tidied auto / simp with null arguments
authorpaulson <lp15@cam.ac.uk>
Tue, 17 May 2022 14:10:14 +0100
changeset 75455 91c16c5ad3e9
parent 75454 295e1c9d2994
child 75456 160c9c18a707
child 75457 cbf011677235
tidied auto / simp with null arguments
src/HOL/Algebra/Divisibility.thy
src/HOL/Analysis/Abstract_Topology.thy
src/HOL/Analysis/Lebesgue_Integral_Substitution.thy
src/HOL/Analysis/Linear_Algebra.thy
src/HOL/Analysis/Lipschitz.thy
src/HOL/Analysis/T1_Spaces.thy
src/HOL/Complex_Analysis/Winding_Numbers.thy
src/HOL/Computational_Algebra/Nth_Powers.thy
src/HOL/Decision_Procs/Approximation_Bounds.thy
src/HOL/Library/Interval.thy
src/HOL/Library/Log_Nat.thy
src/HOL/Library/Poly_Mapping.thy
src/HOL/Probability/Distributions.thy
src/HOL/Probability/Product_PMF.thy
src/HOL/Probability/Stream_Space.thy
src/HOL/Quotient.thy
src/HOL/Rings.thy
src/HOL/Set_Interval.thy
--- a/src/HOL/Algebra/Divisibility.thy	Wed May 11 10:42:24 2022 +0200
+++ b/src/HOL/Algebra/Divisibility.thy	Tue May 17 14:10:14 2022 +0100
@@ -2600,7 +2600,7 @@
 next
   case (Cons x as)
   then have "x \<in> carrier G"  "set as \<subseteq> carrier G" and "a divides x \<otimes> foldr (\<otimes>) as \<one>"
-    by (auto simp: )
+    by auto
   with carr aprime have "a divides x \<or> a divides foldr (\<otimes>) as \<one>"
     by (intro prime_divides) simp+
   then show ?case
--- a/src/HOL/Analysis/Abstract_Topology.thy	Wed May 11 10:42:24 2022 +0200
+++ b/src/HOL/Analysis/Abstract_Topology.thy	Tue May 17 14:10:14 2022 +0100
@@ -3924,7 +3924,7 @@
       using \<open>(x, y) \<in> E1 \<times> E2\<close> \<open>x \<in> S\<close> \<open>y \<in> T\<close> by auto
     show "(E1 \<inter> S) \<times> (E2 \<inter> T) \<subseteq> U"
       using \<open>E1 \<times> E2 \<subseteq> E\<close> \<open>U = _\<close>
-      by (auto simp: )
+      by auto
   qed
 qed
 
