub (ap, aq), Add (Mul (axi, Neg axz), awj))
-  | numadd (Sub (ap, aq), Add (Mul (axi, Add (aya, ayb)), awj)) =
-    Add (Sub (ap, aq), Add (Mul (axi, Add (aya, ayb)), awj))
-  | numadd (Sub (ap, aq), Add (Mul (axi, Sub (ayc, ayd)), awj)) =
-    Add (Sub (ap, aq), Add (Mul (axi, Sub (ayc, ayd)), awj))
-  | numadd (Sub (ap, aq), Add (Mul (axi, Mul (aye, ayf)), awj)) =
-    Add (Sub (ap, aq), Add (Mul (axi, Mul (aye, ayf)), awj))
-  | numadd (Sub (ap, aq), Sub (awk, awl)) = Add (Sub (ap, aq), Sub (awk, awl))
-  | numadd (Sub (ap, aq), Mul (awm, awn)) = Add (Sub (ap, aq), Mul (awm, awn))
-  | numadd (Mul (ar, as'), C ayr) = Add (Mul (ar, as'), C ayr)
-  | numadd (Mul (ar, as'), Bound ays) = Add (Mul (ar, as'), Bound ays)
-  | numadd (Mul (ar, as'), CX (ayt, ayu)) = Add (Mul (ar, as'), CX (ayt, ayu))
-  | numadd (Mul (ar, as'), Neg ayv) = Add (Mul (ar, as'), Neg ayv)
-  | numadd (Mul (ar, as'), Add (C azn, ayx)) =
-    Add (Mul (ar, as'), Add (C azn, ayx))
-  | numadd (Mul (ar, as'), Add (Bound azo, ayx)) =
-    Add (Mul (ar, as'), Add (Bound azo, ayx))
-  | numadd (Mul (ar, as'), Add (CX (azp, azq), ayx)) =
-    Add (Mul (ar, as'), Add (CX (azp, azq), ayx))
-  | numadd (Mul (ar, as'), Add (Neg azr, ayx)) =
-    Add (Mul (ar, as'), Add (Neg azr, ayx))
-  | numadd (Mul (ar, as'), Add (Add (azs, azt), ayx)) =
-    Add (Mul (ar, as'), Add (Add (azs, azt), ayx))
-  | numadd (Mul (ar, as'), Add (Sub (azu, azv), ayx)) =
-    Add (Mul (ar, as'), Add (Sub (azu, azv), ayx))
-  | numadd (Mul (ar, as'), Add (Mul (azw, C baj), ayx)) =
-    Add (Mul (ar, as'), Add (Mul (azw, C baj), ayx))
-  | numadd (Mul (ar, as'), Add (Mul (azw, CX (bal, bam)), ayx)) =
-    Add (Mul (ar, as'), Add (Mul (azw, CX (bal, bam)), ayx))
-  | numadd (Mul (ar, as'), Add (Mul (azw, Neg ban), ayx)) =
-    Add (Mul (ar, as'), Add (Mul (azw, Neg ban), ayx))
-  | numadd (Mul (ar, as'), Add (Mul (azw, Add (bao, bap)), ayx)) =
-    Add (Mul (ar, as'), Add (Mul (azw, Add (bao, bap)), ayx))
-  | numadd (Mul (ar, as'), Add (Mul (azw, Sub (baq, bar)), ayx)) =
-    Add (Mul (ar, as'), Add (Mul (azw, Sub (baq, bar)), ayx))
-  | numadd (Mul (ar, as'), Add (Mul (azw, Mul (bas, bat)), ayx)) =
-    Add (Mul (ar, as'), Add (Mul (azw, Mul (bas, bat)), ayx))
-  | numadd (Mul (ar, as'), Sub (ayy, ayz)) = Add (Mul (ar, as'), Sub (ayy, ayz))
-  | numadd (Mul (ar, as'), Mul (aza, azb)) =
-    Add (Mul (ar, as'), Mul (aza, azb));
-
-fun nummul (C j) = (fn i => C (i * j))
-  | nummul (Add (a, b)) = (fn i => numadd (nummul a i, nummul b i))
-  | nummul (Mul (c, t)) = (fn i => nummul t (i * c))
-  | nummul (Bound v) = (fn i => Mul (i, Bound v))
-  | nummul (CX (w, x)) = (fn i => Mul (i, CX (w, x)))
-  | nummul (Neg y) = (fn i => Mul (i, Neg y))
-  | nummul (Sub (ac, ad)) = (fn i => Mul (i, Sub (ac, ad)));
-
-fun numneg t = nummul t (~ 1);
-
-fun numsub s t = (if (s = t) then C 0 else numadd (s, numneg t));
-
-fun simpnum (C j) = C j
-  | simpnum (Bound n) = Add (Mul (1, Bound n), C 0)
-  | simpnum (Neg t) = numneg (simpnum t)
-  | simpnum (Add (t, s)) = numadd (simpnum t, simpnum s)
-  | simpnum (Sub (t, s)) = numsub (simpnum t) (simpnum s)
-  | simpnum (Mul (i, t)) = (if (i = 0) then C 0 else nummul (simpnum t) i)
-  | simpnum (CX (w, x)) = CX (w, x);
-
-datatype fm = T | F | Lt of num | Le of num | Gt of num | Ge of num | Eq of num
-  | NEq of num | Dvd of int * num | NDvd of int * num | NOT of fm
-  | And of fm * fm | Or of fm * fm | Imp of fm * fm | Iff of fm * fm | E of fm
-  | A of fm | Closed of int | NClosed of int;
-
-fun not (NOT p) = p
-  | not T = F
-  | not F = T
-  | not (Lt u) = NOT (Lt u)
-  | not (Le v) = NOT (Le v)
-  | not (Gt w) = NOT (Gt w)
-  | not (Ge x) = NOT (Ge x)
-  | not (Eq y) = NOT (Eq y)
-  | not (NEq z) = NOT (NEq z)
-  | not (Dvd (aa, ab)) = NOT (Dvd (aa, ab))
-  | not (NDvd (ac, ad)) = NOT (NDvd (ac, ad))
-  | not (And (af, ag)) = NOT (And (af, ag))
-  | not (Or (ah, ai)) = NOT (Or (ah, ai))
-  | not (Imp (aj, ak)) = NOT (Imp (aj, ak))
-  | not (Iff (al, am)) = NOT (Iff (al, am))
-  | not (E an) = NOT (E an)
-  | not (A ao) = NOT (A ao)
-  | not (Closed ap) = NOT (Closed ap)
-  | not (NClosed aq) = NOT (NClosed aq);
-
-fun iff p q =
-  (if (p = q) then T
-    else (if ((p = not q) orelse (not p = q)) then F
-           else (if (p = F) then not q
-                  else (if (q = F) then not p
-                         else (if (p = T) then q
-                                else (if (q = T) then p else Iff (p, q)))))));
-
-fun imp p q =
-  (if ((p = F) orelse (q = T)) then T
-    else (if (p = T) then q else (if (q = F) then not p else Imp (p, q))));
-
-fun disj p q =
-  (if ((p = T) orelse (q = T)) then T
-    else (if (p = F) then q else (if (q = F) then p else Or (p, q))));
-
-fun conj p q =
-  (if ((p = F) orelse (q = F)) then F
-    else (if (p = T) then q else (if (q = T) then p else And (p, q))));
-
-fun simpfm (And (p, q)) = conj (simpfm p) (simpfm q)
-  | simpfm (Or (p, q)) = disj (simpfm p) (simpfm q)
-  | simpfm (Imp (p, q)) = imp (simpfm p) (simpfm q)
-  | simpfm (Iff (p, q)) = iff (simpfm p) (simpfm q)
-  | simpfm (NOT p) = not (simpfm p)
-  | simpfm (Lt a) =
-    let val a' = simpnum a
-    in (case a' of C x => (if (x < 0) then T else F) | Bound x => Lt a'
-         | CX (x, xa) => Lt a' | Neg x => Lt a' | Add (x, xa) => Lt a'
-         | Sub (x, xa) => Lt a' | Mul (x, xa) => Lt a')
-    end
-  | simpfm (Le a) =
-    let val a' = simpnum a
-    in (case a' of C x => (if (x <= 0) then T else F) | Bound x => Le a'
-         | CX (x, xa) => Le a' | Neg x => Le a' | Add (x, xa) => Le a'
-         | Sub (x, xa) => Le a' | Mul (x, xa) => Le a')
-    end
-  | simpfm (Gt a) =
-    let val a' = simpnum a
-    in (case a' of C x => (if (0 < x) then T else F) | Bound x => Gt a'
-         | CX (x, xa) => Gt a' | Neg x => Gt a' | Add (x, xa) => Gt a'
-         | Sub (x, xa) => Gt a' | Mul (x, xa) => Gt a')
-    end
-  | simpfm (Ge a) =
-    let val a' = simpnum a
-    in (case a' of C x => (if (0 <= x) then T else F) | Bound x => Ge a'
-         | CX (x, xa) => Ge a' | Neg x => Ge a' | Add (x, xa) => Ge a'
-         | Sub (x, xa) => Ge a' | Mul (x, xa) => Ge a')
-    end
-  | simpfm (Eq a) =
-    let val a' = simpnum a
-    in (case a' of C x => (if (x = 0) then T else F) | Bound x => Eq a'
-         | CX (x, xa) => Eq a' | Neg x => Eq a' | Add (x, xa) => Eq a'
-         | Sub (x, xa) => Eq a' | Mul (x, xa) => Eq a')
-    end
-  | simpfm (NEq a) =
-    let val a' = simpnum a
-    in (case a' of C x => (if Bool.not (x = 0) then T else F)
-         | Bound x => NEq a' | CX (x, xa) => NEq a' | Neg x => NEq a'
-         | Add (x, xa) => NEq a' | Sub (x, xa) => NEq a'
-         | Mul (x, xa) => NEq a')
-    end
-  | simpfm (Dvd (i, a)) =
-    (if (i = 0) then simpfm (Eq a)
-      else (if (abs i = 1) then T
-             else let val a' = simpnum a
-                  in (case a' of C x => (if dvd i x then T else F)
-                       | Bound x => Dvd (i, a') | CX (x, xa) => Dvd (i, a')
-                       | Neg x => Dvd (i, a') | Add (x, xa) => Dvd (i, a')
-                       | Sub (x, xa) => Dvd (i, a')
-                       | Mul (x, xa) => Dvd (i, a'))
-                  end))
-  | simpfm (NDvd (i, a)) =
-    (if (i = 0) then simpfm (NEq a)
-      else (if (abs i = 1) then F
-             else let val a' = simpnum a
-                  in (case a' of C x => (if Bool.not (dvd i x) then T else F)
-                       | Bound x => NDvd (i, a') | CX (x, xa) => NDvd (i, a')
-                       | Neg x => NDvd (i, a') | Add (x, xa) => NDvd (i, a')
-                       | Sub (x, xa) => NDvd (i, a')
-                       | Mul (x, xa) => NDvd (i, a'))
-                  end))
-  | simpfm T = T
-  | simpfm F = F
-  | simpfm (E ao) = E ao
-  | simpfm (A ap) = A ap
-  | simpfm (Closed aq) = Closed aq
-  | simpfm (NClosed ar) = NClosed ar;
-
-fun foldr f [] a = a
-  | foldr f (x :: xs) a = f x (foldr f xs a);
-
-fun djf f p q =
-  (if (q = T) then T
-    else (if (q = F) then f p
-           else let val fp = f p
-                in (case fp of T => T | F => q | Lt x => Or (f p, q)
-                     | Le x => Or (f p, q) | Gt x => Or (f p, q)
-                     | Ge x => Or (f p, q) | Eq x => Or (f p, q)
-                     | NEq x => Or (f p, q) | Dvd (x, xa) => Or (f p, q)
-                     | NDvd (x, xa) => Or (f p, q) | NOT x => Or (f p, q)
-                     | And (x, xa) => Or (f p, q) | Or (x, xa) => Or (f p, q)
-                     | Imp (x, xa) => Or (f p, q) | Iff (x, xa) => Or (f p, q)
-                     | E x => Or (f p, q) | A x => Or (f p, q)
-                     | Closed x => Or (f p, q) | NClosed x => Or (f p, q))
-                end));
-
-fun evaldjf f ps = foldr (djf f) ps F;
-
-fun append [] ys = ys
-  | append (x :: xs) ys = (x :: append xs ys);
-
-fun disjuncts (Or (p, q)) = append (disjuncts p) (disjuncts q)
-  | disjuncts F = []
-  | disjuncts T = [T]
-  | disjuncts (Lt u) = [Lt u]
-  | disjuncts (Le v) = [Le v]
-  | disjuncts (Gt w) = [Gt w]
-  | disjuncts (Ge x) = [Ge x]
-  | disjuncts (Eq y) = [Eq y]
-  | disjuncts (NEq z) = [NEq z]
-  | disjuncts (Dvd (aa, ab)) = [Dvd (aa, ab)]
-  | disjuncts (NDvd (ac, ad)) = [NDvd (ac, ad)]
-  | disjuncts (NOT ae) = [NOT ae]
-  | disjuncts (And (af, ag)) = [And (af, ag)]
-  | disjuncts (Imp (aj, ak)) = [Imp (aj, ak)]
-  | disjuncts (Iff (al, am)) = [Iff (al, am)]
-  | disjuncts (E an) = [E an]
-  | disjuncts (A ao) = [A ao]
-  | disjuncts (Closed ap) = [Closed ap]
-  | disjuncts (NClosed aq) = [NClosed aq];
-
-fun DJ f p = evaldjf f (disjuncts p);
-
-fun qelim (E p) = (fn qe => DJ qe (qelim p qe))
-  | qelim (A p) = (fn qe => not (qe (qelim (NOT p) qe)))
-  | qelim (NOT p) = (fn qe => not (qelim p qe))
-  | qelim (And (p, q)) = (fn qe => conj (qelim p qe) (qelim q qe))
-  | qelim (Or (p, q)) = (fn qe => disj (qelim p qe) (qelim q qe))
-  | qelim (Imp (p, q)) = (fn qe => imp (qelim p qe) (qelim q qe))
-  | qelim (Iff (p, q)) = (fn qe => iff (qelim p qe) (qelim q qe))
-  | qelim T = (fn y => simpfm T)
-  | qelim F = (fn y => simpfm F)
-  | qelim (Lt u) = (fn y => simpfm (Lt u))
-  | qelim (Le v) = (fn y => simpfm (Le v))
-  | qelim (Gt w) = (fn y => simpfm (Gt w))
-  | qelim (Ge x) = (fn y => simpfm (Ge x))
-  | qelim (Eq y) = (fn ya => simpfm (Eq y))
-  | qelim (NEq z) = (fn y => simpfm (NEq z))
-  | qelim (Dvd (aa, ab)) = (fn y => simpfm (Dvd (aa, ab)))
-  | qelim (NDvd (ac, ad)) = (fn y => simpfm (NDvd (ac, ad)))
-  | qelim (Closed ap) = (fn y => simpfm (Closed ap))
-  | qelim (NClosed aq) = (fn y => simpfm (NClosed aq));
-
-fun minus_def1 m n = nat (minus_def2 (m) (n));
-
-fun decrnum (Bound n) = Bound (minus_def1 n one_def0)
-  | decrnum (Neg a) = Neg (decrnum a)
-  | decrnum (Add (a, b)) = Add (decrnum a, decrnum b)
-  | decrnum (Sub (a, b)) = Sub (decrnum a, decrnum b)
-  | decrnum (Mul (c, a)) = Mul (c, decrnum a)
-  | decrnum (C u) = C u
-  | decrnum (CX (w, x)) = CX (w, x);
-
-fun decr (Lt a) = Lt (decrnum a)
-  | decr (Le a) = Le (decrnum a)
-  | decr (Gt a) = Gt (decrnum a)
-  | decr (Ge a) = Ge (decrnum a)
-  | decr (Eq a) = Eq (decrnum a)
-  | decr (NEq a) = NEq (decrnum a)
-  | decr (Dvd (i, a)) = Dvd (i, decrnum a)
-  | decr (NDvd (i, a)) = NDvd (i, decrnum a)
-  | decr (NOT p) = NOT (decr p)
-  | decr (And (p, q)) = And (decr p, decr q)
-  | decr (Or (p, q)) = Or (decr p, decr q)
-  | decr (Imp (p, q)) = Imp (decr p, decr q)
-  | decr (Iff (p, q)) = Iff (decr p, decr q)
-  | decr T = T
-  | decr F = F
-  | decr (E ao) = E ao
-  | decr (A ap) = A ap
-  | decr (Closed aq) = Closed aq
-  | decr (NClosed ar) = NClosed ar;
-
-fun map f [] = []
-  | map f (x :: xs) = (f x :: map f xs);
-
-fun allpairs f [] ys = []
-  | allpairs f (x :: xs) ys = append (map (f x) ys) (allpairs f xs ys);
-
-fun numsubst0 t (C c) = C c
-  | numsubst0 t (Bound n) = (if (n = 0) then t else Bound n)
-  | numsubst0 t (CX (i, a)) = Add (Mul (i, t), numsubst0 t a)
-  | numsubst0 t (Neg a) = Neg (numsubst0 t a)
-  | numsubst0 t (Add (a, b)) = Add (numsubst0 t a, numsubst0 t b)
-  | numsubst0 t (Sub (a, b)) = Sub (numsubst0 t a, numsubst0 t b)
-  | numsubst0 t (Mul (i, a)) = Mul (i, numsubst0 t a);
-
-fun subst0 t T = T
-  | subst0 t F = F
-  | subst0 t (Lt a) = Lt (numsubst0 t a)
-  | subst0 t (Le a) = Le (numsubst0 t a)
-  | subst0 t (Gt a) = Gt (numsubst0 t a)
-  | subst0 t (Ge a) = Ge (numsubst0 t a)
-  | subst0 t (Eq a) = Eq (numsubst0 t a)
-  | subst0 t (NEq a) = NEq (numsubst0 t a)
-  | subst0 t (Dvd (i, a)) = Dvd (i, numsubst0 t a)
-  | subst0 t (NDvd (i, a)) = NDvd (i, numsubst0 t a)
-  | subst0 t (NOT p) = NOT (subst0 t p)
-  | subst0 t (And (p, q)) = And (subst0 t p, subst0 t q)
-  | subst0 t (Or (p, q)) = Or (subst0 t p, subst0 t q)
-  | subst0 t (Imp (p, q)) = Imp (subst0 t p, subst0 t q)
-  | subst0 t (Iff (p, q)) = Iff (subst0 t p, subst0 t q)
-  | subst0 t (Closed P) = Closed P
-  | subst0 t (NClosed P) = NClosed P;
-
-fun minusinf (And (p, q)) = And (minusinf p, minusinf q)
-  | minusinf (Or (p, q)) = Or (minusinf p, minusinf q)
-  | minusinf (Eq (CX (c, e))) = F
-  | minusinf (NEq (CX (c, e))) = T
-  | minusinf (Lt (CX (c, e))) = T
-  | minusinf (Le (CX (c, e))) = T
-  | minusinf (Gt (CX (c, e))) = F
-  | minusinf (Ge (CX (c, e))) = F
-  | minusinf T = T
-  | minusinf F = F
-  | minusinf (Lt (C bo)) = Lt (C bo)
-  | minusinf (Lt (Bound bp)) = Lt (Bound bp)
-  | minusinf (Lt (Neg bs)) = Lt (Neg bs)
-  | minusinf (Lt (Add (bt, bu))) = Lt (Add (bt, bu))
-  | minusinf (Lt (Sub (bv, bw))) = Lt (Sub (bv, bw))
-  | minusinf (Lt (Mul (bx, by))) = Lt (Mul (bx, by))
-  | minusinf (Le (C ck)) = Le (C ck)
-  | minusinf (Le (Bound cl)) = Le (Bound cl)
-  | minusinf (Le (Neg co)) = Le (Neg co)
-  | minusinf (Le (Add (cp, cq))) = Le (Add (cp, cq))
-  | minusinf (Le (Sub (cr, cs))) = Le (Sub (cr, cs))
-  | minusinf (Le (Mul (ct, cu))) = Le (Mul (ct, cu))
-  | minusinf (Gt (C dg)) = Gt (C dg)
-  | minusinf (Gt (Bound dh)) = Gt (Bound dh)
-  | minusinf (Gt (Neg dk)) = Gt (Neg dk)
-  | minusinf (Gt (Add (dl, dm))) = Gt (Add (dl, dm))
-  | minusinf (Gt (Sub (dn, do'))) = Gt (Sub (dn, do'))
-  | minusinf (Gt (Mul (dp, dq))) = Gt (Mul (dp, dq))
-  | minusinf (Ge (C ec)) = Ge (C ec)
-  | minusinf (Ge (Bound ed)) = Ge (Bound ed)
-  | minusinf (Ge (Neg eg)) = Ge (Neg eg)
-  | minusinf (Ge (Add (eh, ei))) = Ge (Add (eh, ei))
-  | minusinf (Ge (Sub (ej, ek))) = Ge (Sub (ej, ek))
-  | minusinf (Ge (Mul (el, em))) = Ge (Mul (el, em))
-  | minusinf (Eq (C ey)) = Eq (C ey)
-  | minusinf (Eq (Bound ez)) = Eq (Bound ez)
-  | minusinf (Eq (Neg fc)) = Eq (Neg fc)
-  | minusinf (Eq (Add (fd, fe))) = Eq (Add (fd, fe))
-  | minusinf (Eq (Sub (ff, fg))) = Eq (Sub (ff, fg))
-  | minusinf (Eq (Mul (fh, fi))) = Eq (Mul (fh, fi))
-  | minusinf (NEq (C fu)) = NEq (C fu)
-  | minusinf (NEq (Bound fv)) = NEq (Bound fv)
-  | minusinf (NEq (Neg fy)) = NEq (Neg fy)
-  | minusinf (NEq (Add (fz, ga))) = NEq (Add (fz, ga))
-  | minusinf (NEq (Sub (gb, gc))) = NEq (Sub (gb, gc))
-  | minusinf (NEq (Mul (gd, ge))) = NEq (Mul (gd, ge))
-  | minusinf (Dvd (aa, ab)) = Dvd (aa, ab)
-  | minusinf (NDvd (ac, ad)) = NDvd (ac, ad)
-  | minusinf (NOT ae) = NOT ae
-  | minusinf (Imp (aj, ak)) = Imp (aj, ak)
-  | minusinf (Iff (al, am)) = Iff (al, am)
-  | minusinf (E an) = E an
-  | minusinf (A ao) = A ao
-  | minusinf (Closed ap) = Closed ap
-  | minusinf (NClosed aq) = NClosed aq;
-
-fun iupt (i, j) = (if (j < i) then [] else (i :: iupt ((i + 1), j)));
-
-fun mirror (And (p, q)) = And (mirror p, mirror q)
-  | mirror (Or (p, q)) = Or (mirror p, mirror q)
-  | mirror (Eq (CX (c, e))) = Eq (CX (c, Neg e))
-  | mirror (NEq (CX (c, e))) = NEq (CX (c, Neg e))
-  | mirror (Lt (CX (c, e))) = Gt (CX (c, Neg e))
-  | mirror (Le (CX (c, e))) = Ge (CX (c, Neg e))
-  | mirror (Gt (CX (c, e))) = Lt (CX (c, Neg e))
-  | mirror (Ge (CX (c, e))) = Le (CX (c, Neg e))
-  | mirror (Dvd (i, CX (c, e))) = Dvd (i, CX (c, Neg e))
-  | mirror (NDvd (i, CX (c, e))) = NDvd (i, CX (c, Neg e))
-  | mirror T = T
-  | mirror F = F
-  | mirror (Lt (C bo)) = Lt (C bo)
-  | mirror (Lt (Bound bp)) = Lt (Bound bp)
-  | mirror (Lt (Neg bs)) = Lt (Neg bs)
-  | mirror (Lt (Add (bt, bu))) = Lt (Add (bt, bu))
-  | mirror (Lt (Sub (bv, bw))) = Lt (Sub (bv, bw))
-  | mirror (Lt (Mul (bx, by))) = Lt (Mul (bx, by))
-  | mirror (Le (C ck)) = Le (C ck)
-  | mirror (Le (Bound cl)) = Le (Bound cl)
-  | mirror (Le (Neg co)) = Le (Neg co)
-  | mirror (Le (Add (cp, cq))) = Le (Add (cp, cq))
-  | mirror (Le (Sub (cr, cs))) = Le (Sub (cr, cs))
-  | mirror (Le (Mul (ct, cu))) = Le (Mul (ct, cu))
-  | mirror (Gt (C dg)) = Gt (C dg)
-  | mirror (Gt (Bound dh)) = Gt (Bound dh)
-  | mirror (Gt (Neg dk)) = Gt (Neg dk)
-  | mirror (Gt (Add (dl, dm))) = Gt (Add (dl, dm))
-  | mirror (Gt (Sub (dn, do'))) = Gt (Sub (dn, do'))
-  | mirror (Gt (Mul (dp, dq))) = Gt (Mul (dp, dq))
-  | mirror (Ge (C ec)) = Ge (C ec)
-  | mirror (Ge (Bound ed)) = Ge (Bound ed)
-  | mirror (Ge (Neg eg)) = Ge (Neg eg)
-  | mirror (Ge (Add (eh, ei))) = Ge (Add (eh, ei))
-  | mirror (Ge (Sub (ej, ek))) = Ge (Sub (ej, ek))
-  | mirror (Ge (Mul (el, em))) = Ge (Mul (el, em))
-  | mirror (Eq (C ey)) = Eq (C ey)
-  | mirror (Eq (Bound ez)) = Eq (Bound ez)
-  | mirror (Eq (Neg fc)) = Eq (Neg fc)
-  | mirror (Eq (Add (fd, fe))) = Eq (Add (fd, fe))
-  | mirror (Eq (Sub (ff, fg))) = Eq (Sub (ff, fg))
-  | mirror (Eq (Mul (fh, fi))) = Eq (Mul (fh, fi))
-  | mirror (NEq (C fu)) = NEq (C fu)
-  | mirror (NEq (Bound fv)) = NEq (Bound fv)
-  | mirror (NEq (Neg fy)) = NEq (Neg fy)
-  | mirror (NEq (Add (fz, ga))) = NEq (Add (fz, ga))
-  | mirror (NEq (Sub (gb, gc))) = NEq (Sub (gb, gc))
-  | mirror (NEq (Mul (gd, ge))) = NEq (Mul (gd, ge))
-  | mirror (Dvd (aa, C gq)) = Dvd (aa, C gq)
-  | mirror (Dvd (aa, Bound gr)) = Dvd (aa, Bound gr)
-  | mirror (Dvd (aa, Neg gu)) = Dvd (aa, Neg gu)
-  | mirror (Dvd (aa, Add (gv, gw))) = Dvd (aa, Add (gv, gw))
-  | mirror (Dvd (aa, Sub (gx, gy))) = Dvd (aa, Sub (gx, gy))
-  | mirror (Dvd (aa, Mul (gz, ha))) = Dvd (aa, Mul (gz, ha))
-  | mirror (NDvd (ac, C hm)) = NDvd (ac, C hm)
-  | mirror (NDvd (ac, Bound hn)) = NDvd (ac, Bound hn)
-  | mirror (NDvd (ac, Neg hq)) = NDvd (ac, Neg hq)
-  | mirror (NDvd (ac, Add (hr, hs))) = NDvd (ac, Add (hr, hs))
-  | mirror (NDvd (ac, Sub (ht, hu))) = NDvd (ac, Sub (ht, hu))
-  | mirror (NDvd (ac, Mul (hv, hw))) = NDvd (ac, Mul (hv, hw))
-  | mirror (NOT ae) = NOT ae
-  | mirror (Imp (aj, ak)) = Imp (aj, ak)
-  | mirror (Iff (al, am)) = Iff (al, am)
-  | mirror (E an) = E an
-  | mirror (A ao) = A ao
-  | mirror (Closed ap) = Closed ap
-  | mirror (NClosed aq) = NClosed aq;
-
-fun plus_def0 m n = nat ((m) + (n));
-
-fun size_def9 [] = 0
-  | size_def9 (a :: list) = plus_def0 (size_def9 list) (0 + 1);
-
-fun alpha (And (p, q)) = append (alpha p) (alpha q)
-  | alpha (Or (p, q)) = append (alpha p) (alpha q)
-  | alpha (Eq (CX (c, e))) = [Add (C ~1, e)]
-  | alpha (NEq (CX (c, e))) = [e]
-  | alpha (Lt (CX (c, e))) = [e]
-  | alpha (Le (CX (c, e))) = [Add (C ~1, e)]
-  | alpha (Gt (CX (c, e))) = []
-  | alpha (Ge (CX (c, e))) = []
-  | alpha T = []
-  | alpha F = []
-  | alpha (Lt (C bo)) = []
-  | alpha (Lt (Bound bp)) = []
-  | alpha (Lt (Neg bs)) = []
-  | alpha (Lt (Add (bt, bu))) = []
-  | alpha (Lt (Sub (bv, bw))) = []
-  | alpha (Lt (Mul (bx, by))) = []
-  | alpha (Le (C ck)) = []
-  | alpha (Le (Bound cl)) = []
-  | alpha (Le (Neg co)) = []
-  | alpha (Le (Add (cp, cq))) = []
-  | alpha (Le (Sub (cr, cs))) = []
-  | alpha (Le (Mul (ct, cu))) = []
-  | alpha (Gt (C dg)) = []
-  | alpha (Gt (Bound dh)) = []
-  | alpha (Gt (Neg dk)) = []
-  | alpha (Gt (Add (dl, dm))) = []
-  | alpha (Gt (Sub (dn, do'))) = []
-  | alpha (Gt (Mul (dp, dq))) = []
-  | alpha (Ge (C ec)) = []
-  | alpha (Ge (Bound ed)) = []
-  | alpha (Ge (Neg eg)) = []
-  | alpha (Ge (Add (eh, ei))) = []
-  | alpha (Ge (Sub (ej, ek))) = []
-  | alpha (Ge (Mul (el, em))) = []
-  | alpha (Eq (C ey)) = []
-  | alpha (Eq (Bound ez)) = []
-  | alpha (Eq (Neg fc)) = []
-  | alpha (Eq (Add (fd, fe))) = []
-  | alpha (Eq (Sub (ff, fg))) = []
-  | alpha (Eq (Mul (fh, fi))) = []
-  | alpha (NEq (C fu)) = []
-  | alpha (NEq (Bound fv)) = []
-  | alpha (NEq (Neg fy)) = []
-  | alpha (NEq (Add (fz, ga))) = []
-  | alpha (NEq (Sub (gb, gc))) = []
-  | alpha (NEq (Mul (gd, ge))) = []
-  | alpha (Dvd (aa, ab)) = []
-  | alpha (NDvd (ac, ad)) = []
-  | alpha (NOT ae) = []
-  | alpha (Imp (aj, ak)) = []
-  | alpha (Iff (al, am)) = []
-  | alpha (E an) = []
-  | alpha (A ao) = []
-  | alpha (Closed ap) = []
-  | alpha (NClosed aq) = [];
-
-fun memberl x [] = false
-  | memberl x (y :: ys) = ((x = y) orelse memberl x ys);
-
-fun remdups [] = []
-  | remdups (x :: xs) =
-    (if memberl x xs then remdups xs else (x :: remdups xs));
-
-fun beta (And (p, q)) = append (beta p) (beta q)
-  | beta (Or (p, q)) = append (beta p) (beta q)
-  | beta (Eq (CX (c, e))) = [Sub (C ~1, e)]
-  | beta (NEq (CX (c, e))) = [Neg e]
-  | beta (Lt (CX (c, e))) = []
-  | beta (Le (CX (c, e))) = []
-  | beta (Gt (CX (c, e))) = [Neg e]
-  | beta (Ge (CX (c, e))) = [Sub (C ~1, e)]
-  | beta T = []
-  | beta F = []
-  | beta (Lt (C bo)) = []
-  | beta (Lt (Bound bp)) = []
-  | beta (Lt (Neg bs)) = []
-  | beta (Lt (Add (bt, bu))) = []
-  | beta (Lt (Sub (bv, bw))) = []
-  | beta (Lt (Mul (bx, by))) = []
-  | beta (Le (C ck)) = []
-  | beta (Le (Bound cl)) = []
-  | beta (Le (Neg co)) = []
-  | beta (Le (Add (cp, cq))) = []
-  | beta (Le (Sub (cr, cs))) = []
-  | beta (Le (Mul (ct, cu))) = []
-  | beta (Gt (C dg)) = []
-  | beta (Gt (Bound dh)) = []
-  | beta (Gt (Neg dk)) = []
-  | beta (Gt (Add (dl, dm))) = []
-  | beta (Gt (Sub (dn, do'))) = []
-  | beta (Gt (Mul (dp, dq))) = []
-  | beta (Ge (C ec)) = []
-  | beta (Ge (Bound ed)) = []
-  | beta (Ge (Neg eg)) = []
-  | beta (Ge (Add (eh, ei))) = []
-  | beta (Ge (Sub (ej, ek))) = []
-  | beta (Ge (Mul (el, em))) = []
-  | beta (Eq (C ey)) = []
-  | beta (Eq (Bound ez)) = []
-  | beta (Eq (Neg fc)) = []
-  | beta (Eq (Add (fd, fe))) = []
-  | beta (Eq (Sub (ff, fg))) = []
-  | beta (Eq (Mul (fh, fi))) = []
-  | beta (NEq (C fu)) = []
-  | beta (NEq (Bound fv)) = []
-  | beta (NEq (Neg fy)) = []
-  | beta (NEq (Add (fz, ga))) = []
-  | beta (NEq (Sub (gb, gc))) = []
-  | beta (NEq (Mul (gd, ge))) = []
-  | beta (Dvd (aa, ab)) = []
-  | beta (NDvd (ac, ad)) = []
-  | beta (NOT ae) = []
-  | beta (Imp (aj, ak)) = []
-  | beta (Iff (al, am)) = []
-  | beta (E an) = []
-  | beta (A ao) = []
-  | beta (Closed ap) = []
-  | beta (NClosed aq) = [];
-
-fun fst (a, b) = a;
-
-fun div_def1 a b = fst (divAlg (a, b));
-
-fun div_def0 m n = nat (div_def1 (m) (n));
-
-fun mod_def0 m n = nat (mod_def1 (m) (n));
-
-fun gcd (m, n) = (if (n = 0) then m else gcd (n, mod_def0 m n));
-
-fun times_def0 m n = nat ((m) * (n));
-
-fun lcm x = (fn (m, n) => div_def0 (times_def0 m n) (gcd (m, n))) x;
-
-fun ilcm x = (fn j => (lcm (nat (abs x), nat (abs j))));
-
-fun delta (And (p, q)) = ilcm (delta p) (delta q)
-  | delta (Or (p, q)) = ilcm (delta p) (delta q)
-  | delta (Dvd (i, CX (c, e))) = i
-  | delta (NDvd (i, CX (c, e))) = i
-  | delta T = 1
-  | delta F = 1
-  | delta (Lt u) = 1
-  | delta (Le v) = 1
-  | delta (Gt w) = 1
-  | delta (Ge x) = 1
-  | delta (Eq y) = 1
-  | delta (NEq z) = 1
-  | delta (Dvd (aa, C bo)) = 1
-  | delta (Dvd (aa, Bound bp)) = 1
-  | delta (Dvd (aa, Neg bs)) = 1
-  | delta (Dvd (aa, Add (bt, bu))) = 1
-  | delta (Dvd (aa, Sub (bv, bw))) = 1
-  | delta (Dvd (aa, Mul (bx, by))) = 1
-  | delta (NDvd (ac, C ck)) = 1
-  | delta (NDvd (ac, Bound cl)) = 1
-  | delta (NDvd (ac, Neg co)) = 1
-  | delta (NDvd (ac, Add (cp, cq))) = 1
-  | delta (NDvd (ac, Sub (cr, cs))) = 1
-  | delta (NDvd (ac, Mul (ct, cu))) = 1
-  | delta (NOT ae) = 1
