added example "First-Order Logic" -- mostly from Trybulec Festschrift;
authorwenzelm
Thu, 12 Feb 2009 11:19:12 +0100
changeset 29730 924c1fd5f303
parent 29729 c2e926455fcc
child 29731 efcbbd7baa02
added example "First-Order Logic" -- mostly from Trybulec Festschrift;
doc-src/IsarRef/IsaMakefile
doc-src/IsarRef/Thy/First_Order_Logic.thy
doc-src/IsarRef/Thy/ROOT.ML
doc-src/IsarRef/isar-ref.tex
--- a/doc-src/IsarRef/IsaMakefile	Wed Feb 11 21:41:05 2009 +0100
+++ b/doc-src/IsarRef/IsaMakefile	Thu Feb 12 11:19:12 2009 +0100
@@ -22,10 +22,11 @@
 HOL-IsarRef: $(LOG)/HOL-IsarRef.gz
 
 $(LOG)/HOL-IsarRef.gz: Thy/ROOT.ML ../antiquote_setup.ML		\
-  Thy/Framework.thy Thy/Inner_Syntax.thy Thy/Introduction.thy		\
-  Thy/Outer_Syntax.thy Thy/Spec.thy Thy/Proof.thy Thy/Misc.thy		\
-  Thy/Document_Preparation.thy Thy/Generic.thy Thy/HOL_Specific.thy	\
-  Thy/Quick_Reference.thy Thy/Symbols.thy Thy/ML_Tactic.thy
+  Thy/First_Order_Logic.thy Thy/Framework.thy Thy/Inner_Syntax.thy	\
+  Thy/Introduction.thy Thy/Outer_Syntax.thy Thy/Spec.thy Thy/Proof.thy	\
+  Thy/Misc.thy Thy/Document_Preparation.thy Thy/Generic.thy		\
+  Thy/HOL_Specific.thy Thy/Quick_Reference.thy Thy/Symbols.thy		\
+  Thy/ML_Tactic.thy
 	@$(USEDIR) -s IsarRef HOL Thy
 
 
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/IsarRef/Thy/First_Order_Logic.thy	Thu Feb 12 11:19:12 2009 +0100
@@ -0,0 +1,365 @@
+
+header {* Example: First-Order Logic *}
+
+theory %visible First_Order_Logic
+imports Pure
+begin
+
+text {*
+  In order to commence a new object-logic within Isabelle/Pure we
+  introduce abstract syntactic categories @{text "i"} for individuals
+  and @{text "o"} for object-propositions.  The latter is embedded
+  into the language of Pure propositions by means of a separate
+  judgment.
+*}
+
+typedecl i
+typedecl o
+
+judgment
+  Trueprop :: "o \<Rightarrow> prop"    ("_" 5)
+
+text {*
+  \noindent Note that the object-logic judgement is implicit in the
+  syntax: writing @{prop A} produces @{term "Trueprop A"} internally.
+  From the Pure perspective this means ``@{prop A} is derivable in the
+  object-logic''.
+*}
+
+
+subsection {* Equational reasoning \label{sec:framework-ex-equal} *}
+
+text {*
+  Equality is axiomatized as a binary predicate on individuals, with
+  reflexivity as introduction, and substitution as elimination
+  principle.  Note that the latter is particularly convenient in a
+  framework like Isabelle, because syntactic congruences are
+  implicitly produced by unification of @{term "B x"} against
+  expressions containing occurrences of @{term x}.
+*}
+
+axiomatization
+  equal :: "i \<Rightarrow> i \<Rightarrow> o"  (infix "=" 50)
+where
+  refl [intro]: "x = x" and
+  subst [elim]: "x = y \<Longrightarrow> B x \<Longrightarrow> B y"
+
+text {*
+  \noindent Substitution is very powerful, but also hard to control in
+  full generality.  We derive some common symmetry~/ transitivity
+  schemes of as particular consequences.
+*}
+
+theorem sym [sym]:
+  assumes "x = y"
+  shows "y = x"
+proof -
+  have "x = x" ..
+  with `x = y` show "y = x" ..
+qed
+
+theorem forw_subst [trans]:
+  assumes "y = x" and "B x"
+  shows "B y"
+proof -
+  from `y = x` have "x = y" ..
+  from this and `B x` show "B y" ..
+qed
+
+theorem back_subst [trans]:
+  assumes "B x" and "x = y"
+  shows "B y"
+proof -
+  from `x = y` and `B x`
+  show "B y" ..
+qed
+
+theorem trans [trans]:
+  assumes "x = y" and "y = z"
+  shows "x = z"
+proof -
+  from `y = z` and `x = y`
+  show "x = z" ..