--- a/src/HOL/Analysis/Lebesgue_Integral_Substitution.thy	Wed May 11 10:42:24 2022 +0200
+++ b/src/HOL/Analysis/Lebesgue_Integral_Substitution.thy	Tue May 17 14:10:14 2022 +0100
@@ -122,7 +122,7 @@
         by (simp add: vimage_Compl diff_eq Int_commute[of "-A"])
       also have "{g a..g b} - A = {g a..g b} - A \<inter> {g a..g b}" by blast
       also have "emeasure lborel ... = g b - g a - emeasure lborel (A \<inter> {g a..g b})"
-             using \<open>A \<in> sets borel\<close> by (subst emeasure_Diff) (auto simp: )
+             using \<open>A \<in> sets borel\<close> by (subst emeasure_Diff) auto
      also have "emeasure lborel (A \<inter> {g a..g b}) =
                     \<integral>\<^sup>+x. indicator A x * indicator {g a..g b} x \<partial>lborel"
        using \<open>A \<in> sets borel\<close>
--- a/src/HOL/Analysis/Linear_Algebra.thy	Wed May 11 10:42:24 2022 +0200
+++ b/src/HOL/Analysis/Linear_Algebra.thy	Tue May 17 14:10:14 2022 +0100
@@ -1167,7 +1167,7 @@
 next
   assume ?rhs
   then obtain u v where *: "\<And>x. x \<in> S \<Longrightarrow> \<exists>c. x = u + c *\<^sub>R v"
-    by (auto simp: )
+    by auto
   have "\<exists>c. x - y = c *\<^sub>R v" if "x \<in> S" "y \<in> S" for x y
         by (metis *[OF \<open>x \<in> S\<close>] *[OF \<open>y \<in> S\<close>] scaleR_left.diff add_diff_cancel_left)
   then show ?lhs
--- a/src/HOL/Analysis/Lipschitz.thy	Wed May 11 10:42:24 2022 +0200
+++ b/src/HOL/Analysis/Lipschitz.thy	Tue May 17 14:10:14 2022 +0100
@@ -623,7 +623,7 @@
         by (simp add: dist_commute)
       subgoal
         using \<open>0 < u\<close> \<open>b \<in> X\<close>
-        by (simp add: )
+        by simp
       done
     also have "(L + 1) * dist y b \<le> e / 2"
       using le1 \<open>0 \<le> L\<close> by simp
--- a/src/HOL/Analysis/T1_Spaces.thy	Wed May 11 10:42:24 2022 +0200
+++ b/src/HOL/Analysis/T1_Spaces.thy	Tue May 17 14:10:14 2022 +0100
@@ -289,7 +289,7 @@
         by metis
       with \<open>a \<notin> T\<close> compactin_subset_topspace [OF T]
       have Topen: "\<forall>W \<in> U ` T. openin X W" and Tsub: "T \<subseteq> \<Union> (U ` T)"
-        by (auto simp: )
+        by auto
       then obtain \<F> where \<F>: "finite \<F>" "\<F> \<subseteq> U ` T" and "T \<subseteq> \<Union>\<F>"
         using T unfolding compactin_def by meson
       then obtain F where F: "finite F" "F \<subseteq> T" "\<F> = U ` F" and SUF: "T \<subseteq> \<Union>(U ` F)" and "a \<notin> F"
--- a/src/HOL/Complex_Analysis/Winding_Numbers.thy	Wed May 11 10:42:24 2022 +0200
+++ b/src/HOL/Complex_Analysis/Winding_Numbers.thy	Tue May 17 14:10:14 2022 +0100
@@ -1316,7 +1316,7 @@
         also have "... < e"
           using \<open>e>0\<close> by (auto simp: norm_mult intro: le_less_trans [OF norm_triangle_ineq4])
         finally have "z \<in> ball 0 e"
-          using \<open>e>0\<close> by (simp add: )
+          using \<open>e>0\<close> by simp
         then have "Im z * Re b \<le> Im b * Re z"
           using e by blast
         then have b: "0 < Re b" "0 < Im b" and disj: "e * Re b < - (Im b * e) \<or> e * Re b = - (Im b * e)"
--- a/src/HOL/Computational_Algebra/Nth_Powers.thy	Wed May 11 10:42:24 2022 +0200
+++ b/src/HOL/Computational_Algebra/Nth_Powers.thy	Tue May 17 14:10:14 2022 +0100
@@ -279,7 +279,7 @@
 lemma nth_root_nat_naive_code [code]:
   "nth_root_nat m n = (if m = 0 \<or> n = 0 then 0 else if m = 1 \<or> n = 1 then n else
                         nth_root_nat_aux m 1 1 n)"
-  using nth_root_nat_aux_correct[of 1 m n] by (auto simp: )
+  using nth_root_nat_aux_correct[of 1 m n] by auto
 
 
 lemma nth_root_nat_nth_power [simp]: "k > 0 \<Longrightarrow> nth_root_nat k (n ^ k) = n"
--- a/src/HOL/Decision_Procs/Approximation_Bounds.thy	Wed May 11 10:42:24 2022 +0200
+++ b/src/HOL/Decision_Procs/Approximation_Bounds.thy	Tue May 17 14:10:14 2022 +0100
@@ -333,7 +333,7 @@
   "x * y \<in>\<^sub>r mult_float_interval prec A B"
   if "x \<in>\<^sub>i real_interval A" "y \<in>\<^sub>i real_interval B"
   using mult_float_interval[of A B] that
-  by (auto simp: )
+  by auto
 
 lemma mult_float_interval_mono':
   "set_of (mult_float_interval prec A B) \<subseteq> set_of (mult_float_interval prec X Y)"
--- a/src/HOL/Library/Interval.thy	Wed May 11 10:42:24 2022 +0200
+++ b/src/HOL/Library/Interval.thy	Tue May 17 14:10:14 2022 +0100
@@ -751,8 +751,8 @@
   and upper_split_interval2: "upper (snd (split_interval X m)) = max (upper X) m"
   subgoal by transfer auto
   subgoal by transfer (auto simp: min.commute)
-  subgoal by transfer (auto simp: )
-  subgoal by transfer (auto simp: )
+  subgoal by transfer auto
+  subgoal by transfer auto
   done
 
 lemma split_intervalD: "split_interval X x = (A, B) \<Longrightarrow> set_of X \<subseteq> set_of A \<union> set_of B"
--- a/src/HOL/Library/Log_Nat.thy	Wed May 11 10:42:24 2022 +0200
+++ b/src/HOL/Library/Log_Nat.thy	Tue May 17 14:10:14 2022 +0100
@@ -183,7 +183,7 @@
   proof -
     have "0 \<le> log (real b) (real x)"
       using \<open>b > 1\<close> \<open>0 < x\<close>
-      by (auto simp: )
+      by auto
     then have "?l \<le> b powr log (real b) (real x)"
       using \<open>b > 1\<close>
       by (auto simp flip: powr_realpow intro!: powr_mono of_nat_floor)
--- a/src/HOL/Library/Poly_Mapping.thy	Wed May 11 10:42:24 2022 +0200
+++ b/src/HOL/Library/Poly_Mapping.thy	Tue May 17 14:10:14 2022 +0100
@@ -1688,7 +1688,7 @@
   
 
 lemma keys_cmul_iff [iff]: "i \<in> Poly_Mapping.keys (frag_cmul c x) \<longleftrightarrow> i \<in> Poly_Mapping.keys x \<and> c \<noteq> 0"
-  apply (auto simp: )
+  apply auto
   apply (meson subsetD keys_cmul)
   by (metis in_keys_iff lookup_frag_cmul mult_eq_0_iff)
 