-  | delta (Imp (aj, ak)) = 1
-  | delta (Iff (al, am)) = 1
-  | delta (E an) = 1
-  | delta (A ao) = 1
-  | delta (Closed ap) = 1
-  | delta (NClosed aq) = 1;
-
-fun a_beta (And (p, q)) = (fn k => And (a_beta p k, a_beta q k))
-  | a_beta (Or (p, q)) = (fn k => Or (a_beta p k, a_beta q k))
-  | a_beta (Eq (CX (c, e))) = (fn k => Eq (CX (1, Mul (div_def1 k c, e))))
-  | a_beta (NEq (CX (c, e))) = (fn k => NEq (CX (1, Mul (div_def1 k c, e))))
-  | a_beta (Lt (CX (c, e))) = (fn k => Lt (CX (1, Mul (div_def1 k c, e))))
-  | a_beta (Le (CX (c, e))) = (fn k => Le (CX (1, Mul (div_def1 k c, e))))
-  | a_beta (Gt (CX (c, e))) = (fn k => Gt (CX (1, Mul (div_def1 k c, e))))
-  | a_beta (Ge (CX (c, e))) = (fn k => Ge (CX (1, Mul (div_def1 k c, e))))
-  | a_beta (Dvd (i, CX (c, e))) =
-    (fn k => Dvd ((div_def1 k c * i), CX (1, Mul (div_def1 k c, e))))
-  | a_beta (NDvd (i, CX (c, e))) =
-    (fn k => NDvd ((div_def1 k c * i), CX (1, Mul (div_def1 k c, e))))
-  | a_beta T = (fn k => T)
-  | a_beta F = (fn k => F)
-  | a_beta (Lt (C bo)) = (fn k => Lt (C bo))
-  | a_beta (Lt (Bound bp)) = (fn k => Lt (Bound bp))
-  | a_beta (Lt (Neg bs)) = (fn k => Lt (Neg bs))
-  | a_beta (Lt (Add (bt, bu))) = (fn k => Lt (Add (bt, bu)))
-  | a_beta (Lt (Sub (bv, bw))) = (fn k => Lt (Sub (bv, bw)))
-  | a_beta (Lt (Mul (bx, by))) = (fn k => Lt (Mul (bx, by)))
-  | a_beta (Le (C ck)) = (fn k => Le (C ck))
-  | a_beta (Le (Bound cl)) = (fn k => Le (Bound cl))
-  | a_beta (Le (Neg co)) = (fn k => Le (Neg co))
-  | a_beta (Le (Add (cp, cq))) = (fn k => Le (Add (cp, cq)))
-  | a_beta (Le (Sub (cr, cs))) = (fn k => Le (Sub (cr, cs)))
-  | a_beta (Le (Mul (ct, cu))) = (fn k => Le (Mul (ct, cu)))
-  | a_beta (Gt (C dg)) = (fn k => Gt (C dg))
-  | a_beta (Gt (Bound dh)) = (fn k => Gt (Bound dh))
-  | a_beta (Gt (Neg dk)) = (fn k => Gt (Neg dk))
-  | a_beta (Gt (Add (dl, dm))) = (fn k => Gt (Add (dl, dm)))
-  | a_beta (Gt (Sub (dn, do'))) = (fn k => Gt (Sub (dn, do')))
-  | a_beta (Gt (Mul (dp, dq))) = (fn k => Gt (Mul (dp, dq)))
-  | a_beta (Ge (C ec)) = (fn k => Ge (C ec))
-  | a_beta (Ge (Bound ed)) = (fn k => Ge (Bound ed))
-  | a_beta (Ge (Neg eg)) = (fn k => Ge (Neg eg))
-  | a_beta (Ge (Add (eh, ei))) = (fn k => Ge (Add (eh, ei)))
-  | a_beta (Ge (Sub (ej, ek))) = (fn k => Ge (Sub (ej, ek)))
-  | a_beta (Ge (Mul (el, em))) = (fn k => Ge (Mul (el, em)))
-  | a_beta (Eq (C ey)) = (fn k => Eq (C ey))
-  | a_beta (Eq (Bound ez)) = (fn k => Eq (Bound ez))
-  | a_beta (Eq (Neg fc)) = (fn k => Eq (Neg fc))
-  | a_beta (Eq (Add (fd, fe))) = (fn k => Eq (Add (fd, fe)))
-  | a_beta (Eq (Sub (ff, fg))) = (fn k => Eq (Sub (ff, fg)))
-  | a_beta (Eq (Mul (fh, fi))) = (fn k => Eq (Mul (fh, fi)))
-  | a_beta (NEq (C fu)) = (fn k => NEq (C fu))
-  | a_beta (NEq (Bound fv)) = (fn k => NEq (Bound fv))
-  | a_beta (NEq (Neg fy)) = (fn k => NEq (Neg fy))
-  | a_beta (NEq (Add (fz, ga))) = (fn k => NEq (Add (fz, ga)))
-  | a_beta (NEq (Sub (gb, gc))) = (fn k => NEq (Sub (gb, gc)))
-  | a_beta (NEq (Mul (gd, ge))) = (fn k => NEq (Mul (gd, ge)))
-  | a_beta (Dvd (aa, C gq)) = (fn k => Dvd (aa, C gq))
-  | a_beta (Dvd (aa, Bound gr)) = (fn k => Dvd (aa, Bound gr))
-  | a_beta (Dvd (aa, Neg gu)) = (fn k => Dvd (aa, Neg gu))
-  | a_beta (Dvd (aa, Add (gv, gw))) = (fn k => Dvd (aa, Add (gv, gw)))
-  | a_beta (Dvd (aa, Sub (gx, gy))) = (fn k => Dvd (aa, Sub (gx, gy)))
-  | a_beta (Dvd (aa, Mul (gz, ha))) = (fn k => Dvd (aa, Mul (gz, ha)))
-  | a_beta (NDvd (ac, C hm)) = (fn k => NDvd (ac, C hm))
-  | a_beta (NDvd (ac, Bound hn)) = (fn k => NDvd (ac, Bound hn))
-  | a_beta (NDvd (ac, Neg hq)) = (fn k => NDvd (ac, Neg hq))
-  | a_beta (NDvd (ac, Add (hr, hs))) = (fn k => NDvd (ac, Add (hr, hs)))
-  | a_beta (NDvd (ac, Sub (ht, hu))) = (fn k => NDvd (ac, Sub (ht, hu)))
-  | a_beta (NDvd (ac, Mul (hv, hw))) = (fn k => NDvd (ac, Mul (hv, hw)))
-  | a_beta (NOT ae) = (fn k => NOT ae)
-  | a_beta (Imp (aj, ak)) = (fn k => Imp (aj, ak))
-  | a_beta (Iff (al, am)) = (fn k => Iff (al, am))
-  | a_beta (E an) = (fn k => E an)
-  | a_beta (A ao) = (fn k => A ao)
-  | a_beta (Closed ap) = (fn k => Closed ap)
-  | a_beta (NClosed aq) = (fn k => NClosed aq);
-
-fun zeta (And (p, q)) = ilcm (zeta p) (zeta q)
-  | zeta (Or (p, q)) = ilcm (zeta p) (zeta q)
-  | zeta (Eq (CX (c, e))) = c
-  | zeta (NEq (CX (c, e))) = c
-  | zeta (Lt (CX (c, e))) = c
-  | zeta (Le (CX (c, e))) = c
-  | zeta (Gt (CX (c, e))) = c
-  | zeta (Ge (CX (c, e))) = c
-  | zeta (Dvd (i, CX (c, e))) = c
-  | zeta (NDvd (i, CX (c, e))) = c
-  | zeta T = 1
-  | zeta F = 1
-  | zeta (Lt (C bo)) = 1
-  | zeta (Lt (Bound bp)) = 1
-  | zeta (Lt (Neg bs)) = 1
-  | zeta (Lt (Add (bt, bu))) = 1
-  | zeta (Lt (Sub (bv, bw))) = 1
-  | zeta (Lt (Mul (bx, by))) = 1
-  | zeta (Le (C ck)) = 1
-  | zeta (Le (Bound cl)) = 1
-  | zeta (Le (Neg co)) = 1
-  | zeta (Le (Add (cp, cq))) = 1
-  | zeta (Le (Sub (cr, cs))) = 1
-  | zeta (Le (Mul (ct, cu))) = 1
-  | zeta (Gt (C dg)) = 1
-  | zeta (Gt (Bound dh)) = 1
-  | zeta (Gt (Neg dk)) = 1
-  | zeta (Gt (Add (dl, dm))) = 1
-  | zeta (Gt (Sub (dn, do'))) = 1
-  | zeta (Gt (Mul (dp, dq))) = 1
-  | zeta (Ge (C ec)) = 1
-  | zeta (Ge (Bound ed)) = 1
-  | zeta (Ge (Neg eg)) = 1
-  | zeta (Ge (Add (eh, ei))) = 1
-  | zeta (Ge (Sub (ej, ek))) = 1
-  | zeta (Ge (Mul (el, em))) = 1
-  | zeta (Eq (C ey)) = 1
-  | zeta (Eq (Bound ez)) = 1
-  | zeta (Eq (Neg fc)) = 1
-  | zeta (Eq (Add (fd, fe))) = 1
-  | zeta (Eq (Sub (ff, fg))) = 1
-  | zeta (Eq (Mul (fh, fi))) = 1
-  | zeta (NEq (C fu)) = 1
-  | zeta (NEq (Bound fv)) = 1
-  | zeta (NEq (Neg fy)) = 1
-  | zeta (NEq (Add (fz, ga))) = 1
-  | zeta (NEq (Sub (gb, gc))) = 1
-  | zeta (NEq (Mul (gd, ge))) = 1
-  | zeta (Dvd (aa, C gq)) = 1
-  | zeta (Dvd (aa, Bound gr)) = 1
-  | zeta (Dvd (aa, Neg gu)) = 1
-  | zeta (Dvd (aa, Add (gv, gw))) = 1
-  | zeta (Dvd (aa, Sub (gx, gy))) = 1
-  | zeta (Dvd (aa, Mul (gz, ha))) = 1
-  | zeta (NDvd (ac, C hm)) = 1
-  | zeta (NDvd (ac, Bound hn)) = 1
-  | zeta (NDvd (ac, Neg hq)) = 1
-  | zeta (NDvd (ac, Add (hr, hs))) = 1
-  | zeta (NDvd (ac, Sub (ht, hu))) = 1
-  | zeta (NDvd (ac, Mul (hv, hw))) = 1
-  | zeta (NOT ae) = 1
-  | zeta (Imp (aj, ak)) = 1
-  | zeta (Iff (al, am)) = 1
-  | zeta (E an) = 1
-  | zeta (A ao) = 1
-  | zeta (Closed ap) = 1
-  | zeta (NClosed aq) = 1;
-
-fun split x = (fn p => x (fst p) (snd p));
-
-fun zsplit0 (C c) = (0, C c)
-  | zsplit0 (Bound n) = (if (n = 0) then (1, C 0) else (0, Bound n))
-  | zsplit0 (CX (i, a)) = split (fn i' => (fn x => ((i + i'), x))) (zsplit0 a)
-  | zsplit0 (Neg a) = (fn (i', a') => (~ i', Neg a')) (zsplit0 a)
-  | zsplit0 (Add (a, b)) =
-    (fn (ia, a') => (fn (ib, b') => ((ia + ib), Add (a', b'))) (zsplit0 b))
-      (zsplit0 a)
-  | zsplit0 (Sub (a, b)) =
-    (fn (ia, a') =>
-      (fn (ib, b') => (minus_def2 ia ib, Sub (a', b'))) (zsplit0 b))
-      (zsplit0 a)
-  | zsplit0 (Mul (i, a)) = (fn (i', a') => ((i * i'), Mul (i, a'))) (zsplit0 a);
-
-fun zlfm (And (p, q)) = And (zlfm p, zlfm q)
-  | zlfm (Or (p, q)) = Or (zlfm p, zlfm q)
-  | zlfm (Imp (p, q)) = Or (zlfm (NOT p), zlfm q)
-  | zlfm (Iff (p, q)) =
-    Or (And (zlfm p, zlfm q), And (zlfm (NOT p), zlfm (NOT q)))
-  | zlfm (Lt a) =
-    let val x = zsplit0 a
-    in (fn (c, r) =>
-         (if (c = 0) then Lt r
-           else (if (0 < c) then Lt (CX (c, r)) else Gt (CX (~ c, Neg r)))))
-         x
-    end
-  | zlfm (Le a) =
-    let val x = zsplit0 a
-    in (fn (c, r) =>
-         (if (c = 0) then Le r
-           else (if (0 < c) then Le (CX (c, r)) else Ge (CX (~ c, Neg r)))))
-         x
-    end
-  | zlfm (Gt a) =
-    let val x = zsplit0 a
-    in (fn (c, r) =>
-         (if (c = 0) then Gt r
-           else (if (0 < c) then Gt (CX (c, r)) else Lt (CX (~ c, Neg r)))))
-         x
-    end
-  | zlfm (Ge a) =
-    let val x = zsplit0 a
-    in (fn (c, r) =>
-         (if (c = 0) then Ge r
-           else (if (0 < c) then Ge (CX (c, r)) else Le (CX (~ c, Neg r)))))
-         x
-    end
-  | zlfm (Eq a) =
-    let val x = zsplit0 a
-    in (fn (c, r) =>
-         (if (c = 0) then Eq r
-           else (if (0 < c) then Eq (CX (c, r)) else Eq (CX (~ c, Neg r)))))
-         x
-    end
-  | zlfm (NEq a) =
-    let val x = zsplit0 a
-    in (fn (c, r) =>
-         (if (c = 0) then NEq r
-           else (if (0 < c) then NEq (CX (c, r)) else NEq (CX (~ c, Neg r)))))
-         x
-    end
-  | zlfm (Dvd (i, a)) =
-    (if (i = 0) then zlfm (Eq a)
-      else let val x = zsplit0 a
-           in (fn (c, r) =>
-                (if (c = 0) then Dvd (abs i, r)
-                  else (if (0 < c) then Dvd (abs i, CX (c, r))
-                         else Dvd (abs i, CX (~ c, Neg r)))))
-                x
-           end)
-  | zlfm (NDvd (i, a)) =
-    (if (i = 0) then zlfm (NEq a)
-      else let val x = zsplit0 a
-           in (fn (c, r) =>
-                (if (c = 0) then NDvd (abs i, r)
-                  else (if (0 < c) then NDvd (abs i, CX (c, r))
-                         else NDvd (abs i, CX (~ c, Neg r)))))
-                x
-           end)
-  | zlfm (NOT (And (p, q))) = Or (zlfm (NOT p), zlfm (NOT q))
-  | zlfm (NOT (Or (p, q))) = And (zlfm (NOT p), zlfm (NOT q))
-  | zlfm (NOT (Imp (p, q))) = And (zlfm p, zlfm (NOT q))
-  | zlfm (NOT (Iff (p, q))) =
-    Or (And (zlfm p, zlfm (NOT q)), And (zlfm (NOT p), zlfm q))
-  | zlfm (NOT (NOT p)) = zlfm p
-  | zlfm (NOT T) = F
-  | zlfm (NOT F) = T
-  | zlfm (NOT (Lt a)) = zlfm (Ge a)
-  | zlfm (NOT (Le a)) = zlfm (Gt a)
-  | zlfm (NOT (Gt a)) = zlfm (Le a)
-  | zlfm (NOT (Ge a)) = zlfm (Lt a)
-  | zlfm (NOT (Eq a)) = zlfm (NEq a)
-  | zlfm (NOT (NEq a)) = zlfm (Eq a)
-  | zlfm (NOT (Dvd (i, a))) = zlfm (NDvd (i, a))
-  | zlfm (NOT (NDvd (i, a))) = zlfm (Dvd (i, a))
-  | zlfm (NOT (Closed P)) = NClosed P
-  | zlfm (NOT (NClosed P)) = Closed P
-  | zlfm T = T
-  | zlfm F = F
-  | zlfm (NOT (E ci)) = NOT (E ci)
-  | zlfm (NOT (A cj)) = NOT (A cj)
-  | zlfm (E ao) = E ao
-  | zlfm (A ap) = A ap
-  | zlfm (Closed aq) = Closed aq
-  | zlfm (NClosed ar) = NClosed ar;
-
-fun unit p =
-  let val p' = zlfm p; val l = zeta p';
-      val q = And (Dvd (l, CX (1, C 0)), a_beta p' l); val d = delta q;
-      val B = remdups (map simpnum (beta q));
-      val a = remdups (map simpnum (alpha q))
-  in (if less_eq_def3 (size_def9 B) (size_def9 a) then (q, (B, d))
-       else (mirror q, (a, d)))
-  end;
-
-fun cooper p =
-  let val (q, (B, d)) = unit p; val js = iupt (1, d);
-      val mq = simpfm (minusinf q);
-      val md = evaldjf (fn j => simpfm (subst0 (C j) mq)) js
-  in (if (md = T) then T
-       else let val qd =
-                  evaldjf (fn (b, j) => simpfm (subst0 (Add (b, C j)) q))
-                    (allpairs (fn x => fn xa => (x, xa)) B js)
-            in decr (disj md qd) end)
-  end;
-
-fun prep (E T) = T
-  | prep (E F) = F
-  | prep (E (Or (p, q))) = Or (prep (E p), prep (E q))
-  | prep (E (Imp (p, q))) = Or (prep (E (NOT p)), prep (E q))
-  | prep (E (Iff (p, q))) =
-    Or (prep (E (And (p, q))), prep (E (And (NOT p, NOT q))))
-  | prep (E (NOT (And (p, q)))) = Or (prep (E (NOT p)), prep (E (NOT q)))
-  | prep (E (NOT (Imp (p, q)))) = prep (E (And (p, NOT q)))
-  | prep (E (NOT (Iff (p, q)))) =
-    Or (prep (E (And (p, NOT q))), prep (E (And (NOT p, q))))
-  | prep (E (Lt ef)) = E (prep (Lt ef))
-  | prep (E (Le eg)) = E (prep (Le eg))
-  | prep (E (Gt eh)) = E (prep (Gt eh))
-  | prep (E (Ge ei)) = E (prep (Ge ei))
-  | prep (E (Eq ej)) = E (prep (Eq ej))
-  | prep (E (NEq ek)) = E (prep (NEq ek))
-  | prep (E (Dvd (el, em))) = E (prep (Dvd (el, em)))
-  | prep (E (NDvd (en, eo))) = E (prep (NDvd (en, eo)))
-  | prep (E (NOT T)) = E (prep (NOT T))
-  | prep (E (NOT F)) = E (prep (NOT F))
-  | prep (E (NOT (Lt gw))) = E (prep (NOT (Lt gw)))
-  | prep (E (NOT (Le gx))) = E (prep (NOT (Le gx)))
-  | prep (E (NOT (Gt gy))) = E (prep (NOT (Gt gy)))
-  | prep (E (NOT (Ge gz))) = E (prep (NOT (Ge gz)))
-  | prep (E (NOT (Eq ha))) = E (prep (NOT (Eq ha)))
-  | prep (E (NOT (NEq hb))) = E (prep (NOT (NEq hb)))
-  | prep (E (NOT (Dvd (hc, hd)))) = E (prep (NOT (Dvd (hc, hd))))
-  | prep (E (NOT (NDvd (he, hf)))) = E (prep (NOT (NDvd (he, hf))))
-  | prep (E (NOT (NOT hg))) = E (prep (NOT (NOT hg)))
-  | prep (E (NOT (Or (hj, hk)))) = E (prep (NOT (Or (hj, hk))))
-  | prep (E (NOT (E hp))) = E (prep (NOT (E hp)))
-  | prep (E (NOT (A hq))) = E (prep (NOT (A hq)))
-  | prep (E (NOT (Closed hr))) = E (prep (NOT (Closed hr)))
-  | prep (E (NOT (NClosed hs))) = E (prep (NOT (NClosed hs)))
-  | prep (E (And (eq, er))) = E (prep (And (eq, er)))
-  | prep (E (E ey)) = E (prep (E ey))
-  | prep (E (A ez)) = E (prep (A ez))
-  | prep (E (Closed fa)) = E (prep (Closed fa))
-  | prep (E (NClosed fb)) = E (prep (NClosed fb))
-  | prep (A (And (p, q))) = And (prep (A p), prep (A q))
-  | prep (A T) = prep (NOT (E (NOT T)))
-  | prep (A F) = prep (NOT (E (NOT F)))
-  | prep (A (Lt jn)) = prep (NOT (E (NOT (Lt jn))))
-  | prep (A (Le jo)) = prep (NOT (E (NOT (Le jo))))
-  | prep (A (Gt jp)) = prep (NOT (E (NOT (Gt jp))))
-  | prep (A (Ge jq)) = prep (NOT (E (NOT (Ge jq))))
-  | prep (A (Eq jr)) = prep (NOT (E (NOT (Eq jr))))
-  | prep (A (NEq js)) = prep (NOT (E (NOT (NEq js))))
-  | prep (A (Dvd (jt, ju))) = prep (NOT (E (NOT (Dvd (jt, ju)))))
-  | prep (A (NDvd (jv, jw))) = prep (NOT (E (NOT (NDvd (jv, jw)))))
-  | prep (A (NOT jx)) = prep (NOT (E (NOT (NOT jx))))
-  | prep (A (Or (ka, kb))) = prep (NOT (E (NOT (Or (ka, kb)))))
-  | prep (A (Imp (kc, kd))) = prep (NOT (E (NOT (Imp (kc, kd)))))
-  | prep (A (Iff (ke, kf))) = prep (NOT (E (NOT (Iff (ke, kf)))))
-  | prep (A (E kg)) = prep (NOT (E (NOT (E kg))))
-  | prep (A (A kh)) = prep (NOT (E (NOT (A kh))))
-  | prep (A (Closed ki)) = prep (NOT (E (NOT (Closed ki))))
-  | prep (A (NClosed kj)) = prep (NOT (E (NOT (NClosed kj))))
-  | prep (NOT (NOT p)) = prep p
-  | prep (NOT (And (p, q))) = Or (prep (NOT p), prep (NOT q))
-  | prep (NOT (A p)) = prep (E (NOT p))
-  | prep (NOT (Or (p, q))) = And (prep (NOT p), prep (NOT q))
-  | prep (NOT (Imp (p, q))) = And (prep p, prep (NOT q))
-  | prep (NOT (Iff (p, q))) = Or (prep (And (p, NOT q)), prep (And (NOT p, q)))
-  | prep (NOT T) = NOT (prep T)
-  | prep (NOT F) = NOT (prep F)
-  | prep (NOT (Lt bo)) = NOT (prep (Lt bo))
-  | prep (NOT (Le bp)) = NOT (prep (Le bp))
-  | prep (NOT (Gt bq)) = NOT (prep (Gt bq))
-  | prep (NOT (Ge br)) = NOT (prep (Ge br))
-  | prep (NOT (Eq bs)) = NOT (prep (Eq bs))
-  | prep (NOT (NEq bt)) = NOT (prep (NEq bt))
-  | prep (NOT (Dvd (bu, bv))) = NOT (prep (Dvd (bu, bv)))
-  | prep (NOT (NDvd (bw, bx))) = NOT (prep (NDvd (bw, bx)))
-  | prep (NOT (E ch)) = NOT (prep (E ch))
-  | prep (NOT (Closed cj)) = NOT (prep (Closed cj))
-  | prep (NOT (NClosed ck)) = NOT (prep (NClosed ck))
-  | prep (Or (p, q)) = Or (prep p, prep q)
-  | prep (And (p, q)) = And (prep p, prep q)
-  | prep (Imp (p, q)) = prep (Or (NOT p, q))
-  | prep (Iff (p, q)) = Or (prep (And (p, q)), prep (And (NOT p, NOT q)))
-  | prep T = T
-  | prep F = F
-  | prep (Lt u) = Lt u
-  | prep (Le v) = Le v
-  | prep (Gt w) = Gt w
-  | prep (Ge x) = Ge x
-  | prep (Eq y) = Eq y
-  | prep (NEq z) = NEq z
-  | prep (Dvd (aa, ab)) = Dvd (aa, ab)
-  | prep (NDvd (ac, ad)) = NDvd (ac, ad)
-  | prep (Closed ap) = Closed ap
-  | prep (NClosed aq) = NClosed aq;
-
-fun pa x = qelim (prep x) cooper;
-
-val pa = (fn x => pa x);
-
-val test =
-  (fn x =>
-    pa (E (A (Imp (Ge (Sub (Bound 0, Bound one_def0)),
-                    E (E (Eq (Sub (Add (Mul (3, Bound one_def0),
- Mul (5, Bound 0)),
-                                    Bound (nat 2))))))))));
-
-end;
--- a/src/HOL/Tools/Presburger/presburger.ML	Thu Jun 21 20:48:47 2007 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,201 +0,0 @@
-
-(*  Title:      HOL/Tools/Presburger/presburger.ML
-    ID:         $Id$
-    Author:     Amine Chaieb, TU Muenchen
-*)
-
-signature PRESBURGER =
- sig
-  val cooper_tac: bool -> thm list -> thm list -> Proof.context -> int -> Tactical.tactic
-end;
-
-structure Presburger : PRESBURGER = 
-struct
-
-open Conv;
-val comp_ss = HOL_ss addsimps @{thms "Groebner_Basis.comp_arith"};
-
-fun strip_imp_cprems ct = 
- case term_of ct of 
-  Const ("==>", _) $ _ $ _ => Thm.dest_arg1 ct :: strip_imp_cprems (Thm.dest_arg ct)
-| _ => [];
-
-val cprems_of = strip_imp_cprems o cprop_of;
-
-fun strip_objimp ct = 
- case term_of ct of 
-  Const ("op -->", _) $ _ $ _ => Thm.dest_arg1 ct :: strip_objimp (Thm.dest_arg ct)
-| _ => [ct];
-
-fun strip_objall ct = 
- case term_of ct of 
-  Const ("All", _) $ Abs (xn,xT,p) => 
-   let val (a,(v,t')) = (apsnd (Thm.dest_abs (SOME xn)) o Thm.dest_comb) ct
-   in apfst (cons (a,v)) (strip_objall t')
-   end
-| _ => ([],ct);
-
-local
-  val all_maxscope_ss = 
-     HOL_basic_ss addsimps map (fn th => th RS sym) @{thms "all_simps"}
-in
-fun thin_prems_tac P i =  simp_tac all_maxscope_ss i THEN
-  (fn st => case try (nth (cprems_of st)) (i - 1) of
-    NONE => no_tac st
-  | SOME p' => 
-    let
-     val (qvs, p) = strip_objall (Thm.dest_arg p')
-     val (ps, c) = split_last (strip_objimp p)
-     val qs = filter P ps
-     val q = if P c then c else @{cterm "False"}
-     val ng = fold_rev (fn (a,v) => fn t => Thm.capply a (Thm.cabs v t)) qvs 
-         (fold_rev (fn p => fn q => Thm.capply (Thm.capply @{cterm "op -->"} p) q) qs q)
-     val g = Thm.capply (Thm.capply @{cterm "op ==>"} (Thm.capply @{cterm "Trueprop"} ng)) p'
-     val ntac = (case qs of [] => q aconvc @{cterm "False"}
-                         | _ => false)
-    in 
-    if ntac then no_tac st
-      else rtac (Goal.prove_internal [] g (K (blast_tac HOL_cs 1))) i st 
-    end)
-end;
-
-local
- fun ty cts t = 
- if not (typ_of (ctyp_of_term t) mem [HOLogic.intT, HOLogic.natT]) then false 
-    else case term_of t of 
-      c$_$_ => not (member (op aconv) cts c)
-    | c$_ => not (member (op aconv) cts c)
-    | c => not (member (op aconv) cts c)
-    | _ => true
-
- val term_constants =
-  let fun h acc t = case t of
-    Const _ => insert (op aconv) t acc
-  | a$b => h (h acc a) b
-  | Abs (_,_,t) => h acc t
-  | _ => acc
- in h [] end;
-in 
-fun is_relevant ctxt ct = 
-  gen_subset (op aconv) (term_constants (term_of ct) , snd (CooperData.get ctxt))
- andalso forall (fn Free (_,T) => T = HOLogic.intT) (term_frees (term_of ct))
- andalso forall (fn Var (_,T) => T = HOLogic.intT) (term_vars (term_of ct));
-
-fun int_nat_terms ctxt ct =
- let 
-  val cts = snd (CooperData.get ctxt)
-  fun h acc t = if ty cts t then insert (op aconvc) t acc else
-   case (term_of t) of
-    _$_ => h (h acc (Thm.dest_arg t)) (Thm.dest_fun t)
-  | Abs(_,_,_) => Thm.dest_abs NONE t ||> h acc |> uncurry (remove (op aconvc))
-  | _ => acc
- in h [] ct end
-end;
-
-fun generalize_tac ctxt f i st = 
- case try (nth (cprems_of st)) (i - 1) of
-    NONE => all_tac st
-  | SOME p => 
-   let 
-   fun all T = Drule.cterm_rule (instantiate' [SOME T] []) @{cpat "all"}
-   fun gen x t = Thm.capply (all (ctyp_of_term x)) (Thm.cabs x t)
-   val ts = sort (fn (a,b) => Term.fast_term_ord (term_of a, term_of b)) (f p)
-   val p' = fold_rev gen ts p
- in Seq.of_list [implies_intr p' (implies_elim st (fold forall_elim ts (assume p')))]
- end;
-
-local
-val ss1 = comp_ss
-  addsimps simp_thms @ [@{thm "nat_number_of_def"}, @{thm "zdvd_int"}] 
-      @ map (fn r => r RS sym) 
-        [@{thm "int_int_eq"}, @{thm "zle_int"}, @{thm "zless_int"}, @{thm "zadd_int"}, 
-         @{thm "zmult_int"}]
-    addsplits [@{thm "zdiff_int_split"}]
-
-val ss2 = HOL_basic_ss
-  addsimps [@{thm "nat_0_le"}, @{thm "int_nat_number_of"},
-            @{thm "all_nat"}, @{thm "ex_nat"}, @{thm "number_of1"}, 
-            @{thm "number_of2"}, @{thm "int_0"}, @{thm "int_1"}, @{thm "Suc_plus1"}]
-  addcongs [@{thm "conj_le_cong"}, @{thm "imp_le_cong"}]
-val div_mod_ss = HOL_basic_ss addsimps simp_thms 
-  @ map (symmetric o mk_meta_eq) 
-    [@{thm "dvd_eq_mod_eq_0"}, @{thm "zdvd_iff_zmod_eq_0"}, mod_add1_eq, 
-     mod_add_left_eq, mod_add_right_eq, 
-     @{thm "zmod_zadd1_eq"}, @{thm "zmod_zadd_left_eq"}, 
-     @{thm "zmod_zadd_right_eq"}, @{thm "div_add1_eq"}, @{thm "zdiv_zadd1_eq"}]
-  @ [@{thm "mod_self"}, @{thm "zmod_self"}, @{thm "DIVISION_BY_ZERO_MOD"}, 
-     @{thm "DIVISION_BY_ZERO_DIV"}, @{thm "DIVISION_BY_ZERO"} RS conjunct1, 
-     @{thm "DIVISION_BY_ZERO"} RS conjunct2, @{thm "zdiv_zero"}, @{thm "zmod_zero"}, 
-     @{thm "div_0"}, @{thm "mod_0"}, @{thm "zdiv_1"}, @{thm "zmod_1"}, @{thm "div_1"}, 
-     @{thm "mod_1"}, @{thm "Suc_plus1"}]
-  @ add_ac
- addsimprocs [cancel_div_mod_proc]
- val splits_ss = comp_ss addsimps [@{thm "mod_div_equality'"}] addsplits 
-     [@{thm "split_zdiv"}, @{thm "split_zmod"}, @{thm "split_div'"}, 
-      @{thm "split_min"}, @{thm "split_max"}, @{thm "abs_split"}]
-in
-fun nat_to_int_tac ctxt i = 
-  simp_tac (Simplifier.context ctxt ss1) i THEN 
-  simp_tac (Simplifier.context ctxt ss2) i THEN 
-  TRY (simp_tac (Simplifier.context ctxt comp_ss) i);
-
-fun div_mod_tac  ctxt i = simp_tac (Simplifier.context ctxt div_mod_ss) i;
-fun splits_tac ctxt i = simp_tac (Simplifier.context ctxt splits_ss) i;
-end;
-
-
-fun eta_beta_tac ctxt i st = case try (nth (cprems_of st)) (i - 1) of
-   NONE => no_tac st
- | SOME p => 
-   let
-    val eq = (eta_conv (ProofContext.theory_of ctxt) then_conv Thm.beta_conversion true) p
-    val p' = Thm.rhs_of eq
-    val th = implies_intr p' (equal_elim (symmetric eq) (assume p'))
-   in rtac th i st
-   end;
-
-
-
-fun core_cooper_tac ctxt i st = 
- case try (nth (cprems_of st)) (i - 1) of
-   NONE => all_tac st
- | SOME p => 
-   let 
-    val cpth = 
-       if !quick_and_dirty 
-       then linzqe_oracle (ProofContext.theory_of ctxt) 
-             (Envir.beta_norm (Pattern.eta_long [] (term_of (Thm.dest_arg p))))
-       else arg_conv (Cooper.cooper_conv ctxt) p
-    val p' = Thm.rhs_of cpth
-    val th = implies_intr p' (equal_elim (symmetric cpth) (assume p'))
-   in rtac th i st end
-   handle Cooper.COOPER _ => no_tac st;
-
-fun nogoal_tac i st = case try (nth (cprems_of st)) (i - 1) of
-   NONE => no_tac st
- | SOME _ => all_tac st
-
-fun finish_tac q i st = case try (nth (cprems_of st)) (i - 1) of
-   NONE => all_tac st
- | SOME _ => (if q then I else TRY) (rtac TrueI i) st
-
-fun cooper_tac elim add_ths del_ths ctxt i = 
-let val ss = fst (CooperData.get ctxt) delsimps del_ths addsimps add_ths
-in
-nogoal_tac i 
-THEN (EVERY o (map TRY))
- [ObjectLogic.full_atomize_tac i,
-  eta_beta_tac ctxt i,
-  simp_tac ss  i,
-  generalize_tac ctxt (int_nat_terms ctxt) i,
-  ObjectLogic.full_atomize_tac i,
-  div_mod_tac ctxt i,
-  splits_tac ctxt i,
-  simp_tac ss i,
-  eta_beta_tac ctxt i,
-  nat_to_int_tac ctxt i, 
-  thin_prems_tac (is_relevant ctxt) i]
-THEN core_cooper_tac ctxt i THEN finish_tac elim i
-end;
-
-end;
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/Qelim/cooper.ML	Thu Jun 21 20:48:48 2007 +0200
@@ -0,0 +1,661 @@
+(*  Title:      HOL/Tools/Presburger/cooper.ML
+    ID:         $Id$
+    Author:     Amine Chaieb, TU Muenchen
+*)
+
+signature COOPER =
+ sig
+  val cooper_conv : Proof.context -> Conv.conv
+  exception COOPER of string * exn
+end;
+
+structure Cooper: COOPER =
+struct
+open Conv;
+open Normalizer;
+structure Integertab = TableFun(type key = integer val ord = Integer.cmp);
+exception COOPER of string * exn;
+val simp_thms_conv = Simplifier.rewrite (HOL_basic_ss addsimps simp_thms);
+
+fun C f x y = f y x;
+
+val FWD = C (fold (C implies_elim));
+
+val true_tm = @{cterm "True"};
+val false_tm = @{cterm "False"};
+val zdvd1_eq = @{thm "zdvd1_eq"};
+val presburger_ss = @{simpset} addsimps [zdvd1_eq];
+val lin_ss = presburger_ss addsimps (@{thm "dvd_eq_mod_eq_0"}::zdvd1_eq::@{thms zadd_ac});
+(* Some types and constants *)