+qed
+
+
+subsection {* Basic group theory *}
+
+text {*
+  As an example for equational reasoning we consider some bits of
+  group theory.  The subsequent locale definition postulates group
+  operations and axioms; we also derive some consequences of this
+  specification.
+*}
+
+locale group =
+  fixes prod :: "i \<Rightarrow> i \<Rightarrow> i"  (infix "\<circ>" 70)
+    and inv :: "i \<Rightarrow> i"  ("(_\<inverse>)" [1000] 999)
+    and unit :: i  ("1")
+  assumes assoc: "(x \<circ> y) \<circ> z = x \<circ> (y \<circ> z)"
+    and left_unit:  "1 \<circ> x = x"
+    and left_inv: "x\<inverse> \<circ> x = 1"
+begin
+
+theorem right_inv: "x \<circ> x\<inverse> = 1"
+proof -
+  have "x \<circ> x\<inverse> = 1 \<circ> (x \<circ> x\<inverse>)" by (rule left_unit [symmetric])
+  also have "\<dots> = (1 \<circ> x) \<circ> x\<inverse>" by (rule assoc [symmetric])
+  also have "1 = (x\<inverse>)\<inverse> \<circ> x\<inverse>" by (rule left_inv [symmetric])
+  also have "\<dots> \<circ> x = (x\<inverse>)\<inverse> \<circ> (x\<inverse> \<circ> x)" by (rule assoc)
+  also have "x\<inverse> \<circ> x = 1" by (rule left_inv)
+  also have "((x\<inverse>)\<inverse> \<circ> \<dots>) \<circ> x\<inverse> = (x\<inverse>)\<inverse> \<circ> (1 \<circ> x\<inverse>)" by (rule assoc)
+  also have "1 \<circ> x\<inverse> = x\<inverse>" by (rule left_unit)
+  also have "(x\<inverse>)\<inverse> \<circ> \<dots> = 1" by (rule left_inv)
+  finally show "x \<circ> x\<inverse> = 1" .
+qed
+
+theorem right_unit: "x \<circ> 1 = x"
+proof -
+  have "1 = x\<inverse> \<circ> x" by (rule left_inv [symmetric])
+  also have "x \<circ> \<dots> = (x \<circ> x\<inverse>) \<circ> x" by (rule assoc [symmetric])
+  also have "x \<circ> x\<inverse> = 1" by (rule right_inv)
+  also have "\<dots> \<circ> x = x" by (rule left_unit)
+  finally show "x \<circ> 1 = x" .
+qed
+
+text {*
+  Reasoning from basic axioms is often tedious.  Our proofs work by
+  producing various instances of the given rules (potentially the
+  symmetric form) using the pattern ``@{command have}~@{text
+  eq}~@{command "by"}~@{text "(rule r)"}'' and composing the chain of
+  results via @{command also}/@{command finally}.  These steps may
+  involve any of the transitivity rules declared in
+  \secref{sec:framework-ex-equal}, namely @{thm trans} in combining
+  the first two results in @{thm right_inv} and in the final steps of
+  both proofs, @{thm forw_subst} in the first combination of @{thm
+  right_unit}, and @{thm back_subst} in all other calculational steps.
+
+  Occasional substitutions in calculations are adequate, but should
+  not be over-emphasized.  The other extreme is to compose a chain by
+  plain transitivity only, with replacements occurring always in
+  topmost position. For example:
+*}
+
+(*<*)
+theorem "\<And>A. PROP A \<Longrightarrow> PROP A"
+proof -
+  assume [symmetric, defn]: "\<And>x y. (x \<equiv> y) \<equiv> Trueprop (x = y)"
+(*>*)
+  have "x \<circ> 1 = x \<circ> (x\<inverse> \<circ> x)" unfolding left_inv ..
+  also have "\<dots> = (x \<circ> x\<inverse>) \<circ> x" unfolding assoc ..
+  also have "\<dots> = 1 \<circ> x" unfolding right_inv ..
+  also have "\<dots> = x" unfolding left_unit ..
+  finally have "x \<circ> 1 = x" .
+(*<*)
+qed
+(*>*)
+
+text {*
+  \noindent Here we have re-used the built-in mechanism for unfolding
+  definitions in order to normalize each equational problem.  A more
+  realistic object-logic would include proper setup for the Simplifier
+  (\secref{sec:simplifier}), the main automated tool for equational
+  reasoning in Isabelle.  Then ``@{command unfolding}~@{text
+  left_inv}~@{command ".."}'' would become ``@{command "by"}~@{text
+  "(simp add: left_inv)"}'' etc.