--- a/src/HOL/Probability/Distributions.thy	Wed May 11 10:42:24 2022 +0200
+++ b/src/HOL/Probability/Distributions.thy	Tue May 17 14:10:14 2022 +0100
@@ -1332,7 +1332,7 @@
   shows "expectation X = 0"
   using integral_std_normal_moment_odd[of 0]
     distributed_integral[OF D, of "\<lambda>x. x", symmetric]
-  by (auto simp: )
+  by auto
 
 lemma (in prob_space) normal_distributed_expectation:
   assumes \<sigma>[arith]: "0 < \<sigma>"
--- a/src/HOL/Probability/Product_PMF.thy	Wed May 11 10:42:24 2022 +0200
+++ b/src/HOL/Probability/Product_PMF.thy	Tue May 17 14:10:14 2022 +0100
@@ -354,7 +354,7 @@
           Pi_pmf A dflt' (\<lambda>x. g x \<bind> (\<lambda>x. return_pmf (f x)))"
     using assms by (simp add: map_pmf_def Pi_pmf_bind)
   also have "\<dots> = Pi_pmf A dflt g \<bind> (\<lambda>h. return_pmf (\<lambda>x. if x \<in> A then f (h x) else dflt'))"
-   by (subst Pi_pmf_bind[where d' = dflt]) (auto simp: )
+   by (subst Pi_pmf_bind[where d' = dflt]) auto
   also have "\<dots> = map_pmf (\<lambda>h. f \<circ> h) (Pi_pmf A dflt g)"
     unfolding map_pmf_def using set_Pi_pmf_subset'[of A dflt g]
     by (intro bind_pmf_cong refl arg_cong[of _ _ return_pmf])
--- a/src/HOL/Probability/Stream_Space.thy	Wed May 11 10:42:24 2022 +0200
+++ b/src/HOL/Probability/Stream_Space.thy	Tue May 17 14:10:14 2022 +0100
@@ -493,7 +493,7 @@
     proof (safe intro!: sets_Sup_in_sets del: subsetI equalityI)
       fix i :: nat
       show "space (?V i) = space ?R"
-        using scylinder_streams by (subst space_measure_of) (auto simp: )
+        using scylinder_streams by (subst space_measure_of) auto
       { fix A assume "A \<in> G"
         then have "scylinder (space S) (replicate i (space S) @ [A]) = (\<lambda>s. s !! i) -` A \<inter> streams (space S)"
           by (induction i) (auto simp add: streams_shd streams_stl cong: conj_cong)
--- a/src/HOL/Quotient.thy	Wed May 11 10:42:24 2022 +0200
+++ b/src/HOL/Quotient.thy	Tue May 17 14:10:14 2022 +0100
@@ -576,7 +576,7 @@
         using r Quotient3_refl1 R1 rep_abs_rsp by fastforce
       moreover have "R2' (Rep1 (Abs1 r)) (Rep1 (Abs1 s))"
         using that
-        apply (simp add: )
+        apply simp
         apply (metis (full_types) Rep1 Abs1 Quotient3_rel R2 Quotient3_refl1 [OF R1] Quotient3_refl2 [OF R1] Quotient3_rel_abs [OF R1])
         done
       moreover have "R1 (Rep1 (Abs1 s)) s"
--- a/src/HOL/Rings.thy	Wed May 11 10:42:24 2022 +0200
+++ b/src/HOL/Rings.thy	Tue May 17 14:10:14 2022 +0100
@@ -2408,7 +2408,7 @@
   proof (rule ccontr, simp add: not_less)
     assume "b \<le> a"
     with that show False
-      by (simp add: )
+      by simp
   qed
 qed
 
--- a/src/HOL/Set_Interval.thy	Wed May 11 10:42:24 2022 +0200
+++ b/src/HOL/Set_Interval.thy	Tue May 17 14:10:14 2022 +0100
@@ -465,7 +465,7 @@
   apply (auto simp:subset_eq Ball_def not_le)
   apply(frule_tac x=a in spec)
   apply(erule_tac x=d in allE)
-  apply (auto simp: )
+  apply auto
   done
 
 lemma atLeastLessThan_inj: