updated certificates to make it work again after recent changes to smt/z3 setup;
authorwenzelm
Wed, 30 Sep 2020 23:37:07 +0200
changeset 72350 95c2853dd616
parent 72349 e7284278796b
child 72351 68902f8a1ef0
updated certificates to make it work again after recent changes to smt/z3 setup;
src/HOL/SMT_Examples/Boogie_Dijkstra.certs
src/HOL/SMT_Examples/Boogie_Max.certs
src/HOL/SMT_Examples/SMT_Examples.certs
src/HOL/SMT_Examples/SMT_Word_Examples.certs
src/HOL/SMT_Examples/VCC_Max.certs
--- a/src/HOL/SMT_Examples/Boogie_Dijkstra.certs	Wed Sep 30 23:31:18 2020 +0200
+++ b/src/HOL/SMT_Examples/Boogie_Dijkstra.certs	Wed Sep 30 23:37:07 2020 +0200
@@ -11975,3 +11975,2987 @@
 (let ((@x25164 (unit-resolution (unit-resolution @x20634 (unit-resolution @x20638 @x25140 $x19430) $x19430) (trans @x25162 (symm @x25158 $x20739) $x10333) $x11606)))
 (unit-resolution @x24362 @x25164 @x25157 false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
 
+2ceb8911b8a9522de42b725075da13c9ad4d2310 2983 0
+unsat
+((set-logic AUFLIA)
+(declare-fun ?v0!20 () B_Vertex$)
+(declare-fun ?v0!19 () B_Vertex$)
+(declare-fun ?v1!18 () B_Vertex$)
+(declare-fun ?v0!17 () B_Vertex$)
+(declare-fun ?v1!16 () B_Vertex$)
+(declare-fun ?v0!15 () B_Vertex$)
+(declare-fun ?v0!14 () B_Vertex$)
+(declare-fun ?v0!13 () B_Vertex$)
+(declare-fun ?v0!12 () B_Vertex$)
+(declare-fun ?v0!11 () B_Vertex$)
+(declare-fun ?v1!10 () B_Vertex$)
+(declare-fun ?v1!9 (B_Vertex$) B_Vertex$)
+(declare-fun ?v0!8 () B_Vertex$)
+(declare-fun ?v1!7 (B_Vertex$) B_Vertex$)
+(declare-fun ?v1!6 (B_Vertex$) B_Vertex$)
+(declare-fun ?v0!5 () B_Vertex$)
+(declare-fun ?v0!4 () B_Vertex$)
+(declare-fun ?v1!3 () B_Vertex$)
+(declare-fun ?v0!2 () B_Vertex$)
+(declare-fun ?v1!1 () B_Vertex$)
+(declare-fun ?v0!0 () B_Vertex$)
+(proof
+(let ((?x260 (fun_upd$ v_b_Visited_G_1$ v_b_v_G_1$ true)))
+(let (($x5237 (fun_app$ ?x260 ?v0!20)))
+(let (($x9037 (not $x5237)))
+(let (($x261 (= v_b_Visited_G_2$ ?x260)))
+(let (($x3724 (forall ((?v1 B_Vertex$) )(! (let ((?x1906 (v_b_SP_G_2$ ?v0!20)))
+(let ((?x1907 (* (- 1) ?x1906)))
+(let ((?x268 (v_b_SP_G_2$ ?v1)))
+(let (($x2237 (= (+ ?x268 ?x1907 (b_G$ (pair$ ?v1 ?v0!20))) 0)))
+(let (($x286 (fun_app$ v_b_Visited_G_2$ ?v1)))
+(let (($x295 (not $x286)))
+(or (>= (+ ?x268 ?x1907) 0) $x295 (not $x2237)))))))) :pattern ( (v_b_SP_G_2$ ?v1) ) :pattern ( (fun_app$ v_b_Visited_G_2$ ?v1) ) :pattern ( (pair$ ?v1 ?v0!20) ) :qid k!38))
+))
+(let (($x3729 (not $x3724)))
+(let ((?x1906 (v_b_SP_G_2$ ?v0!20)))
+(let ((?x1907 (* (- 1) ?x1906)))
+(let ((?x1908 (+ b_Infinity$ ?x1907)))
+(let (($x1909 (<= ?x1908 0)))
+(let (($x1904 (= ?v0!20 b_Source$)))
+(let (($x3715 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x298 (v_b_SP_G_2$ ?v0)))
+(let ((?x1258 (* (- 1) ?x298)))
+(let ((?x268 (v_b_SP_G_2$ ?v1)))
+(let ((?x152 (b_G$ (pair$ ?v1 ?v0))))
+(let (($x1277 (>= (+ ?x152 ?x268 ?x1258) 0)))
+(let (($x917 (<= (+ b_Infinity$ (* (- 1) ?x152)) 0)))
+(let (($x286 (fun_app$ v_b_Visited_G_2$ ?v1)))
+(let (($x295 (not $x286)))
+(or $x295 $x917 $x1277))))))))) :pattern ( (pair$ ?v1 ?v0) ) :qid k!38))
+))
+(let (($x3720 (not $x3715)))
+(let (($x3732 (or $x3720 $x1904 $x1909 $x3729)))
+(let (($x3735 (not $x3732)))
+(let ((?x1888 (v_b_SP_G_2$ ?v0!19)))
+(let ((?x1889 (* (- 1) ?x1888)))
+(let ((?x1887 (v_b_SP_G_2$ ?v1!18)))
+(let ((?x1879 (pair$ ?v1!18 ?v0!19)))
+(let ((?x1880 (b_G$ ?x1879)))
+(let (($x1891 (>= (+ ?x1880 ?x1887 ?x1889) 0)))
+(let (($x1883 (<= (+ b_Infinity$ (* (- 1) ?x1880)) 0)))
+(let (($x1878 (fun_app$ v_b_Visited_G_2$ ?v1!18)))
+(let (($x2786 (not $x1878)))
+(let (($x2801 (or $x2786 $x1883 $x1891)))
+(let (($x2806 (not $x2801)))
+(let (($x3738 (or $x2806 $x3735)))
+(let (($x3741 (not $x3738)))
+(let (($x3707 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let (($x1257 (>= (+ (v_b_SP_G_2$ ?v1) (* (- 1) (v_b_SP_G_2$ ?v0))) 0)))
+(let (($x296 (fun_app$ v_b_Visited_G_2$ ?v0)))
+(let (($x2763 (not $x296)))
+(let (($x286 (fun_app$ v_b_Visited_G_2$ ?v1)))
+(or $x286 $x2763 $x1257))))) :pattern ( (v_b_SP_G_2$ ?v1) (v_b_SP_G_2$ ?v0) ) :qid k!38))
+))
+(let (($x3712 (not $x3707)))
+(let (($x3744 (or $x3712 $x3741)))
+(let (($x3747 (not $x3744)))
+(let (($x1864 (>= (+ (v_b_SP_G_2$ ?v1!16) (* (- 1) (v_b_SP_G_2$ ?v0!17))) 0)))
+(let (($x1857 (fun_app$ v_b_Visited_G_2$ ?v0!17)))
+(let (($x2740 (not $x1857)))
+(let (($x1855 (fun_app$ v_b_Visited_G_2$ ?v1!16)))
+(let (($x2755 (or $x1855 $x2740 $x1864)))
+(let (($x2760 (not $x2755)))
+(let (($x3750 (or $x2760 $x3747)))
+(let (($x3753 (not $x3750)))
+(let (($x3698 (forall ((?v0 B_Vertex$) )(! (let ((?x268 (v_b_SP_G_2$ ?v0)))
+(>= ?x268 0)) :pattern ( (v_b_SP_G_2$ ?v0) ) :qid k!38))
+))
+(let (($x3703 (not $x3698)))
+(let (($x3756 (or $x3703 $x3753)))
+(let (($x3759 (not $x3756)))
+(let ((?x1841 (v_b_SP_G_2$ ?v0!15)))
+(let (($x1842 (>= ?x1841 0)))
+(let (($x1843 (not $x1842)))
+(let (($x3762 (or $x1843 $x3759)))
+(let (($x3765 (not $x3762)))
+(let ((?x291 (v_b_SP_G_2$ b_Source$)))
+(let (($x292 (= ?x291 0)))
+(let (($x768 (not $x292)))
+(let (($x3768 (or $x768 $x3765)))
+(let (($x3771 (not $x3768)))
+(let (($x3774 (or $x768 $x3771)))
+(let (($x3777 (not $x3774)))
+(let (($x3690 (forall ((?v0 B_Vertex$) )(! (let ((?x171 (fun_app$a v_b_SP_G_1$ ?v0)))
+(let ((?x268 (v_b_SP_G_2$ ?v0)))
+(let (($x273 (= ?x268 ?x171)))
+(let (($x286 (fun_app$ v_b_Visited_G_2$ ?v0)))
+(let (($x295 (not $x286)))
+(or $x295 $x273)))))) :pattern ( (fun_app$ v_b_Visited_G_2$ ?v0) ) :pattern ( (v_b_SP_G_2$ ?v0) ) :pattern ( (fun_app$a v_b_SP_G_1$ ?v0) ) :qid k!38))
+))
+(let (($x3695 (not $x3690)))
+(let (($x3780 (or $x3695 $x3777)))
+(let (($x3783 (not $x3780)))
+(let ((?x1822 (fun_app$a v_b_SP_G_1$ ?v0!14)))
+(let ((?x1821 (v_b_SP_G_2$ ?v0!14)))
+(let (($x1823 (= ?x1821 ?x1822)))
+(let (($x1824 (or (not (fun_app$ v_b_Visited_G_2$ ?v0!14)) $x1823)))
+(let (($x1825 (not $x1824)))
+(let (($x3786 (or $x1825 $x3783)))
+(let (($x3789 (not $x3786)))
+(let (($x3681 (forall ((?v0 B_Vertex$) )(! (>= (+ (fun_app$a v_b_SP_G_1$ ?v0) (* (- 1) (v_b_SP_G_2$ ?v0))) 0) :pattern ( (fun_app$a v_b_SP_G_1$ ?v0) ) :pattern ( (v_b_SP_G_2$ ?v0) ) :qid k!38))
+))
+(let (($x3686 (not $x3681)))
+(let (($x3792 (or $x3686 $x3789)))
+(let (($x3795 (not $x3792)))
+(let ((?x1804 (v_b_SP_G_2$ ?v0!13)))
+(let ((?x1805 (* (- 1) ?x1804)))
+(let ((?x1803 (fun_app$a v_b_SP_G_1$ ?v0!13)))
+(let ((?x1806 (+ ?x1803 ?x1805)))
+(let (($x1807 (>= ?x1806 0)))
+(let (($x1808 (not $x1807)))
+(let (($x3798 (or $x1808 $x3795)))
+(let (($x3801 (not $x3798)))
+(let (($x3673 (forall ((?v0 B_Vertex$) )(! (let ((?x171 (fun_app$a v_b_SP_G_1$ ?v0)))
+(let ((?x268 (v_b_SP_G_2$ ?v0)))
+(let (($x273 (= ?x268 ?x171)))
+(let ((?x254 (fun_app$a v_b_SP_G_1$ v_b_v_G_1$)))
+(let ((?x1168 (* (- 1) ?x254)))
+(let (($x1170 (<= (+ ?x171 ?x1168 (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0)))) 0)))
+(let (($x1164 (<= (+ b_Infinity$ (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0)))) 0)))
+(let (($x2712 (or $x1164 $x1170)))
+(let (($x2713 (not $x2712)))
+(or $x2713 $x273)))))))))) :pattern ( (pair$ v_b_v_G_1$ ?v0) ) :pattern ( (fun_app$a v_b_SP_G_1$ ?v0) ) :pattern ( (v_b_SP_G_2$ ?v0) ) :qid k!38))
+))
+(let (($x3678 (not $x3673)))
+(let (($x3665 (forall ((?v0 B_Vertex$) )(! (let ((?x268 (v_b_SP_G_2$ ?v0)))
+(let ((?x1181 (* (- 1) ?x268)))
+(let ((?x263 (b_G$ (pair$ v_b_v_G_1$ ?v0))))
+(let ((?x254 (fun_app$a v_b_SP_G_1$ v_b_v_G_1$)))
+(let (($x1180 (= (+ ?x254 ?x263 ?x1181) 0)))
+(let (($x1170 (<= (+ (fun_app$a v_b_SP_G_1$ ?v0) (* (- 1) ?x254) (* (- 1) ?x263)) 0)))
+(let (($x1164 (<= (+ b_Infinity$ (* (- 1) ?x263)) 0)))
+(or $x1164 $x1170 $x1180)))))))) :pattern ( (pair$ v_b_v_G_1$ ?v0) ) :pattern ( (fun_app$a v_b_SP_G_1$ ?v0) ) :pattern ( (v_b_SP_G_2$ ?v0) ) :qid k!38))
+))
+(let (($x3670 (not $x3665)))
+(let (($x2930 (not $x261)))
+(let (($x3655 (forall ((?v0 B_Vertex$) )(! (let ((?x254 (fun_app$a v_b_SP_G_1$ v_b_v_G_1$)))
+(let ((?x1168 (* (- 1) ?x254)))
+(let ((?x171 (fun_app$a v_b_SP_G_1$ ?v0)))
+(let (($x175 (fun_app$ v_b_Visited_G_1$ ?v0)))
+(or $x175 (>= (+ ?x171 ?x1168) 0)))))) :pattern ( (fun_app$ v_b_Visited_G_1$ ?v0) ) :pattern ( (fun_app$a v_b_SP_G_1$ ?v0) ) :qid k!38))
+))
+(let (($x3660 (not $x3655)))
+(let ((?x254 (fun_app$a v_b_SP_G_1$ v_b_v_G_1$)))
+(let ((?x1168 (* (- 1) ?x254)))
+(let ((?x1207 (+ b_Infinity$ ?x1168)))
+(let (($x1208 (<= ?x1207 0)))
+(let (($x252 (fun_app$ v_b_Visited_G_1$ v_b_v_G_1$)))
+(let ((?x1770 (fun_app$a v_b_SP_G_1$ ?v0!12)))
+(let ((?x1771 (* (- 1) ?x1770)))
+(let ((?x1772 (+ b_Infinity$ ?x1771)))
+(let (($x1773 (<= ?x1772 0)))
+(let (($x1768 (fun_app$ v_b_Visited_G_1$ ?v0!12)))
+(let (($x3804 (or $x1768 $x1773 $x252 $x1208 $x3660 $x2930 $x3670 $x3678 $x3801)))
+(let (($x3807 (not $x3804)))
+(let ((?x242 (fun_app$a v_b_SP_G_3$ b_Source$)))
+(let (($x243 (= ?x242 0)))
+(let (($x3617 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x227 (fun_app$a v_b_SP_G_3$ ?v1)))
+(let ((?x152 (b_G$ (pair$ ?v1 ?v0))))
+(let (($x1135 (>= (+ ?x152 ?x227 (* (- 1) (fun_app$a v_b_SP_G_3$ ?v0))) 0)))
+(let (($x917 (<= (+ b_Infinity$ (* (- 1) ?x152)) 0)))
+(let (($x1094 (<= (+ b_Infinity$ (* (- 1) ?x227)) 0)))
+(or $x1094 $x917 $x1135)))))) :pattern ( (pair$ ?v1 ?v0) ) :qid k!38))
+))
+(let (($x3622 (not $x3617)))
+(let (($x3625 (or $x3622 $x243)))
+(let (($x3628 (not $x3625)))
+(let ((?x1729 (fun_app$a v_b_SP_G_3$ ?v0!11)))
+(let ((?x1730 (* (- 1) ?x1729)))
+(let ((?x1721 (pair$ ?v1!10 ?v0!11)))
+(let ((?x1722 (b_G$ ?x1721)))
+(let ((?x1716 (fun_app$a v_b_SP_G_3$ ?v1!10)))
+(let ((?x2201 (+ ?x1716 ?x1722 ?x1730)))
+(let (($x2204 (>= ?x2201 0)))
+(let (($x1725 (<= (+ b_Infinity$ (* (- 1) ?x1722)) 0)))
+(let (($x1719 (<= (+ b_Infinity$ (* (- 1) ?x1716)) 0)))
+(let (($x2640 (or $x1719 $x1725 $x2204)))
+(let (($x2645 (not $x2640)))
+(let (($x3631 (or $x2645 $x3628)))
+(let (($x3634 (not $x3631)))
+(let (($x3609 (forall ((?v0 B_Vertex$) )(! (let ((?x227 (fun_app$a v_b_SP_G_3$ ?v0)))
+(let ((?x2186 (+ ?x227 (* (- 1) (fun_app$a v_b_SP_G_3$ (?v1!9 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!9 ?v0) ?v0))))))
+(let (($x2187 (= ?x2186 0)))
+(let (($x2171 (<= (+ ?x227 (* (- 1) (fun_app$a v_b_SP_G_3$ (?v1!9 ?v0)))) 0)))
+(let (($x2612 (not (or $x2171 (not $x2187)))))
+(let (($x1094 (<= (+ b_Infinity$ (* (- 1) ?x227)) 0)))
+(let (($x123 (= ?v0 b_Source$)))
+(or $x123 $x1094 $x2612)))))))) :pattern ( (fun_app$a v_b_SP_G_3$ ?v0) ) :qid k!38))
+))
+(let (($x3614 (not $x3609)))
+(let (($x3637 (or $x3614 $x3634)))
+(let (($x3640 (not $x3637)))
+(let (($x3595 (forall ((?v1 B_Vertex$) )(! (let ((?x1656 (fun_app$a v_b_SP_G_3$ ?v0!8)))
+(let ((?x1657 (* (- 1) ?x1656)))
+(let ((?x227 (fun_app$a v_b_SP_G_3$ ?v1)))
+(let (($x2143 (= (+ ?x227 ?x1657 (b_G$ (pair$ ?v1 ?v0!8))) 0)))
+(or (>= (+ ?x227 ?x1657) 0) (not $x2143)))))) :pattern ( (fun_app$a v_b_SP_G_3$ ?v1) ) :pattern ( (pair$ ?v1 ?v0!8) ) :qid k!38))
+))
+(let (($x3600 (not $x3595)))
+(let (($x1659 (<= (+ b_Infinity$ (* (- 1) (fun_app$a v_b_SP_G_3$ ?v0!8))) 0)))
+(let (($x1654 (= ?v0!8 b_Source$)))
+(let (($x3603 (or $x1654 $x1659 $x3600)))
+(let (($x3606 (not $x3603)))
+(let (($x3643 (or $x3606 $x3640)))
+(let (($x3646 (not $x3643)))
+(let (($x217 (= v_b_oldSP_G_1$ v_b_oldSP_G_0$)))
+(let (($x2704 (not $x217)))
+(let (($x214 (= v_b_SP_G_3$ v_b_SP_G_1$)))
+(let (($x2703 (not $x214)))
+(let (($x212 (= v_b_v_G_2$ v_b_v_G_0$)))
+(let (($x2702 (not $x212)))
+(let (($x209 (= v_b_Visited_G_3$ v_b_Visited_G_1$)))
+(let (($x2701 (not $x209)))
+(let (($x3585 (forall ((?v0 B_Vertex$) )(! (let (($x997 (<= (+ b_Infinity$ (* (- 1) (fun_app$a v_b_SP_G_1$ ?v0))) 0)))
+(let (($x175 (fun_app$ v_b_Visited_G_1$ ?v0)))
+(or $x175 $x997))) :pattern ( (fun_app$ v_b_Visited_G_1$ ?v0) ) :pattern ( (fun_app$a v_b_SP_G_1$ ?v0) ) :qid k!38))
+))
+(let (($x3590 (not $x3585)))
+(let (($x3649 (or $x3590 $x2701 $x2702 $x2703 $x2704 $x3646)))
+(let (($x3652 (not $x3649)))
+(let (($x3810 (or $x3652 $x3807)))
+(let (($x3813 (not $x3810)))
+(let (($x3576 (forall ((?v0 B_Vertex$) )(! (let ((?x171 (fun_app$a v_b_SP_G_1$ ?v0)))
+(let ((?x2123 (+ ?x171 (* (- 1) (fun_app$a v_b_SP_G_1$ (?v1!7 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!7 ?v0) ?v0))))))
+(let (($x2124 (= ?x2123 0)))
+(let (($x2108 (<= (+ ?x171 (* (- 1) (fun_app$a v_b_SP_G_1$ (?v1!7 ?v0)))) 0)))
+(let (($x2546 (not (or $x2108 (not (fun_app$ v_b_Visited_G_1$ (?v1!7 ?v0))) (not $x2124)))))
+(let (($x997 (<= (+ b_Infinity$ (* (- 1) ?x171)) 0)))
+(let (($x123 (= ?v0 b_Source$)))
+(or $x123 $x997 $x2546)))))))) :pattern ( (fun_app$a v_b_SP_G_1$ ?v0) ) :qid k!38))
+))
+(let (($x3581 (not $x3576)))
+(let (($x3568 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x171 (fun_app$a v_b_SP_G_1$ ?v1)))
+(let ((?x152 (b_G$ (pair$ ?v1 ?v0))))
+(let (($x985 (>= (+ ?x152 ?x171 (* (- 1) (fun_app$a v_b_SP_G_1$ ?v0))) 0)))
+(let (($x917 (<= (+ b_Infinity$ (* (- 1) ?x152)) 0)))
+(let (($x175 (fun_app$ v_b_Visited_G_1$ ?v1)))
+(let (($x176 (not $x175)))
+(or $x176 $x917 $x985))))))) :pattern ( (pair$ ?v1 ?v0) ) :qid k!38))
+))
+(let (($x3573 (not $x3568)))
+(let (($x3560 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x171 (fun_app$a v_b_SP_G_1$ ?v1)))
+(let (($x1010 (>= (+ ?x171 (* (- 1) (fun_app$a v_b_SP_G_1$ ?v0))) 0)))
+(let (($x175 (fun_app$ v_b_Visited_G_1$ ?v1)))
+(or $x175 (not (fun_app$ v_b_Visited_G_1$ ?v0)) $x1010)))) :pattern ( (fun_app$ v_b_Visited_G_1$ ?v1) (fun_app$ v_b_Visited_G_1$ ?v0) ) :qid k!38))
+))
+(let (($x3565 (not $x3560)))
+(let (($x3551 (forall ((?v0 B_Vertex$) )(! (let ((?x171 (fun_app$a v_b_SP_G_1$ ?v0)))
+(>= ?x171 0)) :pattern ( (fun_app$a v_b_SP_G_1$ ?v0) ) :qid k!38))
+))
+(let (($x3556 (not $x3551)))
+(let ((?x169 (fun_app$a v_b_SP_G_1$ b_Source$)))
+(let (($x170 (= ?x169 0)))
+(let (($x2947 (not $x170)))
+(let (($x3542 (forall ((?v0 B_Vertex$) )(! (let ((?x124 (v_b_SP_G_0$ ?v0)))
+(let ((?x2085 (+ ?x124 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!6 ?v0) ?v0))))))
+(let (($x2086 (= ?x2085 0)))
+(let (($x2070 (<= (+ ?x124 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?v0)))) 0)))
+(let (($x2473 (not (or $x2070 (not (fun_app$ v_b_Visited_G_0$ (?v1!6 ?v0))) (not $x2086)))))
+(let (($x942 (<= (+ b_Infinity$ (* (- 1) ?x124)) 0)))
+(let (($x123 (= ?v0 b_Source$)))
+(or $x123 $x942 $x2473)))))))) :pattern ( (v_b_SP_G_0$ ?v0) ) :qid k!38))
+))
+(let (($x3547 (not $x3542)))
+(let (($x3816 (or $x3547 $x2947 $x3556 $x3565 $x3573 $x3581 $x3813)))
+(let (($x3819 (not $x3816)))
+(let (($x3528 (forall ((?v1 B_Vertex$) )(! (let ((?x1535 (v_b_SP_G_0$ ?v0!5)))
+(let ((?x1536 (* (- 1) ?x1535)))
+(let ((?x124 (v_b_SP_G_0$ ?v1)))
+(let (($x133 (fun_app$ v_b_Visited_G_0$ ?v1)))
+(let (($x134 (not $x133)))
+(or (>= (+ ?x124 ?x1536) 0) $x134 (not (= (+ ?x124 ?x1536 (b_G$ (pair$ ?v1 ?v0!5))) 0)))))))) :pattern ( (v_b_SP_G_0$ ?v1) ) :pattern ( (fun_app$ v_b_Visited_G_0$ ?v1) ) :pattern ( (pair$ ?v1 ?v0!5) ) :qid k!38))
+))
+(let (($x3533 (not $x3528)))
+(let ((?x1535 (v_b_SP_G_0$ ?v0!5)))
+(let ((?x1536 (* (- 1) ?x1535)))
+(let ((?x1537 (+ b_Infinity$ ?x1536)))
+(let (($x1538 (<= ?x1537 0)))
+(let (($x1533 (= ?v0!5 b_Source$)))
+(let (($x3536 (or $x1533 $x1538 $x3533)))
+(let (($x1534 (not $x1533)))
+(let ((@x5072 (unit-resolution (def-axiom (or $x3536 $x1534)) (hypothesis (not $x3536)) $x1534)))
+(let (($x5500 (= b_Infinity$ ?x1535)))
+(let (($x6555 (not $x5500)))
+(let (($x1539 (not $x1538)))
+(let ((@x5027 (unit-resolution (def-axiom (or $x3536 $x1539)) (hypothesis (not $x3536)) $x1539)))
+(let ((@x5583 (symm (commutativity (= $x5500 (= ?x1535 b_Infinity$))) (= (= ?x1535 b_Infinity$) $x5500))))
+(let (($x5648 (= ?x1535 b_Infinity$)))
+(let (($x3488 (forall ((?v0 B_Vertex$) )(! (let (($x123 (= ?v0 b_Source$)))
+(or $x123 (= (v_b_SP_G_0$ ?v0) b_Infinity$))) :pattern ( (v_b_SP_G_0$ ?v0) ) :qid k!38))
+))
+(let (($x355 (forall ((?v0 B_Vertex$) )(! (let (($x123 (= ?v0 b_Source$)))
+(or $x123 (= (v_b_SP_G_0$ ?v0) b_Infinity$))) :qid k!38))
+))
+(let (($x123 (= ?0 b_Source$)))
+(let (($x352 (or $x123 (= (v_b_SP_G_0$ ?0) b_Infinity$))))
+(let (($x135 (forall ((?v0 B_Vertex$) )(! (let (($x133 (fun_app$ v_b_Visited_G_0$ ?v0)))
+(not $x133)) :qid k!38))
+))
+(let (($x349 (forall ((?v0 B_Vertex$) )(! (let (($x123 (= ?v0 b_Source$)))
+(let (($x128 (not $x123)))
+(or $x128 (= (v_b_SP_G_0$ ?v0) 0)))) :qid k!38))
+))
+(let (($x885 (and $x349 $x355 $x135)))
+(let (($x1324 (forall ((?v0 B_Vertex$) )(! (let (($x1318 (exists ((?v1 B_Vertex$) )(! (let ((?x298 (v_b_SP_G_2$ ?v0)))
+(let ((?x1258 (* (- 1) ?x298)))
+(let ((?x268 (v_b_SP_G_2$ ?v1)))
+(let ((?x152 (b_G$ (pair$ ?v1 ?v0))))
+(let (($x1301 (= (+ ?x152 ?x268 ?x1258) 0)))
+(let (($x286 (fun_app$ v_b_Visited_G_2$ ?v1)))
+(let (($x1257 (>= (+ ?x268 ?x1258) 0)))
+(let (($x1304 (not $x1257)))
+(and $x1304 $x286 $x1301))))))))) :qid k!38))
+))
+(let (($x123 (= ?v0 b_Source$)))
+(let (($x128 (not $x123)))
+(let (($x1295 (and $x128 (not (<= (+ b_Infinity$ (* (- 1) (v_b_SP_G_2$ ?v0))) 0)))))
+(or (not $x1295) $x1318))))) :qid k!38))
+))
+(let (($x1284 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x298 (v_b_SP_G_2$ ?v0)))
+(let ((?x1258 (* (- 1) ?x298)))
+(let ((?x268 (v_b_SP_G_2$ ?v1)))
+(let ((?x152 (b_G$ (pair$ ?v1 ?v0))))
+(let (($x1277 (>= (+ ?x152 ?x268 ?x1258) 0)))
+(let (($x917 (<= (+ b_Infinity$ (* (- 1) ?x152)) 0)))
+(let (($x918 (not $x917)))
+(let (($x286 (fun_app$ v_b_Visited_G_2$ ?v1)))
+(let (($x1271 (and $x286 $x918)))
+(let (($x1274 (not $x1271)))
+(or $x1274 $x1277))))))))))) :qid k!38))
+))
+(let (($x1287 (not $x1284)))
+(let (($x1327 (or $x1287 $x1324)))
+(let (($x1330 (and $x1284 $x1327)))
+(let (($x1265 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let (($x1257 (>= (+ (v_b_SP_G_2$ ?v1) (* (- 1) (v_b_SP_G_2$ ?v0))) 0)))
+(let (($x296 (fun_app$ v_b_Visited_G_2$ ?v0)))
+(let (($x286 (fun_app$ v_b_Visited_G_2$ ?v1)))
+(let (($x295 (not $x286)))
+(let (($x297 (and $x295 $x296)))
+(let (($x659 (not $x297)))
+(or $x659 $x1257))))))) :qid k!38))
+))
+(let (($x1268 (not $x1265)))
+(let (($x1333 (or $x1268 $x1330)))
+(let (($x1336 (and $x1265 $x1333)))
+(let (($x1251 (forall ((?v0 B_Vertex$) )(! (let ((?x268 (v_b_SP_G_2$ ?v0)))
+(>= ?x268 0)) :qid k!38))
+))
+(let (($x1254 (not $x1251)))
+(let (($x1339 (or $x1254 $x1336)))
+(let (($x1342 (and $x1251 $x1339)))
+(let (($x1345 (or $x768 $x1342)))
+(let (($x1348 (and $x292 $x1345)))
+(let (($x647 (forall ((?v0 B_Vertex$) )(! (let ((?x171 (fun_app$a v_b_SP_G_1$ ?v0)))
+(let ((?x268 (v_b_SP_G_2$ ?v0)))
+(let (($x273 (= ?x268 ?x171)))
+(let (($x286 (fun_app$ v_b_Visited_G_2$ ?v0)))
+(let (($x295 (not $x286)))
+(or $x295 $x273)))))) :qid k!38))
+))
+(let (($x780 (not $x647)))
+(let (($x1351 (or $x780 $x1348)))
+(let (($x1354 (and $x647 $x1351)))
+(let (($x1242 (forall ((?v0 B_Vertex$) )(! (>= (+ (fun_app$a v_b_SP_G_1$ ?v0) (* (- 1) (v_b_SP_G_2$ ?v0))) 0) :qid k!38))
+))
+(let (($x1245 (not $x1242)))
+(let (($x1357 (or $x1245 $x1354)))
+(let (($x1360 (and $x1242 $x1357)))
+(let (($x1194 (forall ((?v0 B_Vertex$) )(! (let ((?x171 (fun_app$a v_b_SP_G_1$ ?v0)))
+(let ((?x268 (v_b_SP_G_2$ ?v0)))
+(let (($x273 (= ?x268 ?x171)))
+(let ((?x254 (fun_app$a v_b_SP_G_1$ v_b_v_G_1$)))
+(let ((?x1168 (* (- 1) ?x254)))
+(let (($x1170 (<= (+ ?x171 ?x1168 (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0)))) 0)))
+(let (($x1164 (<= (+ b_Infinity$ (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0)))) 0)))
+(let (($x1174 (and (not $x1164) (not $x1170))))
+(or $x1174 $x273))))))))) :qid k!38))
+))
+(let (($x1188 (forall ((?v0 B_Vertex$) )(! (let ((?x268 (v_b_SP_G_2$ ?v0)))
+(let ((?x1181 (* (- 1) ?x268)))
+(let ((?x263 (b_G$ (pair$ v_b_v_G_1$ ?v0))))
+(let ((?x254 (fun_app$a v_b_SP_G_1$ v_b_v_G_1$)))
+(let (($x1180 (= (+ ?x254 ?x263 ?x1181) 0)))
+(let (($x1170 (<= (+ (fun_app$a v_b_SP_G_1$ ?v0) (* (- 1) ?x254) (* (- 1) ?x263)) 0)))
+(let (($x1174 (and (not (<= (+ b_Infinity$ (* (- 1) ?x263)) 0)) (not $x1170))))
+(let (($x1177 (not $x1174)))
+(or $x1177 $x1180))))))))) :qid k!38))
+))
+(let (($x1204 (forall ((?v0 B_Vertex$) )(! (let ((?x254 (fun_app$a v_b_SP_G_1$ v_b_v_G_1$)))
+(let ((?x1168 (* (- 1) ?x254)))
+(let ((?x171 (fun_app$a v_b_SP_G_1$ ?v0)))
+(let (($x175 (fun_app$ v_b_Visited_G_1$ ?v0)))
+(or $x175 (>= (+ ?x171 ?x1168) 0)))))) :qid k!38))
+))
+(let (($x1209 (not $x1208)))
+(let (($x253 (not $x252)))
+(let (($x1075 (exists ((?v0 B_Vertex$) )(! (let (($x997 (<= (+ b_Infinity$ (* (- 1) (fun_app$a v_b_SP_G_1$ ?v0))) 0)))
+(let (($x998 (not $x997)))
+(let (($x175 (fun_app$ v_b_Visited_G_1$ ?v0)))
+(let (($x176 (not $x175)))
+(and $x176 $x998))))) :qid k!38))
+))
+(let (($x1230 (and $x1075 $x253 $x1209 $x1204 $x261 $x1188 $x1194)))
+(let (($x1235 (not $x1230)))
+(let (($x1363 (or $x1235 $x1360)))
+(let (($x1141 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x227 (fun_app$a v_b_SP_G_3$ ?v1)))
+(let ((?x152 (b_G$ (pair$ ?v1 ?v0))))
+(let (($x1135 (>= (+ ?x152 ?x227 (* (- 1) (fun_app$a v_b_SP_G_3$ ?v0))) 0)))
+(let (($x917 (<= (+ b_Infinity$ (* (- 1) ?x152)) 0)))
+(let (($x918 (not $x917)))
+(let (($x1094 (<= (+ b_Infinity$ (* (- 1) ?x227)) 0)))
+(let (($x1095 (not $x1094)))
+(let (($x1129 (and $x1095 $x918)))
+(let (($x1132 (not $x1129)))
+(or $x1132 $x1135)))))))))) :qid k!38))
+))
+(let (($x1144 (not $x1141)))
+(let (($x1147 (or $x1144 $x243)))
+(let (($x1150 (and $x1141 $x1147)))
+(let (($x1123 (forall ((?v0 B_Vertex$) )(! (let (($x1117 (exists ((?v1 B_Vertex$) )(! (let ((?x227 (fun_app$a v_b_SP_G_3$ ?v1)))
+(let ((?x152 (b_G$ (pair$ ?v1 ?v0))))
+(and (not (>= (+ ?x227 (* (- 1) (fun_app$a v_b_SP_G_3$ ?v0))) 0)) (= (+ ?x152 ?x227 (* (- 1) (fun_app$a v_b_SP_G_3$ ?v0))) 0)))) :qid k!38))
+))
+(let (($x1094 (<= (+ b_Infinity$ (* (- 1) (fun_app$a v_b_SP_G_3$ ?v0))) 0)))
+(let (($x1095 (not $x1094)))
+(let (($x123 (= ?v0 b_Source$)))
+(let (($x128 (not $x123)))
+(let (($x1098 (and $x128 $x1095)))
+(let (($x1101 (not $x1098)))
+(or $x1101 $x1117)))))))) :qid k!38))
+))
+(let (($x1126 (not $x1123)))
+(let (($x1153 (or $x1126 $x1150)))
+(let (($x1156 (and $x1123 $x1153)))
+(let (($x1078 (not $x1075)))
+(let (($x1084 (and $x1078 $x209 $x212 $x214 $x217)))
+(let (($x1089 (not $x1084)))
+(let (($x1159 (or $x1089 $x1156)))
+(let (($x1366 (and $x1159 $x1363)))
+(let (($x1032 (forall ((?v0 B_Vertex$) )(! (let (($x1026 (exists ((?v1 B_Vertex$) )(! (let ((?x171 (fun_app$a v_b_SP_G_1$ ?v1)))
+(let ((?x152 (b_G$ (pair$ ?v1 ?v0))))
+(let (($x1007 (= (+ ?x152 ?x171 (* (- 1) (fun_app$a v_b_SP_G_1$ ?v0))) 0)))
+(let (($x175 (fun_app$ v_b_Visited_G_1$ ?v1)))
+(let (($x1010 (>= (+ ?x171 (* (- 1) (fun_app$a v_b_SP_G_1$ ?v0))) 0)))
+(let (($x1012 (not $x1010)))
+(and $x1012 $x175 $x1007))))))) :qid k!38))
+))
+(let (($x997 (<= (+ b_Infinity$ (* (- 1) (fun_app$a v_b_SP_G_1$ ?v0))) 0)))
+(let (($x998 (not $x997)))
+(let (($x123 (= ?v0 b_Source$)))
+(let (($x128 (not $x123)))
+(let (($x1001 (and $x128 $x998)))
+(let (($x1004 (not $x1001)))
+(or $x1004 $x1026)))))))) :qid k!38))
+))
+(let (($x992 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x171 (fun_app$a v_b_SP_G_1$ ?v1)))
+(let ((?x152 (b_G$ (pair$ ?v1 ?v0))))
+(let (($x985 (>= (+ ?x152 ?x171 (* (- 1) (fun_app$a v_b_SP_G_1$ ?v0))) 0)))
+(let (($x917 (<= (+ b_Infinity$ (* (- 1) ?x152)) 0)))
+(let (($x918 (not $x917)))
+(let (($x175 (fun_app$ v_b_Visited_G_1$ ?v1)))
+(let (($x978 (and $x175 $x918)))
+(let (($x981 (not $x978)))
+(or $x981 $x985))))))))) :qid k!38))
+))
+(let (($x1040 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x171 (fun_app$a v_b_SP_G_1$ ?v1)))
+(let (($x1010 (>= (+ ?x171 (* (- 1) (fun_app$a v_b_SP_G_1$ ?v0))) 0)))
+(let (($x177 (fun_app$ v_b_Visited_G_1$ ?v0)))
+(let (($x175 (fun_app$ v_b_Visited_G_1$ ?v1)))
+(let (($x176 (not $x175)))
+(let (($x178 (and $x176 $x177)))
+(let (($x398 (not $x178)))
+(or $x398 $x1010)))))))) :qid k!38))
+))
+(let (($x1046 (forall ((?v0 B_Vertex$) )(! (let ((?x171 (fun_app$a v_b_SP_G_1$ ?v0)))
+(>= ?x171 0)) :qid k!38))
+))
+(let (($x975 (forall ((?v0 B_Vertex$) )(! (let (($x969 (exists ((?v1 B_Vertex$) )(! (let ((?x152 (b_G$ (pair$ ?v1 ?v0))))
+(let ((?x124 (v_b_SP_G_0$ ?v1)))
+(let (($x952 (= (+ ?x124 (* (- 1) (v_b_SP_G_0$ ?v0)) ?x152) 0)))
+(let (($x133 (fun_app$ v_b_Visited_G_0$ ?v1)))
+(let (($x902 (>= (+ ?x124 (* (- 1) (v_b_SP_G_0$ ?v0))) 0)))
+(let (($x955 (not $x902)))
+(and $x955 $x133 $x952))))))) :qid k!38))
+))
+(let (($x123 (= ?v0 b_Source$)))
+(let (($x128 (not $x123)))
+(let (($x946 (and $x128 (not (<= (+ b_Infinity$ (* (- 1) (v_b_SP_G_0$ ?v0))) 0)))))
+(let (($x949 (not $x946)))
+(or $x949 $x969)))))) :qid k!38))
+))
+(let (($x1064 (and $x975 $x170 $x1046 $x1040 $x992 $x1032)))
+(let (($x1069 (not $x1064)))
+(let (($x1369 (or $x1069 $x1366)))
+(let (($x1372 (and $x975 $x1369)))
+(let (($x934 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x152 (b_G$ (pair$ ?v1 ?v0))))
+(let ((?x124 (v_b_SP_G_0$ ?v1)))
+(let (($x928 (>= (+ ?x124 (* (- 1) (v_b_SP_G_0$ ?v0)) ?x152) 0)))
+(let (($x917 (<= (+ b_Infinity$ (* (- 1) ?x152)) 0)))
+(let (($x918 (not $x917)))
+(let (($x133 (fun_app$ v_b_Visited_G_0$ ?v1)))
+(let (($x921 (and $x133 $x918)))
+(let (($x924 (not $x921)))
+(or $x924 $x928))))))))) :qid k!38))
+))
+(let (($x937 (not $x934)))
+(let (($x1375 (or $x937 $x1372)))
+(let (($x1378 (and $x934 $x1375)))
+(let (($x909 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let (($x902 (>= (+ (v_b_SP_G_0$ ?v1) (* (- 1) (v_b_SP_G_0$ ?v0))) 0)))
+(let (($x133 (fun_app$ v_b_Visited_G_0$ ?v1)))
+(let (($x134 (not $x133)))
+(let (($x146 (and $x134 (fun_app$ v_b_Visited_G_0$ ?v0))))
+(let (($x377 (not $x146)))
+(or $x377 $x902)))))) :qid k!38))
+))
+(let (($x912 (not $x909)))
+(let (($x1381 (or $x912 $x1378)))
+(let (($x1384 (and $x909 $x1381)))
+(let (($x894 (forall ((?v0 B_Vertex$) )(! (let ((?x124 (v_b_SP_G_0$ ?v0)))
+(>= ?x124 0)) :qid k!38))
+))
+(let (($x897 (not $x894)))
+(let (($x1387 (or $x897 $x1384)))
+(let (($x1390 (and $x894 $x1387)))
+(let ((?x141 (v_b_SP_G_0$ b_Source$)))
+(let (($x142 (= ?x141 0)))
+(let (($x864 (not $x142)))
+(let (($x1393 (or $x864 $x1390)))
+(let (($x1396 (and $x142 $x1393)))
+(let (($x1402 (not (or (not $x885) $x1396))))
+(let (($x315 (forall ((?v0 B_Vertex$) )(! (let (($x313 (exists ((?v1 B_Vertex$) )(! (let (($x286 (fun_app$ v_b_Visited_G_2$ ?v1)))
+(let (($x311 (and $x286 (= (v_b_SP_G_2$ ?v0) (+ (v_b_SP_G_2$ ?v1) (b_G$ (pair$ ?v1 ?v0)))))))
+(let ((?x298 (v_b_SP_G_2$ ?v0)))
+(let ((?x268 (v_b_SP_G_2$ ?v1)))
+(let (($x309 (< ?x268 ?x298)))
+(and $x309 $x311)))))) :qid k!38))
+))
+(let (($x123 (= ?v0 b_Source$)))
+(let (($x128 (not $x123)))
+(let (($x308 (and $x128 (< (v_b_SP_G_2$ ?v0) b_Infinity$))))
+(=> $x308 $x313))))) :qid k!38))
+))
+(let (($x316 (and $x315 false)))
+(let (($x317 (=> $x316 true)))
+(let (($x318 (and $x315 $x317)))
+(let (($x306 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x152 (b_G$ (pair$ ?v1 ?v0))))
+(let ((?x268 (v_b_SP_G_2$ ?v1)))
+(let ((?x303 (+ ?x268 ?x152)))
+(let ((?x298 (v_b_SP_G_2$ ?v0)))
+(let (($x153 (< ?x152 b_Infinity$)))
+(let (($x286 (fun_app$ v_b_Visited_G_2$ ?v1)))
+(let (($x302 (and $x286 $x153)))
+(=> $x302 (<= ?x298 ?x303))))))))) :qid k!38))
+))
+(let (($x319 (=> $x306 $x318)))
+(let (($x301 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x268 (v_b_SP_G_2$ ?v1)))
+(let ((?x298 (v_b_SP_G_2$ ?v0)))
+(let (($x299 (<= ?x298 ?x268)))
+(let (($x296 (fun_app$ v_b_Visited_G_2$ ?v0)))
+(let (($x286 (fun_app$ v_b_Visited_G_2$ ?v1)))
+(let (($x295 (not $x286)))
+(let (($x297 (and $x295 $x296)))
+(=> $x297 $x299)))))))) :qid k!38))
+))
+(let (($x321 (=> $x301 (and $x306 $x319))))
+(let (($x294 (forall ((?v0 B_Vertex$) )(! (let ((?x268 (v_b_SP_G_2$ ?v0)))
+(<= 0 ?x268)) :qid k!38))
+))
+(let (($x323 (=> $x294 (and $x301 $x321))))
+(let (($x325 (=> $x292 (and $x294 $x323))))
+(let (($x288 (forall ((?v0 B_Vertex$) )(! (let ((?x171 (fun_app$a v_b_SP_G_1$ ?v0)))
+(let ((?x268 (v_b_SP_G_2$ ?v0)))
+(let (($x273 (= ?x268 ?x171)))
+(let (($x286 (fun_app$ v_b_Visited_G_2$ ?v0)))
+(=> $x286 $x273))))) :qid k!38))
+))
+(let (($x290 (and $x288 (and true true))))
+(let (($x327 (=> $x290 (and $x292 $x325))))
+(let (($x285 (forall ((?v0 B_Vertex$) )(! (let ((?x171 (fun_app$a v_b_SP_G_1$ ?v0)))
+(let ((?x268 (v_b_SP_G_2$ ?v0)))
+(<= ?x268 ?x171))) :qid k!38))
+))
+(let (($x329 (=> $x285 (and $x288 $x327))))
+(let (($x275 (forall ((?v0 B_Vertex$) )(! (let ((?x171 (fun_app$a v_b_SP_G_1$ ?v0)))
+(let ((?x268 (v_b_SP_G_2$ ?v0)))
+(let (($x273 (= ?x268 ?x171)))
+(let ((?x263 (b_G$ (pair$ v_b_v_G_1$ ?v0))))
+(let ((?x254 (fun_app$a v_b_SP_G_1$ v_b_v_G_1$)))
+(let ((?x265 (+ ?x254 ?x263)))
+(let (($x267 (and (< ?x263 b_Infinity$) (< ?x265 ?x171))))
+(let (($x272 (not $x267)))
+(=> $x272 $x273))))))))) :qid k!38))
+))
+(let (($x271 (forall ((?v0 B_Vertex$) )(! (let ((?x263 (b_G$ (pair$ v_b_v_G_1$ ?v0))))
+(let ((?x254 (fun_app$a v_b_SP_G_1$ v_b_v_G_1$)))
+(let ((?x265 (+ ?x254 ?x263)))
+(let ((?x268 (v_b_SP_G_2$ ?v0)))
+(let (($x269 (= ?x268 ?x265)))
+(let (($x267 (and (< ?x263 b_Infinity$) (< ?x265 (fun_app$a v_b_SP_G_1$ ?v0)))))
+(=> $x267 $x269))))))) :qid k!38))
+))
+(let (($x258 (forall ((?v0 B_Vertex$) )(! (let ((?x171 (fun_app$a v_b_SP_G_1$ ?v0)))
+(let ((?x254 (fun_app$a v_b_SP_G_1$ v_b_v_G_1$)))
+(let (($x256 (<= ?x254 ?x171)))
+(let (($x175 (fun_app$ v_b_Visited_G_1$ ?v0)))
+(let (($x176 (not $x175)))
+(=> $x176 $x256)))))) :qid k!38))
+))
+(let (($x255 (< ?x254 b_Infinity$)))
+(let (($x206 (exists ((?v0 B_Vertex$) )(! (let ((?x171 (fun_app$a v_b_SP_G_1$ ?v0)))
+(let (($x188 (< ?x171 b_Infinity$)))
+(let (($x175 (fun_app$ v_b_Visited_G_1$ ?v0)))
+(let (($x176 (not $x175)))
+(and $x176 $x188))))) :qid k!38))
+))
+(let (($x281 (and $x206 (and $x253 (and $x255 (and $x258 (and $x261 (and $x271 $x275))))))))
+(let (($x282 (and true $x281)))
+(let (($x283 (and true $x282)))
+(let (($x331 (=> $x283 (and $x285 $x329))))
+(let (($x245 (and $x243 (=> $x243 true))))
+(let (($x241 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x152 (b_G$ (pair$ ?v1 ?v0))))
+(let ((?x227 (fun_app$a v_b_SP_G_3$ ?v1)))
+(let ((?x232 (+ ?x227 ?x152)))
+(let ((?x230 (fun_app$a v_b_SP_G_3$ ?v0)))
+(let (($x153 (< ?x152 b_Infinity$)))
+(let (($x228 (< ?x227 b_Infinity$)))
+(let (($x238 (and $x228 $x153)))
+(=> $x238 (<= ?x230 ?x232))))))))) :qid k!38))
+))
+(let (($x246 (=> $x241 $x245)))
+(let (($x237 (forall ((?v0 B_Vertex$) )(! (let (($x235 (exists ((?v1 B_Vertex$) )(! (let ((?x152 (b_G$ (pair$ ?v1 ?v0))))
+(let ((?x227 (fun_app$a v_b_SP_G_3$ ?v1)))
+(let ((?x232 (+ ?x227 ?x152)))
+(let ((?x230 (fun_app$a v_b_SP_G_3$ ?v0)))
+(let (($x231 (< ?x227 ?x230)))
+(and $x231 (= ?x230 ?x232))))))) :qid k!38))
+))
+(let ((?x227 (fun_app$a v_b_SP_G_3$ ?v0)))
+(let (($x228 (< ?x227 b_Infinity$)))
+(let (($x123 (= ?v0 b_Source$)))
+(let (($x128 (not $x123)))
+(let (($x229 (and $x128 $x228)))
+(=> $x229 $x235))))))) :qid k!38))
+))
+(let (($x248 (=> $x237 (and $x241 $x246))))
+(let (($x222 (and true (and $x209 (and $x212 (and $x214 (and $x217 true)))))))
+(let (($x223 (and true $x222)))
+(let (($x207 (not $x206)))
+(let (($x225 (and true (and $x207 $x223))))
+(let (($x226 (and true $x225)))
+(let (($x250 (=> $x226 (and $x237 $x248))))
+(let (($x196 (forall ((?v0 B_Vertex$) )(! (let (($x194 (exists ((?v1 B_Vertex$) )(! (let ((?x152 (b_G$ (pair$ ?v1 ?v0))))
+(let ((?x171 (fun_app$a v_b_SP_G_1$ ?v1)))
+(let ((?x184 (+ ?x171 ?x152)))
+(let ((?x179 (fun_app$a v_b_SP_G_1$ ?v0)))
+(let (($x175 (fun_app$ v_b_Visited_G_1$ ?v1)))
+(let (($x190 (< ?x171 ?x179)))
+(and $x190 (and $x175 (= ?x179 ?x184))))))))) :qid k!38))
+))
+(let ((?x171 (fun_app$a v_b_SP_G_1$ ?v0)))
+(let (($x188 (< ?x171 b_Infinity$)))
+(let (($x123 (= ?v0 b_Source$)))
+(let (($x128 (not $x123)))
+(let (($x189 (and $x128 $x188)))
+(=> $x189 $x194))))))) :qid k!38))
+))
+(let (($x197 (and $x196 true)))
+(let (($x187 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x152 (b_G$ (pair$ ?v1 ?v0))))
+(let ((?x171 (fun_app$a v_b_SP_G_1$ ?v1)))
+(let ((?x184 (+ ?x171 ?x152)))
+(let ((?x179 (fun_app$a v_b_SP_G_1$ ?v0)))
+(let (($x153 (< ?x152 b_Infinity$)))
+(let (($x175 (fun_app$ v_b_Visited_G_1$ ?v1)))
+(let (($x183 (and $x175 $x153)))
+(=> $x183 (<= ?x179 ?x184))))))))) :qid k!38))
+))
+(let (($x182 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x171 (fun_app$a v_b_SP_G_1$ ?v1)))
+(let ((?x179 (fun_app$a v_b_SP_G_1$ ?v0)))
+(let (($x180 (<= ?x179 ?x171)))
+(let (($x177 (fun_app$ v_b_Visited_G_1$ ?v0)))
+(let (($x175 (fun_app$ v_b_Visited_G_1$ ?v1)))
+(let (($x176 (not $x175)))
+(let (($x178 (and $x176 $x177)))
+(=> $x178 $x180)))))))) :qid k!38))
+))
+(let (($x173 (forall ((?v0 B_Vertex$) )(! (let ((?x171 (fun_app$a v_b_SP_G_1$ ?v0)))
+(<= 0 ?x171)) :qid k!38))
+))
+(let (($x202 (and true (and $x170 (and $x173 (and $x182 (and $x187 $x197)))))))
+(let (($x203 (and true $x202)))
+(let (($x167 (forall ((?v0 B_Vertex$) )(! (let (($x165 (exists ((?v1 B_Vertex$) )(! (let (($x133 (fun_app$ v_b_Visited_G_0$ ?v1)))
+(let (($x163 (and $x133 (= (v_b_SP_G_0$ ?v0) (+ (v_b_SP_G_0$ ?v1) (b_G$ (pair$ ?v1 ?v0)))))))
+(and (< (v_b_SP_G_0$ ?v1) (v_b_SP_G_0$ ?v0)) $x163))) :qid k!38))
+))
+(let (($x123 (= ?v0 b_Source$)))
+(let (($x128 (not $x123)))
+(let (($x160 (and $x128 (< (v_b_SP_G_0$ ?v0) b_Infinity$))))
+(=> $x160 $x165))))) :qid k!38))
+))
+(let (($x333 (=> (and $x167 $x203) (and $x250 $x331))))
+(let (($x158 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x147 (v_b_SP_G_0$ ?v0)))
+(let (($x156 (<= ?x147 (+ (v_b_SP_G_0$ ?v1) (b_G$ (pair$ ?v1 ?v0))))))
+(let ((?x152 (b_G$ (pair$ ?v1 ?v0))))
+(let (($x153 (< ?x152 b_Infinity$)))
+(let (($x133 (fun_app$ v_b_Visited_G_0$ ?v1)))
+(let (($x154 (and $x133 $x153)))
+(=> $x154 $x156))))))) :qid k!38))
+))
+(let (($x335 (=> $x158 (and $x167 $x333))))
+(let (($x150 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x124 (v_b_SP_G_0$ ?v1)))
+(let ((?x147 (v_b_SP_G_0$ ?v0)))
+(let (($x148 (<= ?x147 ?x124)))
+(let (($x133 (fun_app$ v_b_Visited_G_0$ ?v1)))
+(let (($x134 (not $x133)))
+(let (($x146 (and $x134 (fun_app$ v_b_Visited_G_0$ ?v0))))
+(=> $x146 $x148))))))) :qid k!38))
+))
+(let (($x337 (=> $x150 (and $x158 $x335))))
+(let (($x144 (forall ((?v0 B_Vertex$) )(! (let ((?x124 (v_b_SP_G_0$ ?v0)))
+(<= 0 ?x124)) :qid k!38))
+))
+(let (($x339 (=> $x144 (and $x150 $x337))))
+(let (($x341 (=> $x142 (and $x144 $x339))))
+(let (($x131 (forall ((?v0 B_Vertex$) )(! (let (($x123 (= ?v0 b_Source$)))
+(let (($x128 (not $x123)))
+(=> $x128 (= (v_b_SP_G_0$ ?v0) b_Infinity$)))) :qid k!38))
+))
+(let (($x127 (forall ((?v0 B_Vertex$) )(! (let (($x123 (= ?v0 b_Source$)))
+(=> $x123 (= (v_b_SP_G_0$ ?v0) 0))) :qid k!38))
+))
+(let (($x139 (and true (and $x127 (and $x131 (and $x135 true))))))
+(let (($x140 (and true $x139)))
+(let (($x343 (=> $x140 (and $x142 $x341))))
+(let (($x344 (not $x343)))
+(let (($x705 (forall ((?v0 B_Vertex$) )(! (let (($x693 (exists ((?v1 B_Vertex$) )(! (let ((?x268 (v_b_SP_G_2$ ?v1)))
+(let ((?x152 (b_G$ (pair$ ?v1 ?v0))))
+(let ((?x666 (+ ?x152 ?x268)))
+(let ((?x298 (v_b_SP_G_2$ ?v0)))
+(let (($x684 (= ?x298 ?x666)))
+(let (($x286 (fun_app$ v_b_Visited_G_2$ ?v1)))
+(let (($x687 (and $x286 $x684)))
+(let (($x309 (< ?x268 ?x298)))
+(and $x309 $x687))))))))) :qid k!38))
+))
+(let (($x123 (= ?v0 b_Source$)))
+(let (($x128 (not $x123)))
+(let (($x308 (and $x128 (< (v_b_SP_G_2$ ?v0) b_Infinity$))))
+(or (not $x308) $x693))))) :qid k!38))
+))
+(let (($x681 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x268 (v_b_SP_G_2$ ?v1)))
+(let ((?x152 (b_G$ (pair$ ?v1 ?v0))))
+(let ((?x666 (+ ?x152 ?x268)))
+(let ((?x298 (v_b_SP_G_2$ ?v0)))
+(let (($x669 (<= ?x298 ?x666)))
+(or (not (and (fun_app$ v_b_Visited_G_2$ ?v1) (< ?x152 b_Infinity$))) $x669)))))) :qid k!38))
+))
+(let (($x733 (or (not $x681) $x705)))
+(let (($x738 (and $x681 $x733)))
+(let (($x663 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x268 (v_b_SP_G_2$ ?v1)))
+(let ((?x298 (v_b_SP_G_2$ ?v0)))
+(let (($x299 (<= ?x298 ?x268)))
+(let (($x296 (fun_app$ v_b_Visited_G_2$ ?v0)))
+(let (($x286 (fun_app$ v_b_Visited_G_2$ ?v1)))
+(let (($x295 (not $x286)))
+(let (($x297 (and $x295 $x296)))
+(let (($x659 (not $x297)))
+(or $x659 $x299))))))))) :qid k!38))
+))
+(let (($x745 (or (not $x663) $x738)))
+(let (($x750 (and $x663 $x745)))
+(let (($x757 (or (not $x294) $x750)))
+(let (($x762 (and $x294 $x757)))
+(let (($x769 (or $x768 $x762)))
+(let (($x774 (and $x292 $x769)))
+(let (($x781 (or $x780 $x774)))
+(let (($x786 (and $x647 $x781)))
+(let (($x793 (or (not $x285) $x786)))
+(let (($x798 (and $x285 $x793)))
+(let (($x612 (forall ((?v0 B_Vertex$) )(! (let ((?x171 (fun_app$a v_b_SP_G_1$ ?v0)))
+(let ((?x268 (v_b_SP_G_2$ ?v0)))
+(let (($x273 (= ?x268 ?x171)))
+(let ((?x263 (b_G$ (pair$ v_b_v_G_1$ ?v0))))
+(let ((?x254 (fun_app$a v_b_SP_G_1$ v_b_v_G_1$)))
+(let ((?x265 (+ ?x254 ?x263)))
+(let (($x267 (and (< ?x263 b_Infinity$) (< ?x265 ?x171))))
+(or $x267 $x273)))))))) :qid k!38))
+))
+(let (($x606 (forall ((?v0 B_Vertex$) )(! (let ((?x263 (b_G$ (pair$ v_b_v_G_1$ ?v0))))
+(let ((?x254 (fun_app$a v_b_SP_G_1$ v_b_v_G_1$)))
+(let ((?x265 (+ ?x254 ?x263)))
+(let ((?x268 (v_b_SP_G_2$ ?v0)))
+(let (($x269 (= ?x268 ?x265)))
+(let (($x267 (and (< ?x263 b_Infinity$) (< ?x265 (fun_app$a v_b_SP_G_1$ ?v0)))))
+(let (($x272 (not $x267)))
+(or $x272 $x269)))))))) :qid k!38))
+))
+(let (($x615 (and $x606 $x612)))
+(let (($x618 (and $x261 $x615)))
+(let (($x600 (forall ((?v0 B_Vertex$) )(! (let ((?x171 (fun_app$a v_b_SP_G_1$ ?v0)))
+(let ((?x254 (fun_app$a v_b_SP_G_1$ v_b_v_G_1$)))
+(let (($x256 (<= ?x254 ?x171)))
+(let (($x175 (fun_app$ v_b_Visited_G_1$ ?v0)))
+(or $x175 $x256))))) :qid k!38))
+))
+(let (($x621 (and $x600 $x618)))
+(let (($x624 (and $x255 $x621)))
+(let (($x627 (and $x253 $x624)))
+(let (($x630 (and $x206 $x627)))
+(let (($x805 (or (not $x630) $x798)))
+(let (($x552 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x227 (fun_app$a v_b_SP_G_3$ ?v1)))
+(let ((?x152 (b_G$ (pair$ ?v1 ?v0))))
+(let ((?x516 (+ ?x152 ?x227)))
+(let ((?x230 (fun_app$a v_b_SP_G_3$ ?v0)))
+(let (($x540 (<= ?x230 ?x516)))
+(or (not (and (< ?x227 b_Infinity$) (< ?x152 b_Infinity$))) $x540)))))) :qid k!38))
+))
+(let (($x568 (or (not $x552) $x243)))
+(let (($x573 (and $x552 $x568)))
+(let (($x537 (forall ((?v0 B_Vertex$) )(! (let (($x525 (exists ((?v1 B_Vertex$) )(! (let ((?x227 (fun_app$a v_b_SP_G_3$ ?v1)))
+(let ((?x152 (b_G$ (pair$ ?v1 ?v0))))
+(let ((?x516 (+ ?x152 ?x227)))
+(let ((?x230 (fun_app$a v_b_SP_G_3$ ?v0)))
+(let (($x519 (= ?x230 ?x516)))
+(let (($x231 (< ?x227 ?x230)))
+(and $x231 $x519))))))) :qid k!38))
+))
+(let ((?x227 (fun_app$a v_b_SP_G_3$ ?v0)))
+(let (($x228 (< ?x227 b_Infinity$)))
+(let (($x123 (= ?v0 b_Source$)))
+(let (($x128 (not $x123)))
+(let (($x229 (and $x128 $x228)))
+(or (not $x229) $x525))))))) :qid k!38))
+))
+(let (($x580 (or (not $x537) $x573)))
+(let (($x585 (and $x537 $x580)))
+(let (($x592 (or (not (and $x207 (and $x209 (and $x212 (and $x214 $x217))))) $x585)))
+(let (($x810 (and $x592 $x805)))
+(let (($x444 (forall ((?v0 B_Vertex$) )(! (let (($x432 (exists ((?v1 B_Vertex$) )(! (let ((?x171 (fun_app$a v_b_SP_G_1$ ?v1)))
+(let ((?x152 (b_G$ (pair$ ?v1 ?v0))))
+(let ((?x405 (+ ?x152 ?x171)))
+(let ((?x179 (fun_app$a v_b_SP_G_1$ ?v0)))
+(let (($x423 (= ?x179 ?x405)))
+(let (($x175 (fun_app$ v_b_Visited_G_1$ ?v1)))
+(let (($x426 (and $x175 $x423)))
+(let (($x190 (< ?x171 ?x179)))
+(and $x190 $x426))))))))) :qid k!38))
+))
+(let ((?x171 (fun_app$a v_b_SP_G_1$ ?v0)))
+(let (($x188 (< ?x171 b_Infinity$)))
+(let (($x123 (= ?v0 b_Source$)))
+(let (($x128 (not $x123)))
+(let (($x189 (and $x128 $x188)))
+(or (not $x189) $x432))))))) :qid k!38))
+))
+(let (($x420 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x171 (fun_app$a v_b_SP_G_1$ ?v1)))
+(let ((?x152 (b_G$ (pair$ ?v1 ?v0))))
+(let ((?x405 (+ ?x152 ?x171)))
+(let ((?x179 (fun_app$a v_b_SP_G_1$ ?v0)))
+(let (($x408 (<= ?x179 ?x405)))
+(or (not (and (fun_app$ v_b_Visited_G_1$ ?v1) (< ?x152 b_Infinity$))) $x408)))))) :qid k!38))
+))
+(let (($x454 (and $x420 $x444)))
+(let (($x402 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x171 (fun_app$a v_b_SP_G_1$ ?v1)))
+(let ((?x179 (fun_app$a v_b_SP_G_1$ ?v0)))
+(let (($x180 (<= ?x179 ?x171)))
+(let (($x177 (fun_app$ v_b_Visited_G_1$ ?v0)))
+(let (($x175 (fun_app$ v_b_Visited_G_1$ ?v1)))
+(let (($x176 (not $x175)))
+(let (($x178 (and $x176 $x177)))
+(let (($x398 (not $x178)))
+(or $x398 $x180))))))))) :qid k!38))
+))
+(let (($x457 (and $x402 $x454)))
+(let (($x460 (and $x173 $x457)))
+(let (($x463 (and $x170 $x460)))
+(let (($x395 (forall ((?v0 B_Vertex$) )(! (let (($x165 (exists ((?v1 B_Vertex$) )(! (let (($x133 (fun_app$ v_b_Visited_G_0$ ?v1)))
+(let (($x163 (and $x133 (= (v_b_SP_G_0$ ?v0) (+ (v_b_SP_G_0$ ?v1) (b_G$ (pair$ ?v1 ?v0)))))))
+(and (< (v_b_SP_G_0$ ?v1) (v_b_SP_G_0$ ?v0)) $x163))) :qid k!38))
+))
+(let (($x123 (= ?v0 b_Source$)))
+(let (($x128 (not $x123)))
+(let (($x160 (and $x128 (< (v_b_SP_G_0$ ?v0) b_Infinity$))))
+(or (not $x160) $x165))))) :qid k!38))
+))
+(let (($x477 (and $x395 $x463)))
+(let (($x817 (or (not $x477) $x810)))
+(let (($x822 (and $x395 $x817)))
+(let (($x388 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x147 (v_b_SP_G_0$ ?v0)))
+(let (($x156 (<= ?x147 (+ (v_b_SP_G_0$ ?v1) (b_G$ (pair$ ?v1 ?v0))))))
+(let ((?x152 (b_G$ (pair$ ?v1 ?v0))))
+(let (($x153 (< ?x152 b_Infinity$)))
+(let (($x133 (fun_app$ v_b_Visited_G_0$ ?v1)))
+(let (($x154 (and $x133 $x153)))
+(or (not $x154) $x156))))))) :qid k!38))
+))
+(let (($x829 (or (not $x388) $x822)))
+(let (($x834 (and $x388 $x829)))
+(let (($x381 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x124 (v_b_SP_G_0$ ?v1)))
+(let ((?x147 (v_b_SP_G_0$ ?v0)))
+(let (($x148 (<= ?x147 ?x124)))
+(let (($x133 (fun_app$ v_b_Visited_G_0$ ?v1)))
+(let (($x134 (not $x133)))
+(let (($x146 (and $x134 (fun_app$ v_b_Visited_G_0$ ?v0))))
+(let (($x377 (not $x146)))
+(or $x377 $x148)))))))) :qid k!38))
+))
+(let (($x841 (or (not $x381) $x834)))
+(let (($x846 (and $x381 $x841)))
+(let (($x853 (or (not $x144) $x846)))
+(let (($x858 (and $x144 $x853)))
+(let (($x865 (or $x864 $x858)))
+(let (($x870 (and $x142 $x865)))
+(let (($x877 (or (not (and $x349 (and $x355 $x135))) $x870)))
+(let (($x1318 (exists ((?v1 B_Vertex$) )(! (let ((?x298 (v_b_SP_G_2$ ?0)))
+(let ((?x1258 (* (- 1) ?x298)))
+(let ((?x268 (v_b_SP_G_2$ ?v1)))
+(let ((?x152 (b_G$ (pair$ ?v1 ?0))))
+(let (($x1301 (= (+ ?x152 ?x268 ?x1258) 0)))
+(let (($x286 (fun_app$ v_b_Visited_G_2$ ?v1)))
+(let (($x1257 (>= (+ ?x268 ?x1258) 0)))
+(let (($x1304 (not $x1257)))
+(and $x1304 $x286 $x1301))))))))) :qid k!38))
+))
+(let (($x128 (not $x123)))
+(let (($x1295 (and $x128 (not (<= (+ b_Infinity$ (* (- 1) (v_b_SP_G_2$ ?0))) 0)))))
+(let (($x693 (exists ((?v1 B_Vertex$) )(! (let ((?x268 (v_b_SP_G_2$ ?v1)))
+(let ((?x152 (b_G$ (pair$ ?v1 ?0))))
+(let ((?x666 (+ ?x152 ?x268)))
+(let ((?x298 (v_b_SP_G_2$ ?0)))
+(let (($x684 (= ?x298 ?x666)))
+(let (($x286 (fun_app$ v_b_Visited_G_2$ ?v1)))
+(let (($x687 (and $x286 $x684)))
+(let (($x309 (< ?x268 ?x298)))
+(and $x309 $x687))))))))) :qid k!38))
+))
+(let (($x700 (or (not (and $x128 (< (v_b_SP_G_2$ ?0) b_Infinity$))) $x693)))
+(let ((?x298 (v_b_SP_G_2$ ?1)))
+(let ((?x1258 (* (- 1) ?x298)))
+(let ((?x268 (v_b_SP_G_2$ ?0)))
+(let ((?x152 (b_G$ (pair$ ?0 ?1))))
+(let (($x1301 (= (+ ?x152 ?x268 ?x1258) 0)))
+(let (($x286 (fun_app$ v_b_Visited_G_2$ ?0)))
+(let (($x1257 (>= (+ ?x268 ?x1258) 0)))
+(let (($x1304 (not $x1257)))
+(let (($x1313 (and $x1304 $x286 $x1301)))
+(let ((?x666 (+ ?x152 ?x268)))
+(let (($x684 (= ?x298 ?x666)))
+(let (($x687 (and $x286 $x684)))
+(let (($x309 (< ?x268 ?x298)))
+(let (($x690 (and $x309 $x687)))
+(let ((@x1312 (monotonicity (rewrite (= $x309 $x1304)) (monotonicity (rewrite (= $x684 $x1301)) (= $x687 (and $x286 $x1301))) (= $x690 (and $x1304 (and $x286 $x1301))))))
+(let ((@x1317 (trans @x1312 (rewrite (= (and $x1304 (and $x286 $x1301)) $x1313)) (= $x690 $x1313))))
+(let (($x1293 (= (< ?x268 b_Infinity$) (not (<= (+ b_Infinity$ (* (- 1) ?x268)) 0)))))
+(let ((@x1297 (monotonicity (rewrite $x1293) (= (and $x128 (< ?x268 b_Infinity$)) $x1295))))
+(let ((@x1300 (monotonicity @x1297 (= (not (and $x128 (< ?x268 b_Infinity$))) (not $x1295)))))
+(let ((@x1323 (monotonicity @x1300 (quant-intro @x1317 (= $x693 $x1318)) (= $x700 (or (not $x1295) $x1318)))))
+(let (($x1277 (>= (+ ?x152 ?x268 ?x1258) 0)))
+(let (($x917 (<= (+ b_Infinity$ (* (- 1) ?x152)) 0)))
+(let (($x918 (not $x917)))
+(let (($x1271 (and $x286 $x918)))
+(let (($x1274 (not $x1271)))
+(let (($x1281 (or $x1274 $x1277)))
+(let (($x669 (<= ?x298 ?x666)))
+(let (($x676 (or (not (and $x286 (< ?x152 b_Infinity$))) $x669)))
+(let ((@x920 (rewrite (= (< ?x152 b_Infinity$) $x918))))
+(let ((@x1276 (monotonicity (monotonicity @x920 (= (and $x286 (< ?x152 b_Infinity$)) $x1271)) (= (not (and $x286 (< ?x152 b_Infinity$))) $x1274))))
+(let ((@x1286 (quant-intro (monotonicity @x1276 (rewrite (= $x669 $x1277)) (= $x676 $x1281)) (= $x681 $x1284))))
+(let ((@x1329 (monotonicity (monotonicity @x1286 (= (not $x681) $x1287)) (quant-intro @x1323 (= $x705 $x1324)) (= $x733 $x1327))))
+(let (($x296 (fun_app$ v_b_Visited_G_2$ ?1)))
+(let (($x295 (not $x286)))
+(let (($x297 (and $x295 $x296)))
+(let (($x659 (not $x297)))
+(let (($x1262 (or $x659 $x1257)))
+(let (($x299 (<= ?x298 ?x268)))
+(let (($x660 (or $x659 $x299)))
+(let ((@x1267 (quant-intro (monotonicity (rewrite (= $x299 $x1257)) (= $x660 $x1262)) (= $x663 $x1265))))
+(let ((@x1335 (monotonicity (monotonicity @x1267 (= (not $x663) $x1268)) (monotonicity @x1286 @x1329 (= $x738 $x1330)) (= $x745 $x1333))))
+(let ((@x1253 (quant-intro (rewrite (= (<= 0 ?x268) (>= ?x268 0))) (= $x294 $x1251))))
+(let ((@x1341 (monotonicity (monotonicity @x1253 (= (not $x294) $x1254)) (monotonicity @x1267 @x1335 (= $x750 $x1336)) (= $x757 $x1339))))
+(let ((@x1347 (monotonicity (monotonicity @x1253 @x1341 (= $x762 $x1342)) (= $x769 $x1345))))
+(let ((@x1356 (monotonicity (monotonicity (monotonicity @x1347 (= $x774 $x1348)) (= $x781 $x1351)) (= $x786 $x1354))))
+(let (($x1238 (>= (+ (fun_app$a v_b_SP_G_1$ ?0) (* (- 1) ?x268)) 0)))
+(let ((@x1244 (quant-intro (rewrite (= (<= ?x268 (fun_app$a v_b_SP_G_1$ ?0)) $x1238)) (= $x285 $x1242))))
+(let ((@x1359 (monotonicity (monotonicity @x1244 (= (not $x285) $x1245)) @x1356 (= $x793 $x1357))))
+(let (($x1227 (and $x1075 (and $x253 (and $x1209 (and $x1204 (and $x261 (and $x1188 $x1194))))))))
+(let (($x1225 (= $x627 (and $x253 (and $x1209 (and $x1204 (and $x261 (and $x1188 $x1194))))))))
+(let ((?x171 (fun_app$a v_b_SP_G_1$ ?0)))
+(let (($x273 (= ?x268 ?x171)))
+(let (($x1170 (<= (+ ?x171 ?x1168 (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?0)))) 0)))
+(let (($x1164 (<= (+ b_Infinity$ (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?0)))) 0)))
+(let (($x1174 (and (not $x1164) (not $x1170))))
+(let (($x1191 (or $x1174 $x273)))
+(let (($x267 (and (< (b_G$ (pair$ v_b_v_G_1$ ?0)) b_Infinity$) (< (+ ?x254 (b_G$ (pair$ v_b_v_G_1$ ?0))) ?x171))))
+(let (($x609 (or $x267 $x273)))
+(let ((@x1173 (rewrite (= (< (+ ?x254 (b_G$ (pair$ v_b_v_G_1$ ?0))) ?x171) (not $x1170)))))
+(let ((@x1167 (rewrite (= (< (b_G$ (pair$ v_b_v_G_1$ ?0)) b_Infinity$) (not $x1164)))))
+(let ((@x1193 (monotonicity (monotonicity @x1167 @x1173 (= $x267 $x1174)) (= $x609 $x1191))))
+(let (($x1180 (= (+ ?x254 (b_G$ (pair$ v_b_v_G_1$ ?0)) (* (- 1) ?x268)) 0)))
+(let (($x1177 (not $x1174)))
+(let (($x1185 (or $x1177 $x1180)))
+(let ((?x263 (b_G$ (pair$ v_b_v_G_1$ ?0))))
+(let ((?x265 (+ ?x254 ?x263)))
+(let (($x269 (= ?x268 ?x265)))
+(let (($x272 (not $x267)))
+(let (($x603 (or $x272 $x269)))
+(let ((@x1179 (monotonicity (monotonicity @x1167 @x1173 (= $x267 $x1174)) (= $x272 $x1177))))
+(let ((@x1190 (quant-intro (monotonicity @x1179 (rewrite (= $x269 $x1180)) (= $x603 $x1185)) (= $x606 $x1188))))
+(let ((@x1214 (monotonicity @x1190 (quant-intro @x1193 (= $x612 $x1194)) (= $x615 (and $x1188 $x1194)))))
+(let (($x175 (fun_app$ v_b_Visited_G_1$ ?0)))
+(let (($x1201 (or $x175 (>= (+ ?x171 ?x1168) 0))))
+(let (($x256 (<= ?x254 ?x171)))
+(let (($x597 (or $x175 $x256)))
+(let ((@x1203 (monotonicity (rewrite (= $x256 (>= (+ ?x171 ?x1168) 0))) (= $x597 $x1201))))
+(let ((@x1220 (monotonicity (quant-intro @x1203 (= $x600 $x1204)) (monotonicity @x1214 (= $x618 (and $x261 (and $x1188 $x1194)))) (= $x621 (and $x1204 (and $x261 (and $x1188 $x1194)))))))
+(let ((@x1223 (monotonicity (rewrite (= $x255 $x1209)) @x1220 (= $x624 (and $x1209 (and $x1204 (and $x261 (and $x1188 $x1194))))))))
+(let (($x997 (<= (+ b_Infinity$ (* (- 1) ?x171)) 0)))
+(let (($x998 (not $x997)))
+(let (($x176 (not $x175)))
+(let (($x1072 (and $x176 $x998)))
+(let ((@x1074 (monotonicity (rewrite (= (< ?x171 b_Infinity$) $x998)) (= (and $x176 (< ?x171 b_Infinity$)) $x1072))))
+(let ((@x1229 (monotonicity (quant-intro @x1074 (= $x206 $x1075)) (monotonicity @x1223 $x1225) (= $x630 $x1227))))
+(let ((@x1237 (monotonicity (trans @x1229 (rewrite (= $x1227 $x1230)) (= $x630 $x1230)) (= (not $x630) $x1235))))
+(let ((@x1365 (monotonicity @x1237 (monotonicity @x1244 @x1359 (= $x798 $x1360)) (= $x805 $x1363))))
+(let ((?x227 (fun_app$a v_b_SP_G_3$ ?0)))
+(let (($x1135 (>= (+ ?x152 ?x227 (* (- 1) (fun_app$a v_b_SP_G_3$ ?1))) 0)))
+(let (($x1094 (<= (+ b_Infinity$ (* (- 1) ?x227)) 0)))
+(let (($x1095 (not $x1094)))
+(let (($x1129 (and $x1095 $x918)))
+(let (($x1132 (not $x1129)))
+(let (($x1138 (or $x1132 $x1135)))
+(let ((?x516 (+ ?x152 ?x227)))
+(let ((?x230 (fun_app$a v_b_SP_G_3$ ?1)))
+(let (($x540 (<= ?x230 ?x516)))
+(let (($x547 (or (not (and (< ?x227 b_Infinity$) (< ?x152 b_Infinity$))) $x540)))
+(let ((@x1131 (monotonicity (rewrite (= (< ?x227 b_Infinity$) $x1095)) @x920 (= (and (< ?x227 b_Infinity$) (< ?x152 b_Infinity$)) $x1129))))
+(let ((@x1134 (monotonicity @x1131 (= (not (and (< ?x227 b_Infinity$) (< ?x152 b_Infinity$))) $x1132))))
+(let ((@x1143 (quant-intro (monotonicity @x1134 (rewrite (= $x540 $x1135)) (= $x547 $x1138)) (= $x552 $x1141))))
+(let ((@x1149 (monotonicity (monotonicity @x1143 (= (not $x552) $x1144)) (= $x568 $x1147))))
+(let (($x1117 (exists ((?v1 B_Vertex$) )(! (let ((?x227 (fun_app$a v_b_SP_G_3$ ?v1)))
+(let ((?x152 (b_G$ (pair$ ?v1 ?0))))
+(and (not (>= (+ ?x227 (* (- 1) (fun_app$a v_b_SP_G_3$ ?0))) 0)) (= (+ ?x152 ?x227 (* (- 1) (fun_app$a v_b_SP_G_3$ ?0))) 0)))) :qid k!38))
+))
+(let (($x1098 (and $x128 $x1095)))
+(let (($x1101 (not $x1098)))
+(let (($x1120 (or $x1101 $x1117)))
+(let (($x525 (exists ((?v1 B_Vertex$) )(! (let ((?x227 (fun_app$a v_b_SP_G_3$ ?v1)))
+(let ((?x152 (b_G$ (pair$ ?v1 ?0))))
+(let ((?x516 (+ ?x152 ?x227)))
+(let ((?x230 (fun_app$a v_b_SP_G_3$ ?0)))
+(let (($x519 (= ?x230 ?x516)))
+(let (($x231 (< ?x227 ?x230)))
+(and $x231 $x519))))))) :qid k!38))
+))
+(let (($x532 (or (not (and $x128 (< ?x227 b_Infinity$))) $x525)))
+(let (($x1114 (and (not (>= (+ ?x227 (* (- 1) ?x230)) 0)) (= (+ ?x152 ?x227 (* (- 1) ?x230)) 0))))
+(let (($x519 (= ?x230 ?x516)))
+(let (($x231 (< ?x227 ?x230)))
+(let (($x522 (and $x231 $x519)))
+(let ((@x1116 (monotonicity (rewrite (= $x231 (not (>= (+ ?x227 (* (- 1) ?x230)) 0)))) (rewrite (= $x519 (= (+ ?x152 ?x227 (* (- 1) ?x230)) 0))) (= $x522 $x1114))))
+(let ((@x1100 (monotonicity (rewrite (= (< ?x227 b_Infinity$) $x1095)) (= (and $x128 (< ?x227 b_Infinity$)) $x1098))))
+(let ((@x1122 (monotonicity (monotonicity @x1100 (= (not (and $x128 (< ?x227 b_Infinity$))) $x1101)) (quant-intro @x1116 (= $x525 $x1117)) (= $x532 $x1120))))
+(let ((@x1128 (monotonicity (quant-intro @x1122 (= $x537 $x1123)) (= (not $x537) $x1126))))
+(let ((@x1155 (monotonicity @x1128 (monotonicity @x1143 @x1149 (= $x573 $x1150)) (= $x580 $x1153))))
+(let ((@x1086 (rewrite (= (and $x1078 (and $x209 (and $x212 (and $x214 $x217)))) $x1084))))
+(let (($x488 (and $x209 (and $x212 (and $x214 $x217)))))
+(let (($x502 (and $x207 $x488)))
+(let ((@x1083 (monotonicity (monotonicity (quant-intro @x1074 (= $x206 $x1075)) (= $x207 $x1078)) (= $x502 (and $x1078 $x488)))))
+(let ((@x1091 (monotonicity (trans @x1083 @x1086 (= $x502 $x1084)) (= (not $x502) $x1089))))
+(let ((@x1161 (monotonicity @x1091 (monotonicity (quant-intro @x1122 (= $x537 $x1123)) @x1155 (= $x585 $x1156)) (= $x592 $x1159))))
+(let (($x1065 (= (and $x975 (and $x170 (and $x1046 (and $x1040 (and $x992 $x1032))))) $x1064)))
+(let (($x1062 (= $x477 (and $x975 (and $x170 (and $x1046 (and $x1040 (and $x992 $x1032))))))))
+(let (($x1026 (exists ((?v1 B_Vertex$) )(! (let ((?x171 (fun_app$a v_b_SP_G_1$ ?v1)))
+(let ((?x152 (b_G$ (pair$ ?v1 ?0))))
+(let (($x1007 (= (+ ?x152 ?x171 (* (- 1) (fun_app$a v_b_SP_G_1$ ?0))) 0)))
+(let (($x175 (fun_app$ v_b_Visited_G_1$ ?v1)))
+(let (($x1010 (>= (+ ?x171 (* (- 1) (fun_app$a v_b_SP_G_1$ ?0))) 0)))
+(let (($x1012 (not $x1010)))
+(and $x1012 $x175 $x1007))))))) :qid k!38))
+))
+(let (($x1001 (and $x128 $x998)))
+(let (($x1004 (not $x1001)))
+(let (($x1029 (or $x1004 $x1026)))
+(let (($x432 (exists ((?v1 B_Vertex$) )(! (let ((?x171 (fun_app$a v_b_SP_G_1$ ?v1)))
+(let ((?x152 (b_G$ (pair$ ?v1 ?0))))
+(let ((?x405 (+ ?x152 ?x171)))
+(let ((?x179 (fun_app$a v_b_SP_G_1$ ?0)))
+(let (($x423 (= ?x179 ?x405)))
+(let (($x175 (fun_app$ v_b_Visited_G_1$ ?v1)))
+(let (($x426 (and $x175 $x423)))
+(let (($x190 (< ?x171 ?x179)))
+(and $x190 $x426))))))))) :qid k!38))
+))
+(let (($x439 (or (not (and $x128 (< ?x171 b_Infinity$))) $x432)))
+(let (($x1007 (= (+ ?x152 ?x171 (* (- 1) (fun_app$a v_b_SP_G_1$ ?1))) 0)))
+(let (($x1010 (>= (+ ?x171 (* (- 1) (fun_app$a v_b_SP_G_1$ ?1))) 0)))
+(let (($x1012 (not $x1010)))
+(let (($x1021 (and $x1012 $x175 $x1007)))
+(let ((?x405 (+ ?x152 ?x171)))
+(let ((?x179 (fun_app$a v_b_SP_G_1$ ?1)))
+(let (($x423 (= ?x179 ?x405)))
+(let (($x426 (and $x175 $x423)))
+(let (($x190 (< ?x171 ?x179)))
+(let (($x429 (and $x190 $x426)))
+(let ((@x1020 (monotonicity (rewrite (= $x190 $x1012)) (monotonicity (rewrite (= $x423 $x1007)) (= $x426 (and $x175 $x1007))) (= $x429 (and $x1012 (and $x175 $x1007))))))
+(let ((@x1025 (trans @x1020 (rewrite (= (and $x1012 (and $x175 $x1007)) $x1021)) (= $x429 $x1021))))
+(let ((@x1003 (monotonicity (rewrite (= (< ?x171 b_Infinity$) $x998)) (= (and $x128 (< ?x171 b_Infinity$)) $x1001))))
+(let ((@x1031 (monotonicity (monotonicity @x1003 (= (not (and $x128 (< ?x171 b_Infinity$))) $x1004)) (quant-intro @x1025 (= $x432 $x1026)) (= $x439 $x1029))))
+(let (($x985 (>= (+ ?x152 ?x171 (* (- 1) ?x179)) 0)))
+(let (($x978 (and $x175 $x918)))
+(let (($x981 (not $x978)))
+(let (($x989 (or $x981 $x985)))
+(let (($x408 (<= ?x179 ?x405)))
+(let (($x415 (or (not (and $x175 (< ?x152 b_Infinity$))) $x408)))
+(let ((@x983 (monotonicity (monotonicity @x920 (= (and $x175 (< ?x152 b_Infinity$)) $x978)) (= (not (and $x175 (< ?x152 b_Infinity$))) $x981))))
+(let ((@x994 (quant-intro (monotonicity @x983 (rewrite (= $x408 $x985)) (= $x415 $x989)) (= $x420 $x992))))
+(let ((@x1051 (monotonicity @x994 (quant-intro @x1031 (= $x444 $x1032)) (= $x454 (and $x992 $x1032)))))
+(let (($x177 (fun_app$ v_b_Visited_G_1$ ?1)))
+(let (($x178 (and $x176 $x177)))
+(let (($x398 (not $x178)))
+(let (($x1037 (or $x398 $x1010)))
+(let (($x180 (<= ?x179 ?x171)))
+(let (($x399 (or $x398 $x180)))
+(let ((@x1042 (quant-intro (monotonicity (rewrite (= $x180 $x1010)) (= $x399 $x1037)) (= $x402 $x1040))))
+(let ((@x1048 (quant-intro (rewrite (= (<= 0 ?x171) (>= ?x171 0))) (= $x173 $x1046))))
+(let ((@x1057 (monotonicity @x1048 (monotonicity @x1042 @x1051 (= $x457 (and $x1040 (and $x992 $x1032)))) (= $x460 (and $x1046 (and $x1040 (and $x992 $x1032)))))))
+(let ((@x1060 (monotonicity @x1057 (= $x463 (and $x170 (and $x1046 (and $x1040 (and $x992 $x1032))))))))
+(let (($x969 (exists ((?v1 B_Vertex$) )(! (let ((?x152 (b_G$ (pair$ ?v1 ?0))))
+(let ((?x124 (v_b_SP_G_0$ ?v1)))
+(let (($x952 (= (+ ?x124 (* (- 1) (v_b_SP_G_0$ ?0)) ?x152) 0)))
+(let (($x133 (fun_app$ v_b_Visited_G_0$ ?v1)))
+(let (($x902 (>= (+ ?x124 (* (- 1) (v_b_SP_G_0$ ?0))) 0)))
+(let (($x955 (not $x902)))
+(and $x955 $x133 $x952))))))) :qid k!38))
+))
+(let (($x946 (and $x128 (not (<= (+ b_Infinity$ (* (- 1) (v_b_SP_G_0$ ?0))) 0)))))
+(let (($x949 (not $x946)))
+(let (($x972 (or $x949 $x969)))
+(let (($x165 (exists ((?v1 B_Vertex$) )(! (let (($x133 (fun_app$ v_b_Visited_G_0$ ?v1)))
+(let (($x163 (and $x133 (= (v_b_SP_G_0$ ?0) (+ (v_b_SP_G_0$ ?v1) (b_G$ (pair$ ?v1 ?0)))))))
+(and (< (v_b_SP_G_0$ ?v1) (v_b_SP_G_0$ ?0)) $x163))) :qid k!38))
+))
+(let (($x392 (or (not (and $x128 (< (v_b_SP_G_0$ ?0) b_Infinity$))) $x165)))
+(let (($x952 (= (+ (v_b_SP_G_0$ ?0) (* (- 1) (v_b_SP_G_0$ ?1)) ?x152) 0)))
+(let (($x133 (fun_app$ v_b_Visited_G_0$ ?0)))
+(let (($x902 (>= (+ (v_b_SP_G_0$ ?0) (* (- 1) (v_b_SP_G_0$ ?1))) 0)))
+(let (($x955 (not $x902)))
+(let (($x964 (and $x955 $x133 $x952)))
+(let (($x164 (and (< (v_b_SP_G_0$ ?0) (v_b_SP_G_0$ ?1)) (and $x133 (= (v_b_SP_G_0$ ?1) (+ (v_b_SP_G_0$ ?0) ?x152))))))
+(let (($x959 (= (and $x133 (= (v_b_SP_G_0$ ?1) (+ (v_b_SP_G_0$ ?0) ?x152))) (and $x133 $x952))))
+(let ((@x954 (rewrite (= (= (v_b_SP_G_0$ ?1) (+ (v_b_SP_G_0$ ?0) ?x152)) $x952))))
+(let ((@x963 (monotonicity (rewrite (= (< (v_b_SP_G_0$ ?0) (v_b_SP_G_0$ ?1)) $x955)) (monotonicity @x954 $x959) (= $x164 (and $x955 (and $x133 $x952))))))
+(let ((@x968 (trans @x963 (rewrite (= (and $x955 (and $x133 $x952)) $x964)) (= $x164 $x964))))
+(let (($x944 (= (< (v_b_SP_G_0$ ?0) b_Infinity$) (not (<= (+ b_Infinity$ (* (- 1) (v_b_SP_G_0$ ?0))) 0)))))
+(let ((@x948 (monotonicity (rewrite $x944) (= (and $x128 (< (v_b_SP_G_0$ ?0) b_Infinity$)) $x946))))
+(let ((@x951 (monotonicity @x948 (= (not (and $x128 (< (v_b_SP_G_0$ ?0) b_Infinity$))) $x949))))
+(let ((@x977 (quant-intro (monotonicity @x951 (quant-intro @x968 (= $x165 $x969)) (= $x392 $x972)) (= $x395 $x975))))
+(let ((@x1071 (monotonicity (trans (monotonicity @x977 @x1060 $x1062) (rewrite $x1065) (= $x477 $x1064)) (= (not $x477) $x1069))))
+(let ((@x1371 (monotonicity @x1071 (monotonicity @x1161 @x1365 (= $x810 $x1366)) (= $x817 $x1369))))
+(let (($x928 (>= (+ (v_b_SP_G_0$ ?0) (* (- 1) (v_b_SP_G_0$ ?1)) ?x152) 0)))
+(let (($x921 (and $x133 $x918)))
+(let (($x924 (not $x921)))
+(let (($x931 (or $x924 $x928)))
+(let ((?x147 (v_b_SP_G_0$ ?1)))
+(let (($x156 (<= ?x147 (+ (v_b_SP_G_0$ ?0) ?x152))))
+(let (($x385 (or (not (and $x133 (< ?x152 b_Infinity$))) $x156)))
+(let ((@x926 (monotonicity (monotonicity @x920 (= (and $x133 (< ?x152 b_Infinity$)) $x921)) (= (not (and $x133 (< ?x152 b_Infinity$))) $x924))))
+(let ((@x936 (quant-intro (monotonicity @x926 (rewrite (= $x156 $x928)) (= $x385 $x931)) (= $x388 $x934))))
+(let ((@x1377 (monotonicity (monotonicity @x936 (= (not $x388) $x937)) (monotonicity @x977 @x1371 (= $x822 $x1372)) (= $x829 $x1375))))
+(let (($x134 (not $x133)))
+(let (($x146 (and $x134 (fun_app$ v_b_Visited_G_0$ ?1))))
+(let (($x377 (not $x146)))
+(let (($x906 (or $x377 $x902)))
+(let ((?x124 (v_b_SP_G_0$ ?0)))
+(let (($x148 (<= ?x147 ?x124)))
+(let (($x378 (or $x377 $x148)))
+(let ((@x911 (quant-intro (monotonicity (rewrite (= $x148 $x902)) (= $x378 $x906)) (= $x381 $x909))))
+(let ((@x1383 (monotonicity (monotonicity @x911 (= (not $x381) $x912)) (monotonicity @x936 @x1377 (= $x834 $x1378)) (= $x841 $x1381))))
+(let ((@x896 (quant-intro (rewrite (= (<= 0 ?x124) (>= ?x124 0))) (= $x144 $x894))))
+(let ((@x1389 (monotonicity (monotonicity @x896 (= (not $x144) $x897)) (monotonicity @x911 @x1383 (= $x846 $x1384)) (= $x853 $x1387))))
+(let ((@x1395 (monotonicity (monotonicity @x896 @x1389 (= $x858 $x1390)) (= $x865 $x1393))))
+(let ((@x890 (monotonicity (rewrite (= (and $x349 (and $x355 $x135)) $x885)) (= (not (and $x349 (and $x355 $x135))) (not $x885)))))
+(let ((@x1401 (monotonicity @x890 (monotonicity @x1395 (= $x870 $x1396)) (= $x877 (or (not $x885) $x1396)))))
+(let (($x313 (exists ((?v1 B_Vertex$) )(! (let (($x286 (fun_app$ v_b_Visited_G_2$ ?v1)))
+(let (($x311 (and $x286 (= (v_b_SP_G_2$ ?0) (+ (v_b_SP_G_2$ ?v1) (b_G$ (pair$ ?v1 ?0)))))))
+(let ((?x298 (v_b_SP_G_2$ ?0)))
+(let ((?x268 (v_b_SP_G_2$ ?v1)))
+(let (($x309 (< ?x268 ?x298)))
+(and $x309 $x311)))))) :qid k!38))
+))
+(let (($x308 (and $x128 (< ?x268 b_Infinity$))))
+(let (($x314 (=> $x308 $x313)))
+(let ((@x686 (monotonicity (rewrite (= (+ ?x268 ?x152) ?x666)) (= (= ?x298 (+ ?x268 ?x152)) $x684))))
+(let ((@x692 (monotonicity (monotonicity @x686 (= (and $x286 (= ?x298 (+ ?x268 ?x152))) $x687)) (= (and $x309 (and $x286 (= ?x298 (+ ?x268 ?x152)))) $x690))))
+(let ((@x698 (monotonicity (quant-intro @x692 (= $x313 $x693)) (= $x314 (=> $x308 $x693)))))
+(let ((@x707 (quant-intro (trans @x698 (rewrite (= (=> $x308 $x693) $x700)) (= $x314 $x700)) (= $x315 $x705))))
+(let ((@x714 (trans (monotonicity @x707 (= $x316 (and $x705 false))) (rewrite (= (and $x705 false) false)) (= $x316 false))))
+(let ((@x721 (trans (monotonicity @x714 (= $x317 (=> false true))) (rewrite (= (=> false true) true)) (= $x317 true))))
+(let ((@x728 (trans (monotonicity @x707 @x721 (= $x318 (and $x705 true))) (rewrite (= (and $x705 true) $x705)) (= $x318 $x705))))
+(let (($x153 (< ?x152 b_Infinity$)))
+(let (($x302 (and $x286 $x153)))
+(let (($x305 (=> $x302 (<= ?x298 (+ ?x268 ?x152)))))
+(let ((@x671 (monotonicity (rewrite (= (+ ?x268 ?x152) ?x666)) (= (<= ?x298 (+ ?x268 ?x152)) $x669))))
+(let ((@x680 (trans (monotonicity @x671 (= $x305 (=> $x302 $x669))) (rewrite (= (=> $x302 $x669) $x676)) (= $x305 $x676))))
+(let ((@x731 (monotonicity (quant-intro @x680 (= $x306 $x681)) @x728 (= $x319 (=> $x681 $x705)))))
+(let ((@x740 (monotonicity (quant-intro @x680 (= $x306 $x681)) (trans @x731 (rewrite (= (=> $x681 $x705) $x733)) (= $x319 $x733)) (= (and $x306 $x319) $x738))))
+(let ((@x743 (monotonicity (quant-intro (rewrite (= (=> $x297 $x299) $x660)) (= $x301 $x663)) @x740 (= $x321 (=> $x663 $x738)))))
+(let ((@x752 (monotonicity (quant-intro (rewrite (= (=> $x297 $x299) $x660)) (= $x301 $x663)) (trans @x743 (rewrite (= (=> $x663 $x738) $x745)) (= $x321 $x745)) (= (and $x301 $x321) $x750))))
+(let ((@x761 (trans (monotonicity @x752 (= $x323 (=> $x294 $x750))) (rewrite (= (=> $x294 $x750) $x757)) (= $x323 $x757))))
+(let ((@x767 (monotonicity (monotonicity @x761 (= (and $x294 $x323) $x762)) (= $x325 (=> $x292 $x762)))))
+(let ((@x776 (monotonicity (trans @x767 (rewrite (= (=> $x292 $x762) $x769)) (= $x325 $x769)) (= (and $x292 $x325) $x774))))
+(let ((@x649 (quant-intro (rewrite (= (=> $x286 $x273) (or $x295 $x273))) (= $x288 $x647))))
+(let ((@x654 (monotonicity @x649 (rewrite (= (and true true) true)) (= $x290 (and $x647 true)))))
+(let ((@x779 (monotonicity (trans @x654 (rewrite (= (and $x647 true) $x647)) (= $x290 $x647)) @x776 (= $x327 (=> $x647 $x774)))))
+(let ((@x788 (monotonicity @x649 (trans @x779 (rewrite (= (=> $x647 $x774) $x781)) (= $x327 $x781)) (= (and $x288 $x327) $x786))))
+(let ((@x797 (trans (monotonicity @x788 (= $x329 (=> $x285 $x786))) (rewrite (= (=> $x285 $x786) $x793)) (= $x329 $x793))))
+(let (($x628 (= (and $x253 (and $x255 (and $x258 (and $x261 (and $x271 $x275))))) $x627)))
+(let ((@x617 (monotonicity (quant-intro (rewrite (= (=> $x267 $x269) $x603)) (= $x271 $x606)) (quant-intro (rewrite (= (=> $x272 $x273) $x609)) (= $x275 $x612)) (= (and $x271 $x275) $x615))))
+(let ((@x623 (monotonicity (quant-intro (rewrite (= (=> $x176 $x256) $x597)) (= $x258 $x600)) (monotonicity @x617 (= (and $x261 (and $x271 $x275)) $x618)) (= (and $x258 (and $x261 (and $x271 $x275))) $x621))))
+(let ((@x626 (monotonicity @x623 (= (and $x255 (and $x258 (and $x261 (and $x271 $x275)))) $x624))))
+(let ((@x635 (monotonicity (monotonicity (monotonicity @x626 $x628) (= $x281 $x630)) (= $x282 (and true $x630)))))
+(let ((@x641 (monotonicity (trans @x635 (rewrite (= (and true $x630) $x630)) (= $x282 $x630)) (= $x283 (and true $x630)))))
+(let ((@x803 (monotonicity (trans @x641 (rewrite (= (and true $x630) $x630)) (= $x283 $x630)) (monotonicity @x797 (= (and $x285 $x329) $x798)) (= $x331 (=> $x630 $x798)))))
+(let ((@x559 (monotonicity (rewrite (= (=> $x243 true) true)) (= $x245 (and $x243 true)))))
+(let (($x228 (< ?x227 b_Infinity$)))
+(let (($x238 (and $x228 $x153)))
+(let (($x240 (=> $x238 (<= ?x230 (+ ?x227 ?x152)))))
+(let ((@x542 (monotonicity (rewrite (= (+ ?x227 ?x152) ?x516)) (= (<= ?x230 (+ ?x227 ?x152)) $x540))))
+(let ((@x551 (trans (monotonicity @x542 (= $x240 (=> $x238 $x540))) (rewrite (= (=> $x238 $x540) $x547)) (= $x240 $x547))))
+(let ((@x566 (monotonicity (quant-intro @x551 (= $x241 $x552)) (trans @x559 (rewrite (= (and $x243 true) $x243)) (= $x245 $x243)) (= $x246 (=> $x552 $x243)))))
+(let ((@x575 (monotonicity (quant-intro @x551 (= $x241 $x552)) (trans @x566 (rewrite (= (=> $x552 $x243) $x568)) (= $x246 $x568)) (= (and $x241 $x246) $x573))))
+(let (($x235 (exists ((?v1 B_Vertex$) )(! (let ((?x152 (b_G$ (pair$ ?v1 ?0))))
+(let ((?x227 (fun_app$a v_b_SP_G_3$ ?v1)))
+(let ((?x232 (+ ?x227 ?x152)))
+(let ((?x230 (fun_app$a v_b_SP_G_3$ ?0)))
+(let (($x231 (< ?x227 ?x230)))
+(and $x231 (= ?x230 ?x232))))))) :qid k!38))
+))
+(let (($x229 (and $x128 $x228)))
+(let (($x236 (=> $x229 $x235)))
+(let ((@x521 (monotonicity (rewrite (= (+ ?x227 ?x152) ?x516)) (= (= ?x230 (+ ?x227 ?x152)) $x519))))
+(let ((@x527 (quant-intro (monotonicity @x521 (= (and $x231 (= ?x230 (+ ?x227 ?x152))) $x522)) (= $x235 $x525))))
+(let ((@x536 (trans (monotonicity @x527 (= $x236 (=> $x229 $x525))) (rewrite (= (=> $x229 $x525) $x532)) (= $x236 $x532))))
+(let ((@x578 (monotonicity (quant-intro @x536 (= $x237 $x537)) @x575 (= $x248 (=> $x537 $x573)))))
+(let ((@x587 (monotonicity (quant-intro @x536 (= $x237 $x537)) (trans @x578 (rewrite (= (=> $x537 $x573) $x580)) (= $x248 $x580)) (= (and $x237 $x248) $x585))))
+(let (($x486 (= (and $x212 (and $x214 (and $x217 true))) (and $x212 (and $x214 $x217)))))
+(let ((@x484 (monotonicity (rewrite (= (and $x217 true) $x217)) (= (and $x214 (and $x217 true)) (and $x214 $x217)))))
+(let ((@x490 (monotonicity (monotonicity @x484 $x486) (= (and $x209 (and $x212 (and $x214 (and $x217 true)))) $x488))))
+(let ((@x497 (trans (monotonicity @x490 (= $x222 (and true $x488))) (rewrite (= (and true $x488) $x488)) (= $x222 $x488))))
+(let ((@x501 (trans (monotonicity @x497 (= $x223 (and true $x488))) (rewrite (= (and true $x488) $x488)) (= $x223 $x488))))
+(let ((@x507 (monotonicity (monotonicity @x501 (= (and $x207 $x223) $x502)) (= $x225 (and true $x502)))))
+(let ((@x513 (monotonicity (trans @x507 (rewrite (= (and true $x502) $x502)) (= $x225 $x502)) (= $x226 (and true $x502)))))
+(let ((@x590 (monotonicity (trans @x513 (rewrite (= (and true $x502) $x502)) (= $x226 $x502)) @x587 (= $x250 (=> $x502 $x585)))))
+(let ((@x812 (monotonicity (trans @x590 (rewrite (= (=> $x502 $x585) $x592)) (= $x250 $x592)) (trans @x803 (rewrite (= (=> $x630 $x798) $x805)) (= $x331 $x805)) (= (and $x250 $x331) $x810))))
+(let (($x194 (exists ((?v1 B_Vertex$) )(! (let ((?x152 (b_G$ (pair$ ?v1 ?0))))
+(let ((?x171 (fun_app$a v_b_SP_G_1$ ?v1)))
+(let ((?x184 (+ ?x171 ?x152)))
+(let ((?x179 (fun_app$a v_b_SP_G_1$ ?0)))
+(let (($x175 (fun_app$ v_b_Visited_G_1$ ?v1)))
+(let (($x190 (< ?x171 ?x179)))
+(and $x190 (and $x175 (= ?x179 ?x184))))))))) :qid k!38))
+))
+(let (($x188 (< ?x171 b_Infinity$)))
+(let (($x189 (and $x128 $x188)))
+(let (($x195 (=> $x189 $x194)))
+(let ((@x425 (monotonicity (rewrite (= (+ ?x171 ?x152) ?x405)) (= (= ?x179 (+ ?x171 ?x152)) $x423))))
+(let ((@x431 (monotonicity (monotonicity @x425 (= (and $x175 (= ?x179 (+ ?x171 ?x152))) $x426)) (= (and $x190 (and $x175 (= ?x179 (+ ?x171 ?x152)))) $x429))))
+(let ((@x437 (monotonicity (quant-intro @x431 (= $x194 $x432)) (= $x195 (=> $x189 $x432)))))
+(let ((@x446 (quant-intro (trans @x437 (rewrite (= (=> $x189 $x432) $x439)) (= $x195 $x439)) (= $x196 $x444))))
+(let ((@x453 (trans (monotonicity @x446 (= $x197 (and $x444 true))) (rewrite (= (and $x444 true) $x444)) (= $x197 $x444))))
+(let (($x183 (and $x175 $x153)))
+(let (($x186 (=> $x183 (<= ?x179 (+ ?x171 ?x152)))))
+(let ((@x410 (monotonicity (rewrite (= (+ ?x171 ?x152) ?x405)) (= (<= ?x179 (+ ?x171 ?x152)) $x408))))
+(let ((@x419 (trans (monotonicity @x410 (= $x186 (=> $x183 $x408))) (rewrite (= (=> $x183 $x408) $x415)) (= $x186 $x415))))
+(let ((@x456 (monotonicity (quant-intro @x419 (= $x187 $x420)) @x453 (= (and $x187 $x197) $x454))))
+(let ((@x459 (monotonicity (quant-intro (rewrite (= (=> $x178 $x180) $x399)) (= $x182 $x402)) @x456 (= (and $x182 (and $x187 $x197)) $x457))))
+(let ((@x465 (monotonicity (monotonicity @x459 (= (and $x173 (and $x182 (and $x187 $x197))) $x460)) (= (and $x170 (and $x173 (and $x182 (and $x187 $x197)))) $x463))))
+(let ((@x472 (trans (monotonicity @x465 (= $x202 (and true $x463))) (rewrite (= (and true $x463) $x463)) (= $x202 $x463))))
+(let ((@x476 (trans (monotonicity @x472 (= $x203 (and true $x463))) (rewrite (= (and true $x463) $x463)) (= $x203 $x463))))
+(let ((@x397 (quant-intro (rewrite (= (=> (and $x128 (< ?x124 b_Infinity$)) $x165) $x392)) (= $x167 $x395))))
+(let ((@x815 (monotonicity (monotonicity @x397 @x476 (= (and $x167 $x203) $x477)) @x812 (= $x333 (=> $x477 $x810)))))
+(let ((@x824 (monotonicity @x397 (trans @x815 (rewrite (= (=> $x477 $x810) $x817)) (= $x333 $x817)) (= (and $x167 $x333) $x822))))
+(let ((@x390 (quant-intro (rewrite (= (=> (and $x133 $x153) $x156) $x385)) (= $x158 $x388))))
+(let ((@x833 (trans (monotonicity @x390 @x824 (= $x335 (=> $x388 $x822))) (rewrite (= (=> $x388 $x822) $x829)) (= $x335 $x829))))
+(let ((@x839 (monotonicity (quant-intro (rewrite (= (=> $x146 $x148) $x378)) (= $x150 $x381)) (monotonicity @x390 @x833 (= (and $x158 $x335) $x834)) (= $x337 (=> $x381 $x834)))))
+(let ((@x848 (monotonicity (quant-intro (rewrite (= (=> $x146 $x148) $x378)) (= $x150 $x381)) (trans @x839 (rewrite (= (=> $x381 $x834) $x841)) (= $x337 $x841)) (= (and $x150 $x337) $x846))))
+(let ((@x857 (trans (monotonicity @x848 (= $x339 (=> $x144 $x846))) (rewrite (= (=> $x144 $x846) $x853)) (= $x339 $x853))))
+(let ((@x863 (monotonicity (monotonicity @x857 (= (and $x144 $x339) $x858)) (= $x341 (=> $x142 $x858)))))
+(let ((@x872 (monotonicity (trans @x863 (rewrite (= (=> $x142 $x858) $x865)) (= $x341 $x865)) (= (and $x142 $x341) $x870))))
+(let (($x363 (and $x349 (and $x355 $x135))))
+(let (($x366 (and true $x363)))
+(let ((@x357 (quant-intro (rewrite (= (=> $x128 (= ?x124 b_Infinity$)) $x352)) (= $x131 $x355))))
+(let ((@x362 (monotonicity @x357 (rewrite (= (and $x135 true) $x135)) (= (and $x131 (and $x135 true)) (and $x355 $x135)))))
+(let ((@x351 (quant-intro (rewrite (= (=> $x123 (= ?x124 0)) (or $x128 (= ?x124 0)))) (= $x127 $x349))))
+(let ((@x365 (monotonicity @x351 @x362 (= (and $x127 (and $x131 (and $x135 true))) $x363))))
+(let ((@x372 (trans (monotonicity @x365 (= $x139 $x366)) (rewrite (= $x366 $x363)) (= $x139 $x363))))
+(let ((@x376 (trans (monotonicity @x372 (= $x140 $x366)) (rewrite (= $x366 $x363)) (= $x140 $x363))))
+(let ((@x881 (trans (monotonicity @x376 @x872 (= $x343 (=> $x363 $x870))) (rewrite (= (=> $x363 $x870) $x877)) (= $x343 $x877))))
+(let ((@x1406 (trans (monotonicity @x881 (= $x344 (not $x877))) (monotonicity @x1401 (= (not $x877) $x1402)) (= $x344 $x1402))))
+(let ((@x1408 (not-or-elim (mp (asserted $x344) @x1406 $x1402) $x885)))
+(let ((@x1458 (mp~ (and-elim @x1408 $x355) (nnf-pos (refl (~ $x352 $x352)) (~ $x355 $x355)) $x355)))
+(let ((@x3493 (mp @x1458 (quant-intro (refl (= $x352 $x352)) (= $x355 $x3488)) $x3488)))
+(let ((@x5494 (rewrite (= (or (not $x3488) (or $x1533 $x5648)) (or (not $x3488) $x1533 $x5648)))))
+(let ((@x5498 (mp ((_ quant-inst ?v0!5) (or (not $x3488) (or $x1533 $x5648))) @x5494 (or (not $x3488) $x1533 $x5648))))
+(let ((@x6448 (unit-resolution (hypothesis $x6555) (mp (unit-resolution @x5498 @x3493 (hypothesis $x1534) $x5648) @x5583 $x5500) false)))