+val iT = HOLogic.intT
+val bT = HOLogic.boolT;
+val dest_numeral = HOLogic.dest_number #> snd;
+
+val [miconj, midisj, mieq, mineq, milt, mile, migt, mige, midvd, mindvd, miP] = 
+    map(instantiate' [SOME @{ctyp "int"}] []) @{thms "minf"};
+
+val [infDconj, infDdisj, infDdvd,infDndvd,infDP] = 
+    map(instantiate' [SOME @{ctyp "int"}] []) @{thms "inf_period"};
+
+val [piconj, pidisj, pieq,pineq,pilt,pile,pigt,pige,pidvd,pindvd,piP] = 
+    map (instantiate' [SOME @{ctyp "int"}] []) @{thms "pinf"};
+
+val [miP, piP] = map (instantiate' [SOME @{ctyp "bool"}] []) [miP, piP];
+
+val infDP = instantiate' (map SOME [@{ctyp "int"}, @{ctyp "bool"}]) [] infDP;
+
+val [[asetconj, asetdisj, aseteq, asetneq, asetlt, asetle, 
+      asetgt, asetge, asetdvd, asetndvd,asetP],
+     [bsetconj, bsetdisj, bseteq, bsetneq, bsetlt, bsetle, 
+      bsetgt, bsetge, bsetdvd, bsetndvd,bsetP]]  = [@{thms "aset"}, @{thms "bset"}];
+
+val [miex, cpmi, piex, cppi] = [@{thm "minusinfinity"}, @{thm "cpmi"}, 
+                                @{thm "plusinfinity"}, @{thm "cppi"}];
+
+val unity_coeff_ex = instantiate' [SOME @{ctyp "int"}] [] @{thm "unity_coeff_ex"};
+
+val [zdvd_mono,simp_from_to,all_not_ex] = 
+     [@{thm "zdvd_mono"}, @{thm "simp_from_to"}, @{thm "all_not_ex"}];
+
+val [dvd_uminus, dvd_uminus'] = @{thms "uminus_dvd_conv"};
+
+val eval_ss = presburger_ss addsimps [simp_from_to] delsimps [insert_iff,bex_triv];
+val eval_conv = Simplifier.rewrite eval_ss;
+
+(* recongnising cterm without moving to terms *)
+
+datatype fm = And of cterm*cterm| Or of cterm*cterm| Eq of cterm | NEq of cterm 
+            | Lt of cterm | Le of cterm | Gt of cterm | Ge of cterm
+            | Dvd of cterm*cterm | NDvd of cterm*cterm | Nox
+
+fun whatis x ct = 
+( case (term_of ct) of 
+  Const("op &",_)$_$_ => And (Thm.dest_binop ct)
+| Const ("op |",_)$_$_ => Or (Thm.dest_binop ct)
+| Const ("op =",ty)$y$_ => if term_of x aconv y then Eq (Thm.dest_arg ct) else Nox
+| Const("Not",_) $ (Const ("op =",_)$y$_) => 
+  if term_of x aconv y then NEq (funpow 2 Thm.dest_arg ct) else Nox
+| Const ("Orderings.ord_class.less",_)$y$z =>
+   if term_of x aconv y then Lt (Thm.dest_arg ct) 
+   else if term_of x aconv z then Gt (Thm.dest_arg1 ct) else Nox
+| Const ("Orderings.ord_class.less_eq",_)$y$z => 
+   if term_of x aconv y then Le (Thm.dest_arg ct) 
+   else if term_of x aconv z then Ge (Thm.dest_arg1 ct) else Nox
+| Const ("Divides.dvd",_)$_$(Const(@{const_name "HOL.plus"},_)$y$_) =>
+   if term_of x aconv y then Dvd (Thm.dest_binop ct ||> Thm.dest_arg) else Nox 
+| Const("Not",_) $ (Const ("Divides.dvd",_)$_$(Const(@{const_name "HOL.plus"},_)$y$_)) =>
+   if term_of x aconv y then 
+   NDvd (Thm.dest_binop (Thm.dest_arg ct) ||> Thm.dest_arg) else Nox 
+| _ => Nox)
+  handle CTERM _ => Nox; 
+
+fun get_pmi_term t = 
+  let val (x,eq) = 
+     (Thm.dest_abs NONE o Thm.dest_arg o snd o Thm.dest_abs NONE o Thm.dest_arg)
+        (Thm.dest_arg t)
+in (Thm.cabs x o Thm.dest_arg o Thm.dest_arg) eq end;
+
+val get_pmi = get_pmi_term o cprop_of;
+
+val p_v' = @{cpat "?P' :: int => bool"}; 
+val q_v' = @{cpat "?Q' :: int => bool"};
+val p_v = @{cpat "?P:: int => bool"};
+val q_v = @{cpat "?Q:: int => bool"};
+
+fun myfwd (th1, th2, th3) p q 
+      [(th_1,th_2,th_3), (th_1',th_2',th_3')] = 
+  let  
+   val (mp', mq') = (get_pmi th_1, get_pmi th_1')
+   val mi_th = FWD (instantiate ([],[(p_v,p),(q_v,q), (p_v',mp'),(q_v',mq')]) th1) 
+                   [th_1, th_1']
+   val infD_th = FWD (instantiate ([],[(p_v,mp'), (q_v, mq')]) th3) [th_3,th_3']
+   val set_th = FWD (instantiate ([],[(p_v,p), (q_v,q)]) th2) [th_2, th_2']
+  in (mi_th, set_th, infD_th)
+  end;
+
+val inst' = fn cts => instantiate' [] (map SOME cts);
+val infDTrue = instantiate' [] [SOME true_tm] infDP;
+val infDFalse = instantiate' [] [SOME false_tm] infDP;
+
+val cadd =  @{cterm "op + :: int => _"}
+val cmulC =  @{cterm "op * :: int => _"}
+val cminus =  @{cterm "op - :: int => _"}
+val cone =  @{cterm "1:: int"}
+val cneg = @{cterm "uminus :: int => _"}
+val [addC, mulC, subC, negC] = map term_of [cadd, cmulC, cminus, cneg]
+val [zero, one] = [@{term "0::int"}, @{term "1::int"}];
+
+val is_numeral = can dest_numeral; 
+
+fun numeral1 f n = HOLogic.mk_number iT (f (dest_numeral n)); 
+fun numeral2 f m n = HOLogic.mk_number iT (f (dest_numeral m) (dest_numeral n));
+
+val [minus1,plus1] = 
+    map (fn c => fn t => Thm.capply (Thm.capply c t) cone) [cminus,cadd];
+
+fun decomp_pinf x dvd inS [aseteq, asetneq, asetlt, asetle, 
+                           asetgt, asetge,asetdvd,asetndvd,asetP,
+                           infDdvd, infDndvd, asetconj,
+                           asetdisj, infDconj, infDdisj] cp =
+ case (whatis x cp) of
+  And (p,q) => ([p,q], myfwd (piconj, asetconj, infDconj) (Thm.cabs x p) (Thm.cabs x q))
+| Or (p,q) => ([p,q], myfwd (pidisj, asetdisj, infDdisj) (Thm.cabs x p) (Thm.cabs x q))
+| Eq t => ([], K (inst' [t] pieq, FWD (inst' [t] aseteq) [inS (plus1 t)], infDFalse))
+| NEq t => ([], K (inst' [t] pineq, FWD (inst' [t] asetneq) [inS t], infDTrue))
+| Lt t => ([], K (inst' [t] pilt, FWD (inst' [t] asetlt) [inS t], infDFalse))
+| Le t => ([], K (inst' [t] pile, FWD (inst' [t] asetle) [inS (plus1 t)], infDFalse))
+| Gt t => ([], K (inst' [t] pigt, (inst' [t] asetgt), infDTrue))
+| Ge t => ([], K (inst' [t] pige, (inst' [t] asetge), infDTrue))
+| Dvd (d,s) => 
+   ([],let val dd = dvd d
+	     in K (inst' [d,s] pidvd, FWD (inst' [d,s] asetdvd) [dd],FWD (inst' [d,s] infDdvd) [dd]) end)
+| NDvd(d,s) => ([],let val dd = dvd d
+	      in K (inst' [d,s] pindvd, FWD (inst' [d,s] asetndvd) [dd], FWD (inst' [d,s] infDndvd) [dd]) end)
+| _ => ([], K (inst' [cp] piP, inst' [cp] asetP, inst' [cp] infDP));
+
+fun decomp_minf x dvd inS [bseteq,bsetneq,bsetlt, bsetle, bsetgt,
+                           bsetge,bsetdvd,bsetndvd,bsetP,
+                           infDdvd, infDndvd, bsetconj,
+                           bsetdisj, infDconj, infDdisj] cp =
+ case (whatis x cp) of
+  And (p,q) => ([p,q], myfwd (miconj, bsetconj, infDconj) (Thm.cabs x p) (Thm.cabs x q))
+| Or (p,q) => ([p,q], myfwd (midisj, bsetdisj, infDdisj) (Thm.cabs x p) (Thm.cabs x q))
+| Eq t => ([], K (inst' [t] mieq, FWD (inst' [t] bseteq) [inS (minus1 t)], infDFalse))
+| NEq t => ([], K (inst' [t] mineq, FWD (inst' [t] bsetneq) [inS t], infDTrue))
+| Lt t => ([], K (inst' [t] milt, (inst' [t] bsetlt), infDTrue))
+| Le t => ([], K (inst' [t] mile, (inst' [t] bsetle), infDTrue))
+| Gt t => ([], K (inst' [t] migt, FWD (inst' [t] bsetgt) [inS t], infDFalse))
+| Ge t => ([], K (inst' [t] mige,FWD (inst' [t] bsetge) [inS (minus1 t)], infDFalse))
+| Dvd (d,s) => ([],let val dd = dvd d
+	      in K (inst' [d,s] midvd, FWD (inst' [d,s] bsetdvd) [dd] , FWD (inst' [d,s] infDdvd) [dd]) end)
+| NDvd (d,s) => ([],let val dd = dvd d
+	      in K (inst' [d,s] mindvd, FWD (inst' [d,s] bsetndvd) [dd], FWD (inst' [d,s] infDndvd) [dd]) end)
+| _ => ([], K (inst' [cp] miP, inst' [cp] bsetP, inst' [cp] infDP))
+
+    (* Canonical linear form for terms, formulae etc.. *)
+fun provelin ctxt t = Goal.prove ctxt [] [] t 
+                          (fn _ => EVERY [simp_tac lin_ss 1, TRY (simple_arith_tac 1)]);
+fun linear_cmul 0 tm =  zero 
+  | linear_cmul n tm = 
+    case tm of  
+      Const("HOL.plus_class.plus",_)$a$b => addC$(linear_cmul n a)$(linear_cmul n b)
+    | Const ("HOL.times_class.times",_)$c$x => mulC$(numeral1 (Integer.mult n) c)$x
+    | Const("HOL.minus_class.minus",_)$a$b => subC$(linear_cmul n a)$(linear_cmul n b)
+    | (m as Const("HOL.minus_class.uminus",_))$a => m$(linear_cmul n a)
+    | _ =>  numeral1 (Integer.mult n) tm;
+fun earlier [] x y = false 
+	| earlier (h::t) x y = 
+    if h aconv y then false else if h aconv x then true else earlier t x y; 
+
+fun linear_add vars tm1 tm2 = 
+ case (tm1,tm2) of 
+	 (Const("HOL.plus_class.plus",_)$(Const("HOL.times_class.times",_)$c1$x1)$r1,
+    Const("HOL.plus_class.plus",_)$(Const("HOL.times_class.times",_)$c2$x2)$r2) => 
+   if x1 = x2 then 
+     let val c = numeral2 Integer.add c1 c2
+	   in if c = zero then linear_add vars r1  r2  
+	      else addC$(mulC$c$x1)$(linear_add vars  r1 r2)
+     end 
+	 else if earlier vars x1 x2 then addC$(mulC$ c1 $ x1)$(linear_add vars r1 tm2)
+   else addC$(mulC$c2$x2)$(linear_add vars tm1 r2)
+ | (Const("HOL.plus_class.plus",_) $ (Const("HOL.times_class.times",_)$c1$x1)$r1 ,_) => 
+    	  addC$(mulC$c1$x1)$(linear_add vars r1 tm2)
+ | (_, Const("HOL.plus_class.plus",_)$(Const("HOL.times_class.times",_)$c2$x2)$r2) => 
+      	  addC$(mulC$c2$x2)$(linear_add vars tm1 r2) 
+ | (_,_) => numeral2 Integer.add tm1 tm2;
+ 
+fun linear_neg tm = linear_cmul ~1 tm; 
+fun linear_sub vars tm1 tm2 = linear_add vars tm1 (linear_neg tm2); 
+
+
+fun lint vars tm = 
+if is_numeral tm then tm 
+else case tm of 
+ Const("HOL.minus_class.uminus",_)$t => linear_neg (lint vars t)
+| Const("HOL.plus_class.plus",_) $ s $ t => linear_add vars (lint vars s) (lint vars t) 
+| Const("HOL.minus_class.minus",_) $ s $ t => linear_sub vars (lint vars s) (lint vars t)
+| Const ("HOL.times_class.times",_) $ s $ t => 
+  let val s' = lint vars s  
+      val t' = lint vars t  
+  in if is_numeral s' then (linear_cmul (dest_numeral s') t') 
+     else if is_numeral t' then (linear_cmul (dest_numeral t') s') 
+     else raise COOPER ("Cooper Failed", TERM ("lint: not linear",[tm]))
+  end 
+ | _ => addC$(mulC$one$tm)$zero;
+
+fun lin (vs as x::_) (Const("Not",_)$(Const("Orderings.ord_class.less",T)$s$t)) = 
+    lin vs (Const("Orderings.ord_class.less_eq",T)$t$s)
+  | lin (vs as x::_) (Const("Not",_)$(Const("Orderings.ord_class.less_eq",T)$s$t)) = 
+    lin vs (Const("Orderings.ord_class.less",T)$t$s)
+  | lin vs (Const ("Not",T)$t) = Const ("Not",T)$ (lin vs t)
+  | lin (vs as x::_) (Const("Divides.dvd",_)$d$t) = 
+    HOLogic.mk_binrel "Divides.dvd" (numeral1 abs d, lint vs t)
+  | lin (vs as x::_) ((b as Const("op =",_))$s$t) = 
+     (case lint vs (subC$t$s) of 
+      (t as a$(m$c$y)$r) => 
+        if x <> y then b$zero$t
+        else if dest_numeral c < 0 then b$(m$(numeral1 ~ c)$y)$r
+        else b$(m$c$y)$(linear_neg r)
+      | t => b$zero$t)
+  | lin (vs as x::_) (b$s$t) = 
+     (case lint vs (subC$t$s) of 
+      (t as a$(m$c$y)$r) => 
+        if x <> y then b$zero$t
+        else if dest_numeral c < 0 then b$(m$(numeral1 ~ c)$y)$r
+        else b$(linear_neg r)$(m$c$y)
+      | t => b$zero$t)
+  | lin vs fm = fm;
+
+fun lint_conv ctxt vs ct = 
+let val t = term_of ct
+in (provelin ctxt ((HOLogic.eq_const iT)$t$(lint vs t) |> HOLogic.mk_Trueprop))
+             RS eq_reflection
+end;
+
+fun is_intrel (b$_$_) = domain_type (fastype_of b) = HOLogic.intT
+  | is_intrel (@{term "Not"}$(b$_$_)) = domain_type (fastype_of b) = HOLogic.intT
+  | is_intrel _ = false;
+ 
+fun linearize_conv ctxt vs ct =  
+ case (term_of ct) of 
+  Const("Divides.dvd",_)$d$t => 
+  let 
+    val th = binop_conv (lint_conv ctxt vs) ct
+    val (d',t') = Thm.dest_binop (Thm.rhs_of th)
+    val (dt',tt') = (term_of d', term_of t')
+  in if is_numeral dt' andalso is_numeral tt' 
+     then Conv.fconv_rule (arg_conv (Simplifier.rewrite presburger_ss)) th
+     else 
+     let 
+      val dth = 
+      ((if dest_numeral (term_of d') < 0 then 
+          Conv.fconv_rule (arg_conv (arg1_conv (lint_conv ctxt vs)))
+                           (Thm.transitive th (inst' [d',t'] dvd_uminus))
+        else th) handle TERM _ => th)
+      val d'' = Thm.rhs_of dth |> Thm.dest_arg1
+     in
+      case tt' of 
+        Const("HOL.plus_class.plus",_)$(Const("HOL.times_class.times",_)$c$_)$_ => 
+        let val x = dest_numeral c
+        in if x < 0 then Conv.fconv_rule (arg_conv (arg_conv (lint_conv ctxt vs)))
+                                       (Thm.transitive dth (inst' [d'',t'] dvd_uminus'))
+        else dth end
+      | _ => dth
+     end
+  end
+| Const("Not",_)$(Const("Divides.dvd",_)$_$_) => arg_conv (linearize_conv ctxt vs) ct
+| t => if is_intrel t 
+      then (provelin ctxt ((HOLogic.eq_const bT)$t$(lin vs t) |> HOLogic.mk_Trueprop))
+       RS eq_reflection
+      else reflexive ct;
+
+val dvdc = @{cterm "op dvd :: int => _"};
+
+fun unify ctxt q = 
+ let
+  val (e,(cx,p)) = q |> Thm.dest_comb ||> Thm.dest_abs NONE
+  val x = term_of cx 
+  val ins = insert (op = : integer*integer -> bool)
+  fun h (acc,dacc) t = 
+   case (term_of t) of
+    Const(s,_)$(Const("HOL.times_class.times",_)$c$y)$ _ => 
+    if x aconv y 
+       andalso s mem ["op =", "Orderings.ord_class.less", "Orderings.ord_class.less_eq"] 
+    then (ins (dest_numeral c) acc,dacc) else (acc,dacc)
+  | Const(s,_)$_$(Const("HOL.times_class.times",_)$c$y) => 
+    if x aconv y 
+       andalso s mem ["Orderings.ord_class.less", "Orderings.ord_class.less_eq"] 
+    then (ins (dest_numeral c) acc, dacc) else (acc,dacc)
+  | Const("Divides.dvd",_)$_$(Const("HOL.plus_class.plus",_)$(Const("HOL.times_class.times",_)$c$y)$_) => 
+    if x aconv y then (acc,ins (dest_numeral c) dacc) else (acc,dacc)
+  | Const("op &",_)$_$_ => h (h (acc,dacc) (Thm.dest_arg1 t)) (Thm.dest_arg t)
+  | Const("op |",_)$_$_ => h (h (acc,dacc) (Thm.dest_arg1 t)) (Thm.dest_arg t)
+  | Const("Not",_)$_ => h (acc,dacc) (Thm.dest_arg t)
+  | _ => (acc, dacc)
+  val (cs,ds) = h ([],[]) p
+  val l = fold (curry lcm) (cs union ds) 1
+  fun cv k ct = 
+    let val (tm as b$s$t) = term_of ct 
+    in ((HOLogic.eq_const bT)$tm$(b$(linear_cmul k s)$(linear_cmul k t))
+         |> HOLogic.mk_Trueprop |> provelin ctxt) RS eq_reflection end
+  fun nzprop x = 
+   let 
+    val th = 
+     Simplifier.rewrite lin_ss 
+      (Thm.capply @{cterm Trueprop} (Thm.capply @{cterm "Not"} 
+           (Thm.capply (Thm.capply @{cterm "op = :: int => _"} (mk_cnumber @{ctyp "int"} x)) 
+           @{cterm "0::int"})))
+   in equal_elim (Thm.symmetric th) TrueI end;
+  val notz = let val tab = fold Integertab.update 
+                               (ds ~~ (map (fn x => nzprop (Integer.div l x)) ds)) Integertab.empty 
+            in 
+             (fn ct => (valOf (Integertab.lookup tab (ct |> term_of |> dest_numeral)) 
+                handle Option => (writeln "noz: Theorems-Table contains no entry for"; 
+                                    print_cterm ct ; raise Option)))
+           end
+  fun unit_conv t = 
+   case (term_of t) of
+   Const("op &",_)$_$_ => binop_conv unit_conv t
+  | Const("op |",_)$_$_ => binop_conv unit_conv t
+  | Const("Not",_)$_ => arg_conv unit_conv t
+  | Const(s,_)$(Const("HOL.times_class.times",_)$c$y)$ _ => 
+    if x=y andalso s mem ["op =", "Orderings.ord_class.less", "Orderings.ord_class.less_eq"] 
+    then cv (Integer.div l (dest_numeral c)) t else Thm.reflexive t
+  | Const(s,_)$_$(Const("HOL.times_class.times",_)$c$y) => 
+    if x=y andalso s mem ["Orderings.ord_class.less", "Orderings.ord_class.less_eq"] 
+    then cv (Integer.div l (dest_numeral c)) t else Thm.reflexive t
+  | Const("Divides.dvd",_)$d$(r as (Const("HOL.plus_class.plus",_)$(Const("HOL.times_class.times",_)$c$y)$_)) => 
+    if x=y then 
+      let 
+       val k = Integer.div l (dest_numeral c)
+       val kt = HOLogic.mk_number iT k
+       val th1 = inst' [Thm.dest_arg1 t, Thm.dest_arg t] 
+             ((Thm.dest_arg t |> funpow 2 Thm.dest_arg1 |> notz) RS zdvd_mono)
+       val (d',t') = (mulC$kt$d, mulC$kt$r)
+       val thc = (provelin ctxt ((HOLogic.eq_const iT)$d'$(lint [] d') |> HOLogic.mk_Trueprop))
+                   RS eq_reflection
+       val tht = (provelin ctxt ((HOLogic.eq_const iT)$t'$(linear_cmul k r) |> HOLogic.mk_Trueprop))
+                 RS eq_reflection
+      in Thm.transitive th1 (Thm.combination (Drule.arg_cong_rule dvdc thc) tht) end                 
+    else Thm.reflexive t
+  | _ => Thm.reflexive t
+  val uth = unit_conv p
+  val clt =  mk_cnumber @{ctyp "int"} l
+  val ltx = Thm.capply (Thm.capply cmulC clt) cx
+  val th = Drule.arg_cong_rule e (Thm.abstract_rule (fst (dest_Free x )) cx uth)
+  val th' = inst' [Thm.cabs ltx (Thm.rhs_of uth), clt] unity_coeff_ex
+  val thf = transitive th 
+      (transitive (symmetric (beta_conversion true (cprop_of th' |> Thm.dest_arg1))) th')
+  val (lth,rth) = Thm.dest_comb (cprop_of thf) |>> Thm.dest_arg |>> Thm.beta_conversion true
+                  ||> beta_conversion true |>> Thm.symmetric
+ in transitive (transitive lth thf) rth end;
+
+
+val emptyIS = @{cterm "{}::int set"};
+val insert_tm = @{cterm "insert :: int => _"};
+val mem_tm = Const("op :",[iT , HOLogic.mk_setT iT] ---> bT);
+fun mkISet cts = fold_rev (Thm.capply insert_tm #> Thm.capply) cts emptyIS;
+val cTrp = @{cterm "Trueprop"};
+val eqelem_imp_imp = (thm"eqelem_imp_iff") RS iffD1;
+val [A_tm,B_tm] = map (fn th => cprop_of th |> funpow 2 Thm.dest_arg |> Thm.dest_abs NONE |> snd |> Thm.dest_arg1 |> Thm.dest_arg 
+                                      |> Thm.dest_abs NONE |> snd |> Thm.dest_fun |> Thm.dest_arg)
+                      [asetP,bsetP];
+
+val D_tm = @{cpat "?D::int"};
+
+val int_eq = (op =):integer*integer -> bool;
+fun cooperex_conv ctxt vs q = 
+let 
+
+ val uth = unify ctxt q
+ val (x,p) = Thm.dest_abs NONE (Thm.dest_arg (Thm.rhs_of uth))
+ val ins = insert (op aconvc)
+ fun h t (bacc,aacc,dacc) = 
+  case (whatis x t) of
+    And (p,q) => h q (h p (bacc,aacc,dacc))
+  | Or (p,q) => h q  (h p (bacc,aacc,dacc))
+  | Eq t => (ins (minus1 t) bacc, 
+             ins (plus1 t) aacc,dacc)
+  | NEq t => (ins t bacc, 
+              ins t aacc, dacc)
+  | Lt t => (bacc, ins t aacc, dacc)
+  | Le t => (bacc, ins (plus1 t) aacc,dacc)
+  | Gt t => (ins t bacc, aacc,dacc)
+  | Ge t => (ins (minus1 t) bacc, aacc,dacc)
+  | Dvd (d,s) => (bacc,aacc,insert int_eq (term_of d |> dest_numeral) dacc)
+  | NDvd (d,s) => (bacc,aacc,insert int_eq (term_of d|> dest_numeral) dacc)
+  | _ => (bacc, aacc, dacc)
+ val (b0,a0,ds) = h p ([],[],[])
+ val d = fold (curry lcm) ds 1
+ val cd = mk_cnumber @{ctyp "int"} d
+ val dt = term_of cd
+ fun divprop x = 
+   let 
+    val th = 
+     Simplifier.rewrite lin_ss 
+      (Thm.capply @{cterm Trueprop} 
+           (Thm.capply (Thm.capply dvdc (mk_cnumber @{ctyp "int"} x)) cd))
+   in equal_elim (Thm.symmetric th) TrueI end;
+ val dvd = let val tab = fold Integertab.update
+                               (ds ~~ (map divprop ds)) Integertab.empty in 
+           (fn ct => (valOf (Integertab.lookup tab (term_of ct |> dest_numeral)) 
+                    handle Option => (writeln "dvd: Theorems-Table contains no entry for"; 
+                                      print_cterm ct ; raise Option)))
+           end
+ val dp = 
+   let val th = Simplifier.rewrite lin_ss 
+      (Thm.capply @{cterm Trueprop} 
+           (Thm.capply (Thm.capply @{cterm "op < :: int => _"} @{cterm "0::int"}) cd))
+   in equal_elim (Thm.symmetric th) TrueI end;
+    (* A and B set *)
+   local 
+     val insI1 = instantiate' [SOME @{ctyp "int"}] [] @{thm "insertI1"}
+     val insI2 = instantiate' [SOME @{ctyp "int"}] [] @{thm "insertI2"}
+   in
+    fun provein x S = 
+     case term_of S of
+        Const("{}",_) => error "Unexpected error in Cooper please email Amine Chaieb"
+      | Const("insert",_)$y$_ => 
+         let val (cy,S') = Thm.dest_binop S
+         in if term_of x aconv y then instantiate' [] [SOME x, SOME S'] insI1
+         else implies_elim (instantiate' [] [SOME x, SOME S', SOME cy] insI2) 
+                           (provein x S')
+         end
+   end
+ 
+ val al = map (lint vs o term_of) a0
+ val bl = map (lint vs o term_of) b0
+ val (sl,s0,f,abths,cpth) = 
+   if length (distinct (op aconv) bl) <= length (distinct (op aconv) al) 
+   then  
+    (bl,b0,decomp_minf,
+     fn B => (map (fn th => implies_elim (Thm.instantiate ([],[(B_tm,B), (D_tm,cd)]) th) dp) 
+                     [bseteq,bsetneq,bsetlt, bsetle, bsetgt,bsetge])@
+                   (map (Thm.instantiate ([],[(B_tm,B), (D_tm,cd)])) 
+                        [bsetdvd,bsetndvd,bsetP,infDdvd, infDndvd,bsetconj,
+                         bsetdisj,infDconj, infDdisj]),
+                       cpmi) 
+     else (al,a0,decomp_pinf,fn A => 
+          (map (fn th => implies_elim (Thm.instantiate ([],[(A_tm,A), (D_tm,cd)]) th) dp)
+                   [aseteq,asetneq,asetlt, asetle, asetgt,asetge])@
+                   (map (Thm.instantiate ([],[(A_tm,A), (D_tm,cd)])) 
+                   [asetdvd,asetndvd, asetP, infDdvd, infDndvd,asetconj,
+                         asetdisj,infDconj, infDdisj]),cppi)
+ val cpth = 
+  let
+   val sths = map (fn (tl,t0) => 
+                      if tl = term_of t0 
+                      then instantiate' [SOME @{ctyp "int"}] [SOME t0] refl
+                      else provelin ctxt ((HOLogic.eq_const iT)$tl$(term_of t0) 
+                                 |> HOLogic.mk_Trueprop)) 
+                   (sl ~~ s0)
+   val csl = distinct (op aconvc) (map (cprop_of #> Thm.dest_arg #> Thm.dest_arg1) sths)
+   val S = mkISet csl
+   val inStab = fold (fn ct => fn tab => Termtab.update (term_of ct, provein ct S) tab) 
+                    csl Termtab.empty
+   val eqelem_th = instantiate' [SOME @{ctyp "int"}] [NONE,NONE, SOME S] eqelem_imp_imp
+   val inS = 
+     let 
+      fun transmem th0 th1 = 
+       Thm.equal_elim 
+        (Drule.arg_cong_rule cTrp (Drule.fun_cong_rule (Drule.arg_cong_rule 
+               ((Thm.dest_fun o Thm.dest_fun o Thm.dest_arg o cprop_of) th1) th0) S)) th1
+      val tab = fold Termtab.update
+        (map (fn eq => 
+                let val (s,t) = cprop_of eq |> Thm.dest_arg |> Thm.dest_binop 
+                    val th = if term_of s = term_of t 
+                             then valOf(Termtab.lookup inStab (term_of s))
+                             else FWD (instantiate' [] [SOME s, SOME t] eqelem_th) 
+                                [eq, valOf(Termtab.lookup inStab (term_of s))]
+                 in (term_of t, th) end)
+                  sths) Termtab.empty
+        in fn ct => 
+          (valOf (Termtab.lookup tab (term_of ct))
+           handle Option => (writeln "inS: No theorem for " ; print_cterm ct ; raise Option))
+        end
+       val (inf, nb, pd) = divide_and_conquer (f x dvd inS (abths S)) p
+   in [dp, inf, nb, pd] MRS cpth
+   end
+ val cpth' = Thm.transitive uth (cpth RS eq_reflection)
+in Thm.transitive cpth' ((simp_thms_conv then_conv eval_conv) (Thm.rhs_of cpth'))
+end;
+
+fun literals_conv bops uops env cv = 
+ let fun h t =
+  case (term_of t) of 
+   b$_$_ => if member (op aconv) bops b then binop_conv h t else cv env t
+ | u$_ => if member (op aconv) uops u then arg_conv h t else cv env t
+ | _ => cv env t
+ in h end;
+
+fun integer_nnf_conv ctxt env =
+ nnf_conv then_conv literals_conv [HOLogic.conj, HOLogic.disj] [] env (linearize_conv ctxt);
+
+(* val my_term = ref (@{cterm "NOTHING"}); *)
+local
+ val pcv = Simplifier.rewrite 
+     (HOL_basic_ss addsimps (simp_thms @ (List.take(ex_simps,4)) 
+                      @ [not_all,all_not_ex, ex_disj_distrib]))
+ val postcv = Simplifier.rewrite presburger_ss
+ fun conv ctxt p = 
+  let val _ = () (* my_term := p *)
+  in
+   Qelim.gen_qelim_conv ctxt pcv postcv pcv (cons o term_of) 
+      (term_frees (term_of p)) (linearize_conv ctxt) (integer_nnf_conv ctxt) 
+      (cooperex_conv ctxt) p 
+  end
+  handle  CTERM s => raise COOPER ("Cooper Failed", CTERM s)
+        | THM s => raise COOPER ("Cooper Failed", THM s) 
+in val cooper_conv = conv 
+end;
+end;
+
+
+
+structure Coopereif =
+struct
+
+open GeneratedCooper;
+fun cooper s = raise Cooper.COOPER ("Cooper Oracle Failed", ERROR s);
+fun i_of_term vs t = 
+    case t of
+	Free(xn,xT) => (case AList.lookup (op aconv) vs t of 
+			   NONE   => cooper "Variable not found in the list!!"
+			 | SOME n => Bound n)
+      | @{term "0::int"} => C 0
+      | @{term "1::int"} => C 1
+      | Term.Bound i => Bound i
+      | Const(@{const_name "HOL.uminus"},_)$t' => Neg (i_of_term vs t')
+      | Const(@{const_name "HOL.plus"},_)$t1$t2 => Add (i_of_term vs t1,i_of_term vs t2)
+      | Const(@{const_name "HOL.minus"},_)$t1$t2 => Sub (i_of_term vs t1,i_of_term vs t2)
+      | Const(@{const_name "HOL.times"},_)$t1$t2 => 
+	     (Mul (HOLogic.dest_number t1 |> snd |> Integer.machine_int,i_of_term vs t2)
+        handle TERM _ => 
+           (Mul (HOLogic.dest_number t2 |> snd |> Integer.machine_int,i_of_term vs t1)
+            handle TERM _ => cooper "Reification: Unsupported kind of multiplication"))
+      | _ => (C (HOLogic.dest_number t |> snd |> Integer.machine_int) 
+               handle TERM _ => cooper "Reification: unknown term");
+	
+fun qf_of_term ps vs t = 
+    case t of 
+	Const("True",_) => T
+      | Const("False",_) => F
+      | Const(@{const_name "Orderings.less"},_)$t1$t2 => Lt (Sub (i_of_term vs t1,i_of_term vs t2))
+      | Const(@{const_name "Orderings.less_eq"},_)$t1$t2 => Le (Sub(i_of_term vs t1,i_of_term vs t2))
+      | Const(@{const_name "Divides.dvd"},_)$t1$t2 => 
+	(Dvd(HOLogic.dest_number t1 |> snd |> Integer.machine_int, i_of_term vs t2) handle _ => cooper "Reification: unsupported dvd")
+      | @{term "op = :: int => _"}$t1$t2 => Eq (Sub (i_of_term vs t1,i_of_term vs t2))
+      | @{term "op = :: bool => _ "}$t1$t2 => Iff(qf_of_term ps vs t1,qf_of_term ps vs t2)
+      | Const("op &",_)$t1$t2 => And(qf_of_term ps vs t1,qf_of_term ps vs t2)
+      | Const("op |",_)$t1$t2 => Or(qf_of_term ps vs t1,qf_of_term ps vs t2)
+      | Const("op -->",_)$t1$t2 => Imp(qf_of_term ps vs t1,qf_of_term ps vs t2)
+      | Const("Not",_)$t' => NOT(qf_of_term ps vs t')
+      | Const("Ex",_)$Abs(xn,xT,p) => 
+         let val (xn',p') = variant_abs (xn,xT,p)
+             val vs' = (Free (xn',xT), nat 0) :: (map (fn(v,n) => (v,1+ n)) vs)
+         in E (qf_of_term ps vs' p')
+         end
+      | Const("All",_)$Abs(xn,xT,p) => 
+         let val (xn',p') = variant_abs (xn,xT,p)
+             val vs' = (Free (xn',xT), nat 0) :: (map (fn(v,n) => (v,1+ n)) vs)
+         in A (qf_of_term ps vs' p')
+         end
+      | _ =>(case AList.lookup (op aconv) ps t of 
+               NONE => cooper "Reification: unknown term!"
+             | SOME n => Closed n);
+
+local
+ val ops = [@{term "op &"}, @{term "op |"}, @{term "op -->"}, @{term "op = :: bool => _"},
+             @{term "op = :: int => _"}, @{term "op < :: int => _"}, 
+             @{term "op <= :: int => _"}, @{term "Not"}, @{term "All:: (int => _) => _"}, 
+             @{term "Ex:: (int => _) => _"}, @{term "True"}, @{term "False"}]
+fun ty t = Bool.not (fastype_of t = HOLogic.boolT)
+in
+fun term_bools acc t =
+case t of 
+    (l as f $ a) $ b => if ty t orelse f mem ops then term_bools (term_bools acc l)b 
+            else insert (op aconv) t acc
+  | f $ a => if ty t orelse f mem ops then term_bools (term_bools acc f) a  
+            else insert (op aconv) t acc
+  | Abs p => term_bools acc (snd (variant_abs p))
+  | _ => if ty t orelse t mem ops then acc else insert (op aconv) t acc
+end;
+ 
+
+fun start_vs t =
+let
+ val fs = term_frees t
+ val ps = term_bools [] t
+in (fs ~~ (0 upto  (length fs - 1)), ps ~~ (0 upto  (length ps - 1)))
+end ;
+
+val iT = HOLogic.intT;
+val bT = HOLogic.boolT;
+fun myassoc2 l v =
+    case l of
+	[] => NONE
+      | (x,v')::xs => if v = v' then SOME x
+		      else myassoc2 xs v;
+
+fun term_of_i vs t =
+    case t of 
+	C i => HOLogic.mk_number HOLogic.intT (Integer.int i)
+      | Bound n => valOf (myassoc2 vs n)
+      | Neg t' => @{term "uminus :: int => _"}$(term_of_i vs t')
+      | Add(t1,t2) => @{term "op +:: int => _"}$ (term_of_i vs t1)$(term_of_i vs t2)
+      | Sub(t1,t2) => Const(@{const_name "HOL.minus"},[iT,iT] ---> iT)$
+			   (term_of_i vs t1)$(term_of_i vs t2)
+      | Mul(i,t2) => Const(@{const_name "HOL.times"},[iT,iT] ---> iT)$
+			   (HOLogic.mk_number HOLogic.intT (Integer.int i))$(term_of_i vs t2)
+      | CX(i,t')=> term_of_i vs (Add(Mul (i,Bound (nat 0)),t'));
+
+fun term_of_qf ps vs t = 
+ case t of 
+   T => HOLogic.true_const 
+ | F => HOLogic.false_const
+ | Lt t' => @{term "op < :: int => _ "}$ term_of_i vs t'$ @{term "0::int"}
+ | Le t' => @{term "op <= :: int => _ "}$ term_of_i vs t' $ @{term "0::int"}
+ | Gt t' => @{term "op < :: int => _ "}$ @{term "0::int"}$ term_of_i vs t'
+ | Ge t' => @{term "op <= :: int => _ "}$ @{term "0::int"}$ term_of_i vs t'
+ | Eq t' => @{term "op = :: int => _ "}$ term_of_i vs t'$ @{term "0::int"}
+ | NEq t' => term_of_qf ps vs (NOT(Eq t'))
+ | Dvd(i,t') => @{term "op dvd :: int => _ "}$ 
+                 (HOLogic.mk_number HOLogic.intT (Integer.int i))$(term_of_i vs t')
+ | NDvd(i,t')=> term_of_qf ps vs (NOT(Dvd(i,t')))
+ | NOT t' => HOLogic.Not$(term_of_qf ps vs t')
+ | And(t1,t2) => HOLogic.conj$(term_of_qf ps vs t1)$(term_of_qf ps vs t2)
+ | Or(t1,t2) => HOLogic.disj$(term_of_qf ps vs t1)$(term_of_qf ps vs t2)
+ | Imp(t1,t2) => HOLogic.imp$(term_of_qf ps vs t1)$(term_of_qf ps vs t2)
+ | Iff(t1,t2) => (HOLogic.eq_const bT)$(term_of_qf ps vs t1)$ (term_of_qf ps vs t2)
+ | Closed n => valOf (myassoc2 ps n)
+ | NClosed n => term_of_qf ps vs (NOT (Closed n))
+ | _ => cooper "If this is raised, Isabelle/HOL or generate_code is inconsistent!";
+
+(* The oracle *)
+fun cooper_oracle thy t = 
+    let val (vs,ps) = start_vs t
+    in (equals propT) $ (HOLogic.mk_Trueprop t) $ 
+            (HOLogic.mk_Trueprop (term_of_qf ps vs (pa (qf_of_term ps vs t))))
+    end;
+
+end;
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/Qelim/cooper_data.ML	Thu Jun 21 20:48:48 2007 +0200
@@ -0,0 +1,91 @@
+(*  Title:      HOL/Tools/Presburger/cooper_data.ML
+    ID:         $Id$
+    Author:     Amine Chaieb, TU Muenchen
+*)
+
+signature COOPER_DATA =
+sig
+  type entry
+  val get: Proof.context -> entry
+  val del: term list -> attribute
+  val add: term list -> attribute 
+  val setup: theory -> theory
+end;
+
+structure CooperData : COOPER_DATA =
+struct
+
+type entry = simpset * (term list);
+val start_ss = HOL_ss (* addsimps @{thms "Groebner_Basis.comp_arith"}
+               addcongs [if_weak_cong, @{thm "let_weak_cong"}];*)
+val allowed_consts = 
+  [@{term "op + :: int => _"}, @{term "op + :: nat => _"}, 
+   @{term "op - :: int => _"}, @{term "op - :: nat => _"}, 
+   @{term "op * :: int => _"}, @{term "op * :: nat => _"}, 
+   @{term "op div :: int => _"}, @{term "op div :: nat => _"}, 
+   @{term "op mod :: int => _"}, @{term "op mod :: nat => _"}, 
+   @{term "Numeral.Bit"},
+   @{term "op &"}, @{term "op |"}, @{term "op -->"}, 
+   @{term "op = :: int => _"}, @{term "op = :: nat => _"}, @{term "op = :: bool => _"}, 
+   @{term "op < :: int => _"}, @{term "op < :: nat => _"},
+   @{term "op <= :: int => _"}, @{term "op <= :: nat => _"},
+   @{term "op dvd :: int => _"}, @{term "op dvd :: nat => _"}, 
+   @{term "abs :: int => _"},  @{term "abs :: nat => _"}, 
+   @{term "max :: int => _"},  @{term "max :: nat => _"}, 
+   @{term "min :: int => _"},  @{term "min :: nat => _"}, 
+   @{term "HOL.uminus :: int => _"}, @{term "HOL.uminus :: nat => _"}, 
+   @{term "Not"}, @{term "Suc"}, 
+   @{term "Ex :: (int => _) => _"}, @{term "Ex :: (nat => _) => _"}, 
+   @{term "All :: (int => _) => _"}, @{term "All :: (nat => _) => _"}, 
+   @{term "nat"}, @{term "int"},
+   @{term "Numeral.bit.B0"},@{term "Numeral.bit.B1"}, 
+   @{term "Numeral.Bit"}, @{term "Numeral.Pls"}, @{term "Numeral.Min"},
+   @{term "Numeral.number_of :: int => int"}, @{term "Numeral.number_of :: int => nat"}, 
+   @{term "0::int"}, @{term "1::int"}, @{term "0::nat"}, @{term "1::nat"},
+   @{term "True"}, @{term "False"}];
+
+structure Data = GenericDataFun
+(
+  type T = simpset * (term list);
+  val empty = (start_ss, allowed_consts);
+  fun extend (ss, ts) = (MetaSimplifier.inherit_context empty_ss ss, ts);
+  fun merge _ ((ss1, ts1), (ss2, ts2)) =
+    (merge_ss (ss1, ss2), Library.merge (op aconv) (ts1, ts2));
+);
+
+val get = Data.get o Context.Proof;
+
+fun add ts = Thm.declaration_attribute (fn th => fn context => 
+  context |> Data.map (fn (ss,ts') => 
+     (ss addsimps [th], merge (op aconv) (ts',ts) ))) 
+
+fun del ts = Thm.declaration_attribute (fn th => fn context => 
+  context |> Data.map (fn (ss,ts') => 
+     (ss delsimps [th], subtract (op aconv) ts' ts ))) 
+
+
+(* concrete syntax *)
+
+local
+fun keyword k = Scan.lift (Args.$$$ k -- Args.colon) >> K ();
+
+val constsN = "consts";
+val any_keyword = keyword constsN
+val thms = Scan.repeat (Scan.unless any_keyword Attrib.multi_thm) >> flat;
+val terms = thms >> map (term_of o Drule.dest_term);
+
+fun optional scan = Scan.optional scan [];
+
+in
+fun att_syntax src = src |> Attrib.syntax
+ ((Scan.lift (Args.$$$ "del") |-- optional (keyword constsN |-- terms)) >> del ||
+  optional (keyword constsN |-- terms) >> add)
+end;
+
+
+(* theory setup *)
+
+val setup =
+  Attrib.add_attributes [("presburger", att_syntax, "Cooper data")];
+
+end;
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/Qelim/ferrante_rackoff.ML	Thu Jun 21 20:48:48 2007 +0200
@@ -0,0 +1,263 @@
+(* Title:      HOL/Tools/ferrante_rackoff.ML
+   ID:         $Id$
+   Author:     Amine Chaieb, TU Muenchen
+
+Ferrante and Rackoff's algorithm for quantifier elimination in dense
+linear orders.  Proof-synthesis and tactic.
+*)
+
+signature FERRANTE_RACKOFF = 
+sig
+  val dlo_tac: Proof.context -> int -> tactic
+end;
+
+structure FerranteRackoff: FERRANTE_RACKOFF =
+struct
+
+open Ferrante_Rackoff_Data;
+open Conv;
+
+type entry = {minf: thm list, pinf: thm list, nmi: thm list, npi: thm list,  
+   ld: thm list, qe: thm, atoms : cterm list} *
+  {isolate_conv: cterm list -> cterm -> thm, 
+                 whatis : cterm -> cterm -> ord,
+                 simpset : simpset};
+
+fun binop_cong b th1 th2 = Thm.combination (Drule.arg_cong_rule b th1) th2;
+val is_refl = op aconv o Logic.dest_equals o Thm.prop_of;
+fun C f x y = f y x
+
+fun get_p1 th = 
+ let 
+    fun appair f (x,y) = (f x, f y)
+  in funpow 2 (Thm.dest_arg o snd o Thm.dest_abs NONE) 
+     (funpow 2 Thm.dest_arg (cprop_of th)) |> Thm.dest_arg 
+end;
+
+fun ferrack_conv
+   (entr as ({minf = minf, pinf = pinf, nmi = nmi, npi = npi, 
+              ld = ld, qe = qe, atoms = atoms},
+             {isolate_conv = icv, whatis = wi, simpset = simpset}):entry) = 
+let 
+ fun uset (vars as (x::vs)) p = case term_of p of
+   Const("op &", _)$ _ $ _ => 
+     let 
+       val ((b,l),r) = Thm.dest_comb p |>> Thm.dest_comb 
+       val (lS,lth) = uset vars l  val (rS, rth) = uset vars r
+     in (lS@rS, binop_cong b lth rth) end
+ |  Const("op |", _)$ _ $ _ => 
+     let 
+       val ((b,l),r) = Thm.dest_comb p |>> Thm.dest_comb 
+       val (lS,lth) = uset vars l  val (rS, rth) = uset vars r
+     in (lS@rS, binop_cong b lth rth) end
+ | _ => 
+    let 
+      val th = icv vars p 
+      val p' = Thm.rhs_of th
+      val c = wi x p'
+      val S = (if c mem [Lt, Le, Eq] then single o Thm.dest_arg
+               else if c mem [Gt, Ge] then single o Thm.dest_arg1
+               else if c = NEq then single o Thm.dest_arg o Thm.dest_arg 
+               else K []) p'
+    in (S,th) end
+
+ val ((p1_v,p2_v),(mp1_v,mp2_v)) = 
+  let
+   fun appair f (x,y) = (f x, f y)
+  in funpow 2 (Thm.dest_arg o snd o Thm.dest_abs NONE) 
+       (funpow 4 Thm.dest_arg (cprop_of (hd minf))) 
+     |> Thm.dest_binop |> appair Thm.dest_binop |> apfst (appair Thm.dest_fun)  
+  end
+
+ fun myfwd (th1, th2, th3, th4, th5) p1 p2 
+      [(th_1,th_2,th_3,th_4,th_5), (th_1',th_2',th_3',th_4',th_5')] = 
+  let  
+   val (mp1, mp2) = (get_p1 th_1, get_p1 th_1')
+   val (pp1, pp2) = (get_p1 th_2, get_p1 th_2')
+   fun fw mi th th' th'' = 
+     let 
+      val th0 = if mi then 
+           instantiate ([],[(p1_v, p1),(p2_v, p2),(mp1_v, mp1), (mp2_v, mp2)]) th
+        else instantiate ([],[(p1_v, p1),(p2_v, p2),(mp1_v, pp1), (mp2_v, pp2)]) th
+     in implies_elim (implies_elim th0 th') th'' end
+  in (fw true th1 th_1 th_1', fw false th2 th_2 th_2', 
+      fw true th3 th_3 th_3', fw false th4 th_4 th_4', fw true th5 th_5 th_5') 
+  end
+ val U_v = (Thm.dest_arg o Thm.dest_arg o Thm.dest_arg1) (cprop_of qe)
+ fun main vs p = 
+  let 
+   val ((xn,ce),(x,fm)) = (case term_of p of 
+                   Const("Ex",_)$Abs(xn,xT,_) =>  
+                        Thm.dest_comb p ||> Thm.dest_abs (SOME xn) |>> pair xn
+                 | _ => error "main QE only trats existential quantifiers!")
+   val cT = ctyp_of_term x
+   val (u,nth) = uset (x::vs) fm |>> distinct (op aconvc)
+   val nthx = Thm.abstract_rule xn x nth
+   val q = Thm.rhs_of nth
+   val qx = Thm.rhs_of nthx
+   val enth = Drule.arg_cong_rule ce nthx
+   val [th0,th1] = map (instantiate' [SOME cT] []) @{thms "finite.intros"}
+   fun ins x th = 
+      implies_elim (instantiate' [] [(SOME o Thm.dest_arg o Thm.dest_arg) 
+                                       (Thm.cprop_of th), SOME x] th1) th
+   val fU = fold ins u th0
+   val cU = funpow 2 Thm.dest_arg (Thm.cprop_of fU)
+   local 
+     val insI1 = instantiate' [SOME cT] [] @{thm "insertI1"}
+     val insI2 = instantiate' [SOME cT] [] @{thm "insertI2"}
+   in
+    fun provein x S = 
+     case term_of S of
+        Const("{}",_) => error "provein : not a member!"
+      | Const("insert",_)$y$_ => 
+         let val (cy,S') = Thm.dest_binop S
+         in if term_of x aconv y then instantiate' [] [SOME x, SOME S'] insI1
+         else implies_elim (instantiate' [] [SOME x, SOME S', SOME cy] insI2) 
+                           (provein x S')
+         end
+   end
+   val tabU = fold (fn t => fn tab => Termtab.update (term_of t, provein t cU) tab) 
+                   u Termtab.empty
+   val U = valOf o Termtab.lookup tabU o term_of
+   val [minf_conj, minf_disj, minf_eq, minf_neq, minf_lt, 
+        minf_le, minf_gt, minf_ge, minf_P] = minf
+   val [pinf_conj, pinf_disj, pinf_eq, pinf_neq, pinf_lt, 
+        pinf_le, pinf_gt, pinf_ge, pinf_P] = pinf
+   val [nmi_conj, nmi_disj, nmi_eq, nmi_neq, nmi_lt, 
+        nmi_le, nmi_gt, nmi_ge, nmi_P] = map (instantiate ([],[(U_v,cU)])) nmi
+   val [npi_conj, npi_disj, npi_eq, npi_neq, npi_lt, 
+        npi_le, npi_gt, npi_ge, npi_P] = map (instantiate ([],[(U_v,cU)])) npi
+   val [ld_conj, ld_disj, ld_eq, ld_neq, ld_lt, 
+        ld_le, ld_gt, ld_ge, ld_P] = map (instantiate ([],[(U_v,cU)])) ld
+  
+   fun decomp_mpinf fm = 
+     case term_of fm of
+       Const("op &",_)$_$_ => 
+        let val (p,q) = Thm.dest_binop fm 
+        in ([p,q], myfwd (minf_conj,pinf_conj, nmi_conj, npi_conj,ld_conj) 
+                         (Thm.cabs x p) (Thm.cabs x q))
+        end
+     | Const("op |",_)$_$_ => 
+        let val (p,q) = Thm.dest_binop fm 
+        in ([p,q],myfwd (minf_disj, pinf_disj, nmi_disj, npi_disj,ld_disj)
+                         (Thm.cabs x p) (Thm.cabs x q))
+        end
+     | _ => 
+        (let val c = wi x fm
+             val t = (if c=Nox then I 
+                      else if c mem [Lt, Le, Eq] then Thm.dest_arg
+                      else if c mem [Gt,Ge] then Thm.dest_arg1
+                      else if c = NEq then (Thm.dest_arg o Thm.dest_arg) 
+                      else error "decomp_mpinf: Impossible case!!") fm
+             val [mi_th, pi_th, nmi_th, npi_th, ld_th] = 
+               if c = Nox then map (instantiate' [] [SOME fm]) 
+                                    [minf_P, pinf_P, nmi_P, npi_P, ld_P]
+               else 
+                let val [mi_th,pi_th,nmi_th,npi_th,ld_th] = 
+                 map (instantiate' [] [SOME t])
+                 (case c of Lt => [minf_lt, pinf_lt, nmi_lt, npi_lt, ld_lt]
+                          | Le => [minf_le, pinf_le, nmi_le, npi_le, ld_le]
+                          | Gt => [minf_gt, pinf_gt, nmi_gt, npi_gt, ld_gt]
+                          | Ge => [minf_ge, pinf_ge, nmi_ge, npi_ge, ld_ge]
+                          | Eq => [minf_eq, pinf_eq, nmi_eq, npi_eq, ld_eq]
+                          | NEq => [minf_neq, pinf_neq, nmi_neq, npi_neq, ld_neq])
+                    val tU = U t
+                    fun Ufw th = implies_elim th tU
+                 in [mi_th, pi_th, Ufw nmi_th, Ufw npi_th, Ufw ld_th]
+                 end
+         in ([], K (mi_th, pi_th, nmi_th, npi_th, ld_th)) end)
+   val (minf_th, pinf_th, nmi_th, npi_th, ld_th) = divide_and_conquer decomp_mpinf q
+   val qe_th = fold (C implies_elim)  [fU, ld_th, nmi_th, npi_th, minf_th, pinf_th] 
+                  ((fconv_rule (Thm.beta_conversion true)) 
+                   (instantiate' [] (map SOME [cU, qx, get_p1 minf_th, get_p1 pinf_th]) 
+                        qe))
+    val bex_conv = 
+      Simplifier.rewrite (HOL_basic_ss addsimps simp_thms@(@{thms "bex_simps" (1-5)}))
+    val result_th = fconv_rule (arg_conv bex_conv) (transitive enth qe_th)
+   in result_th
+   end
+
+in main
+end;
+
+val grab_atom_bop = 
+ let 
+  fun h bounds tm =
+   (case term_of tm of
+     Const ("op =", T) $ _ $ _ =>
+       if domain_type T = HOLogic.boolT then find_args bounds tm 
+       else Thm.dest_fun2 tm
+   | Const ("Not", _) $ _ => h bounds (Thm.dest_arg tm)
+   | Const ("All", _) $ _ => find_body bounds (Thm.dest_arg tm)
+   | Const ("Ex", _) $ _ => find_body bounds (Thm.dest_arg tm)
+   | Const ("op &", _) $ _ $ _ => find_args bounds tm
+   | Const ("op |", _) $ _ $ _ => find_args bounds tm
+   | Const ("op -->", _) $ _ $ _ => find_args bounds tm
+   | Const ("==>", _) $ _ $ _ => find_args bounds tm
+   | Const ("==", _) $ _ $ _ => find_args bounds tm
+   | Const ("Trueprop", _) $ _ => h bounds (Thm.dest_arg tm)
+   | _ => Thm.dest_fun2 tm)
+  and find_args bounds tm = 
+           (h bounds (Thm.dest_arg tm) handle CTERM _ => Thm.dest_arg1 tm)
+ and find_body bounds b =
+   let val (_, b') = Thm.dest_abs (SOME (Name.bound bounds)) b
+   in h (bounds + 1) b' end;
+in h end;
+
+local
+fun cterm_frees ct = 
+ let fun h acc t = 
+   case (term_of t) of 
+    _$_ => h (h acc (Thm.dest_arg t)) (Thm.dest_fun t)
+  | Abs(_,_,_) => Thm.dest_abs NONE t ||> h acc |> uncurry (remove (op aconvc))
+  | Free _ => insert (op aconvc) t acc
+  | _ => acc
+ in h [] ct end;
+in
+
+fun raw_ferrack_qe_conv ctxt (thy, {isolate_conv, whatis, simpset}) tm = 
+ let 
+   val ss = simpset
+   val pcv = Simplifier.rewrite 
+     (merge_ss (HOL_basic_ss addsimps (simp_thms @ ex_simps @ all_simps)
+              @ [not_all,@{thm "all_not_ex"}, ex_disj_distrib], ss))
+    val postcv = Simplifier.rewrite ss
+    val nnf = K (nnf_conv then_conv postcv)
+    val qe_conv = Qelim.gen_qelim_conv ctxt pcv postcv pcv cons (cterm_frees tm) 
+                  (isolate_conv ctxt) nnf
+                  (fn vs => ferrack_conv (thy,{isolate_conv = isolate_conv ctxt, 
+                                               whatis = whatis, simpset = simpset}) vs
+                   then_conv postcv)
+ in (Simplifier.rewrite ss then_conv qe_conv) tm
+ end
+
+fun ferrackqe_conv ctxt tm = 
+ case Ferrante_Rackoff_Data.match ctxt (grab_atom_bop 0 tm) of
+  NONE => error "ferrackqe_conv : no corresponding instance in context!"
+| SOME res => raw_ferrack_qe_conv ctxt res tm
+end;
+
+fun core_ferrack_tac ctxt res i st =
+ let val p = nth (cprems_of st) (i - 1)
+     val th = symmetric (arg_conv (raw_ferrack_qe_conv ctxt res) p)
+     val p' = Thm.lhs_of th
+     val th' = implies_intr p' (equal_elim th (assume p')) 
+     val _ = print_thm th
+  in (rtac th' i) st 
+  end
+
+fun dlo_tac ctxt i st = 
+ let 
+   val instance = (case Ferrante_Rackoff_Data.match ctxt 
+                           (grab_atom_bop 0 (nth (cprems_of st) (i - 1))) of 
+                    NONE => error "ferrackqe_conv : no corresponding instance in context!"
+                  | SOME r => r)
+   val ss = #simpset (snd instance)
+   in
+   (ObjectLogic.full_atomize_tac i THEN 
+    simp_tac ss i THEN
+    core_ferrack_tac ctxt instance i THEN 
+    (TRY (simp_tac (Simplifier.local_simpset_of ctxt) i))) st
+  end;
+
+end;
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/Qelim/ferrante_rackoff_data.ML	Thu Jun 21 20:48:48 2007 +0200
@@ -0,0 +1,149 @@
+(* Title:      HOL/Tools/ferrante_rackoff_data.ML
+   ID:         $Id$
+   Author:     Amine Chaieb, TU Muenchen
+
+Context data for Ferrante and Rackoff's algorithm for quantifier
+elimination in dense linear orders.
+*)
+
+signature FERRANTE_RACKOF_DATA =
+sig
+  datatype ord = Lt | Le | Gt | Ge | Eq | NEq | Nox
+  type entry
+  val get: Proof.context -> (thm * entry) list
+  val del: attribute
+  val add: entry -> attribute 
+  val funs: thm -> 
+    {isolate_conv: morphism -> Proof.context -> cterm list -> cterm -> thm,
+     whatis: morphism -> cterm -> cterm -> ord,
+     simpset: morphism -> simpset}
+             -> morphism -> Context.generic -> Context.generic
+  val match: Proof.context -> cterm -> entry option
+  val setup: theory -> theory
+end;
+
+structure Ferrante_Rackoff_Data: FERRANTE_RACKOF_DATA = 
+struct
+
+(* data *)
+
+datatype ord = Lt | Le | Gt | Ge | Eq | NEq | Nox
+
+type entry = 
+  {minf: thm list, pinf: thm list, nmi: thm list, npi: thm list,  
+   ld: thm list, qe: thm, atoms : cterm list} *
+   {isolate_conv: Proof.context -> cterm list -> cterm -> thm, 
+    whatis : cterm -> cterm -> ord, 
+    simpset : simpset};
+
+val eq_key = Thm.eq_thm;
+fun eq_data arg = eq_fst eq_key arg;
+
+structure Data = GenericDataFun
+(
+  type T = (thm * entry) list;
+  val empty = [];
+  val extend = I;
+  fun merge _ = AList.merge eq_key (K true);
+);
+
+val get = Data.get o Context.Proof;
+
+fun del_data key = remove eq_data (key, []);
+
+val del = Thm.declaration_attribute (Data.map o del_data);
+
+fun undefined x = error "undefined";
+
+fun add entry = 
+    Thm.declaration_attribute (fn key => fn context => context |> Data.map 
+      (del_data key #> cons (key, entry)));
+
+
+(* extra-logical functions *)
+
+fun funs raw_key {isolate_conv = icv, whatis = wi, simpset = ss} phi = Data.map (fn data =>
+  let
+    val key = Morphism.thm phi raw_key;
+    val _ = AList.defined eq_key data key orelse
+      raise THM ("No data entry for structure key", 0, [key]);
+    val fns = {isolate_conv = icv phi, whatis = wi phi, simpset = ss phi};
+  in AList.map_entry eq_key key (apsnd (K fns)) data end);
+
+fun match ctxt tm =
+  let
+    fun match_inst
+        ({minf, pinf, nmi, npi, ld, qe, atoms},
+         fns as {isolate_conv, whatis, simpset}) pat =
+       let
+        fun h instT =
+          let
+            val substT = Thm.instantiate (instT, []);
+            val substT_cterm = Drule.cterm_rule substT;
+
+            val minf' = map substT minf
+            val pinf' = map substT pinf
+            val nmi' = map substT nmi
+            val npi' = map substT npi
+            val ld' = map substT ld
+            val qe' = substT qe
+            val atoms' = map substT_cterm atoms
+            val result = ({minf = minf', pinf = pinf', nmi = nmi', npi = npi', 
+                           ld = ld', qe = qe', atoms = atoms'}, fns)
+          in SOME result end
+      in (case try Thm.match (pat, tm) of
+           NONE => NONE
+         | SOME (instT, _) => h instT)
+      end;
+
+    fun match_struct (_,
+        entry as ({atoms = atoms, ...}, _): entry) =
+      get_first (match_inst entry) atoms;
+  in get_first match_struct (get ctxt) end;
+
+
+(* concrete syntax *)
+
+local
+val minfN = "minf";
+val pinfN = "pinf";
+val nmiN = "nmi";
+val npiN = "npi";
+val lin_denseN = "lindense";
+val qeN = "qe"
+val atomsN = "atoms"
+val simpsN = "simps"
+fun keyword k = Scan.lift (Args.$$$ k -- Args.colon) >> K ();
+val any_keyword =
+  keyword minfN || keyword pinfN || keyword nmiN 
+|| keyword npiN || keyword lin_denseN || keyword qeN 
+|| keyword atomsN || keyword simpsN;
+
+val thms = Scan.repeat (Scan.unless any_keyword Attrib.multi_thm) >> flat;
+val terms = thms >> map Drule.dest_term;
+in
+
+fun att_syntax src = src |> Attrib.syntax
+    ((keyword minfN |-- thms)
+     -- (keyword pinfN |-- thms)
+     -- (keyword nmiN |-- thms)
+     -- (keyword npiN |-- thms)
+     -- (keyword lin_denseN |-- thms)
+     -- (keyword qeN |-- thms)
+     -- (keyword atomsN |-- terms) >> 
+     (fn ((((((minf,pinf),nmi),npi),lin_dense),qe), atoms)=> 
+     if length qe = 1 then
+       add ({minf = minf, pinf = pinf, nmi = nmi, npi = npi, ld = lin_dense, 
+            qe = hd qe, atoms = atoms},
+           {isolate_conv = undefined, whatis = undefined, simpset = HOL_ss})
+     else error "only one theorem for qe!"))
