Unhide measure_space.positive defined in Caratheodory.
--- a/src/HOL/Probability/Probability_Space.thy Tue Mar 23 16:17:41 2010 +0100
+++ b/src/HOL/Probability/Probability_Space.thy Tue Mar 23 16:18:44 2010 +0100
@@ -38,7 +38,7 @@
definition
"conditional_prob e1 e2 \<equiv> conditional_expectation (indicator_fn e1) e2"
-lemma positive: "positive M prob"
+lemma positive': "positive M prob"
unfolding positive_def using positive empty_measure by blast
lemma prob_compl:
@@ -60,7 +60,7 @@
lemma prob_space_increasing:
"increasing M prob"
-by (rule additive_increasing[OF positive additive])
+by (rule additive_increasing[OF positive' additive])
lemma prob_subadditive:
assumes "s \<in> events" "t \<in> events"
@@ -167,7 +167,7 @@
assms rf' unfolding f'_def by blast
hence absinc: "\<And> i. \<bar> prob (f' i) \<bar> \<le> prob (f i)"
- using abs_of_nonneg positive[unfolded positive_def]
+ using abs_of_nonneg positive'[unfolded positive_def]
assms rf' by auto
have "prob (\<Union> i. f i) = prob (\<Union> i. f' i)" using uf'f by simp
@@ -192,7 +192,7 @@
using assms
proof -
have leq0: "0 \<le> prob (\<Union> i. c i)"
- using assms positive[unfolded positive_def, rule_format]
+ using assms positive'[unfolded positive_def, rule_format]
by auto
have "prob (\<Union> i. c i) \<le> (\<Sum> i. prob (c i))"
@@ -285,7 +285,7 @@
have pos: "\<And> e. e \<in> sets s \<Longrightarrow> distribution X e \<ge> 0"
unfolding distribution_def
- using positive[unfolded positive_def]
+ using positive'[unfolded positive_def]
assms[unfolded measurable_def] by auto
have cas: "countably_additive ?N (distribution X)"
@@ -366,7 +366,7 @@
let "?M" = "\<lparr> space = ((X ` (space M)) \<times> (Y ` (space M))),
sets = Pow ((X ` (space M)) \<times> (Y ` (space M)))\<rparr>"
have pos: "positive ?S (\<lambda>a. prob ((\<lambda>x. (X x,Y x)) -` a \<inter> space M))"
- unfolding positive_def using positive[unfolded positive_def] assms by auto
+ unfolding positive_def using positive'[unfolded positive_def] assms by auto
{ fix x y
have A: "((\<lambda>x. (X x, Y x)) -` x) \<inter> space M \<in> sets M" using assms by auto
have B: "((\<lambda>x. (X x, Y x)) -` y) \<inter> space M \<in> sets M" using assms by auto
@@ -397,7 +397,7 @@
proof -
let "?S" = "\<lparr> space = s1 \<times> s2, sets = Pow (s1 \<times> s2) \<rparr>"
let "?M" = "\<lparr> space = s1 \<times> s2, sets = Pow (s1 \<times> s2), measure = joint_distribution X Y \<rparr>"
- have pos: "positive ?S (joint_distribution X Y)" using positive
+ have pos: "positive ?S (joint_distribution X Y)" using positive'
unfolding positive_def joint_distribution_def using assms by auto
{ fix x y
have A: "((\<lambda>x. (X x, Y x)) -` x) \<inter> space M \<in> sets M" using assms by auto