--- a/src/HOL/IntDef.thy Mon Aug 20 19:52:24 2007 +0200
+++ b/src/HOL/IntDef.thy Mon Aug 20 19:52:52 2007 +0200
@@ -682,9 +682,4 @@
where
"int \<equiv> of_nat"
-abbreviation
- int_of_nat :: "nat \<Rightarrow> int"
-where
- "int_of_nat \<equiv> of_nat"
-
end
--- a/src/HOL/Real/RComplete.thy Mon Aug 20 19:52:24 2007 +0200
+++ b/src/HOL/Real/RComplete.thy Mon Aug 20 19:52:52 2007 +0200
@@ -480,7 +480,7 @@
lemma floor_real_of_nat_zero [simp]: "floor (real (0::nat)) = 0"
by auto
-lemma floor_real_of_nat [simp]: "floor (real (n::nat)) = int_of_nat n"
+lemma floor_real_of_nat [simp]: "floor (real (n::nat)) = int n"
apply (simp only: floor_def)
apply (rule Least_equality)
apply (drule_tac [2] real_of_int_of_nat_eq [THEN ssubst])
@@ -488,7 +488,7 @@
apply simp_all
done
-lemma floor_minus_real_of_nat [simp]: "floor (- real (n::nat)) = - int_of_nat n"
+lemma floor_minus_real_of_nat [simp]: "floor (- real (n::nat)) = - int n"
apply (simp only: floor_def)
apply (rule Least_equality)
apply (drule_tac [2] real_of_int_of_nat_eq [THEN ssubst])
@@ -753,7 +753,7 @@
lemma ceiling_zero [simp]: "ceiling 0 = 0"
by (simp add: ceiling_def)
-lemma ceiling_real_of_nat [simp]: "ceiling (real (n::nat)) = int_of_nat n"
+lemma ceiling_real_of_nat [simp]: "ceiling (real (n::nat)) = int n"
by (simp add: ceiling_def)
lemma ceiling_real_of_nat_zero [simp]: "ceiling (real (0::nat)) = 0"
@@ -1043,7 +1043,7 @@
lemma natfloor_add [simp]: "0 <= x ==> natfloor (x + real a) = natfloor x + a"
apply (unfold natfloor_def)
- apply (subgoal_tac "real a = real (int_of_nat a)")
+ apply (subgoal_tac "real a = real (int a)")
apply (erule ssubst)
apply (simp add: nat_add_distrib del: real_of_int_of_nat_eq)
apply simp
@@ -1065,7 +1065,7 @@
lemma natfloor_subtract [simp]: "real a <= x ==>
natfloor(x - real a) = natfloor x - a"
apply (unfold natfloor_def)
- apply (subgoal_tac "real a = real (int_of_nat a)")
+ apply (subgoal_tac "real a = real (int a)")
apply (erule ssubst)
apply (simp del: real_of_int_of_nat_eq)
apply simp
@@ -1176,7 +1176,7 @@
lemma natceiling_add [simp]: "0 <= x ==>
natceiling (x + real a) = natceiling x + a"
apply (unfold natceiling_def)
- apply (subgoal_tac "real a = real (int_of_nat a)")
+ apply (subgoal_tac "real a = real (int a)")
apply (erule ssubst)
apply (simp del: real_of_int_of_nat_eq)
apply (subst nat_add_distrib)
@@ -1202,7 +1202,7 @@
lemma natceiling_subtract [simp]: "real a <= x ==>
natceiling(x - real a) = natceiling x - a"
apply (unfold natceiling_def)
- apply (subgoal_tac "real a = real (int_of_nat a)")
+ apply (subgoal_tac "real a = real (int a)")
apply (erule ssubst)
apply (simp del: real_of_int_of_nat_eq)
apply simp