+
+end;
+
+
+(* theory setup *)
+
+val setup =
+  Attrib.add_attributes [("dlo", att_syntax, "Ferrante Rackoff data")];
+
+end;
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/Qelim/generated_cooper.ML	Thu Jun 21 20:48:48 2007 +0200
@@ -0,0 +1,1693 @@
+structure GeneratedCooper =
+struct
+nonfix oo;
+fun nat i = if i < 0 then 0 else i;
+
+val one_def0 : int = (0 + 1);
+
+datatype num = C of int | Bound of int | CX of int * num | Neg of num
+  | Add of num * num | Sub of num * num | Mul of int * num;
+
+fun snd (a, b) = b;
+
+fun negateSnd x = (fn (q, r) => (q, ~ r)) x;
+
+fun minus_def2 z w = (z + ~ w);
+
+fun adjust b =
+  (fn (q, r) =>
+    (if (0 <= minus_def2 r b) then (((2 * q) + 1), minus_def2 r b)
+      else ((2 * q), r)));
+
+fun negDivAlg a b =
+    (if ((0 <= (a + b)) orelse (b <= 0)) then (~1, (a + b))
+      else adjust b (negDivAlg a (2 * b)));
+
+fun posDivAlg a b =
+    (if ((a < b) orelse (b <= 0)) then (0, a)
+      else adjust b (posDivAlg a (2 * b)));
+
+fun divAlg x =
+  (fn (a, b) =>
+    (if (0 <= a)
+      then (if (0 <= b) then posDivAlg a b
+             else (if (a = 0) then (0, 0)
+                    else negateSnd (negDivAlg (~ a) (~ b))))
+      else (if (0 < b) then negDivAlg a b
+             else negateSnd (posDivAlg (~ a) (~ b)))))
+    x;
+
+fun mod_def1 a b = snd (divAlg (a, b));
+
+fun dvd m n = (mod_def1 n m = 0);
+
+fun abs i = (if (i < 0) then ~ i else i);
+
+fun less_def3 m n = ((m) < (n));
+
+fun less_eq_def3 m n = Bool.not (less_def3 n m);
+
+fun numadd (Add (Mul (c1, Bound n1), r1), Add (Mul (c2, Bound n2), r2)) =
+    (if (n1 = n2)
+      then let val c = (c1 + c2)
+           in (if (c = 0) then numadd (r1, r2)
+                else Add (Mul (c, Bound n1), numadd (r1, r2)))
+           end
+      else (if less_eq_def3 n1 n2
+             then Add (Mul (c1, Bound n1),
+                        numadd (r1, Add (Mul (c2, Bound n2), r2)))
+             else Add (Mul (c2, Bound n2),
+                        numadd (Add (Mul (c1, Bound n1), r1), r2))))
+  | numadd (Add (Mul (c1, Bound n1), r1), C afq) =
+    Add (Mul (c1, Bound n1), numadd (r1, C afq))
+  | numadd (Add (Mul (c1, Bound n1), r1), Bound afr) =
+    Add (Mul (c1, Bound n1), numadd (r1, Bound afr))
+  | numadd (Add (Mul (c1, Bound n1), r1), CX (afs, aft)) =
+    Add (Mul (c1, Bound n1), numadd (r1, CX (afs, aft)))
+  | numadd (Add (Mul (c1, Bound n1), r1), Neg afu) =
+    Add (Mul (c1, Bound n1), numadd (r1, Neg afu))
+  | numadd (Add (Mul (c1, Bound n1), r1), Add (C agx, afw)) =
+    Add (Mul (c1, Bound n1), numadd (r1, Add (C agx, afw)))
+  | numadd (Add (Mul (c1, Bound n1), r1), Add (Bound agy, afw)) =
+    Add (Mul (c1, Bound n1), numadd (r1, Add (Bound agy, afw)))
+  | numadd (Add (Mul (c1, Bound n1), r1), Add (CX (agz, aha), afw)) =
+    Add (Mul (c1, Bound n1), numadd (r1, Add (CX (agz, aha), afw)))
+  | numadd (Add (Mul (c1, Bound n1), r1), Add (Neg ahb, afw)) =
+    Add (Mul (c1, Bound n1), numadd (r1, Add (Neg ahb, afw)))
+  | numadd (Add (Mul (c1, Bound n1), r1), Add (Add (ahc, ahd), afw)) =
+    Add (Mul (c1, Bound n1), numadd (r1, Add (Add (ahc, ahd), afw)))
+  | numadd (Add (Mul (c1, Bound n1), r1), Add (Sub (ahe, ahf), afw)) =
+    Add (Mul (c1, Bound n1), numadd (r1, Add (Sub (ahe, ahf), afw)))
+  | numadd (Add (Mul (c1, Bound n1), r1), Add (Mul (ahg, C aie), afw)) =
+    Add (Mul (c1, Bound n1), numadd (r1, Add (Mul (ahg, C aie), afw)))
+  | numadd (Add (Mul (c1, Bound n1), r1), Add (Mul (ahg, CX (aig, aih)), afw)) =
+    Add (Mul (c1, Bound n1), numadd (r1, Add (Mul (ahg, CX (aig, aih)), afw)))
+  | numadd (Add (Mul (c1, Bound n1), r1), Add (Mul (ahg, Neg aii), afw)) =
+    Add (Mul (c1, Bound n1), numadd (r1, Add (Mul (ahg, Neg aii), afw)))
+  | numadd
+      (Add (Mul (c1, Bound n1), r1), Add (Mul (ahg, Add (aij, aik)), afw)) =
+    Add (Mul (c1, Bound n1), numadd (r1, Add (Mul (ahg, Add (aij, aik)), afw)))
+  | numadd
+      (Add (Mul (c1, Bound n1), r1), Add (Mul (ahg, Sub (ail, aim)), afw)) =
+    Add (Mul (c1, Bound n1), numadd (r1, Add (Mul (ahg, Sub (ail, aim)), afw)))
+  | numadd
+      (Add (Mul (c1, Bound n1), r1), Add (Mul (ahg, Mul (ain, aio)), afw)) =
+    Add (Mul (c1, Bound n1), numadd (r1, Add (Mul (ahg, Mul (ain, aio)), afw)))
+  | numadd (Add (Mul (c1, Bound n1), r1), Sub (afx, afy)) =
+    Add (Mul (c1, Bound n1), numadd (r1, Sub (afx, afy)))
+  | numadd (Add (Mul (c1, Bound n1), r1), Mul (afz, aga)) =
+    Add (Mul (c1, Bound n1), numadd (r1, Mul (afz, aga)))
+  | numadd (C w, Add (Mul (c2, Bound n2), r2)) =
+    Add (Mul (c2, Bound n2), numadd (C w, r2))
+  | numadd (Bound x, Add (Mul (c2, Bound n2), r2)) =
+    Add (Mul (c2, Bound n2), numadd (Bound x, r2))
+  | numadd (CX (y, z), Add (Mul (c2, Bound n2), r2)) =
+    Add (Mul (c2, Bound n2), numadd (CX (y, z), r2))
+  | numadd (Neg ab, Add (Mul (c2, Bound n2), r2)) =
+    Add (Mul (c2, Bound n2), numadd (Neg ab, r2))
+  | numadd (Add (C li, ad), Add (Mul (c2, Bound n2), r2)) =
+    Add (Mul (c2, Bound n2), numadd (Add (C li, ad), r2))
+  | numadd (Add (Bound lj, ad), Add (Mul (c2, Bound n2), r2)) =
+    Add (Mul (c2, Bound n2), numadd (Add (Bound lj, ad), r2))
+  | numadd (Add (CX (lk, ll), ad), Add (Mul (c2, Bound n2), r2)) =
+    Add (Mul (c2, Bound n2), numadd (Add (CX (lk, ll), ad), r2))
+  | numadd (Add (Neg lm, ad), Add (Mul (c2, Bound n2), r2)) =
+    Add (Mul (c2, Bound n2), numadd (Add (Neg lm, ad), r2))
+  | numadd (Add (Add (ln, lo), ad), Add (Mul (c2, Bound n2), r2)) =
+    Add (Mul (c2, Bound n2), numadd (Add (Add (ln, lo), ad), r2))
+  | numadd (Add (Sub (lp, lq), ad), Add (Mul (c2, Bound n2), r2)) =
+    Add (Mul (c2, Bound n2), numadd (Add (Sub (lp, lq), ad), r2))
+  | numadd (Add (Mul (lr, C abv), ad), Add (Mul (c2, Bound n2), r2)) =
+    Add (Mul (c2, Bound n2), numadd (Add (Mul (lr, C abv), ad), r2))
+  | numadd (Add (Mul (lr, CX (abx, aby)), ad), Add (Mul (c2, Bound n2), r2)) =
+    Add (Mul (c2, Bound n2), numadd (Add (Mul (lr, CX (abx, aby)), ad), r2))
+  | numadd (Add (Mul (lr, Neg abz), ad), Add (Mul (c2, Bound n2), r2)) =
+    Add (Mul (c2, Bound n2), numadd (Add (Mul (lr, Neg abz), ad), r2))
+  | numadd (Add (Mul (lr, Add (aca, acb)), ad), Add (Mul (c2, Bound n2), r2)) =
+    Add (Mul (c2, Bound n2), numadd (Add (Mul (lr, Add (aca, acb)), ad), r2))
+  | numadd (Add (Mul (lr, Sub (acc, acd)), ad), Add (Mul (c2, Bound n2), r2)) =
+    Add (Mul (c2, Bound n2), numadd (Add (Mul (lr, Sub (acc, acd)), ad), r2))
+  | numadd (Add (Mul (lr, Mul (ace, acf)), ad), Add (Mul (c2, Bound n2), r2)) =
+    Add (Mul (c2, Bound n2), numadd (Add (Mul (lr, Mul (ace, acf)), ad), r2))
+  | numadd (Sub (ae, af), Add (Mul (c2, Bound n2), r2)) =
+    Add (Mul (c2, Bound n2), numadd (Sub (ae, af), r2))
+  | numadd (Mul (ag, ah), Add (Mul (c2, Bound n2), r2)) =
+    Add (Mul (c2, Bound n2), numadd (Mul (ag, ah), r2))
+  | numadd (C b1, C b2) = C (b1 + b2)
+  | numadd (C ai, Bound bf) = Add (C ai, Bound bf)
+  | numadd (C ai, CX (bg, bh)) = Add (C ai, CX (bg, bh))
+  | numadd (C ai, Neg bi) = Add (C ai, Neg bi)
+  | numadd (C ai, Add (C ca, bk)) = Add (C ai, Add (C ca, bk))
+  | numadd (C ai, Add (Bound cb, bk)) = Add (C ai, Add (Bound cb, bk))
+  | numadd (C ai, Add (CX (cc, cd), bk)) = Add (C ai, Add (CX (cc, cd), bk))
+  | numadd (C ai, Add (Neg ce, bk)) = Add (C ai, Add (Neg ce, bk))
+  | numadd (C ai, Add (Add (cf, cg), bk)) = Add (C ai, Add (Add (cf, cg), bk))
+  | numadd (C ai, Add (Sub (ch, ci), bk)) = Add (C ai, Add (Sub (ch, ci), bk))
+  | numadd (C ai, Add (Mul (cj, C cw), bk)) =
+    Add (C ai, Add (Mul (cj, C cw), bk))
+  | numadd (C ai, Add (Mul (cj, CX (cy, cz)), bk)) =
+    Add (C ai, Add (Mul (cj, CX (cy, cz)), bk))
+  | numadd (C ai, Add (Mul (cj, Neg da), bk)) =
+    Add (C ai, Add (Mul (cj, Neg da), bk))
+  | numadd (C ai, Add (Mul (cj, Add (db, dc)), bk)) =
+    Add (C ai, Add (Mul (cj, Add (db, dc)), bk))
+  | numadd (C ai, Add (Mul (cj, Sub (dd, de)), bk)) =
+    Add (C ai, Add (Mul (cj, Sub (dd, de)), bk))
+  | numadd (C ai, Add (Mul (cj, Mul (df, dg)), bk)) =
+    Add (C ai, Add (Mul (cj, Mul (df, dg)), bk))
+  | numadd (C ai, Sub (bl, bm)) = Add (C ai, Sub (bl, bm))
+  | numadd (C ai, Mul (bn, bo)) = Add (C ai, Mul (bn, bo))
+  | numadd (Bound aj, C ds) = Add (Bound aj, C ds)
+  | numadd (Bound aj, Bound dt) = Add (Bound aj, Bound dt)
+  | numadd (Bound aj, CX (du, dv)) = Add (Bound aj, CX (du, dv))
+  | numadd (Bound aj, Neg dw) = Add (Bound aj, Neg dw)
+  | numadd (Bound aj, Add (C eo, dy)) = Add (Bound aj, Add (C eo, dy))
+  | numadd (Bound aj, Add (Bound ep, dy)) = Add (Bound aj, Add (Bound ep, dy))
+  | numadd (Bound aj, Add (CX (eq, er), dy)) =
+    Add (Bound aj, Add (CX (eq, er), dy))
+  | numadd (Bound aj, Add (Neg es, dy)) = Add (Bound aj, Add (Neg es, dy))
+  | numadd (Bound aj, Add (Add (et, eu), dy)) =
+    Add (Bound aj, Add (Add (et, eu), dy))
+  | numadd (Bound aj, Add (Sub (ev, ew), dy)) =
+    Add (Bound aj, Add (Sub (ev, ew), dy))
+  | numadd (Bound aj, Add (Mul (ex, C fk), dy)) =
+    Add (Bound aj, Add (Mul (ex, C fk), dy))
+  | numadd (Bound aj, Add (Mul (ex, CX (fm, fn')), dy)) =
+    Add (Bound aj, Add (Mul (ex, CX (fm, fn')), dy))
+  | numadd (Bound aj, Add (Mul (ex, Neg fo), dy)) =
+    Add (Bound aj, Add (Mul (ex, Neg fo), dy))
+  | numadd (Bound aj, Add (Mul (ex, Add (fp, fq)), dy)) =
+    Add (Bound aj, Add (Mul (ex, Add (fp, fq)), dy))
+  | numadd (Bound aj, Add (Mul (ex, Sub (fr, fs)), dy)) =
+    Add (Bound aj, Add (Mul (ex, Sub (fr, fs)), dy))
+  | numadd (Bound aj, Add (Mul (ex, Mul (ft, fu)), dy)) =
+    Add (Bound aj, Add (Mul (ex, Mul (ft, fu)), dy))
+  | numadd (Bound aj, Sub (dz, ea)) = Add (Bound aj, Sub (dz, ea))
+  | numadd (Bound aj, Mul (eb, ec)) = Add (Bound aj, Mul (eb, ec))
+  | numadd (CX (ak, al), C gg) = Add (CX (ak, al), C gg)
+  | numadd (CX (ak, al), Bound gh) = Add (CX (ak, al), Bound gh)
+  | numadd (CX (ak, al), CX (gi, gj)) = Add (CX (ak, al), CX (gi, gj))
+  | numadd (CX (ak, al), Neg gk) = Add (CX (ak, al), Neg gk)
+  | numadd (CX (ak, al), Add (C hc, gm)) = Add (CX (ak, al), Add (C hc, gm))
+  | numadd (CX (ak, al), Add (Bound hd, gm)) =
+    Add (CX (ak, al), Add (Bound hd, gm))
+  | numadd (CX (ak, al), Add (CX (he, hf), gm)) =
+    Add (CX (ak, al), Add (CX (he, hf), gm))
+  | numadd (CX (ak, al), Add (Neg hg, gm)) = Add (CX (ak, al), Add (Neg hg, gm))
+  | numadd (CX (ak, al), Add (Add (hh, hi), gm)) =
+    Add (CX (ak, al), Add (Add (hh, hi), gm))
+  | numadd (CX (ak, al), Add (Sub (hj, hk), gm)) =
+    Add (CX (ak, al), Add (Sub (hj, hk), gm))
+  | numadd (CX (ak, al), Add (Mul (hl, C hy), gm)) =
+    Add (CX (ak, al), Add (Mul (hl, C hy), gm))
+  | numadd (CX (ak, al), Add (Mul (hl, CX (ia, ib)), gm)) =
+    Add (CX (ak, al), Add (Mul (hl, CX (ia, ib)), gm))
+  | numadd (CX (ak, al), Add (Mul (hl, Neg ic), gm)) =
+    Add (CX (ak, al), Add (Mul (hl, Neg ic), gm))
+  | numadd (CX (ak, al), Add (Mul (hl, Add (id, ie)), gm)) =
+    Add (CX (ak, al), Add (Mul (hl, Add (id, ie)), gm))
+  | numadd (CX (ak, al), Add (Mul (hl, Sub (if', ig)), gm)) =
+    Add (CX (ak, al), Add (Mul (hl, Sub (if', ig)), gm))
+  | numadd (CX (ak, al), Add (Mul (hl, Mul (ih, ii)), gm)) =
+    Add (CX (ak, al), Add (Mul (hl, Mul (ih, ii)), gm))
+  | numadd (CX (ak, al), Sub (gn, go)) = Add (CX (ak, al), Sub (gn, go))
+  | numadd (CX (ak, al), Mul (gp, gq)) = Add (CX (ak, al), Mul (gp, gq))
+  | numadd (Neg am, C iu) = Add (Neg am, C iu)
+  | numadd (Neg am, Bound iv) = Add (Neg am, Bound iv)
+  | numadd (Neg am, CX (iw, ix)) = Add (Neg am, CX (iw, ix))
+  | numadd (Neg am, Neg iy) = Add (Neg am, Neg iy)
+  | numadd (Neg am, Add (C jq, ja)) = Add (Neg am, Add (C jq, ja))
+  | numadd (Neg am, Add (Bound jr, ja)) = Add (Neg am, Add (Bound jr, ja))
+  | numadd (Neg am, Add (CX (js, jt), ja)) = Add (Neg am, Add (CX (js, jt), ja))
+  | numadd (Neg am, Add (Neg ju, ja)) = Add (Neg am, Add (Neg ju, ja))
+  | numadd (Neg am, Add (Add (jv, jw), ja)) =
+    Add (Neg am, Add (Add (jv, jw), ja))
+  | numadd (Neg am, Add (Sub (jx, jy), ja)) =
+    Add (Neg am, Add (Sub (jx, jy), ja))
+  | numadd (Neg am, Add (Mul (jz, C km), ja)) =
+    Add (Neg am, Add (Mul (jz, C km), ja))
+  | numadd (Neg am, Add (Mul (jz, CX (ko, kp)), ja)) =
+    Add (Neg am, Add (Mul (jz, CX (ko, kp)), ja))
+  | numadd (Neg am, Add (Mul (jz, Neg kq), ja)) =
+    Add (Neg am, Add (Mul (jz, Neg kq), ja))
+  | numadd (Neg am, Add (Mul (jz, Add (kr, ks)), ja)) =
+    Add (Neg am, Add (Mul (jz, Add (kr, ks)), ja))
+  | numadd (Neg am, Add (Mul (jz, Sub (kt, ku)), ja)) =
+    Add (Neg am, Add (Mul (jz, Sub (kt, ku)), ja))
+  | numadd (Neg am, Add (Mul (jz, Mul (kv, kw)), ja)) =
+    Add (Neg am, Add (Mul (jz, Mul (kv, kw)), ja))
+  | numadd (Neg am, Sub (jb, jc)) = Add (Neg am, Sub (jb, jc))
+  | numadd (Neg am, Mul (jd, je)) = Add (Neg am, Mul (jd, je))
+  | numadd (Add (C lt, ao), C mp) = Add (Add (C lt, ao), C mp)
+  | numadd (Add (C lt, ao), Bound mq) = Add (Add (C lt, ao), Bound mq)
+  | numadd (Add (C lt, ao), CX (mr, ms)) = Add (Add (C lt, ao), CX (mr, ms))
+  | numadd (Add (C lt, ao), Neg mt) = Add (Add (C lt, ao), Neg mt)
+  | numadd (Add (C lt, ao), Add (C nl, mv)) =
+    Add (Add (C lt, ao), Add (C nl, mv))
+  | numadd (Add (C lt, ao), Add (Bound nm, mv)) =
+    Add (Add (C lt, ao), Add (Bound nm, mv))
+  | numadd (Add (C lt, ao), Add (CX (nn, no), mv)) =
+    Add (Add (C lt, ao), Add (CX (nn, no), mv))
+  | numadd (Add (C lt, ao), Add (Neg np, mv)) =
+    Add (Add (C lt, ao), Add (Neg np, mv))
+  | numadd (Add (C lt, ao), Add (Add (nq, nr), mv)) =
+    Add (Add (C lt, ao), Add (Add (nq, nr), mv))
+  | numadd (Add (C lt, ao), Add (Sub (ns, nt), mv)) =
+    Add (Add (C lt, ao), Add (Sub (ns, nt), mv))
+  | numadd (Add (C lt, ao), Add (Mul (nu, C oh), mv)) =
+    Add (Add (C lt, ao), Add (Mul (nu, C oh), mv))
+  | numadd (Add (C lt, ao), Add (Mul (nu, CX (oj, ok)), mv)) =
+    Add (Add (C lt, ao), Add (Mul (nu, CX (oj, ok)), mv))
+  | numadd (Add (C lt, ao), Add (Mul (nu, Neg ol), mv)) =
+    Add (Add (C lt, ao), Add (Mul (nu, Neg ol), mv))
+  | numadd (Add (C lt, ao), Add (Mul (nu, Add (om, on)), mv)) =
+    Add (Add (C lt, ao), Add (Mul (nu, Add (om, on)), mv))
+  | numadd (Add (C lt, ao), Add (Mul (nu, Sub (oo, op')), mv)) =
+    Add (Add (C lt, ao), Add (Mul (nu, Sub (oo, op')), mv))
+  | numadd (Add (C lt, ao), Add (Mul (nu, Mul (oq, or)), mv)) =
+    Add (Add (C lt, ao), Add (Mul (nu, Mul (oq, or)), mv))
+  | numadd (Add (C lt, ao), Sub (mw, mx)) = Add (Add (C lt, ao), Sub (mw, mx))
+  | numadd (Add (C lt, ao), Mul (my, mz)) = Add (Add (C lt, ao), Mul (my, mz))
+  | numadd (Add (Bound lu, ao), C pd) = Add (Add (Bound lu, ao), C pd)
+  | numadd (Add (Bound lu, ao), Bound pe) = Add (Add (Bound lu, ao), Bound pe)
+  | numadd (Add (Bound lu, ao), CX (pf, pg)) =
+    Add (Add (Bound lu, ao), CX (pf, pg))
+  | numadd (Add (Bound lu, ao), Neg ph) = Add (Add (Bound lu, ao), Neg ph)
+  | numadd (Add (Bound lu, ao), Add (C pz, pj)) =
+    Add (Add (Bound lu, ao), Add (C pz, pj))
+  | numadd (Add (Bound lu, ao), Add (Bound qa, pj)) =
+    Add (Add (Bound lu, ao), Add (Bound qa, pj))
+  | numadd (Add (Bound lu, ao), Add (CX (qb, qc), pj)) =
+    Add (Add (Bound lu, ao), Add (CX (qb, qc), pj))
+  | numadd (Add (Bound lu, ao), Add (Neg qd, pj)) =
+    Add (Add (Bound lu, ao), Add (Neg qd, pj))
+  | numadd (Add (Bound lu, ao), Add (Add (qe, qf), pj)) =
+    Add (Add (Bound lu, ao), Add (Add (qe, qf), pj))
+  | numadd (Add (Bound lu, ao), Add (Sub (qg, qh), pj)) =
+    Add (Add (Bound lu, ao), Add (Sub (qg, qh), pj))
+  | numadd (Add (Bound lu, ao), Add (Mul (qi, C qv), pj)) =
+    Add (Add (Bound lu, ao), Add (Mul (qi, C qv), pj))
+  | numadd (Add (Bound lu, ao), Add (Mul (qi, CX (qx, qy)), pj)) =
+    Add (Add (Bound lu, ao), Add (Mul (qi, CX (qx, qy)), pj))
+  | numadd (Add (Bound lu, ao), Add (Mul (qi, Neg qz), pj)) =
+    Add (Add (Bound lu, ao), Add (Mul (qi, Neg qz), pj))
+  | numadd (Add (Bound lu, ao), Add (Mul (qi, Add (ra, rb)), pj)) =
+    Add (Add (Bound lu, ao), Add (Mul (qi, Add (ra, rb)), pj))
+  | numadd (Add (Bound lu, ao), Add (Mul (qi, Sub (rc, rd)), pj)) =
+    Add (Add (Bound lu, ao), Add (Mul (qi, Sub (rc, rd)), pj))
+  | numadd (Add (Bound lu, ao), Add (Mul (qi, Mul (re, rf)), pj)) =
+    Add (Add (Bound lu, ao), Add (Mul (qi, Mul (re, rf)), pj))
+  | numadd (Add (Bound lu, ao), Sub (pk, pl)) =
+    Add (Add (Bound lu, ao), Sub (pk, pl))
+  | numadd (Add (Bound lu, ao), Mul (pm, pn)) =
+    Add (Add (Bound lu, ao), Mul (pm, pn))
+  | numadd (Add (CX (lv, lw), ao), C rr) = Add (Add (CX (lv, lw), ao), C rr)
+  | numadd (Add (CX (lv, lw), ao), Bound rs) =
+    Add (Add (CX (lv, lw), ao), Bound rs)
+  | numadd (Add (CX (lv, lw), ao), CX (rt, ru)) =
+    Add (Add (CX (lv, lw), ao), CX (rt, ru))
+  | numadd (Add (CX (lv, lw), ao), Neg rv) = Add (Add (CX (lv, lw), ao), Neg rv)
+  | numadd (Add (CX (lv, lw), ao), Add (C sn, rx)) =
+    Add (Add (CX (lv, lw), ao), Add (C sn, rx))
+  | numadd (Add (CX (lv, lw), ao), Add (Bound so, rx)) =
+    Add (Add (CX (lv, lw), ao), Add (Bound so, rx))
+  | numadd (Add (CX (lv, lw), ao), Add (CX (sp, sq), rx)) =
+    Add (Add (CX (lv, lw), ao), Add (CX (sp, sq), rx))
+  | numadd (Add (CX (lv, lw), ao), Add (Neg sr, rx)) =
+    Add (Add (CX (lv, lw), ao), Add (Neg sr, rx))
+  | numadd (Add (CX (lv, lw), ao), Add (Add (ss, st), rx)) =
+    Add (Add (CX (lv, lw), ao), Add (Add (ss, st), rx))
+  | numadd (Add (CX (lv, lw), ao), Add (Sub (su, sv), rx)) =
+    Add (Add (CX (lv, lw), ao), Add (Sub (su, sv), rx))
+  | numadd (Add (CX (lv, lw), ao), Add (Mul (sw, C tj), rx)) =
+    Add (Add (CX (lv, lw), ao), Add (Mul (sw, C tj), rx))
+  | numadd (Add (CX (lv, lw), ao), Add (Mul (sw, CX (tl, tm)), rx)) =
+    Add (Add (CX (lv, lw), ao), Add (Mul (sw, CX (tl, tm)), rx))
+  | numadd (Add (CX (lv, lw), ao), Add (Mul (sw, Neg tn), rx)) =
+    Add (Add (CX (lv, lw), ao), Add (Mul (sw, Neg tn), rx))
+  | numadd (Add (CX (lv, lw), ao), Add (Mul (sw, Add (to, tp)), rx)) =
+    Add (Add (CX (lv, lw), ao), Add (Mul (sw, Add (to, tp)), rx))
+  | numadd (Add (CX (lv, lw), ao), Add (Mul (sw, Sub (tq, tr)), rx)) =
+    Add (Add (CX (lv, lw), ao), Add (Mul (sw, Sub (tq, tr)), rx))
+  | numadd (Add (CX (lv, lw), ao), Add (Mul (sw, Mul (ts, tt)), rx)) =
+    Add (Add (CX (lv, lw), ao), Add (Mul (sw, Mul (ts, tt)), rx))
+  | numadd (Add (CX (lv, lw), ao), Sub (ry, rz)) =
+    Add (Add (CX (lv, lw), ao), Sub (ry, rz))
+  | numadd (Add (CX (lv, lw), ao), Mul (sa, sb)) =
+    Add (Add (CX (lv, lw), ao), Mul (sa, sb))
+  | numadd (Add (Neg lx, ao), C uf) = Add (Add (Neg lx, ao), C uf)
+  | numadd (Add (Neg lx, ao), Bound ug) = Add (Add (Neg lx, ao), Bound ug)
+  | numadd (Add (Neg lx, ao), CX (uh, ui)) = Add (Add (Neg lx, ao), CX (uh, ui))
+  | numadd (Add (Neg lx, ao), Neg uj) = Add (Add (Neg lx, ao), Neg uj)
+  | numadd (Add (Neg lx, ao), Add (C vb, ul)) =
+    Add (Add (Neg lx, ao), Add (C vb, ul))
+  | numadd (Add (Neg lx, ao), Add (Bound vc, ul)) =
+    Add (Add (Neg lx, ao), Add (Bound vc, ul))
+  | numadd (Add (Neg lx, ao), Add (CX (vd, ve), ul)) =
+    Add (Add (Neg lx, ao), Add (CX (vd, ve), ul))
+  | numadd (Add (Neg lx, ao), Add (Neg vf, ul)) =
+    Add (Add (Neg lx, ao), Add (Neg vf, ul))
+  | numadd (Add (Neg lx, ao), Add (Add (vg, vh), ul)) =
+    Add (Add (Neg lx, ao), Add (Add (vg, vh), ul))
+  | numadd (Add (Neg lx, ao), Add (Sub (vi, vj), ul)) =
+    Add (Add (Neg lx, ao), Add (Sub (vi, vj), ul))
+  | numadd (Add (Neg lx, ao), Add (Mul (vk, C vx), ul)) =
+    Add (Add (Neg lx, ao), Add (Mul (vk, C vx), ul))
+  | numadd (Add (Neg lx, ao), Add (Mul (vk, CX (vz, wa)), ul)) =
+    Add (Add (Neg lx, ao), Add (Mul (vk, CX (vz, wa)), ul))
+  | numadd (Add (Neg lx, ao), Add (Mul (vk, Neg wb), ul)) =
+    Add (Add (Neg lx, ao), Add (Mul (vk, Neg wb), ul))
+  | numadd (Add (Neg lx, ao), Add (Mul (vk, Add (wc, wd)), ul)) =
+    Add (Add (Neg lx, ao), Add (Mul (vk, Add (wc, wd)), ul))
+  | numadd (Add (Neg lx, ao), Add (Mul (vk, Sub (we, wf)), ul)) =
+    Add (Add (Neg lx, ao), Add (Mul (vk, Sub (we, wf)), ul))
+  | numadd (Add (Neg lx, ao), Add (Mul (vk, Mul (wg, wh)), ul)) =
+    Add (Add (Neg lx, ao), Add (Mul (vk, Mul (wg, wh)), ul))
+  | numadd (Add (Neg lx, ao), Sub (um, un)) =
+    Add (Add (Neg lx, ao), Sub (um, un))
+  | numadd (Add (Neg lx, ao), Mul (uo, up)) =
+    Add (Add (Neg lx, ao), Mul (uo, up))
+  | numadd (Add (Add (ly, lz), ao), C wt) = Add (Add (Add (ly, lz), ao), C wt)
+  | numadd (Add (Add (ly, lz), ao), Bound wu) =
+    Add (Add (Add (ly, lz), ao), Bound wu)
+  | numadd (Add (Add (ly, lz), ao), CX (wv, ww)) =
+    Add (Add (Add (ly, lz), ao), CX (wv, ww))
+  | numadd (Add (Add (ly, lz), ao), Neg wx) =
+    Add (Add (Add (ly, lz), ao), Neg wx)
+  | numadd (Add (Add (ly, lz), ao), Add (C xp, wz)) =
+    Add (Add (Add (ly, lz), ao), Add (C xp, wz))
+  | numadd (Add (Add (ly, lz), ao), Add (Bound xq, wz)) =
+    Add (Add (Add (ly, lz), ao), Add (Bound xq, wz))
+  | numadd (Add (Add (ly, lz), ao), Add (CX (xr, xs), wz)) =
+    Add (Add (Add (ly, lz), ao), Add (CX (xr, xs), wz))
+  | numadd (Add (Add (ly, lz), ao), Add (Neg xt, wz)) =
+    Add (Add (Add (ly, lz), ao), Add (Neg xt, wz))
+  | numadd (Add (Add (ly, lz), ao), Add (Add (xu, xv), wz)) =
+    Add (Add (Add (ly, lz), ao), Add (Add (xu, xv), wz))
+  | numadd (Add (Add (ly, lz), ao), Add (Sub (xw, xx), wz)) =
+    Add (Add (Add (ly, lz), ao), Add (Sub (xw, xx), wz))
+  | numadd (Add (Add (ly, lz), ao), Add (Mul (xy, C yl), wz)) =
+    Add (Add (Add (ly, lz), ao), Add (Mul (xy, C yl), wz))
+  | numadd (Add (Add (ly, lz), ao), Add (Mul (xy, CX (yn, yo)), wz)) =
+    Add (Add (Add (ly, lz), ao), Add (Mul (xy, CX (yn, yo)), wz))
+  | numadd (Add (Add (ly, lz), ao), Add (Mul (xy, Neg yp), wz)) =
+    Add (Add (Add (ly, lz), ao), Add (Mul (xy, Neg yp), wz))
+  | numadd (Add (Add (ly, lz), ao), Add (Mul (xy, Add (yq, yr)), wz)) =
+    Add (Add (Add (ly, lz), ao), Add (Mul (xy, Add (yq, yr)), wz))
+  | numadd (Add (Add (ly, lz), ao), Add (Mul (xy, Sub (ys, yt)), wz)) =
+    Add (Add (Add (ly, lz), ao), Add (Mul (xy, Sub (ys, yt)), wz))
+  | numadd (Add (Add (ly, lz), ao), Add (Mul (xy, Mul (yu, yv)), wz)) =
+    Add (Add (Add (ly, lz), ao), Add (Mul (xy, Mul (yu, yv)), wz))
+  | numadd (Add (Add (ly, lz), ao), Sub (xa, xb)) =
+    Add (Add (Add (ly, lz), ao), Sub (xa, xb))
+  | numadd (Add (Add (ly, lz), ao), Mul (xc, xd)) =
+    Add (Add (Add (ly, lz), ao), Mul (xc, xd))
+  | numadd (Add (Sub (ma, mb), ao), C zh) = Add (Add (Sub (ma, mb), ao), C zh)
+  | numadd (Add (Sub (ma, mb), ao), Bound zi) =
+    Add (Add (Sub (ma, mb), ao), Bound zi)
+  | numadd (Add (Sub (ma, mb), ao), CX (zj, zk)) =
+    Add (Add (Sub (ma, mb), ao), CX (zj, zk))
+  | numadd (Add (Sub (ma, mb), ao), Neg zl) =
+    Add (Add (Sub (ma, mb), ao), Neg zl)
+  | numadd (Add (Sub (ma, mb), ao), Add (C aad, zn)) =
+    Add (Add (Sub (ma, mb), ao), Add (C aad, zn))
+  | numadd (Add (Sub (ma, mb), ao), Add (Bound aae, zn)) =
+    Add (Add (Sub (ma, mb), ao), Add (Bound aae, zn))
+  | numadd (Add (Sub (ma, mb), ao), Add (CX (aaf, aag), zn)) =
+    Add (Add (Sub (ma, mb), ao), Add (CX (aaf, aag), zn))
+  | numadd (Add (Sub (ma, mb), ao), Add (Neg aah, zn)) =
+    Add (Add (Sub (ma, mb), ao), Add (Neg aah, zn))
+  | numadd (Add (Sub (ma, mb), ao), Add (Add (aai, aaj), zn)) =
+    Add (Add (Sub (ma, mb), ao), Add (Add (aai, aaj), zn))
+  | numadd (Add (Sub (ma, mb), ao), Add (Sub (aak, aal), zn)) =
+    Add (Add (Sub (ma, mb), ao), Add (Sub (aak, aal), zn))
+  | numadd (Add (Sub (ma, mb), ao), Add (Mul (aam, C aaz), zn)) =
+    Add (Add (Sub (ma, mb), ao), Add (Mul (aam, C aaz), zn))
+  | numadd (Add (Sub (ma, mb), ao), Add (Mul (aam, CX (abb, abc)), zn)) =
+    Add (Add (Sub (ma, mb), ao), Add (Mul (aam, CX (abb, abc)), zn))
+  | numadd (Add (Sub (ma, mb), ao), Add (Mul (aam, Neg abd), zn)) =
+    Add (Add (Sub (ma, mb), ao), Add (Mul (aam, Neg abd), zn))
+  | numadd (Add (Sub (ma, mb), ao), Add (Mul (aam, Add (abe, abf)), zn)) =
+    Add (Add (Sub (ma, mb), ao), Add (Mul (aam, Add (abe, abf)), zn))
+  | numadd (Add (Sub (ma, mb), ao), Add (Mul (aam, Sub (abg, abh)), zn)) =
+    Add (Add (Sub (ma, mb), ao), Add (Mul (aam, Sub (abg, abh)), zn))
+  | numadd (Add (Sub (ma, mb), ao), Add (Mul (aam, Mul (abi, abj)), zn)) =
+    Add (Add (Sub (ma, mb), ao), Add (Mul (aam, Mul (abi, abj)), zn))
+  | numadd (Add (Sub (ma, mb), ao), Sub (zo, zp)) =
+    Add (Add (Sub (ma, mb), ao), Sub (zo, zp))
+  | numadd (Add (Sub (ma, mb), ao), Mul (zq, zr)) =
+    Add (Add (Sub (ma, mb), ao), Mul (zq, zr))
+  | numadd (Add (Mul (mc, C acg), ao), C adc) =
+    Add (Add (Mul (mc, C acg), ao), C adc)
+  | numadd (Add (Mul (mc, C acg), ao), Bound add) =
+    Add (Add (Mul (mc, C acg), ao), Bound add)
+  | numadd (Add (Mul (mc, C acg), ao), CX (ade, adf)) =
+    Add (Add (Mul (mc, C acg), ao), CX (ade, adf))
+  | numadd (Add (Mul (mc, C acg), ao), Neg adg) =
+    Add (Add (Mul (mc, C acg), ao), Neg adg)
+  | numadd (Add (Mul (mc, C acg), ao), Add (C ady, adi)) =
+    Add (Add (Mul (mc, C acg), ao), Add (C ady, adi))
+  | numadd (Add (Mul (mc, C acg), ao), Add (Bound adz, adi)) =
+    Add (Add (Mul (mc, C acg), ao), Add (Bound adz, adi))
+  | numadd (Add (Mul (mc, C acg), ao), Add (CX (aea, aeb), adi)) =
+    Add (Add (Mul (mc, C acg), ao), Add (CX (aea, aeb), adi))
+  | numadd (Add (Mul (mc, C acg), ao), Add (Neg aec, adi)) =
+    Add (Add (Mul (mc, C acg), ao), Add (Neg aec, adi))
+  | numadd (Add (Mul (mc, C acg), ao), Add (Add (aed, aee), adi)) =
+    Add (Add (Mul (mc, C acg), ao), Add (Add (aed, aee), adi))
+  | numadd (Add (Mul (mc, C acg), ao), Add (Sub (aef, aeg), adi)) =
+    Add (Add (Mul (mc, C acg), ao), Add (Sub (aef, aeg), adi))
+  | numadd (Add (Mul (mc, C acg), ao), Add (Mul (aeh, C aeu), adi)) =
+    Add (Add (Mul (mc, C acg), ao), Add (Mul (aeh, C aeu), adi))
+  | numadd (Add (Mul (mc, C acg), ao), Add (Mul (aeh, CX (aew, aex)), adi)) =
+    Add (Add (Mul (mc, C acg), ao), Add (Mul (aeh, CX (aew, aex)), adi))
+  | numadd (Add (Mul (mc, C acg), ao), Add (Mul (aeh, Neg aey), adi)) =
+    Add (Add (Mul (mc, C acg), ao), Add (Mul (aeh, Neg aey), adi))
+  | numadd (Add (Mul (mc, C acg), ao), Add (Mul (aeh, Add (aez, afa)), adi)) =
+    Add (Add (Mul (mc, C acg), ao), Add (Mul (aeh, Add (aez, afa)), adi))
+  | numadd (Add (Mul (mc, C acg), ao), Add (Mul (aeh, Sub (afb, afc)), adi)) =
+    Add (Add (Mul (mc, C acg), ao), Add (Mul (aeh, Sub (afb, afc)), adi))
+  | numadd (Add (Mul (mc, C acg), ao), Add (Mul (aeh, Mul (afd, afe)), adi)) =
+    Add (Add (Mul (mc, C acg), ao), Add (Mul (aeh, Mul (afd, afe)), adi))
+  | numadd (Add (Mul (mc, C acg), ao), Sub (adj, adk)) =
+    Add (Add (Mul (mc, C acg), ao), Sub (adj, adk))
+  | numadd (Add (Mul (mc, C acg), ao), Mul (adl, adm)) =
+    Add (Add (Mul (mc, C acg), ao), Mul (adl, adm))
+  | numadd (Add (Mul (mc, CX (aci, acj)), ao), C ajl) =
+    Add (Add (Mul (mc, CX (aci, acj)), ao), C ajl)
+  | numadd (Add (Mul (mc, CX (aci, acj)), ao), Bound ajm) =
+    Add (Add (Mul (mc, CX (aci, acj)), ao), Bound ajm)
+  | numadd (Add (Mul (mc, CX (aci, acj)), ao), CX (ajn, ajo)) =
+    Add (Add (Mul (mc, CX (aci, acj)), ao), CX (ajn, ajo))
+  | numadd (Add (Mul (mc, CX (aci, acj)), ao), Neg ajp) =
+    Add (Add (Mul (mc, CX (aci, acj)), ao), Neg ajp)
+  | numadd (Add (Mul (mc, CX (aci, acj)), ao), Add (C akh, ajr)) =
+    Add (Add (Mul (mc, CX (aci, acj)), ao), Add (C akh, ajr))
+  | numadd (Add (Mul (mc, CX (aci, acj)), ao), Add (Bound aki, ajr)) =
+    Add (Add (Mul (mc, CX (aci, acj)), ao), Add (Bound aki, ajr))
+  | numadd (Add (Mul (mc, CX (aci, acj)), ao), Add (CX (akj, akk), ajr)) =
+    Add (Add (Mul (mc, CX (aci, acj)), ao), Add (CX (akj, akk), ajr))
+  | numadd (Add (Mul (mc, CX (aci, acj)), ao), Add (Neg akl, ajr)) =
+    Add (Add (Mul (mc, CX (aci, acj)), ao), Add (Neg akl, ajr))
+  | numadd (Add (Mul (mc, CX (aci, acj)), ao), Add (Add (akm, akn), ajr)) =
+    Add (Add (Mul (mc, CX (aci, acj)), ao), Add (Add (akm, akn), ajr))
+  | numadd (Add (Mul (mc, CX (aci, acj)), ao), Add (Sub (ako, akp), ajr)) =
+    Add (Add (Mul (mc, CX (aci, acj)), ao), Add (Sub (ako, akp), ajr))
+  | numadd (Add (Mul (mc, CX (aci, acj)), ao), Add (Mul (akq, C ald), ajr)) =
+    Add (Add (Mul (mc, CX (aci, acj)), ao), Add (Mul (akq, C ald), ajr))
+  | numadd
+      (Add (Mul (mc, CX (aci, acj)), ao), Add (Mul (akq, CX (alf, alg)), ajr)) =
+    Add (Add (Mul (mc, CX (aci, acj)), ao), Add (Mul (akq, CX (alf, alg)), ajr))
+  | numadd (Add (Mul (mc, CX (aci, acj)), ao), Add (Mul (akq, Neg alh), ajr)) =
+    Add (Add (Mul (mc, CX (aci, acj)), ao), Add (Mul (akq, Neg alh), ajr))
+  | numadd
+      (Add (Mul (mc, CX (aci, acj)), ao),
+        Add (Mul (akq, Add (ali, alj)), ajr)) =
+    Add (Add (Mul (mc, CX (aci, acj)), ao),
+          Add (Mul (akq, Add (ali, alj)), ajr))
+  | numadd
+      (Add (Mul (mc, CX (aci, acj)), ao),
+        Add (Mul (akq, Sub (alk, all)), ajr)) =
+    Add (Add (Mul (mc, CX (aci, acj)), ao),
+          Add (Mul (akq, Sub (alk, all)), ajr))
+  | numadd
+      (Add (Mul (mc, CX (aci, acj)), ao),
+        Add (Mul (akq, Mul (alm, aln)), ajr)) =
+    Add (Add (Mul (mc, CX (aci, acj)), ao),
+          Add (Mul (akq, Mul (alm, aln)), ajr))
+  | numadd (Add (Mul (mc, CX (aci, acj)), ao), Sub (ajs, ajt)) =
+    Add (Add (Mul (mc, CX (aci, acj)), ao), Sub (ajs, ajt))
+  | numadd (Add (Mul (mc, CX (aci, acj)), ao), Mul (aju, ajv)) =
+    Add (Add (Mul (mc, CX (aci, acj)), ao), Mul (aju, ajv))
+  | numadd (Add (Mul (mc, Neg ack), ao), C alz) =
+    Add (Add (Mul (mc, Neg ack), ao), C alz)
+  | numadd (Add (Mul (mc, Neg ack), ao), Bound ama) =
+    Add (Add (Mul (mc, Neg ack), ao), Bound ama)
+  | numadd (Add (Mul (mc, Neg ack), ao), CX (amb, amc)) =
+    Add (Add (Mul (mc, Neg ack), ao), CX (amb, amc))
+  | numadd (Add (Mul (mc, Neg ack), ao), Neg amd) =
+    Add (Add (Mul (mc, Neg ack), ao), Neg amd)
+  | numadd (Add (Mul (mc, Neg ack), ao), Add (C amv, amf)) =
+    Add (Add (Mul (mc, Neg ack), ao), Add (C amv, amf))
+  | numadd (Add (Mul (mc, Neg ack), ao), Add (Bound amw, amf)) =
+    Add (Add (Mul (mc, Neg ack), ao), Add (Bound amw, amf))
+  | numadd (Add (Mul (mc, Neg ack), ao), Add (CX (amx, amy), amf)) =
+    Add (Add (Mul (mc, Neg ack), ao), Add (CX (amx, amy), amf))
+  | numadd (Add (Mul (mc, Neg ack), ao), Add (Neg amz, amf)) =
+    Add (Add (Mul (mc, Neg ack), ao), Add (Neg amz, amf))
+  | numadd (Add (Mul (mc, Neg ack), ao), Add (Add (ana, anb), amf)) =
+    Add (Add (Mul (mc, Neg ack), ao), Add (Add (ana, anb), amf))
+  | numadd (Add (Mul (mc, Neg ack), ao), Add (Sub (anc, and'), amf)) =
+    Add (Add (Mul (mc, Neg ack), ao), Add (Sub (anc, and'), amf))
+  | numadd (Add (Mul (mc, Neg ack), ao), Add (Mul (ane, C anr), amf)) =
+    Add (Add (Mul (mc, Neg ack), ao), Add (Mul (ane, C anr), amf))
+  | numadd (Add (Mul (mc, Neg ack), ao), Add (Mul (ane, CX (ant, anu)), amf)) =
+    Add (Add (Mul (mc, Neg ack), ao), Add (Mul (ane, CX (ant, anu)), amf))
+  | numadd (Add (Mul (mc, Neg ack), ao), Add (Mul (ane, Neg anv), amf)) =
+    Add (Add (Mul (mc, Neg ack), ao), Add (Mul (ane, Neg anv), amf))
+  | numadd (Add (Mul (mc, Neg ack), ao), Add (Mul (ane, Add (anw, anx)), amf)) =
+    Add (Add (Mul (mc, Neg ack), ao), Add (Mul (ane, Add (anw, anx)), amf))
+  | numadd (Add (Mul (mc, Neg ack), ao), Add (Mul (ane, Sub (any, anz)), amf)) =
+    Add (Add (Mul (mc, Neg ack), ao), Add (Mul (ane, Sub (any, anz)), amf))
+  | numadd (Add (Mul (mc, Neg ack), ao), Add (Mul (ane, Mul (aoa, aob)), amf)) =
+    Add (Add (Mul (mc, Neg ack), ao), Add (Mul (ane, Mul (aoa, aob)), amf))
+  | numadd (Add (Mul (mc, Neg ack), ao), Sub (amg, amh)) =
+    Add (Add (Mul (mc, Neg ack), ao), Sub (amg, amh))
+  | numadd (Add (Mul (mc, Neg ack), ao), Mul (ami, amj)) =
+    Add (Add (Mul (mc, Neg ack), ao), Mul (ami, amj))
+  | numadd (Add (Mul (mc, Add (acl, acm)), ao), C aon) =
+    Add (Add (Mul (mc, Add (acl, acm)), ao), C aon)
+  | numadd (Add (Mul (mc, Add (acl, acm)), ao), Bound aoo) =
+    Add (Add (Mul (mc, Add (acl, acm)), ao), Bound aoo)
+  | numadd (Add (Mul (mc, Add (acl, acm)), ao), CX (aop, aoq)) =
+    Add (Add (Mul (mc, Add (acl, acm)), ao), CX (aop, aoq))
+  | numadd (Add (Mul (mc, Add (acl, acm)), ao), Neg aor) =
+    Add (Add (Mul (mc, Add (acl, acm)), ao), Neg aor)
+  | numadd (Add (Mul (mc, Add (acl, acm)), ao), Add (C apj, aot)) =
+    Add (Add (Mul (mc, Add (acl, acm)), ao), Add (C apj, aot))
+  | numadd (Add (Mul (mc, Add (acl, acm)), ao), Add (Bound apk, aot)) =
+    Add (Add (Mul (mc, Add (acl, acm)), ao), Add (Bound apk, aot))
+  | numadd (Add (Mul (mc, Add (acl, acm)), ao), Add (CX (apl, apm), aot)) =
+    Add (Add (Mul (mc, Add (acl, acm)), ao), Add (CX (apl, apm), aot))
+  | numadd (Add (Mul (mc, Add (acl, acm)), ao), Add (Neg apn, aot)) =
+    Add (Add (Mul (mc, Add (acl, acm)), ao), Add (Neg apn, aot))
+  | numadd (Add (Mul (mc, Add (acl, acm)), ao), Add (Add (apo, app), aot)) =
+    Add (Add (Mul (mc, Add (acl, acm)), ao), Add (Add (apo, app), aot))
+  | numadd (Add (Mul (mc, Add (acl, acm)), ao), Add (Sub (apq, apr), aot)) =
+    Add (Add (Mul (mc, Add (acl, acm)), ao), Add (Sub (apq, apr), aot))
+  | numadd (Add (Mul (mc, Add (acl, acm)), ao), Add (Mul (aps, C aqf), aot)) =
+    Add (Add (Mul (mc, Add (acl, acm)), ao), Add (Mul (aps, C aqf), aot))
+  | numadd
+      (Add (Mul (mc, Add (acl, acm)), ao),
+        Add (Mul (aps, CX (aqh, aqi)), aot)) =
+    Add (Add (Mul (mc, Add (acl, acm)), ao),
+          Add (Mul (aps, CX (aqh, aqi)), aot))
+  | numadd (Add (Mul (mc, Add (acl, acm)), ao), Add (Mul (aps, Neg aqj), aot)) =
+    Add (Add (Mul (mc, Add (acl, acm)), ao), Add (Mul (aps, Neg aqj), aot))
+  | numadd
+      (Add (Mul (mc, Add (acl, acm)), ao),
+        Add (Mul (aps, Add (aqk, aql)), aot)) =
+    Add (Add (Mul (mc, Add (acl, acm)), ao),
+          Add (Mul (aps, Add (aqk, aql)), aot))
+  | numadd
+      (Add (Mul (mc, Add (acl, acm)), ao),
+        Add (Mul (aps, Sub (aqm, aqn)), aot)) =
+    Add (Add (Mul (mc, Add (acl, acm)), ao),
+          Add (Mul (aps, Sub (aqm, aqn)), aot))
+  | numadd
+      (Add (Mul (mc, Add (acl, acm)), ao),
+        Add (Mul (aps, Mul (aqo, aqp)), aot)) =
+    Add (Add (Mul (mc, Add (acl, acm)), ao),
+          Add (Mul (aps, Mul (aqo, aqp)), aot))
+  | numadd (Add (Mul (mc, Add (acl, acm)), ao), Sub (aou, aov)) =
+    Add (Add (Mul (mc, Add (acl, acm)), ao), Sub (aou, aov))
+  | numadd (Add (Mul (mc, Add (acl, acm)), ao), Mul (aow, aox)) =
+    Add (Add (Mul (mc, Add (acl, acm)), ao), Mul (aow, aox))
+  | numadd (Add (Mul (mc, Sub (acn, aco)), ao), C arb) =
+    Add (Add (Mul (mc, Sub (acn, aco)), ao), C arb)
+  | numadd (Add (Mul (mc, Sub (acn, aco)), ao), Bound arc) =
+    Add (Add (Mul (mc, Sub (acn, aco)), ao), Bound arc)
+  | numadd (Add (Mul (mc, Sub (acn, aco)), ao), CX (ard, are)) =
+    Add (Add (Mul (mc, Sub (acn, aco)), ao), CX (ard, are))
+  | numadd (Add (Mul (mc, Sub (acn, aco)), ao), Neg arf) =
+    Add (Add (Mul (mc, Sub (acn, aco)), ao), Neg arf)
+  | numadd (Add (Mul (mc, Sub (acn, aco)), ao), Add (C arx, arh)) =
+    Add (Add (Mul (mc, Sub (acn, aco)), ao), Add (C arx, arh))
+  | numadd (Add (Mul (mc, Sub (acn, aco)), ao), Add (Bound ary, arh)) =
+    Add (Add (Mul (mc, Sub (acn, aco)), ao), Add (Bound ary, arh))
+  | numadd (Add (Mul (mc, Sub (acn, aco)), ao), Add (CX (arz, asa), arh)) =
+    Add (Add (Mul (mc, Sub (acn, aco)), ao), Add (CX (arz, asa), arh))
+  | numadd (Add (Mul (mc, Sub (acn, aco)), ao), Add (Neg asb, arh)) =
+    Add (Add (Mul (mc, Sub (acn, aco)), ao), Add (Neg asb, arh))
+  | numadd (Add (Mul (mc, Sub (acn, aco)), ao), Add (Add (asc, asd), arh)) =
+    Add (Add (Mul (mc, Sub (acn, aco)), ao), Add (Add (asc, asd), arh))
+  | numadd (Add (Mul (mc, Sub (acn, aco)), ao), Add (Sub (ase, asf), arh)) =
+    Add (Add (Mul (mc, Sub (acn, aco)), ao), Add (Sub (ase, asf), arh))
+  | numadd (Add (Mul (mc, Sub (acn, aco)), ao), Add (Mul (asg, C ast), arh)) =
+    Add (Add (Mul (mc, Sub (acn, aco)), ao), Add (Mul (asg, C ast), arh))
+  | numadd
+      (Add (Mul (mc, Sub (acn, aco)), ao),
+        Add (Mul (asg, CX (asv, asw)), arh)) =
+    Add (Add (Mul (mc, Sub (acn, aco)), ao),
+          Add (Mul (asg, CX (asv, asw)), arh))
+  | numadd (Add (Mul (mc, Sub (acn, aco)), ao), Add (Mul (asg, Neg asx), arh)) =
+    Add (Add (Mul (mc, Sub (acn, aco)), ao), Add (Mul (asg, Neg asx), arh))
+  | numadd
+      (Add (Mul (mc, Sub (acn, aco)), ao),
+        Add (Mul (asg, Add (asy, asz)), arh)) =
+    Add (Add (Mul (mc, Sub (acn, aco)), ao),
+          Add (Mul (asg, Add (asy, asz)), arh))
+  | numadd
+      (Add (Mul (mc, Sub (acn, aco)), ao),
+        Add (Mul (asg, Sub (ata, atb)), arh)) =
+    Add (Add (Mul (mc, Sub (acn, aco)), ao),
+          Add (Mul (asg, Sub (ata, atb)), arh))
+  | numadd
+      (Add (Mul (mc, Sub (acn, aco)), ao),
+        Add (Mul (asg, Mul (atc, atd)), arh)) =
+    Add (Add (Mul (mc, Sub (acn, aco)), ao),
+          Add (Mul (asg, Mul (atc, atd)), arh))
+  | numadd (Add (Mul (mc, Sub (acn, aco)), ao), Sub (ari, arj)) =
+    Add (Add (Mul (mc, Sub (acn, aco)), ao), Sub (ari, arj))
+  | numadd (Add (Mul (mc, Sub (acn, aco)), ao), Mul (ark, arl)) =
+    Add (Add (Mul (mc, Sub (acn, aco)), ao), Mul (ark, arl))
+  | numadd (Add (Mul (mc, Mul (acp, acq)), ao), C atp) =
+    Add (Add (Mul (mc, Mul (acp, acq)), ao), C atp)
+  | numadd (Add (Mul (mc, Mul (acp, acq)), ao), Bound atq) =
+    Add (Add (Mul (mc, Mul (acp, acq)), ao), Bound atq)
+  | numadd (Add (Mul (mc, Mul (acp, acq)), ao), CX (atr, ats)) =
+    Add (Add (Mul (mc, Mul (acp, acq)), ao), CX (atr, ats))
+  | numadd (Add (Mul (mc, Mul (acp, acq)), ao), Neg att) =
+    Add (Add (Mul (mc, Mul (acp, acq)), ao), Neg att)
+  | numadd (Add (Mul (mc, Mul (acp, acq)), ao), Add (C aul, atv)) =
+    Add (Add (Mul (mc, Mul (acp, acq)), ao), Add (C aul, atv))
+  | numadd (Add (Mul (mc, Mul (acp, acq)), ao), Add (Bound aum, atv)) =
+    Add (Add (Mul (mc, Mul (acp, acq)), ao), Add (Bound aum, atv))
+  | numadd (Add (Mul (mc, Mul (acp, acq)), ao), Add (CX (aun, auo), atv)) =
+    Add (Add (Mul (mc, Mul (acp, acq)), ao), Add (CX (aun, auo), atv))
+  | numadd (Add (Mul (mc, Mul (acp, acq)), ao), Add (Neg aup, atv)) =
+    Add (Add (Mul (mc, Mul (acp, acq)), ao), Add (Neg aup, atv))
+  | numadd (Add (Mul (mc, Mul (acp, acq)), ao), Add (Add (auq, aur), atv)) =
+    Add (Add (Mul (mc, Mul (acp, acq)), ao), Add (Add (auq, aur), atv))
+  | numadd (Add (Mul (mc, Mul (acp, acq)), ao), Add (Sub (aus, aut), atv)) =
+    Add (Add (Mul (mc, Mul (acp, acq)), ao), Add (Sub (aus, aut), atv))
+  | numadd (Add (Mul (mc, Mul (acp, acq)), ao), Add (Mul (auu, C avh), atv)) =
+    Add (Add (Mul (mc, Mul (acp, acq)), ao), Add (Mul (auu, C avh), atv))
+  | numadd
+      (Add (Mul (mc, Mul (acp, acq)), ao),
+        Add (Mul (auu, CX (avj, avk)), atv)) =
+    Add (Add (Mul (mc, Mul (acp, acq)), ao),
+          Add (Mul (auu, CX (avj, avk)), atv))
+  | numadd (Add (Mul (mc, Mul (acp, acq)), ao), Add (Mul (auu, Neg avl), atv)) =
+    Add (Add (Mul (mc, Mul (acp, acq)), ao), Add (Mul (auu, Neg avl), atv))
+  | numadd
+      (Add (Mul (mc, Mul (acp, acq)), ao),
+        Add (Mul (auu, Add (avm, avn)), atv)) =
+    Add (Add (Mul (mc, Mul (acp, acq)), ao),
+          Add (Mul (auu, Add (avm, avn)), atv))
+  | numadd
+      (Add (Mul (mc, Mul (acp, acq)), ao),
+        Add (Mul (auu, Sub (avo, avp)), atv)) =
+    Add (Add (Mul (mc, Mul (acp, acq)), ao),
+          Add (Mul (auu, Sub (avo, avp)), atv))
+  | numadd
+      (Add (Mul (mc, Mul (acp, acq)), ao),
+        Add (Mul (auu, Mul (avq, avr)), atv)) =
+    Add (Add (Mul (mc, Mul (acp, acq)), ao),
+          Add (Mul (auu, Mul (avq, avr)), atv))
+  | numadd (Add (Mul (mc, Mul (acp, acq)), ao), Sub (atw, atx)) =
+    Add (Add (Mul (mc, Mul (acp, acq)), ao), Sub (atw, atx))
+  | numadd (Add (Mul (mc, Mul (acp, acq)), ao), Mul (aty, atz)) =
+    Add (Add (Mul (mc, Mul (acp, acq)), ao), Mul (aty, atz))
+  | numadd (Sub (ap, aq), C awd) = Add (Sub (ap, aq), C awd)
+  | numadd (Sub (ap, aq), Bound awe) = Add (Sub (ap, aq), Bound awe)
+  | numadd (Sub (ap, aq), CX (awf, awg)) = Add (Sub (ap, aq), CX (awf, awg))
+  | numadd (Sub (ap, aq), Neg awh) = Add (Sub (ap, aq), Neg awh)
+  | numadd (Sub (ap, aq), Add (C awz, awj)) =
+    Add (Sub (ap, aq), Add (C awz, awj))
+  | numadd (Sub (ap, aq), Add (Bound axa, awj)) =
+    Add (Sub (ap, aq), Add (Bound axa, awj))
+  | numadd (Sub (ap, aq), Add (CX (axb, axc), awj)) =
+    Add (Sub (ap, aq), Add (CX (axb, axc), awj))
+  | numadd (Sub (ap, aq), Add (Neg axd, awj)) =
+    Add (Sub (ap, aq), Add (Neg axd, awj))
+  | numadd (Sub (ap, aq), Add (Add (axe, axf), awj)) =
+    Add (Sub (ap, aq), Add (Add (axe, axf), awj))
+  | numadd (Sub (ap, aq), Add (Sub (axg, axh), awj)) =
+    Add (Sub (ap, aq), Add (Sub (axg, axh), awj))
+  | numadd (Sub (ap, aq), Add (Mul (axi, C axv), awj)) =
+    Add (Sub (ap, aq), Add (Mul (axi, C axv), awj))
+  | numadd (Sub (ap, aq), Add (Mul (axi, CX (axx, axy)), awj)) =
+    Add (Sub (ap, aq), Add (Mul (axi, CX (axx, axy)), awj))
+  | numadd (Sub (ap, aq), Add (Mul (axi, Neg axz), awj)) =
+    Add (Sub (ap, aq), Add (Mul (axi, Neg axz), awj))
+  | numadd (Sub (ap, aq), Add (Mul (axi, Add (aya, ayb)), awj)) =
+    Add (Sub (ap, aq), Add (Mul (axi, Add (aya, ayb)), awj))
+  | numadd (Sub (ap, aq), Add (Mul (axi, Sub (ayc, ayd)), awj)) =
+    Add (Sub (ap, aq), Add (Mul (axi, Sub (ayc, ayd)), awj))
+  | numadd (Sub (ap, aq), Add (Mul (axi, Mul (aye, ayf)), awj)) =
+    Add (Sub (ap, aq), Add (Mul (axi, Mul (aye, ayf)), awj))
+  | numadd (Sub (ap, aq), Sub (awk, awl)) = Add (Sub (ap, aq), Sub (awk, awl))
+  | numadd (Sub (ap, aq), Mul (awm, awn)) = Add (Sub (ap, aq), Mul (awm, awn))
+  | numadd (Mul (ar, as'), C ayr) = Add (Mul (ar, as'), C ayr)
+  | numadd (Mul (ar, as'), Bound ays) = Add (Mul (ar, as'), Bound ays)
+  | numadd (Mul (ar, as'), CX (ayt, ayu)) = Add (Mul (ar, as'), CX (ayt, ayu))
+  | numadd (Mul (ar, as'), Neg ayv) = Add (Mul (ar, as'), Neg ayv)
+  | numadd (Mul (ar, as'), Add (C azn, ayx)) =
+    Add (Mul (ar, as'), Add (C azn, ayx))
+  | numadd (Mul (ar, as'), Add (Bound azo, ayx)) =
+    Add (Mul (ar, as'), Add (Bound azo, ayx))
+  | numadd (Mul (ar, as'), Add (CX (azp, azq), ayx)) =
+    Add (Mul (ar, as'), Add (CX (azp, azq), ayx))
+  | numadd (Mul (ar, as'), Add (Neg azr, ayx)) =
+    Add (Mul (ar, as'), Add (Neg azr, ayx))
+  | numadd (Mul (ar, as'), Add (Add (azs, azt), ayx)) =
+    Add (Mul (ar, as'), Add (Add (azs, azt), ayx))
+  | numadd (Mul (ar, as'), Add (Sub (azu, azv), ayx)) =
+    Add (Mul (ar, as'), Add (Sub (azu, azv), ayx))
+  | numadd (Mul (ar, as'), Add (Mul (azw, C baj), ayx)) =
+    Add (Mul (ar, as'), Add (Mul (azw, C baj), ayx))
+  | numadd (Mul (ar, as'), Add (Mul (azw, CX (bal, bam)), ayx)) =
+    Add (Mul (ar, as'), Add (Mul (azw, CX (bal, bam)), ayx))
+  | numadd (Mul (ar, as'), Add (Mul (azw, Neg ban), ayx)) =
+    Add (Mul (ar, as'), Add (Mul (azw, Neg ban), ayx))
+  | numadd (Mul (ar, as'), Add (Mul (azw, Add (bao, bap)), ayx)) =
+    Add (Mul (ar, as'), Add (Mul (azw, Add (bao, bap)), ayx))
+  | numadd (Mul (ar, as'), Add (Mul (azw, Sub (baq, bar)), ayx)) =
+    Add (Mul (ar, as'), Add (Mul (azw, Sub (baq, bar)), ayx))
+  | numadd (Mul (ar, as'), Add (Mul (azw, Mul (bas, bat)), ayx)) =
+    Add (Mul (ar, as'), Add (Mul (azw, Mul (bas, bat)), ayx))
+  | numadd (Mul (ar, as'), Sub (ayy, ayz)) = Add (Mul (ar, as'), Sub (ayy, ayz))
+  | numadd (Mul (ar, as'), Mul (aza, azb)) =
+    Add (Mul (ar, as'), Mul (aza, azb));
+
+fun nummul (C j) = (fn i => C (i * j))
+  | nummul (Add (a, b)) = (fn i => numadd (nummul a i, nummul b i))
+  | nummul (Mul (c, t)) = (fn i => nummul t (i * c))
+  | nummul (Bound v) = (fn i => Mul (i, Bound v))
+  | nummul (CX (w, x)) = (fn i => Mul (i, CX (w, x)))
+  | nummul (Neg y) = (fn i => Mul (i, Neg y))
+  | nummul (Sub (ac, ad)) = (fn i => Mul (i, Sub (ac, ad)));
+
+fun numneg t = nummul t (~ 1);
+
+fun numsub s t = (if (s = t) then C 0 else numadd (s, numneg t));
+
+fun simpnum (C j) = C j
+  | simpnum (Bound n) = Add (Mul (1, Bound n), C 0)
+  | simpnum (Neg t) = numneg (simpnum t)
+  | simpnum (Add (t, s)) = numadd (simpnum t, simpnum s)
+  | simpnum (Sub (t, s)) = numsub (simpnum t) (simpnum s)
+  | simpnum (Mul (i, t)) = (if (i = 0) then C 0 else nummul (simpnum t) i)
+  | simpnum (CX (w, x)) = CX (w, x);
+
+datatype fm = T | F | Lt of num | Le of num | Gt of num | Ge of num | Eq of num
+  | NEq of num | Dvd of int * num | NDvd of int * num | NOT of fm
+  | And of fm * fm | Or of fm * fm | Imp of fm * fm | Iff of fm * fm | E of fm
+  | A of fm | Closed of int | NClosed of int;
+
+fun not (NOT p) = p
+  | not T = F
+  | not F = T
+  | not (Lt u) = NOT (Lt u)
+  | not (Le v) = NOT (Le v)
+  | not (Gt w) = NOT (Gt w)
+  | not (Ge x) = NOT (Ge x)
+  | not (Eq y) = NOT (Eq y)
+  | not (NEq z) = NOT (NEq z)
+  | not (Dvd (aa, ab)) = NOT (Dvd (aa, ab))
+  | not (NDvd (ac, ad)) = NOT (NDvd (ac, ad))
+  | not (And (af, ag)) = NOT (And (af, ag))
+  | not (Or (ah, ai)) = NOT (Or (ah, ai))
+  | not (Imp (aj, ak)) = NOT (Imp (aj, ak))
+  | not (Iff (al, am)) = NOT (Iff (al, am))
+  | not (E an) = NOT (E an)
+  | not (A ao) = NOT (A ao)
+  | not (Closed ap) = NOT (Closed ap)
+  | not (NClosed aq) = NOT (NClosed aq);
+
+fun iff p q =
+  (if (p = q) then T
+    else (if ((p = not q) orelse (not p = q)) then F
+           else (if (p = F) then not q
+                  else (if (q = F) then not p
+                         else (if (p = T) then q
+                                else (if (q = T) then p else Iff (p, q)))))));
+
+fun imp p q =
+  (if ((p = F) orelse (q = T)) then T
+    else (if (p = T) then q else (if (q = F) then not p else Imp (p, q))));
+
+fun disj p q =
+  (if ((p = T) orelse (q = T)) then T
+    else (if (p = F) then q else (if (q = F) then p else Or (p, q))));
+
+fun conj p q =
+  (if ((p = F) orelse (q = F)) then F
+    else (if (p = T) then q else (if (q = T) then p else And (p, q))));
+
+fun simpfm (And (p, q)) = conj (simpfm p) (simpfm q)
+  | simpfm (Or (p, q)) = disj (simpfm p) (simpfm q)
+  | simpfm (Imp (p, q)) = imp (simpfm p) (simpfm q)
+  | simpfm (Iff (p, q)) = iff (simpfm p) (simpfm q)
+  | simpfm (NOT p) = not (simpfm p)
+  | simpfm (Lt a) =
+    let val a' = simpnum a
+    in (case a' of C x => (if (x < 0) then T else F) | Bound x => Lt a'
+         | CX (x, xa) => Lt a' | Neg x => Lt a' | Add (x, xa) => Lt a'
+         | Sub (x, xa) => Lt a' | Mul (x, xa) => Lt a')
+    end
+  | simpfm (Le a) =
+    let val a' = simpnum a
+    in (case a' of C x => (if (x <= 0) then T else F) | Bound x => Le a'
+         | CX (x, xa) => Le a' | Neg x => Le a' | Add (x, xa) => Le a'
+         | Sub (x, xa) => Le a' | Mul (x, xa) => Le a')
+    end
+  | simpfm (Gt a) =
+    let val a' = simpnum a
+    in (case a' of C x => (if (0 < x) then T else F) | Bound x => Gt a'
+         | CX (x, xa) => Gt a' | Neg x => Gt a' | Add (x, xa) => Gt a'
+         | Sub (x, xa) => Gt a' | Mul (x, xa) => Gt a')
+    end
+  | simpfm (Ge a) =
+    let val a' = simpnum a
+    in (case a' of C x => (if (0 <= x) then T else F) | Bound x => Ge a'
+         | CX (x, xa) => Ge a' | Neg x => Ge a' | Add (x, xa) => Ge a'
+         | Sub (x, xa) => Ge a' | Mul (x, xa) => Ge a')
+    end
+  | simpfm (Eq a) =
+    let val a' = simpnum a
+    in (case a' of C x => (if (x = 0) then T else F) | Bound x => Eq a'
+         | CX (x, xa) => Eq a' | Neg x => Eq a' | Add (x, xa) => Eq a'
+         | Sub (x, xa) => Eq a' | Mul (x, xa) => Eq a')
+    end
+  | simpfm (NEq a) =
+    let val a' = simpnum a
+    in (case a' of C x => (if Bool.not (x = 0) then T else F)
+         | Bound x => NEq a' | CX (x, xa) => NEq a' | Neg x => NEq a'
+         | Add (x, xa) => NEq a' | Sub (x, xa) => NEq a'
+         | Mul (x, xa) => NEq a')
+    end
+  | simpfm (Dvd (i, a)) =
+    (if (i = 0) then simpfm (Eq a)
+      else (if (abs i = 1) then T
+             else let val a' = simpnum a
+                  in (case a' of C x => (if dvd i x then T else F)
+                       | Bound x => Dvd (i, a') | CX (x, xa) => Dvd (i, a')
+                       | Neg x => Dvd (i, a') | Add (x, xa) => Dvd (i, a')
+                       | Sub (x, xa) => Dvd (i, a')
+                       | Mul (x, xa) => Dvd (i, a'))
+                  end))
+  | simpfm (NDvd (i, a)) =
+    (if (i = 0) then simpfm (NEq a)
+      else (if (abs i = 1) then F
+             else let val a' = simpnum a
+                  in (case a' of C x => (if Bool.not (dvd i x) then T else F)
+                       | Bound x => NDvd (i, a') | CX (x, xa) => NDvd (i, a')
+                       | Neg x => NDvd (i, a') | Add (x, xa) => NDvd (i, a')
+                       | Sub (x, xa) => NDvd (i, a')
+                       | Mul (x, xa) => NDvd (i, a'))
+                  end))
+  | simpfm T = T
+  | simpfm F = F
+  | simpfm (E ao) = E ao
+  | simpfm (A ap) = A ap
+  | simpfm (Closed aq) = Closed aq
+  | simpfm (NClosed ar) = NClosed ar;
+
+fun foldr f [] a = a
+  | foldr f (x :: xs) a = f x (foldr f xs a);
+
+fun djf f p q =
+  (if (q = T) then T
+    else (if (q = F) then f p
+           else let val fp = f p
+                in (case fp of T => T | F => q | Lt x => Or (f p, q)
+                     | Le x => Or (f p, q) | Gt x => Or (f p, q)
+                     | Ge x => Or (f p, q) | Eq x => Or (f p, q)
+                     | NEq x => Or (f p, q) | Dvd (x, xa) => Or (f p, q)
+                     | NDvd (x, xa) => Or (f p, q) | NOT x => Or (f p, q)
+                     | And (x, xa) => Or (f p, q) | Or (x, xa) => Or (f p, q)
+                     | Imp (x, xa) => Or (f p, q) | Iff (x, xa) => Or (f p, q)
+                     | E x => Or (f p, q) | A x => Or (f p, q)
+                     | Closed x => Or (f p, q) | NClosed x => Or (f p, q))
+                end));
+
+fun evaldjf f ps = foldr (djf f) ps F;
+
+fun append [] ys = ys
+  | append (x :: xs) ys = (x :: append xs ys);
+
+fun disjuncts (Or (p, q)) = append (disjuncts p) (disjuncts q)
+  | disjuncts F = []
+  | disjuncts T = [T]
+  | disjuncts (Lt u) = [Lt u]
+  | disjuncts (Le v) = [Le v]
+  | disjuncts (Gt w) = [Gt w]
+  | disjuncts (Ge x) = [Ge x]
+  | disjuncts (Eq y) = [Eq y]
+  | disjuncts (NEq z) = [NEq z]
+  | disjuncts (Dvd (aa, ab)) = [Dvd (aa, ab)]
+  | disjuncts (NDvd (ac, ad)) = [NDvd (ac, ad)]
+  | disjuncts (NOT ae) = [NOT ae]
+  | disjuncts (And (af, ag)) = [And (af, ag)]
+  | disjuncts (Imp (aj, ak)) = [Imp (aj, ak)]
+  | disjuncts (Iff (al, am)) = [Iff (al, am)]
+  | disjuncts (E an) = [E an]
+  | disjuncts (A ao) = [A ao]
+  | disjuncts (Closed ap) = [Closed ap]
+  | disjuncts (NClosed aq) = [NClosed aq];
+
+fun DJ f p = evaldjf f (disjuncts p);
+
+fun qelim (E p) = (fn qe => DJ qe (qelim p qe))
+  | qelim (A p) = (fn qe => not (qe (qelim (NOT p) qe)))
+  | qelim (NOT p) = (fn qe => not (qelim p qe))
+  | qelim (And (p, q)) = (fn qe => conj (qelim p qe) (qelim q qe))
+  | qelim (Or (p, q)) = (fn qe => disj (qelim p qe) (qelim q qe))
+  | qelim (Imp (p, q)) = (fn qe => imp (qelim p qe) (qelim q qe))
+  | qelim (Iff (p, q)) = (fn qe => iff (qelim p qe) (qelim q qe))
+  | qelim T = (fn y => simpfm T)
+  | qelim F = (fn y => simpfm F)
+  | qelim (Lt u) = (fn y => simpfm (Lt u))
+  | qelim (Le v) = (fn y => simpfm (Le v))
+  | qelim (Gt w) = (fn y => simpfm (Gt w))
+  | qelim (Ge x) = (fn y => simpfm (Ge x))
+  | qelim (Eq y) = (fn ya => simpfm (Eq y))
+  | qelim (NEq z) = (fn y => simpfm (NEq z))
+  | qelim (Dvd (aa, ab)) = (fn y => simpfm (Dvd (aa, ab)))
+  | qelim (NDvd (ac, ad)) = (fn y => simpfm (NDvd (ac, ad)))
+  | qelim (Closed ap) = (fn y => simpfm (Closed ap))
+  | qelim (NClosed aq) = (fn y => simpfm (NClosed aq));
+
+fun minus_def1 m n = nat (minus_def2 (m) (n));
+
+fun decrnum (Bound n) = Bound (minus_def1 n one_def0)
+  | decrnum (Neg a) = Neg (decrnum a)
+  | decrnum (Add (a, b)) = Add (decrnum a, decrnum b)
+  | decrnum (Sub (a, b)) = Sub (decrnum a, decrnum b)
+  | decrnum (Mul (c, a)) = Mul (c, decrnum a)
+  | decrnum (C u) = C u
+  | decrnum (CX (w, x)) = CX (w, x);
+
+fun decr (Lt a) = Lt (decrnum a)
+  | decr (Le a) = Le (decrnum a)
+  | decr (Gt a) = Gt (decrnum a)
+  | decr (Ge a) = Ge (decrnum a)
+  | decr (Eq a) = Eq (decrnum a)
+  | decr (NEq a) = NEq (decrnum a)
+  | decr (Dvd (i, a)) = Dvd (i, decrnum a)
+  | decr (NDvd (i, a)) = NDvd (i, decrnum a)
+  | decr (NOT p) = NOT (decr p)
+  | decr (And (p, q)) = And (decr p, decr q)
+  | decr (Or (p, q)) = Or (decr p, decr q)
+  | decr (Imp (p, q)) = Imp (decr p, decr q)
+  | decr (Iff (p, q)) = Iff (decr p, decr q)
+  | decr T = T
+  | decr F = F
+  | decr (E ao) = E ao
+  | decr (A ap) = A ap
+  | decr (Closed aq) = Closed aq
+  | decr (NClosed ar) = NClosed ar;
+
+fun map f [] = []
+  | map f (x :: xs) = (f x :: map f xs);
+
+fun allpairs f [] ys = []
+  | allpairs f (x :: xs) ys = append (map (f x) ys) (allpairs f xs ys);
+
+fun numsubst0 t (C c) = C c
+  | numsubst0 t (Bound n) = (if (n = 0) then t else Bound n)
+  | numsubst0 t (CX (i, a)) = Add (Mul (i, t), numsubst0 t a)
+  | numsubst0 t (Neg a) = Neg (numsubst0 t a)
+  | numsubst0 t (Add (a, b)) = Add (numsubst0 t a, numsubst0 t b)
+  | numsubst0 t (Sub (a, b)) = Sub (numsubst0 t a, numsubst0 t b)
+  | numsubst0 t (Mul (i, a)) = Mul (i, numsubst0 t a);
+
+fun subst0 t T = T
+  | subst0 t F = F
+  | subst0 t (Lt a) = Lt (numsubst0 t a)
+  | subst0 t (Le a) = Le (numsubst0 t a)
+  | subst0 t (Gt a) = Gt (numsubst0 t a)
+  | subst0 t (Ge a) = Ge (numsubst0 t a)
+  | subst0 t (Eq a) = Eq (numsubst0 t a)
+  | subst0 t (NEq a) = NEq (numsubst0 t a)
+  | subst0 t (Dvd (i, a)) = Dvd (i, numsubst0 t a)
+  | subst0 t (NDvd (i, a)) = NDvd (i, numsubst0 t a)
+  | subst0 t (NOT p) = NOT (subst0 t p)
+  | subst0 t (And (p, q)) = And (subst0 t p, subst0 t q)
+  | subst0 t (Or (p, q)) = Or (subst0 t p, subst0 t q)
+  | subst0 t (Imp (p, q)) = Imp (subst0 t p, subst0 t q)
+  | subst0 t (Iff (p, q)) = Iff (subst0 t p, subst0 t q)
+  | subst0 t (Closed P) = Closed P
+  | subst0 t (NClosed P) = NClosed P;
+
+fun minusinf (And (p, q)) = And (minusinf p, minusinf q)
+  | minusinf (Or (p, q)) = Or (minusinf p, minusinf q)
+  | minusinf (Eq (CX (c, e))) = F
+  | minusinf (NEq (CX (c, e))) = T
+  | minusinf (Lt (CX (c, e))) = T
+  | minusinf (Le (CX (c, e))) = T
+  | minusinf (Gt (CX (c, e))) = F
+  | minusinf (Ge (CX (c, e))) = F
+  | minusinf T = T
+  | minusinf F = F
+  | minusinf (Lt (C bo)) = Lt (C bo)
+  | minusinf (Lt (Bound bp)) = Lt (Bound bp)
+  | minusinf (Lt (Neg bs)) = Lt (Neg bs)
+  | minusinf (Lt (Add (bt, bu))) = Lt (Add (bt, bu))
+  | minusinf (Lt (Sub (bv, bw))) = Lt (Sub (bv, bw))
+  | minusinf (Lt (Mul (bx, by))) = Lt (Mul (bx, by))
+  | minusinf (Le (C ck)) = Le (C ck)
+  | minusinf (Le (Bound cl)) = Le (Bound cl)
+  | minusinf (Le (Neg co)) = Le (Neg co)
+  | minusinf (Le (Add (cp, cq))) = Le (Add (cp, cq))
+  | minusinf (Le (Sub (cr, cs))) = Le (Sub (cr, cs))
+  | minusinf (Le (Mul (ct, cu))) = Le (Mul (ct, cu))
+  | minusinf (Gt (C dg)) = Gt (C dg)
+  | minusinf (Gt (Bound dh)) = Gt (Bound dh)
+  | minusinf (Gt (Neg dk)) = Gt (Neg dk)
+  | minusinf (Gt (Add (dl, dm))) = Gt (Add (dl, dm))
+  | minusinf (Gt (Sub (dn, do'))) = Gt (Sub (dn, do'))
+  | minusinf (Gt (Mul (dp, dq))) = Gt (Mul (dp, dq))
+  | minusinf (Ge (C ec)) = Ge (C ec)
+  | minusinf (Ge (Bound ed)) = Ge (Bound ed)
+  | minusinf (Ge (Neg eg)) = Ge (Neg eg)
+  | minusinf (Ge (Add (eh, ei))) = Ge (Add (eh, ei))
+  | minusinf (Ge (Sub (ej, ek))) = Ge (Sub (ej, ek))
+  | minusinf (Ge (Mul (el, em))) = Ge (Mul (el, em))
+  | minusinf (Eq (C ey)) = Eq (C ey)
+  | minusinf (Eq (Bound ez)) = Eq (Bound ez)
+  | minusinf (Eq (Neg fc)) = Eq (Neg fc)
+  | minusinf (Eq (Add (fd, fe))) = Eq (Add (fd, fe))
+  | minusinf (Eq (Sub (ff, fg))) = Eq (Sub (ff, fg))
+  | minusinf (Eq (Mul (fh, fi))) = Eq (Mul (fh, fi))
+  | minusinf (NEq (C fu)) = NEq (C fu)
+  | minusinf (NEq (Bound fv)) = NEq (Bound fv)
+  | minusinf (NEq (Neg fy)) = NEq (Neg fy)
+  | minusinf (NEq (Add (fz, ga))) = NEq (Add (fz, ga))
+  | minusinf (NEq (Sub (gb, gc))) = NEq (Sub (gb, gc))
+  | minusinf (NEq (Mul (gd, ge))) = NEq (Mul (gd, ge))
+  | minusinf (Dvd (aa, ab)) = Dvd (aa, ab)
+  | minusinf (NDvd (ac, ad)) = NDvd (ac, ad)
+  | minusinf (NOT ae) = NOT ae
+  | minusinf (Imp (aj, ak)) = Imp (aj, ak)
+  | minusinf (Iff (al, am)) = Iff (al, am)
+  | minusinf (E an) = E an
+  | minusinf (A ao) = A ao
+  | minusinf (Closed ap) = Closed ap
+  | minusinf (NClosed aq) = NClosed aq;
+
+fun iupt (i, j) = (if (j < i) then [] else (i :: iupt ((i + 1), j)));
+
+fun mirror (And (p, q)) = And (mirror p, mirror q)
+  | mirror (Or (p, q)) = Or (mirror p, mirror q)
+  | mirror (Eq (CX (c, e))) = Eq (CX (c, Neg e))
+  | mirror (NEq (CX (c, e))) = NEq (CX (c, Neg e))
+  | mirror (Lt (CX (c, e))) = Gt (CX (c, Neg e))
+  | mirror (Le (CX (c, e))) = Ge (CX (c, Neg e))
+  | mirror (Gt (CX (c, e))) = Lt (CX (c, Neg e))
+  | mirror (Ge (CX (c, e))) = Le (CX (c, Neg e))
+  | mirror (Dvd (i, CX (c, e))) = Dvd (i, CX (c, Neg e))
+  | mirror (NDvd (i, CX (c, e))) = NDvd (i, CX (c, Neg e))
+  | mirror T = T
+  | mirror F = F
+  | mirror (Lt (C bo)) = Lt (C bo)
+  | mirror (Lt (Bound bp)) = Lt (Bound bp)
+  | mirror (Lt (Neg bs)) = Lt (Neg bs)
+  | mirror (Lt (Add (bt, bu))) = Lt (Add (bt, bu))
+  | mirror (Lt (Sub (bv, bw))) = Lt (Sub (bv, bw))
+  | mirror (Lt (Mul (bx, by))) = Lt (Mul (bx, by))
+  | mirror (Le (C ck)) = Le (C ck)
+  | mirror (Le (Bound cl)) = Le (Bound cl)
+  | mirror (Le (Neg co)) = Le (Neg co)
+  | mirror (Le (Add (cp, cq))) = Le (Add (cp, cq))
+  | mirror (Le (Sub (cr, cs))) = Le (Sub (cr, cs))
+  | mirror (Le (Mul (ct, cu))) = Le (Mul (ct, cu))
+  | mirror (Gt (C dg)) = Gt (C dg)
+  | mirror (Gt (Bound dh)) = Gt (Bound dh)
+  | mirror (Gt (Neg dk)) = Gt (Neg dk)
+  | mirror (Gt (Add (dl, dm))) = Gt (Add (dl, dm))
+  | mirror (Gt (Sub (dn, do'))) = Gt (Sub (dn, do'))
+  | mirror (Gt (Mul (dp, dq))) = Gt (Mul (dp, dq))
+  | mirror (Ge (C ec)) = Ge (C ec)
+  | mirror (Ge (Bound ed)) = Ge (Bound ed)
+  | mirror (Ge (Neg eg)) = Ge (Neg eg)
+  | mirror (Ge (Add (eh, ei))) = Ge (Add (eh, ei))
+  | mirror (Ge (Sub (ej, ek))) = Ge (Sub (ej, ek))
+  | mirror (Ge (Mul (el, em))) = Ge (Mul (el, em))
+  | mirror (Eq (C ey)) = Eq (C ey)
+  | mirror (Eq (Bound ez)) = Eq (Bound ez)
+  | mirror (Eq (Neg fc)) = Eq (Neg fc)
+  | mirror (Eq (Add (fd, fe))) = Eq (Add (fd, fe))
+  | mirror (Eq (Sub (ff, fg))) = Eq (Sub (ff, fg))
+  | mirror (Eq (Mul (fh, fi))) = Eq (Mul (fh, fi))
+  | mirror (NEq (C fu)) = NEq (C fu)
+  | mirror (NEq (Bound fv)) = NEq (Bound fv)
+  | mirror (NEq (Neg fy)) = NEq (Neg fy)
+  | mirror (NEq (Add (fz, ga))) = NEq (Add (fz, ga))
+  | mirror (NEq (Sub (gb, gc))) = NEq (Sub (gb, gc))
+  | mirror (NEq (Mul (gd, ge))) = NEq (Mul (gd, ge))
+  | mirror (Dvd (aa, C gq)) = Dvd (aa, C gq)
+  | mirror (Dvd (aa, Bound gr)) = Dvd (aa, Bound gr)
+  | mirror (Dvd (aa, Neg gu)) = Dvd (aa, Neg gu)
+  | mirror (Dvd (aa, Add (gv, gw))) = Dvd (aa, Add (gv, gw))
+  | mirror (Dvd (aa, Sub (gx, gy))) = Dvd (aa, Sub (gx, gy))
+  | mirror (Dvd (aa, Mul (gz, ha))) = Dvd (aa, Mul (gz, ha))
+  | mirror (NDvd (ac, C hm)) = NDvd (ac, C hm)
+  | mirror (NDvd (ac, Bound hn)) = NDvd (ac, Bound hn)
+  | mirror (NDvd (ac, Neg hq)) = NDvd (ac, Neg hq)
+  | mirror (NDvd (ac, Add (hr, hs))) = NDvd (ac, Add (hr, hs))
+  | mirror (NDvd (ac, Sub (ht, hu))) = NDvd (ac, Sub (ht, hu))
+  | mirror (NDvd (ac, Mul (hv, hw))) = NDvd (ac, Mul (hv, hw))
+  | mirror (NOT ae) = NOT ae
+  | mirror (Imp (aj, ak)) = Imp (aj, ak)
+  | mirror (Iff (al, am)) = Iff (al, am)
+  | mirror (E an) = E an
+  | mirror (A ao) = A ao
+  | mirror (Closed ap) = Closed ap
+  | mirror (NClosed aq) = NClosed aq;
+
+fun plus_def0 m n = nat ((m) + (n));
+
+fun size_def9 [] = 0
+  | size_def9 (a :: list) = plus_def0 (size_def9 list) (0 + 1);
+
+fun alpha (And (p, q)) = append (alpha p) (alpha q)
+  | alpha (Or (p, q)) = append (alpha p) (alpha q)
+  | alpha (Eq (CX (c, e))) = [Add (C ~1, e)]
+  | alpha (NEq (CX (c, e))) = [e]
+  | alpha (Lt (CX (c, e))) = [e]
+  | alpha (Le (CX (c, e))) = [Add (C ~1, e)]
+  | alpha (Gt (CX (c, e))) = []
+  | alpha (Ge (CX (c, e))) = []
+  | alpha T = []
+  | alpha F = []
+  | alpha (Lt (C bo)) = []
+  | alpha (Lt (Bound bp)) = []
+  | alpha (Lt (Neg bs)) = []
+  | alpha (Lt (Add (bt, bu))) = []
+  | alpha (Lt (Sub (bv, bw))) = []
+  | alpha (Lt (Mul (bx, by))) = []
+  | alpha (Le (C ck)) = []
+  | alpha (Le (Bound cl)) = []
+  | alpha (Le (Neg co)) = []
+  | alpha (Le (Add (cp, cq))) = []
+  | alpha (Le (Sub (cr, cs))) = []
+  | alpha (Le (Mul (ct, cu))) = []
+  | alpha (Gt (C dg)) = []
+  | alpha (Gt (Bound dh)) = []
+  | alpha (Gt (Neg dk)) = []
+  | alpha (Gt (Add (dl, dm))) = []
+  | alpha (Gt (Sub (dn, do'))) = []
+  | alpha (Gt (Mul (dp, dq))) = []
+  | alpha (Ge (C ec)) = []
+  | alpha (Ge (Bound ed)) = []
+  | alpha (Ge (Neg eg)) = []
+  | alpha (Ge (Add (eh, ei))) = []
+  | alpha (Ge (Sub (ej, ek))) = []
+  | alpha (Ge (Mul (el, em))) = []
+  | alpha (Eq (C ey)) = []
+  | alpha (Eq (Bound ez)) = []
+  | alpha (Eq (Neg fc)) = []
+  | alpha (Eq (Add (fd, fe))) = []
+  | alpha (Eq (Sub (ff, fg))) = []
+  | alpha (Eq (Mul (fh, fi))) = []
+  | alpha (NEq (C fu)) = []
+  | alpha (NEq (Bound fv)) = []
+  | alpha (NEq (Neg fy)) = []
+  | alpha (NEq (Add (fz, ga))) = []
+  | alpha (NEq (Sub (gb, gc))) = []
+  | alpha (NEq (Mul (gd, ge))) = []
+  | alpha (Dvd (aa, ab)) = []
+  | alpha (NDvd (ac, ad)) = []
+  | alpha (NOT ae) = []
+  | alpha (Imp (aj, ak)) = []
+  | alpha (Iff (al, am)) = []
+  | alpha (E an) = []
+  | alpha (A ao) = []
+  | alpha (Closed ap) = []
+  | alpha (NClosed aq) = [];
+
+fun memberl x [] = false
+  | memberl x (y :: ys) = ((x = y) orelse memberl x ys);
+
+fun remdups [] = []
+  | remdups (x :: xs) =
+    (if memberl x xs then remdups xs else (x :: remdups xs));
+
+fun beta (And (p, q)) = append (beta p) (beta q)
+  | beta (Or (p, q)) = append (beta p) (beta q)
+  | beta (Eq (CX (c, e))) = [Sub (C ~1, e)]
+  | beta (NEq (CX (c, e))) = [Neg e]
+  | beta (Lt (CX (c, e))) = []
+  | beta (Le (CX (c, e))) = []
+  | beta (Gt (CX (c, e))) = [Neg e]
+  | beta (Ge (CX (c, e))) = [Sub (C ~1, e)]
+  | beta T = []
+  | beta F = []
+  | beta (Lt (C bo)) = []
+  | beta (Lt (Bound bp)) = []
+  | beta (Lt (Neg bs)) = []
+  | beta (Lt (Add (bt, bu))) = []
+  | beta (Lt (Sub (bv, bw))) = []
+  | beta (Lt (Mul (bx, by))) = []
+  | beta (Le (C ck)) = []
+  | beta (Le (Bound cl)) = []
+  | beta (Le (Neg co)) = []
+  | beta (Le (Add (cp, cq))) = []
+  | beta (Le (Sub (cr, cs))) = []
+  | beta (Le (Mul (ct, cu))) = []
+  | beta (Gt (C dg)) = []
+  | beta (Gt (Bound dh)) = []
+  | beta (Gt (Neg dk)) = []
+  | beta (Gt (Add (dl, dm))) = []
+  | beta (Gt (Sub (dn, do'))) = []
+  | beta (Gt (Mul (dp, dq))) = []
+  | beta (Ge (C ec)) = []
+  | beta (Ge (Bound ed)) = []
+  | beta (Ge (Neg eg)) = []
+  | beta (Ge (Add (eh, ei))) = []
+  | beta (Ge (Sub (ej, ek))) = []
+  | beta (Ge (Mul (el, em))) = []
+  | beta (Eq (C ey)) = []
+  | beta (Eq (Bound ez)) = []
+  | beta (Eq (Neg fc)) = []
+  | beta (Eq (Add (fd, fe))) = []
+  | beta (Eq (Sub (ff, fg))) = []
+  | beta (Eq (Mul (fh, fi))) = []
+  | beta (NEq (C fu)) = []
+  | beta (NEq (Bound fv)) = []
+  | beta (NEq (Neg fy)) = []
+  | beta (NEq (Add (fz, ga))) = []
+  | beta (NEq (Sub (gb, gc))) = []
+  | beta (NEq (Mul (gd, ge))) = []
+  | beta (Dvd (aa, ab)) = []
+  | beta (NDvd (ac, ad)) = []
+  | beta (NOT ae) = []
+  | beta (Imp (aj, ak)) = []
+  | beta (Iff (al, am)) = []
+  | beta (E an) = []
+  | beta (A ao) = []
+  | beta (Closed ap) = []
+  | beta (NClosed aq) = [];
+
+fun fst (a, b) = a;
+
+fun div_def1 a b = fst (divAlg (a, b));
+
+fun div_def0 m n = nat (div_def1 (m) (n));
+
+fun mod_def0 m n = nat (mod_def1 (m) (n));
+
+fun gcd (m, n) = (if (n = 0) then m else gcd (n, mod_def0 m n));
+
+fun times_def0 m n = nat ((m) * (n));
+
+fun lcm x = (fn (m, n) => div_def0 (times_def0 m n) (gcd (m, n))) x;
+
+fun ilcm x = (fn j => (lcm (nat (abs x), nat (abs j))));
+
+fun delta (And (p, q)) = ilcm (delta p) (delta q)
+  | delta (Or (p, q)) = ilcm (delta p) (delta q)
+  | delta (Dvd (i, CX (c, e))) = i
+  | delta (NDvd (i, CX (c, e))) = i
+  | delta T = 1
+  | delta F = 1
+  | delta (Lt u) = 1
+  | delta (Le v) = 1
+  | delta (Gt w) = 1
+  | delta (Ge x) = 1
+  | delta (Eq y) = 1
+  | delta (NEq z) = 1
+  | delta (Dvd (aa, C bo)) = 1
+  | delta (Dvd (aa, Bound bp)) = 1
+  | delta (Dvd (aa, Neg bs)) = 1
+  | delta (Dvd (aa, Add (bt, bu))) = 1
+  | delta (Dvd (aa, Sub (bv, bw))) = 1
+  | delta (Dvd (aa, Mul (bx, by))) = 1
+  | delta (NDvd (ac, C ck)) = 1
+  | delta (NDvd (ac, Bound cl)) = 1
+  | delta (NDvd (ac, Neg co)) = 1
+  | delta (NDvd (ac, Add (cp, cq))) = 1
+  | delta (NDvd (ac, Sub (cr, cs))) = 1
+  | delta (NDvd (ac, Mul (ct, cu))) = 1
+  | delta (NOT ae) = 1
+  | delta (Imp (aj, ak)) = 1
+  | delta (Iff (al, am)) = 1
+  | delta (E an) = 1
+  | delta (A ao) = 1
+  | delta (Closed ap) = 1
+  | delta (NClosed aq) = 1;
+
+fun a_beta (And (p, q)) = (fn k => And (a_beta p k, a_beta q k))
+  | a_beta (Or (p, q)) = (fn k => Or (a_beta p k, a_beta q k))
+  | a_beta (Eq (CX (c, e))) = (fn k => Eq (CX (1, Mul (div_def1 k c, e))))
+  | a_beta (NEq (CX (c, e))) = (fn k => NEq (CX (1, Mul (div_def1 k c, e))))
+  | a_beta (Lt (CX (c, e))) = (fn k => Lt (CX (1, Mul (div_def1 k c, e))))
+  | a_beta (Le (CX (c, e))) = (fn k => Le (CX (1, Mul (div_def1 k c, e))))
+  | a_beta (Gt (CX (c, e))) = (fn k => Gt (CX (1, Mul (div_def1 k c, e))))
+  | a_beta (Ge (CX (c, e))) = (fn k => Ge (CX (1, Mul (div_def1 k c, e))))
+  | a_beta (Dvd (i, CX (c, e))) =
+    (fn k => Dvd ((div_def1 k c * i), CX (1, Mul (div_def1 k c, e))))
+  | a_beta (NDvd (i, CX (c, e))) =
+    (fn k => NDvd ((div_def1 k c * i), CX (1, Mul (div_def1 k c, e))))
+  | a_beta T = (fn k => T)
+  | a_beta F = (fn k => F)
+  | a_beta (Lt (C bo)) = (fn k => Lt (C bo))
+  | a_beta (Lt (Bound bp)) = (fn k => Lt (Bound bp))
+  | a_beta (Lt (Neg bs)) = (fn k => Lt (Neg bs))
+  | a_beta (Lt (Add (bt, bu))) = (fn k => Lt (Add (bt, bu)))
+  | a_beta (Lt (Sub (bv, bw))) = (fn k => Lt (Sub (bv, bw)))
+  | a_beta (Lt (Mul (bx, by))) = (fn k => Lt (Mul (bx, by)))
+  | a_beta (Le (C ck)) = (fn k => Le (C ck))
+  | a_beta (Le (Bound cl)) = (fn k => Le (Bound cl))
+  | a_beta (Le (Neg co)) = (fn k => Le (Neg co))
+  | a_beta (Le (Add (cp, cq))) = (fn k => Le (Add (cp, cq)))
+  | a_beta (Le (Sub (cr, cs))) = (fn k => Le (Sub (cr, cs)))
+  | a_beta (Le (Mul (ct, cu))) = (fn k => Le (Mul (ct, cu)))
+  | a_beta (Gt (C dg)) = (fn k => Gt (C dg))
+  | a_beta (Gt (Bound dh)) = (fn k => Gt (Bound dh))
+  | a_beta (Gt (Neg dk)) = (fn k => Gt (Neg dk))
+  | a_beta (Gt (Add (dl, dm))) = (fn k => Gt (Add (dl, dm)))
+  | a_beta (Gt (Sub (dn, do'))) = (fn k => Gt (Sub (dn, do')))
+  | a_beta (Gt (Mul (dp, dq))) = (fn k => Gt (Mul (dp, dq)))
+  | a_beta (Ge (C ec)) = (fn k => Ge (C ec))
+  | a_beta (Ge (Bound ed)) = (fn k => Ge (Bound ed))
+  | a_beta (Ge (Neg eg)) = (fn k => Ge (Neg eg))
+  | a_beta (Ge (Add (eh, ei))) = (fn k => Ge (Add (eh, ei)))
+  | a_beta (Ge (Sub (ej, ek))) = (fn k => Ge (Sub (ej, ek)))
+  | a_beta (Ge (Mul (el, em))) = (fn k => Ge (Mul (el, em)))
+  | a_beta (Eq (C ey)) = (fn k => Eq (C ey))
+  | a_beta (Eq (Bound ez)) = (fn k => Eq (Bound ez))
+  | a_beta (Eq (Neg fc)) = (fn k => Eq (Neg fc))
+  | a_beta (Eq (Add (fd, fe))) = (fn k => Eq (Add (fd, fe)))
+  | a_beta (Eq (Sub (ff, fg))) = (fn k => Eq (Sub (ff, fg)))
+  | a_beta (Eq (Mul (fh, fi))) = (fn k => Eq (Mul (fh, fi)))
+  | a_beta (NEq (C fu)) = (fn k => NEq (C fu))
+  | a_beta (NEq (Bound fv)) = (fn k => NEq (Bound fv))
+  | a_beta (NEq (Neg fy)) = (fn k => NEq (Neg fy))
+  | a_beta (NEq (Add (fz, ga))) = (fn k => NEq (Add (fz, ga)))
+  | a_beta (NEq (Sub (gb, gc))) = (fn k => NEq (Sub (gb, gc)))
+  | a_beta (NEq (Mul (gd, ge))) = (fn k => NEq (Mul (gd, ge)))
+  | a_beta (Dvd (aa, C gq)) = (fn k => Dvd (aa, C gq))
+  | a_beta (Dvd (aa, Bound gr)) = (fn k => Dvd (aa, Bound gr))
+  | a_beta (Dvd (aa, Neg gu)) = (fn k => Dvd (aa, Neg gu))
+  | a_beta (Dvd (aa, Add (gv, gw))) = (fn k => Dvd (aa, Add (gv, gw)))
+  | a_beta (Dvd (aa, Sub (gx, gy))) = (fn k => Dvd (aa, Sub (gx, gy)))
+  | a_beta (Dvd (aa, Mul (gz, ha))) = (fn k => Dvd (aa, Mul (gz, ha)))
+  | a_beta (NDvd (ac, C hm)) = (fn k => NDvd (ac, C hm))
+  | a_beta (NDvd (ac, Bound hn)) = (fn k => NDvd (ac, Bound hn))
+  | a_beta (NDvd (ac, Neg hq)) = (fn k => NDvd (ac, Neg hq))
+  | a_beta (NDvd (ac, Add (hr, hs))) = (fn k => NDvd (ac, Add (hr, hs)))
+  | a_beta (NDvd (ac, Sub (ht, hu))) = (fn k => NDvd (ac, Sub (ht, hu)))
+  | a_beta (NDvd (ac, Mul (hv, hw))) = (fn k => NDvd (ac, Mul (hv, hw)))
+  | a_beta (NOT ae) = (fn k => NOT ae)
+  | a_beta (Imp (aj, ak)) = (fn k => Imp (aj, ak))
+  | a_beta (Iff (al, am)) = (fn k => Iff (al, am))
+  | a_beta (E an) = (fn k => E an)
+  | a_beta (A ao) = (fn k => A ao)
+  | a_beta (Closed ap) = (fn k => Closed ap)
+  | a_beta (NClosed aq) = (fn k => NClosed aq);
+
+fun zeta (And (p, q)) = ilcm (zeta p) (zeta q)
+  | zeta (Or (p, q)) = ilcm (zeta p) (zeta q)
+  | zeta (Eq (CX (c, e))) = c
+  | zeta (NEq (CX (c, e))) = c
+  | zeta (Lt (CX (c, e))) = c
+  | zeta (Le (CX (c, e))) = c
+  | zeta (Gt (CX (c, e))) = c
+  | zeta (Ge (CX (c, e))) = c
+  | zeta (Dvd (i, CX (c, e))) = c
+  | zeta (NDvd (i, CX (c, e))) = c
+  | zeta T = 1
+  | zeta F = 1
+  | zeta (Lt (C bo)) = 1
+  | zeta (Lt (Bound bp)) = 1
+  | zeta (Lt (Neg bs)) = 1
+  | zeta (Lt (Add (bt, bu))) = 1
+  | zeta (Lt (Sub (bv, bw))) = 1
+  | zeta (Lt (Mul (bx, by))) = 1
+  | zeta (Le (C ck)) = 1
+  | zeta (Le (Bound cl)) = 1
+  | zeta (Le (Neg co)) = 1
+  | zeta (Le (Add (cp, cq))) = 1
+  | zeta (Le (Sub (cr, cs))) = 1
+  | zeta (Le (Mul (ct, cu))) = 1
+  | zeta (Gt (C dg)) = 1
+  | zeta (Gt (Bound dh)) = 1
+  | zeta (Gt (Neg dk)) = 1
+  | zeta (Gt (Add (dl, dm))) = 1
+  | zeta (Gt (Sub (dn, do'))) = 1
+  | zeta (Gt (Mul (dp, dq))) = 1
+  | zeta (Ge (C ec)) = 1
+  | zeta (Ge (Bound ed)) = 1
+  | zeta (Ge (Neg eg)) = 1
+  | zeta (Ge (Add (eh, ei))) = 1
+  | zeta (Ge (Sub (ej, ek))) = 1
+  | zeta (Ge (Mul (el, em))) = 1
+  | zeta (Eq (C ey)) = 1
+  | zeta (Eq (Bound ez)) = 1
+  | zeta (Eq (Neg fc)) = 1
+  | zeta (Eq (Add (fd, fe))) = 1
+  | zeta (Eq (Sub (ff, fg))) = 1
+  | zeta (Eq (Mul (fh, fi))) = 1
+  | zeta (NEq (C fu)) = 1
+  | zeta (NEq (Bound fv)) = 1
+  | zeta (NEq (Neg fy)) = 1
+  | zeta (NEq (Add (fz, ga))) = 1
+  | zeta (NEq (Sub (gb, gc))) = 1
+  | zeta (NEq (Mul (gd, ge))) = 1
+  | zeta (Dvd (aa, C gq)) = 1
+  | zeta (Dvd (aa, Bound gr)) = 1
+  | zeta (Dvd (aa, Neg gu)) = 1
+  | zeta (Dvd (aa, Add (gv, gw))) = 1
+  | zeta (Dvd (aa, Sub (gx, gy))) = 1
+  | zeta (Dvd (aa, Mul (gz, ha))) = 1
+  | zeta (NDvd (ac, C hm)) = 1
+  | zeta (NDvd (ac, Bound hn)) = 1
+  | zeta (NDvd (ac, Neg hq)) = 1
+  | zeta (NDvd (ac, Add (hr, hs))) = 1
+  | zeta (NDvd (ac, Sub (ht, hu))) = 1
+  | zeta (NDvd (ac, Mul (hv, hw))) = 1
+  | zeta (NOT ae) = 1
+  | zeta (Imp (aj, ak)) = 1
+  | zeta (Iff (al, am)) = 1
+  | zeta (E an) = 1
+  | zeta (A ao) = 1
+  | zeta (Closed ap) = 1
+  | zeta (NClosed aq) = 1;
+
+fun split x = (fn p => x (fst p) (snd p));
+
+fun zsplit0 (C c) = (0, C c)
+  | zsplit0 (Bound n) = (if (n = 0) then (1, C 0) else (0, Bound n))
+  | zsplit0 (CX (i, a)) = split (fn i' => (fn x => ((i + i'), x))) (zsplit0 a)
+  | zsplit0 (Neg a) = (fn (i', a') => (~ i', Neg a')) (zsplit0 a)
+  | zsplit0 (Add (a, b)) =
+    (fn (ia, a') => (fn (ib, b') => ((ia + ib), Add (a', b'))) (zsplit0 b))
+      (zsplit0 a)
+  | zsplit0 (Sub (a, b)) =
+    (fn (ia, a') =>
+      (fn (ib, b') => (minus_def2 ia ib, Sub (a', b'))) (zsplit0 b))
+      (zsplit0 a)
+  | zsplit0 (Mul (i, a)) = (fn (i', a') => ((i * i'), Mul (i, a'))) (zsplit0 a);
+
+fun zlfm (And (p, q)) = And (zlfm p, zlfm q)
+  | zlfm (Or (p, q)) = Or (zlfm p, zlfm q)
+  | zlfm (Imp (p, q)) = Or (zlfm (NOT p), zlfm q)
+  | zlfm (Iff (p, q)) =
+    Or (And (zlfm p, zlfm q), And (zlfm (NOT p), zlfm (NOT q)))
+  | zlfm (Lt a) =
+    let val x = zsplit0 a
+    in (fn (c, r) =>
+         (if (c = 0) then Lt r
+           else (if (0 < c) then Lt (CX (c, r)) else Gt (CX (~ c, Neg r)))))
+         x
+    end
+  | zlfm (Le a) =
+    let val x = zsplit0 a
+    in (fn (c, r) =>
+         (if (c = 0) then Le r
+           else (if (0 < c) then Le (CX (c, r)) else Ge (CX (~ c, Neg r)))))
+         x
+    end
+  | zlfm (Gt a) =
+    let val x = zsplit0 a
+    in (fn (c, r) =>
+         (if (c = 0) then Gt r
+           else (if (0 < c) then Gt (CX (c, r)) else Lt (CX (~ c, Neg r)))))
+         x
+    end
+  | zlfm (Ge a) =
+    let val x = zsplit0 a
+    in (fn (c, r) =>
+         (if (c = 0) then Ge r
+           else (if (0 < c) then Ge (CX (c, r)) else Le (CX (~ c, Neg r)))))
+         x
+    end
+  | zlfm (Eq a) =
+    let val x = zsplit0 a
+    in (fn (c, r) =>
+         (if (c = 0) then Eq r
+           else (if (0 < c) then Eq (CX (c, r)) else Eq (CX (~ c, Neg r)))))
+         x
+    end
+  | zlfm (NEq a) =
+    let val x = zsplit0 a
+    in (fn (c, r) =>
+         (if (c = 0) then NEq r
+           else (if (0 < c) then NEq (CX (c, r)) else NEq (CX (~ c, Neg r)))))
+         x
+    end
+  | zlfm (Dvd (i, a)) =
+    (if (i = 0) then zlfm (Eq a)
+      else let val x = zsplit0 a
+           in (fn (c, r) =>
+                (if (c = 0) then Dvd (abs i, r)
+                  else (if (0 < c) then Dvd (abs i, CX (c, r))
+                         else Dvd (abs i, CX (~ c, Neg r)))))
+                x
+           end)
+  | zlfm (NDvd (i, a)) =
+    (if (i = 0) then zlfm (NEq a)
+      else let val x = zsplit0 a
+           in (fn (c, r) =>
+                (if (c = 0) then NDvd (abs i, r)
+                  else (if (0 < c) then NDvd (abs i, CX (c, r))
+                         else NDvd (abs i, CX (~ c, Neg r)))))
+                x
+           end)
+  | zlfm (NOT (And (p, q))) = Or (zlfm (NOT p), zlfm (NOT q))
+  | zlfm (NOT (Or (p, q))) = And (zlfm (NOT p), zlfm (NOT q))
+  | zlfm (NOT (Imp (p, q))) = And (zlfm p, zlfm (NOT q))
+  | zlfm (NOT (Iff (p, q))) =
+    Or (And (zlfm p, zlfm (NOT q)), And (zlfm (NOT p), zlfm q))
+  | zlfm (NOT (NOT p)) = zlfm p
+  | zlfm (NOT T) = F
+  | zlfm (NOT F) = T
+  | zlfm (NOT (Lt a)) = zlfm (Ge a)
+  | zlfm (NOT (Le a)) = zlfm (Gt a)
+  | zlfm (NOT (Gt a)) = zlfm (Le a)
+  | zlfm (NOT (Ge a)) = zlfm (Lt a)
+  | zlfm (NOT (Eq a)) = zlfm (NEq a)
+  | zlfm (NOT (NEq a)) = zlfm (Eq a)
+  | zlfm (NOT (Dvd (i, a))) = zlfm (NDvd (i, a))
+  | zlfm (NOT (NDvd (i, a))) = zlfm (Dvd (i, a))
+  | zlfm (NOT (Closed P)) = NClosed P
+  | zlfm (NOT (NClosed P)) = Closed P
+  | zlfm T = T
+  | zlfm F = F
+  | zlfm (NOT (E ci)) = NOT (E ci)
+  | zlfm (NOT (A cj)) = NOT (A cj)
+  | zlfm (E ao) = E ao
+  | zlfm (A ap) = A ap
+  | zlfm (Closed aq) = Closed aq
+  | zlfm (NClosed ar) = NClosed ar;
+
+fun unit p =
+  let val p' = zlfm p; val l = zeta p';
+      val q = And (Dvd (l, CX (1, C 0)), a_beta p' l); val d = delta q;
+      val B = remdups (map simpnum (beta q));
+      val a = remdups (map simpnum (alpha q))
+  in (if less_eq_def3 (size_def9 B) (size_def9 a) then (q, (B, d))
+       else (mirror q, (a, d)))
+  end;
+
+fun cooper p =
+  let val (q, (B, d)) = unit p; val js = iupt (1, d);
+      val mq = simpfm (minusinf q);
+      val md = evaldjf (fn j => simpfm (subst0 (C j) mq)) js
+  in (if (md = T) then T
+       else let val qd =
+                  evaldjf (fn (b, j) => simpfm (subst0 (Add (b, C j)) q))
+                    (allpairs (fn x => fn xa => (x, xa)) B js)
+            in decr (disj md qd) end)
+  end;
+
+fun prep (E T) = T
+  | prep (E F) = F
+  | prep (E (Or (p, q))) = Or (prep (E p), prep (E q))
+  | prep (E (Imp (p, q))) = Or (prep (E (NOT p)), prep (E q))
+  | prep (E (Iff (p, q))) =
+    Or (prep (E (And (p, q))), prep (E (And (NOT p, NOT q))))
+  | prep (E (NOT (And (p, q)))) = Or (prep (E (NOT p)), prep (E (NOT q)))
+  | prep (E (NOT (Imp (p, q)))) = prep (E (And (p, NOT q)))
+  | prep (E (NOT (Iff (p, q)))) =
+    Or (prep (E (And (p, NOT q))), prep (E (And (NOT p, q))))
+  | prep (E (Lt ef)) = E (prep (Lt ef))
+  | prep (E (Le eg)) = E (prep (Le eg))
+  | prep (E (Gt eh)) = E (prep (Gt eh))
+  | prep (E (Ge ei)) = E (prep (Ge ei))
+  | prep (E (Eq ej)) = E (prep (Eq ej))
+  | prep (E (NEq ek)) = E (prep (NEq ek))
+  | prep (E (Dvd (el, em))) = E (prep (Dvd (el, em)))
+  | prep (E (NDvd (en, eo))) = E (prep (NDvd (en, eo)))
+  | prep (E (NOT T)) = E (prep (NOT T))
+  | prep (E (NOT F)) = E (prep (NOT F))
+  | prep (E (NOT (Lt gw))) = E (prep (NOT (Lt gw)))
+  | prep (E (NOT (Le gx))) = E (prep (NOT (Le gx)))
+  | prep (E (NOT (Gt gy))) = E (prep (NOT (Gt gy)))
+  | prep (E (NOT (Ge gz))) = E (prep (NOT (Ge gz)))
+  | prep (E (NOT (Eq ha))) = E (prep (NOT (Eq ha)))
+  | prep (E (NOT (NEq hb))) = E (prep (NOT (NEq hb)))
+  | prep (E (NOT (Dvd (hc, hd)))) = E (prep (NOT (Dvd (hc, hd))))
+  | prep (E (NOT (NDvd (he, hf)))) = E (prep (NOT (NDvd (he, hf))))
+  | prep (E (NOT (NOT hg))) = E (prep (NOT (NOT hg)))
+  | prep (E (NOT (Or (hj, hk)))) = E (prep (NOT (Or (hj, hk))))
+  | prep (E (NOT (E hp))) = E (prep (NOT (E hp)))
+  | prep (E (NOT (A hq))) = E (prep (NOT (A hq)))
+  | prep (E (NOT (Closed hr))) = E (prep (NOT (Closed hr)))
+  | prep (E (NOT (NClosed hs))) = E (prep (NOT (NClosed hs)))
+  | prep (E (And (eq, er))) = E (prep (And (eq, er)))
+  | prep (E (E ey)) = E (prep (E ey))
+  | prep (E (A ez)) = E (prep (A ez))
+  | prep (E (Closed fa)) = E (prep (Closed fa))
+  | prep (E (NClosed fb)) = E (prep (NClosed fb))
+  | prep (A (And (p, q))) = And (prep (A p), prep (A q))
+  | prep (A T) = prep (NOT (E (NOT T)))
+  | prep (A F) = prep (NOT (E (NOT F)))
+  | prep (A (Lt jn)) = prep (NOT (E (NOT (Lt jn))))
+  | prep (A (Le jo)) = prep (NOT (E (NOT (Le jo))))
+  | prep (A (Gt jp)) = prep (NOT (E (NOT (Gt jp))))
+  | prep (A (Ge jq)) = prep (NOT (E (NOT (Ge jq))))
+  | prep (A (Eq jr)) = prep (NOT (E (NOT (Eq jr))))
+  | prep (A (NEq js)) = prep (NOT (E (NOT (NEq js))))
+  | prep (A (Dvd (jt, ju))) = prep (NOT (E (NOT (Dvd (jt, ju)))))
+  | prep (A (NDvd (jv, jw))) = prep (NOT (E (NOT (NDvd (jv, jw)))))
+  | prep (A (NOT jx)) = prep (NOT (E (NOT (NOT jx))))
+  | prep (A (Or (ka, kb))) = prep (NOT (E (NOT (Or (ka, kb)))))
+  | prep (A (Imp (kc, kd))) = prep (NOT (E (NOT (Imp (kc, kd)))))
+  | prep (A (Iff (ke, kf))) = prep (NOT (E (NOT (Iff (ke, kf)))))
+  | prep (A (E kg)) = prep (NOT (E (NOT (E kg))))
+  | prep (A (A kh)) = prep (NOT (E (NOT (A kh))))
+  | prep (A (Closed ki)) = prep (NOT (E (NOT (Closed ki))))
+  | prep (A (NClosed kj)) = prep (NOT (E (NOT (NClosed kj))))
+  | prep (NOT (NOT p)) = prep p
+  | prep (NOT (And (p, q))) = Or (prep (NOT p), prep (NOT q))
+  | prep (NOT (A p)) = prep (E (NOT p))
+  | prep (NOT (Or (p, q))) = And (prep (NOT p), prep (NOT q))
+  | prep (NOT (Imp (p, q))) = And (prep p, prep (NOT q))
+  | prep (NOT (Iff (p, q))) = Or (prep (And (p, NOT q)), prep (And (NOT p, q)))
+  | prep (NOT T) = NOT (prep T)
+  | prep (NOT F) = NOT (prep F)
+  | prep (NOT (Lt bo)) = NOT (prep (Lt bo))
+  | prep (NOT (Le bp)) = NOT (prep (Le bp))
+  | prep (NOT (Gt bq)) = NOT (prep (Gt bq))
+  | prep (NOT (Ge br)) = NOT (prep (Ge br))
+  | prep (NOT (Eq bs)) = NOT (prep (Eq bs))
+  | prep (NOT (NEq bt)) = NOT (prep (NEq bt))
+  | prep (NOT (Dvd (bu, bv))) = NOT (prep (Dvd (bu, bv)))
+  | prep (NOT (NDvd (bw, bx))) = NOT (prep (NDvd (bw, bx)))
+  | prep (NOT (E ch)) = NOT (prep (E ch))
+  | prep (NOT (Closed cj)) = NOT (prep (Closed cj))
+  | prep (NOT (NClosed ck)) = NOT (prep (NClosed ck))
+  | prep (Or (p, q)) = Or (prep p, prep q)
+  | prep (And (p, q)) = And (prep p, prep q)
+  | prep (Imp (p, q)) = prep (Or (NOT p, q))
+  | prep (Iff (p, q)) = Or (prep (And (p, q)), prep (And (NOT p, NOT q)))
+  | prep T = T
+  | prep F = F
+  | prep (Lt u) = Lt u
+  | prep (Le v) = Le v
+  | prep (Gt w) = Gt w
+  | prep (Ge x) = Ge x
+  | prep (Eq y) = Eq y
+  | prep (NEq z) = NEq z
+  | prep (Dvd (aa, ab)) = Dvd (aa, ab)
+  | prep (NDvd (ac, ad)) = NDvd (ac, ad)
+  | prep (Closed ap) = Closed ap
+  | prep (NClosed aq) = NClosed aq;
+
+fun pa x = qelim (prep x) cooper;
+
+val pa = (fn x => pa x);
+
+val test =
+  (fn x =>
+    pa (E (A (Imp (Ge (Sub (Bound 0, Bound one_def0)),
+                    E (E (Eq (Sub (Add (Mul (3, Bound one_def0),
+ Mul (5, Bound 0)),
+                                    Bound (nat 2))))))))));
+
+end;
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/Qelim/presburger.ML	Thu Jun 21 20:48:48 2007 +0200
@@ -0,0 +1,201 @@
+
+(*  Title:      HOL/Tools/Presburger/presburger.ML
+    ID:         $Id$
+    Author:     Amine Chaieb, TU Muenchen
+*)
+
+signature PRESBURGER =
+ sig
+  val cooper_tac: bool -> thm list -> thm list -> Proof.context -> int -> Tactical.tactic
+end;
+
+structure Presburger : PRESBURGER = 
+struct
+
+open Conv;
+val comp_ss = HOL_ss addsimps @{thms "Groebner_Basis.comp_arith"};
+
+fun strip_imp_cprems ct = 
+ case term_of ct of 
+  Const ("==>", _) $ _ $ _ => Thm.dest_arg1 ct :: strip_imp_cprems (Thm.dest_arg ct)
+| _ => [];
+
+val cprems_of = strip_imp_cprems o cprop_of;
+
+fun strip_objimp ct = 
+ case term_of ct of 
+  Const ("op -->", _) $ _ $ _ => Thm.dest_arg1 ct :: strip_objimp (Thm.dest_arg ct)
+| _ => [ct];
+
+fun strip_objall ct = 
+ case term_of ct of 
+  Const ("All", _) $ Abs (xn,xT,p) => 
+   let val (a,(v,t')) = (apsnd (Thm.dest_abs (SOME xn)) o Thm.dest_comb) ct
+   in apfst (cons (a,v)) (strip_objall t')
+   end
+| _ => ([],ct);
+
+local
+  val all_maxscope_ss = 
+     HOL_basic_ss addsimps map (fn th => th RS sym) @{thms "all_simps"}
+in
+fun thin_prems_tac P i =  simp_tac all_maxscope_ss i THEN
+  (fn st => case try (nth (cprems_of st)) (i - 1) of
+    NONE => no_tac st
+  | SOME p' => 
+    let
+     val (qvs, p) = strip_objall (Thm.dest_arg p')
+     val (ps, c) = split_last (strip_objimp p)
+     val qs = filter P ps
+     val q = if P c then c else @{cterm "False"}
+     val ng = fold_rev (fn (a,v) => fn t => Thm.capply a (Thm.cabs v t)) qvs 
+         (fold_rev (fn p => fn q => Thm.capply (Thm.capply @{cterm "op -->"} p) q) qs q)
+     val g = Thm.capply (Thm.capply @{cterm "op ==>"} (Thm.capply @{cterm "Trueprop"} ng)) p'
+     val ntac = (case qs of [] => q aconvc @{cterm "False"}
+                         | _ => false)
+    in 
+    if ntac then no_tac st
+      else rtac (Goal.prove_internal [] g (K (blast_tac HOL_cs 1))) i st 
+    end)
+end;
+
+local
+ fun ty cts t = 
+ if not (typ_of (ctyp_of_term t) mem [HOLogic.intT, HOLogic.natT]) then false 
+    else case term_of t of 
+      c$_$_ => not (member (op aconv) cts c)
+    | c$_ => not (member (op aconv) cts c)
+    | c => not (member (op aconv) cts c)
+    | _ => true
+
+ val term_constants =
+  let fun h acc t = case t of
+    Const _ => insert (op aconv) t acc
+  | a$b => h (h acc a) b
+  | Abs (_,_,t) => h acc t
+  | _ => acc
+ in h [] end;
+in 
+fun is_relevant ctxt ct = 
+  gen_subset (op aconv) (term_constants (term_of ct) , snd (CooperData.get ctxt))
+ andalso forall (fn Free (_,T) => T = HOLogic.intT) (term_frees (term_of ct))
+ andalso forall (fn Var (_,T) => T = HOLogic.intT) (term_vars (term_of ct));
+
+fun int_nat_terms ctxt ct =
+ let 
+  val cts = snd (CooperData.get ctxt)
+  fun h acc t = if ty cts t then insert (op aconvc) t acc else
+   case (term_of t) of
+    _$_ => h (h acc (Thm.dest_arg t)) (Thm.dest_fun t)
+  | Abs(_,_,_) => Thm.dest_abs NONE t ||> h acc |> uncurry (remove (op aconvc))
+  | _ => acc
+ in h [] ct end
+end;
+
+fun generalize_tac ctxt f i st = 
+ case try (nth (cprems_of st)) (i - 1) of
+    NONE => all_tac st
+  | SOME p => 
+   let 
+   fun all T = Drule.cterm_rule (instantiate' [SOME T] []) @{cpat "all"}
+   fun gen x t = Thm.capply (all (ctyp_of_term x)) (Thm.cabs x t)
+   val ts = sort (fn (a,b) => Term.fast_term_ord (term_of a, term_of b)) (f p)
+   val p' = fold_rev gen ts p
+ in Seq.of_list [implies_intr p' (implies_elim st (fold forall_elim ts (assume p')))]
+ end;
+
+local
+val ss1 = comp_ss
+  addsimps simp_thms @ [@{thm "nat_number_of_def"}, @{thm "zdvd_int"}] 
+      @ map (fn r => r RS sym) 
+        [@{thm "int_int_eq"}, @{thm "zle_int"}, @{thm "zless_int"}, @{thm "zadd_int"}, 
+         @{thm "zmult_int"}]
+    addsplits [@{thm "zdiff_int_split"}]
+
+val ss2 = HOL_basic_ss
+  addsimps [@{thm "nat_0_le"}, @{thm "int_nat_number_of"},
+            @{thm "all_nat"}, @{thm "ex_nat"}, @{thm "number_of1"}, 
+            @{thm "number_of2"}, @{thm "int_0"}, @{thm "int_1"}, @{thm "Suc_plus1"}]
+  addcongs [@{thm "conj_le_cong"}, @{thm "imp_le_cong"}]
+val div_mod_ss = HOL_basic_ss addsimps simp_thms 
+  @ map (symmetric o mk_meta_eq) 
+    [@{thm "dvd_eq_mod_eq_0"}, @{thm "zdvd_iff_zmod_eq_0"}, mod_add1_eq, 
+     mod_add_left_eq, mod_add_right_eq, 
+     @{thm "zmod_zadd1_eq"}, @{thm "zmod_zadd_left_eq"}, 
+     @{thm "zmod_zadd_right_eq"}, @{thm "div_add1_eq"}, @{thm "zdiv_zadd1_eq"}]
+  @ [@{thm "mod_self"}, @{thm "zmod_self"}, @{thm "DIVISION_BY_ZERO_MOD"}, 
+     @{thm "DIVISION_BY_ZERO_DIV"}, @{thm "DIVISION_BY_ZERO"} RS conjunct1, 
+     @{thm "DIVISION_BY_ZERO"} RS conjunct2, @{thm "zdiv_zero"}, @{thm "zmod_zero"}, 
+     @{thm "div_0"}, @{thm "mod_0"}, @{thm "zdiv_1"}, @{thm "zmod_1"}, @{thm "div_1"}, 
+     @{thm "mod_1"}, @{thm "Suc_plus1"}]
+  @ add_ac
+ addsimprocs [cancel_div_mod_proc]
+ val splits_ss = comp_ss addsimps [@{thm "mod_div_equality'"}] addsplits 
+     [@{thm "split_zdiv"}, @{thm "split_zmod"}, @{thm "split_div'"}, 
+      @{thm "split_min"}, @{thm "split_max"}, @{thm "abs_split"}]
+in
+fun nat_to_int_tac ctxt i = 
+  simp_tac (Simplifier.context ctxt ss1) i THEN 
+  simp_tac (Simplifier.context ctxt ss2) i THEN 
+  TRY (simp_tac (Simplifier.context ctxt comp_ss) i);
+
+fun div_mod_tac  ctxt i = simp_tac (Simplifier.context ctxt div_mod_ss) i;
+fun splits_tac ctxt i = simp_tac (Simplifier.context ctxt splits_ss) i;
+end;
+
+
+fun eta_beta_tac ctxt i st = case try (nth (cprems_of st)) (i - 1) of
+   NONE => no_tac st
+ | SOME p => 
+   let
+    val eq = (eta_conv (ProofContext.theory_of ctxt) then_conv Thm.beta_conversion true) p
+    val p' = Thm.rhs_of eq
+    val th = implies_intr p' (equal_elim (symmetric eq) (assume p'))
+   in rtac th i st
+   end;
+
+
+
+fun core_cooper_tac ctxt i st = 
+ case try (nth (cprems_of st)) (i - 1) of
+   NONE => all_tac st
+ | SOME p => 
+   let 
+    val cpth = 
+       if !quick_and_dirty 
+       then linzqe_oracle (ProofContext.theory_of ctxt) 
+             (Envir.beta_norm (Pattern.eta_long [] (term_of (Thm.dest_arg p))))
+       else arg_conv (Cooper.cooper_conv ctxt) p
+    val p' = Thm.rhs_of cpth
+    val th = implies_intr p' (equal_elim (symmetric cpth) (assume p'))
+   in rtac th i st end
+   handle Cooper.COOPER _ => no_tac st;
+
+fun nogoal_tac i st = case try (nth (cprems_of st)) (i - 1) of
+   NONE => no_tac st
+ | SOME _ => all_tac st
+
+fun finish_tac q i st = case try (nth (cprems_of st)) (i - 1) of
+   NONE => all_tac st
+ | SOME _ => (if q then I else TRY) (rtac TrueI i) st
+
+fun cooper_tac elim add_ths del_ths ctxt i = 
+let val ss = fst (CooperData.get ctxt) delsimps del_ths addsimps add_ths
+in
+nogoal_tac i 
+THEN (EVERY o (map TRY))
+ [ObjectLogic.full_atomize_tac i,
+  eta_beta_tac ctxt i,
+  simp_tac ss  i,
+  generalize_tac ctxt (int_nat_terms ctxt) i,
+  ObjectLogic.full_atomize_tac i,
+  div_mod_tac ctxt i,
+  splits_tac ctxt i,
+  simp_tac ss i,
+  eta_beta_tac ctxt i,
+  nat_to_int_tac ctxt i, 
+  thin_prems_tac (is_relevant ctxt) i]
+THEN core_cooper_tac ctxt i THEN finish_tac elim i
+end;
+
+end;
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/Qelim/qelim.ML	Thu Jun 21 20:48:48 2007 +0200
@@ -0,0 +1,76 @@
+(*
+    ID:         $Id$
+    Author:     Amine Chaieb and Tobias Nipkow, TU Muenchen
+
+File containing the implementation of the proof protocoling
+and proof generation for multiple quantified formulae.
+*)
+
+signature QELIM =
+sig
+ val standard_qelim_conv: Proof.context -> (cterm list -> cterm -> thm) ->
+   (cterm list -> Conv.conv) -> (cterm list -> cterm -> thm) -> cterm -> thm
+ val gen_qelim_conv: Proof.context -> Conv.conv -> Conv.conv -> Conv.conv ->
+   (cterm -> 'a -> 'a) -> 'a -> ('a -> cterm -> thm) ->
+   ('a -> Conv.conv) -> ('a -> cterm -> thm) -> Conv.conv
+end;
+
+structure Qelim : QELIM =
+struct
+
+open Conv;
+
+local
+ val all_not_ex = mk_meta_eq @{thm "all_not_ex"}
+in
+fun gen_qelim_conv ctxt precv postcv simpex_conv ins env atcv ncv qcv  = 
+ let 
+  val thy = ProofContext.theory_of ctxt
+  fun conv env p =
+   case (term_of p) of 
+    Const(s,T)$_$_ => if domain_type T = HOLogic.boolT 
+                         andalso s mem ["op &","op |","op -->","op ="]
+                     then binop_conv (conv env) p else atcv env p
+  | Const("Not",_)$_ => arg_conv (conv env) p
+  | Const("Ex",_)$Abs(s,_,_) => 
+    let 
+     val (e,p0) = Thm.dest_comb p
+     val (x,p') = Thm.dest_abs (SOME s) p0
+     val env' = ins x env
+     val th = Thm.abstract_rule s x ((conv env' then_conv ncv env') p')
+                   |> Drule.arg_cong_rule e
+     val th' = simpex_conv (Thm.rhs_of th)
+     val (l,r) = Thm.dest_equals (cprop_of th')
+    in if is_refl th' then Thm.transitive th (qcv env (Thm.rhs_of th))
+       else Thm.transitive (Thm.transitive th th') (conv env r) end
+  | Const("Ex",_)$ _ => (eta_conv thy then_conv conv env) p 
+  | Const("All",_)$_ => 
+    let 
+     val p = Thm.dest_arg p
+     val ([(_,T)],[]) = Thm.match (@{cpat "All"}, Thm.dest_fun p)
+     val th = instantiate' [SOME T] [SOME p] all_not_ex 
+    in transitive th (conv env (Thm.rhs_of th)) 
+    end
+  | _ => atcv env p
+ in precv then_conv (conv env) then_conv postcv end
+end;
+
+fun cterm_frees ct = 
+ let fun h acc t = 
+   case (term_of t) of 
+    _$_ => h (h acc (Thm.dest_arg t)) (Thm.dest_fun t)
+  | Abs(_,_,_) => Thm.dest_abs NONE t ||> h acc |> uncurry (remove (op aconvc))
+  | Free _ => insert (op aconvc) t acc
+  | _ => acc
+ in h [] ct end;
+
+local
+val pcv = Simplifier.rewrite 
+                 (HOL_basic_ss addsimps (simp_thms @ ex_simps @ all_simps) 
+                     @ [@{thm "all_not_ex"}, not_all,ex_disj_distrib])
+in 
+fun standard_qelim_conv ctxt atcv ncv qcv p = 
+    gen_qelim_conv ctxt pcv pcv pcv cons (cterm_frees p) atcv ncv qcv p 
+end;
+
+end;
--- a/src/HOL/Tools/qelim.ML	Thu Jun 21 20:48:47 2007 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,76 +0,0 @@
-(*
-    ID:         $Id$
-    Author:     Amine Chaieb and Tobias Nipkow, TU Muenchen
-
-File containing the implementation of the proof protocoling
-and proof generation for multiple quantified formulae.
-*)
-
-signature QELIM =
-sig
- val standard_qelim_conv: Proof.context -> (cterm list -> cterm -> thm) ->
-   (cterm list -> Conv.conv) -> (cterm list -> cterm -> thm) -> cterm -> thm
- val gen_qelim_conv: Proof.context -> Conv.conv -> Conv.conv -> Conv.conv ->
-   (cterm -> 'a -> 'a) -> 'a -> ('a -> cterm -> thm) ->
-   ('a -> Conv.conv) -> ('a -> cterm -> thm) -> Conv.conv
-end;
-
-structure Qelim : QELIM =
-struct
-
-open Conv;
-
-local
- val all_not_ex = mk_meta_eq @{thm "all_not_ex"}
-in
-fun gen_qelim_conv ctxt precv postcv simpex_conv ins env atcv ncv qcv  = 
- let 
-  val thy = ProofContext.theory_of ctxt
-  fun conv env p =
-   case (term_of p) of 
-    Const(s,T)$_$_ => if domain_type T = HOLogic.boolT 
-                         andalso s mem ["op &","op |","op -->","op ="]
-                     then binop_conv (conv env) p else atcv env p
-  | Const("Not",_)$_ => arg_conv (conv env) p
-  | Const("Ex",_)$Abs(s,_,_) => 
-    let 
-     val (e,p0) = Thm.dest_comb p
-     val (x,p') = Thm.dest_abs (SOME s) p0
-     val env' = ins x env
-     val th = Thm.abstract_rule s x ((conv env' then_conv ncv env') p')
-                   |> Drule.arg_cong_rule e
-     val th' = simpex_conv (Thm.rhs_of th)
-     val (l,r) = Thm.dest_equals (cprop_of th')
-    in if is_refl th' then Thm.transitive th (qcv env (Thm.rhs_of th))
-       else Thm.transitive (Thm.transitive th th') (conv env r) end
-  | Const("Ex",_)$ _ => (eta_conv thy then_conv conv env) p 
-  | Const("All",_)$_ => 
-    let 
-     val p = Thm.dest_arg p
-     val ([(_,T)],[]) = Thm.match (@{cpat "All"}, Thm.dest_fun p)
-     val th = instantiate' [SOME T] [SOME p] all_not_ex 
-    in transitive th (conv env (Thm.rhs_of th)) 
-    end
-  | _ => atcv env p
- in precv then_conv (conv env) then_conv postcv end
-end;
-
-fun cterm_frees ct = 
- let fun h acc t = 
-   case (term_of t) of 
-    _$_ => h (h acc (Thm.dest_arg t)) (Thm.dest_fun t)
-  | Abs(_,_,_) => Thm.dest_abs NONE t ||> h acc |> uncurry (remove (op aconvc))
-  | Free _ => insert (op aconvc) t acc
-  | _ => acc
- in h [] ct end;
-
-local
-val pcv = Simplifier.rewrite 
-                 (HOL_basic_ss addsimps (simp_thms @ ex_simps @ all_simps) 
-                     @ [@{thm "all_not_ex"}, not_all,ex_disj_distrib])
-in 
-fun standard_qelim_conv ctxt atcv ncv qcv p = 
-    gen_qelim_conv ctxt pcv pcv pcv cons (cterm_frees p) atcv ncv qcv p 
-end;
-
-end;