+*}
+
+end
+
+
+subsection {* Propositional logic *}
+
+text {*
+  We axiomatize basic connectives of propositional logic: implication,
+  disjunction, and conjunction.  The associated rules are modeled
+  after Gentzen's natural deduction \cite{Gentzen:1935}.
+*}
+
+axiomatization
+  imp :: "o \<Rightarrow> o \<Rightarrow> o"  (infixr "\<longrightarrow>" 25) where
+  impI [intro]: "(A \<Longrightarrow> B) \<Longrightarrow> A \<longrightarrow> B" and
+  impD [dest]: "(A \<longrightarrow> B) \<Longrightarrow> A \<Longrightarrow> B"
+
+axiomatization
+  disj :: "o \<Rightarrow> o \<Rightarrow> o"  (infixr "\<or>" 30) where
+  disjE [elim]: "A \<or> B \<Longrightarrow> (A \<Longrightarrow> C) \<Longrightarrow> (B \<Longrightarrow> C) \<Longrightarrow> C" and
+  disjI\<^isub>1 [intro]: "A \<Longrightarrow> A \<or> B" and
+  disjI\<^isub>2 [intro]: "B \<Longrightarrow> A \<or> B"
+
+axiomatization
+  conj :: "o \<Rightarrow> o \<Rightarrow> o"  (infixr "\<and>" 35) where
+  conjI [intro]: "A \<Longrightarrow> B \<Longrightarrow> A \<and> B" and
+  conjD\<^isub>1 [dest]: "A \<and> B \<Longrightarrow> A" and
+  conjD\<^isub>2 [dest]: "A \<and> B \<Longrightarrow> B"
+
+text {*
+  \noindent The conjunctive destructions have the disadvantage that
+  decomposing @{prop "A \<and> B"} involves an immediate decision which
+  component should be projected.  The more convenient simultaneous
+  elimination @{prop "A \<and> B \<Longrightarrow> (A \<Longrightarrow> B \<Longrightarrow> C) \<Longrightarrow> C"} can be derived as
+  follows:
+*}
+
+theorem conjE [elim]:
+  assumes "A \<and> B"
+  obtains A and B
+proof
+  from `A \<and> B` show A ..
+  from `A \<and> B` show B ..
+qed
+
+text {*
+  \noindent Here is an example of swapping conjuncts with a single
+  intermediate elimination step:
+*}
+
+(*<*)
+lemma "\<And>A. PROP A \<Longrightarrow> PROP A"
+proof -
+(*>*)
+  assume "A \<and> B"
+  then obtain B and A ..
+  then have "B \<and> A" ..
+(*<*)
+qed
+(*>*)
+
+text {*
+  Note that the analogous elimination for disjunction ``@{text
+  "\<ASSUMES> A \<or> B \<OBTAINS> A \<BBAR> B"}'' coincides with the
+  original axiomatization of @{text "disjE"}.
+
+  \medskip We continue propositional logic by introducing absurdity
+  with its characteristic elimination.  Plain truth may then be
+  defined as a proposition that is trivially true.
+*}
+
+axiomatization
+  false :: o  ("\<bottom>") where
+  falseE [elim]: "\<bottom> \<Longrightarrow> A"
+
+definition
+  true :: o  ("\<top>") where
+  "\<top> \<equiv> \<bottom> \<longrightarrow> \<bottom>"
+
+theorem trueI [intro]: \<top>
+  unfolding true_def ..
+
+text {*
+  \medskip Now negation represents an implication towards absurdity:
+*}
+
+definition
+  not :: "o \<Rightarrow> o"  ("\<not> _" [40] 40) where
+  "\<not> A \<equiv> A \<longrightarrow> \<bottom>"
+
+theorem notI [intro]:
+  assumes "A \<Longrightarrow> \<bottom>"
+  shows "\<not> A"
+unfolding not_def
+proof
+  assume A
+  then show \<bottom> by (rule `A \<Longrightarrow> \<bottom>`)
+qed
+
+theorem notE [elim]:
+  assumes "\<not> A" and A
+  shows B
+proof -
+  from `\<not> A` have "A \<longrightarrow> \<bottom>" unfolding not_def .
+  from `A \<longrightarrow> \<bottom>` and `A` have \<bottom> ..
+  then show B ..
+qed
+
+
+subsection {* Classical logic *}
+
+text {*
+  Subsequently we state the principle of classical contradiction as a
+  local assumption.  Thus we refrain from forcing the object-logic
+  into the classical perspective.  Within that context, we may derive
+  well-known consequences of the classical principle.
+*}
+
+locale classical =
+  assumes classical: "(\<not> C \<Longrightarrow> C) \<Longrightarrow> C"
+begin
+
+theorem double_negation:
+  assumes "\<not> \<not> C"
+  shows C
+proof (rule classical)
+  assume "\<not> C"
+  with `\<not> \<not> C` show C ..
+qed
+
+theorem tertium_non_datur: "C \<or> \<not> C"
+proof (rule double_negation)
+  show "\<not> \<not> (C \<or> \<not> C)"
+  proof
+    assume "\<not> (C \<or> \<not> C)"
+    have "\<not> C"
+    proof
+      assume C then have "C \<or> \<not> C" ..
+      with `\<not> (C \<or> \<not> C)` show \<bottom> ..
+    qed
+    then have "C \<or> \<not> C" ..
+    with `\<not> (C \<or> \<not> C)` show \<bottom> ..
+  qed
+qed
+
+text {*
+  These examples illustrate both classical reasoning and non-trivial
+  propositional proofs in general.  All three rules characterize
+  classical logic independently, but the original rule is already the
+  most convenient to use, because it leaves the conclusion unchanged.
+  Note that @{text "(\<not> C \<Longrightarrow> C) \<Longrightarrow> C"} fits again into our format for
+  eliminations, despite the additional twist that the context refers
+  to the main conclusion.  So we may write @{text "classical"} as the
+  Isar statement ``@{text "\<OBTAINS> \<not> thesis"}''.  This also
+  explains nicely how classical reasoning really works: whatever the
+  main @{text thesis} might be, we may always assume its negation!
+*}
+
+end
+
+
+subsection {* Quantifiers *}
+
+text {*
+  Representing quantifiers is easy, thanks to the higher-order nature
+  of the underlying framework.  According to the well-known technique
+  introduced by Church \cite{church40}, quantifiers are operators on
+  predicates, which are syntactically represented as @{text "\<lambda>"}-terms
+  of type @{text "i \<Rightarrow> o"}.  Specific binder notation relates @{text
+  "All (\<lambda>x. B x)"} to @{text "\<forall>x. B x"} etc.
+*}
+
+axiomatization
+  All :: "(i \<Rightarrow> o) \<Rightarrow> o"  (binder "\<forall>" 10) where
+  allI [intro]: "(\<And>x. B x) \<Longrightarrow> \<forall>x. B x" and
+  allD [dest]: "(\<forall>x. B x) \<Longrightarrow> B a"
+
+axiomatization
+  Ex :: "(i \<Rightarrow> o) \<Rightarrow> o"  (binder "\<exists>" 10) where
+  exI [intro]: "B a \<Longrightarrow> (\<exists>x. B x)" and
+  exE [elim]: "(\<exists>x. B x) \<Longrightarrow> (\<And>x. B x \<Longrightarrow> C) \<Longrightarrow> C"
+
+text {*
+  \noindent The @{thm exE} rule corresponds to an Isar statement
+  ``@{text "\<ASSUMES> \<exists>x. B x \<OBTAINS> x \<WHERE> B x"}''.  In the
+  following example we illustrate quantifier reasoning with all four
+  rules:
+*}
+
+theorem
+  assumes "\<exists>x. \<forall>y. R x y"
+  shows "\<forall>y. \<exists>x. R x y"
+proof    -- {* @{text "\<forall>"} introduction *}
+  obtain x where "\<forall>y. R x y" using `\<exists>x. \<forall>y. R x y` ..    -- {* @{text "\<exists>"} elimination *}
+  fix y have "R x y" using `\<forall>y. R x y` ..    -- {* @{text "\<forall>"} destruction *}
+  then show "\<exists>x. R x y" ..    -- {* @{text "\<exists>"} introduction *}
+qed
+
+end %visible
--- a/doc-src/IsarRef/Thy/ROOT.ML	Wed Feb 11 21:41:05 2009 +0100
+++ b/doc-src/IsarRef/Thy/ROOT.ML	Thu Feb 12 11:19:12 2009 +0100
@@ -4,6 +4,7 @@
 
 use_thy "Introduction";
 use_thy "Framework";
+use_thy "First_Order_Logic";
 use_thy "Outer_Syntax";
 use_thy "Document_Preparation";
 use_thy "Spec";
--- a/doc-src/IsarRef/isar-ref.tex	Wed Feb 11 21:41:05 2009 +0100
+++ b/doc-src/IsarRef/isar-ref.tex	Thu Feb 12 11:19:12 2009 +0100
@@ -82,6 +82,7 @@
 \part{Basic Concepts}
 \input{Thy/document/Introduction.tex}
 \input{Thy/document/Framework.tex}
+\input{Thy/document/First_Order_Logic.tex}
 \part{General Language Elements}
 \input{Thy/document/Outer_Syntax.tex}
 \input{Thy/document/Document_Preparation.tex}