+(let ((@x3189 (unit-resolution (lemma @x6448 (or $x5500 $x1533)) (unit-resolution ((_ th-lemma arith triangle-eq) (or $x6555 $x1538)) @x5027 $x6555) @x5072 false)))
+(let (($x3539 (not $x3536)))
+(let (($x3822 (or $x3539 $x3819)))
+(let (($x3825 (not $x3822)))
+(let (($x3519 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x152 (b_G$ (pair$ ?v1 ?v0))))
+(let ((?x124 (v_b_SP_G_0$ ?v1)))
+(let (($x928 (>= (+ ?x124 (* (- 1) (v_b_SP_G_0$ ?v0)) ?x152) 0)))
+(let (($x917 (<= (+ b_Infinity$ (* (- 1) ?x152)) 0)))
+(let (($x133 (fun_app$ v_b_Visited_G_0$ ?v1)))
+(let (($x134 (not $x133)))
+(or $x134 $x917 $x928))))))) :pattern ( (pair$ ?v1 ?v0) ) :qid k!38))
+))
+(let (($x3524 (not $x3519)))
+(let (($x3828 (or $x3524 $x3825)))
+(let (($x3831 (not $x3828)))
+(let ((?x1517 (v_b_SP_G_0$ ?v0!4)))
+(let ((?x1518 (* (- 1) ?x1517)))
+(let ((?x1516 (v_b_SP_G_0$ ?v1!3)))
+(let ((?x1508 (pair$ ?v1!3 ?v0!4)))
+(let ((?x1509 (b_G$ ?x1508)))
+(let ((?x2040 (+ ?x1509 ?x1516 ?x1518)))
+(let (($x2043 (>= ?x2040 0)))
+(let (($x1512 (<= (+ b_Infinity$ (* (- 1) ?x1509)) 0)))
+(let (($x1507 (fun_app$ v_b_Visited_G_0$ ?v1!3)))
+(let (($x2389 (not $x1507)))
+(let (($x2404 (or $x2389 $x1512 $x2043)))
+(let (($x3495 (forall ((?v0 B_Vertex$) )(! (let (($x133 (fun_app$ v_b_Visited_G_0$ ?v0)))
+(not $x133)) :pattern ( (fun_app$ v_b_Visited_G_0$ ?v0) ) :qid k!38))
+))
+(let ((@x1463 (mp~ (and-elim @x1408 $x135) (nnf-pos (refl (~ $x134 $x134)) (~ $x135 $x135)) $x135)))
+(let ((@x3500 (mp @x1463 (quant-intro (refl (= $x134 $x134)) (= $x135 $x3495)) $x3495)))
+(let ((@x4007 (unit-resolution ((_ quant-inst ?v1!3) (or (not $x3495) $x2389)) @x3500 (hypothesis $x1507) false)))
+(let (($x2409 (not $x2404)))
+(let (($x3834 (or $x2409 $x3831)))
+(let (($x3837 (not $x3834)))
+(let (($x3510 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let (($x902 (>= (+ (v_b_SP_G_0$ ?v1) (* (- 1) (v_b_SP_G_0$ ?v0))) 0)))
+(let (($x133 (fun_app$ v_b_Visited_G_0$ ?v1)))
+(or $x133 (not (fun_app$ v_b_Visited_G_0$ ?v0)) $x902))) :pattern ( (v_b_SP_G_0$ ?v1) (v_b_SP_G_0$ ?v0) ) :qid k!38))
+))
+(let (($x3515 (not $x3510)))
+(let (($x3840 (or $x3515 $x3837)))
+(let (($x3843 (not $x3840)))
+(let (($x1493 (>= (+ (v_b_SP_G_0$ ?v1!1) (* (- 1) (v_b_SP_G_0$ ?v0!2))) 0)))
+(let (($x1486 (fun_app$ v_b_Visited_G_0$ ?v0!2)))
+(let (($x2343 (not $x1486)))
+(let (($x1484 (fun_app$ v_b_Visited_G_0$ ?v1!1)))
+(let (($x2358 (or $x1484 $x2343 $x1493)))
+(let (($x2363 (not $x2358)))
+(let (($x3846 (or $x2363 $x3843)))
+(let (($x3849 (not $x3846)))
+(let (($x3501 (forall ((?v0 B_Vertex$) )(! (let ((?x124 (v_b_SP_G_0$ ?v0)))
+(>= ?x124 0)) :pattern ( (v_b_SP_G_0$ ?v0) ) :qid k!38))
+))
+(let (($x3506 (not $x3501)))
+(let (($x3852 (or $x3506 $x3849)))
+(let (($x3855 (not $x3852)))
+(let ((?x1470 (v_b_SP_G_0$ ?v0!0)))
+(let (($x1471 (>= ?x1470 0)))
+(let (($x1472 (not $x1471)))
+(let ((@x5071 (hypothesis $x1472)))
+(let (($x5774 (<= ?x1470 0)))
+(let (($x82 (<= b_Infinity$ 0)))
+(let (($x83 (not $x82)))
+(let ((@x86 (mp (asserted (< 0 b_Infinity$)) (rewrite (= (< 0 b_Infinity$) $x83)) $x83)))
+(let (($x5117 (= b_Infinity$ ?x1470)))
+(let ((@x5579 (symm (commutativity (= $x5117 (= ?x1470 b_Infinity$))) (= (= ?x1470 b_Infinity$) $x5117))))
+(let (($x3131 (= ?x1470 b_Infinity$)))
+(let (($x5739 (= ?v0!0 b_Source$)))
+(let (($x5713 (not $x5739)))
+(let ((@x5595 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x1470 0)) $x1471)) @x5071 (not (= ?x1470 0)))))
+(let (($x3482 (forall ((?v0 B_Vertex$) )(! (let (($x123 (= ?v0 b_Source$)))
+(let (($x128 (not $x123)))
+(or $x128 (= (v_b_SP_G_0$ ?v0) 0)))) :pattern ( (v_b_SP_G_0$ ?v0) ) :qid k!38))
+))
+(let ((@x3486 (quant-intro (refl (= (or $x128 (= ?x124 0)) (or $x128 (= ?x124 0)))) (= $x349 $x3482))))
+(let ((@x1452 (nnf-pos (refl (~ (or $x128 (= ?x124 0)) (or $x128 (= ?x124 0)))) (~ $x349 $x349))))
+(let ((@x3487 (mp (mp~ (and-elim @x1408 $x349) @x1452 $x349) @x3486 $x3482)))
+(let (($x5769 (= (or (not $x3482) (or $x5713 (= ?x1470 0))) (or (not $x3482) $x5713 (= ?x1470 0)))))
+(let ((@x5448 (mp ((_ quant-inst ?v0!0) (or (not $x3482) (or $x5713 (= ?x1470 0)))) (rewrite $x5769) (or (not $x3482) $x5713 (= ?x1470 0)))))
+(let ((@x6281 (rewrite (= (or (not $x3488) (or $x5739 $x3131)) (or (not $x3488) $x5739 $x3131)))))
+(let ((@x6173 (mp ((_ quant-inst ?v0!0) (or (not $x3488) (or $x5739 $x3131))) @x6281 (or (not $x3488) $x5739 $x3131))))
+(let ((@x6446 (mp (unit-resolution @x6173 @x3493 (unit-resolution @x5448 @x3487 @x5595 $x5713) $x3131) @x5579 $x5117)))
+(let ((@x6386 ((_ th-lemma arith triangle-eq) (or (not $x5117) (<= (+ b_Infinity$ (* (- 1) ?x1470)) 0)))))
+(let ((@x6387 (unit-resolution @x6386 @x6446 (<= (+ b_Infinity$ (* (- 1) ?x1470)) 0))))
+(let ((@x3142 (lemma ((_ th-lemma arith farkas 1 -1 1) (hypothesis $x5774) @x6387 @x86 false) (or (not $x5774) $x1471))))
+(let ((@x5085 (unit-resolution @x3142 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x5774 $x1471)) @x5071 $x5774) @x5071 false)))
+(let (($x3858 (or $x1472 $x3855)))
+(let (($x3861 (not $x3858)))
+(let (($x3864 (or $x864 $x3861)))
+(let (($x3867 (not $x3864)))
+(let (($x5885 (not $x3482)))
+(let (($x3145 (or $x5885 $x142)))
+(let ((@x4320 (monotonicity (rewrite (= (= b_Source$ b_Source$) true)) (= (not (= b_Source$ b_Source$)) (not true)))))
+(let ((@x5484 (trans @x4320 (rewrite (= (not true) false)) (= (not (= b_Source$ b_Source$)) false))))
+(let ((@x5457 (monotonicity @x5484 (= (or (not (= b_Source$ b_Source$)) $x142) (or false $x142)))))
+(let ((@x5606 (trans @x5457 (rewrite (= (or false $x142) $x142)) (= (or (not (= b_Source$ b_Source$)) $x142) $x142))))
+(let ((@x4948 (monotonicity @x5606 (= (or $x5885 (or (not (= b_Source$ b_Source$)) $x142)) $x3145))))
+(let ((@x5799 (trans @x4948 (rewrite (= $x3145 $x3145)) (= (or $x5885 (or (not (= b_Source$ b_Source$)) $x142)) $x3145))))
+(let ((@x5800 (mp ((_ quant-inst b_Source$) (or $x5885 (or (not (= b_Source$ b_Source$)) $x142))) @x5799 $x3145)))
+(let (($x3870 (or $x864 $x3867)))
+(let (($x2843 (forall ((?v1 B_Vertex$) )(! (let ((?x1906 (v_b_SP_G_2$ ?v0!20)))
+(let ((?x1907 (* (- 1) ?x1906)))
+(let ((?x268 (v_b_SP_G_2$ ?v1)))
+(let (($x2237 (= (+ ?x268 ?x1907 (b_G$ (pair$ ?v1 ?v0!20))) 0)))
+(let (($x286 (fun_app$ v_b_Visited_G_2$ ?v1)))
+(let (($x295 (not $x286)))
+(or (>= (+ ?x268 ?x1907) 0) $x295 (not $x2237)))))))) :qid k!38))
+))
+(let (($x2828 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x298 (v_b_SP_G_2$ ?v0)))
+(let ((?x1258 (* (- 1) ?x298)))
+(let ((?x268 (v_b_SP_G_2$ ?v1)))
+(let ((?x152 (b_G$ (pair$ ?v1 ?v0))))
+(let (($x1277 (>= (+ ?x152 ?x268 ?x1258) 0)))
+(let (($x917 (<= (+ b_Infinity$ (* (- 1) ?x152)) 0)))
+(let (($x286 (fun_app$ v_b_Visited_G_2$ ?v1)))
+(let (($x295 (not $x286)))
+(or $x295 $x917 $x1277))))))))) :qid k!38))
+))
+(let (($x2852 (not (or (not $x2828) $x1904 $x1909 (not $x2843)))))
+(let (($x2857 (or $x2806 $x2852)))
+(let (($x2783 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let (($x1257 (>= (+ (v_b_SP_G_2$ ?v1) (* (- 1) (v_b_SP_G_2$ ?v0))) 0)))
+(let (($x296 (fun_app$ v_b_Visited_G_2$ ?v0)))
+(let (($x2763 (not $x296)))
+(let (($x286 (fun_app$ v_b_Visited_G_2$ ?v1)))
+(or $x286 $x2763 $x1257))))) :qid k!38))
+))
+(let (($x2866 (not (or (not $x2783) (not $x2857)))))
+(let (($x2871 (or $x2760 $x2866)))
+(let (($x2879 (not (or $x1254 (not $x2871)))))
+(let (($x2884 (or $x1843 $x2879)))
+(let (($x2892 (not (or $x768 (not $x2884)))))
+(let (($x2897 (or $x768 $x2892)))
+(let (($x2905 (not (or $x780 (not $x2897)))))
+(let (($x2910 (or $x1825 $x2905)))
+(let (($x2918 (not (or $x1245 (not $x2910)))))
+(let (($x2923 (or $x1808 $x2918)))
+(let (($x2737 (forall ((?v0 B_Vertex$) )(! (let ((?x171 (fun_app$a v_b_SP_G_1$ ?v0)))
+(let ((?x268 (v_b_SP_G_2$ ?v0)))
+(let (($x273 (= ?x268 ?x171)))
+(let ((?x254 (fun_app$a v_b_SP_G_1$ v_b_v_G_1$)))
+(let ((?x1168 (* (- 1) ?x254)))
+(let (($x1170 (<= (+ ?x171 ?x1168 (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0)))) 0)))
+(let (($x1164 (<= (+ b_Infinity$ (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0)))) 0)))
+(let (($x2712 (or $x1164 $x1170)))
+(let (($x2713 (not $x2712)))
+(or $x2713 $x273)))))))))) :qid k!38))
+))
+(let (($x2731 (forall ((?v0 B_Vertex$) )(! (let ((?x268 (v_b_SP_G_2$ ?v0)))
+(let ((?x1181 (* (- 1) ?x268)))
+(let ((?x263 (b_G$ (pair$ v_b_v_G_1$ ?v0))))
+(let ((?x254 (fun_app$a v_b_SP_G_1$ v_b_v_G_1$)))
+(let (($x1180 (= (+ ?x254 ?x263 ?x1181) 0)))
+(let (($x1170 (<= (+ (fun_app$a v_b_SP_G_1$ ?v0) (* (- 1) ?x254) (* (- 1) ?x263)) 0)))
+(let (($x1164 (<= (+ b_Infinity$ (* (- 1) ?x263)) 0)))
+(or $x1164 $x1170 $x1180)))))))) :qid k!38))
+))
+(let (($x2934 (or $x1768 $x1773 $x252 $x1208 (not $x1204) $x2930 (not $x2731) (not $x2737) (not $x2923))))
+(let (($x2935 (not $x2934)))
+(let (($x2667 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x227 (fun_app$a v_b_SP_G_3$ ?v1)))
+(let ((?x152 (b_G$ (pair$ ?v1 ?v0))))
+(let (($x1135 (>= (+ ?x152 ?x227 (* (- 1) (fun_app$a v_b_SP_G_3$ ?v0))) 0)))
+(let (($x917 (<= (+ b_Infinity$ (* (- 1) ?x152)) 0)))
+(let (($x1094 (<= (+ b_Infinity$ (* (- 1) ?x227)) 0)))
+(or $x1094 $x917 $x1135)))))) :qid k!38))
+))
+(let (($x2675 (not (or (not $x2667) $x243))))
+(let (($x2680 (or $x2645 $x2675)))
+(let (($x2623 (forall ((?v0 B_Vertex$) )(! (let ((?x227 (fun_app$a v_b_SP_G_3$ ?v0)))
+(let ((?x2186 (+ ?x227 (* (- 1) (fun_app$a v_b_SP_G_3$ (?v1!9 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!9 ?v0) ?v0))))))
+(let (($x2187 (= ?x2186 0)))
+(let (($x2171 (<= (+ ?x227 (* (- 1) (fun_app$a v_b_SP_G_3$ (?v1!9 ?v0)))) 0)))
+(let (($x2612 (not (or $x2171 (not $x2187)))))
+(let (($x1094 (<= (+ b_Infinity$ (* (- 1) ?x227)) 0)))
+(let (($x123 (= ?v0 b_Source$)))
+(or $x123 $x1094 $x2612)))))))) :qid k!38))
+))
+(let (($x2689 (not (or (not $x2623) (not $x2680)))))
+(let (($x2586 (forall ((?v1 B_Vertex$) )(! (let ((?x1656 (fun_app$a v_b_SP_G_3$ ?v0!8)))
+(let ((?x1657 (* (- 1) ?x1656)))
+(let ((?x227 (fun_app$a v_b_SP_G_3$ ?v1)))
+(let (($x2143 (= (+ ?x227 ?x1657 (b_G$ (pair$ ?v1 ?v0!8))) 0)))
+(or (>= (+ ?x227 ?x1657) 0) (not $x2143)))))) :qid k!38))
+))
+(let (($x2594 (not (or $x1654 $x1659 (not $x2586)))))
+(let (($x2694 (or $x2594 $x2689)))
+(let (($x2571 (forall ((?v0 B_Vertex$) )(! (let (($x997 (<= (+ b_Infinity$ (* (- 1) (fun_app$a v_b_SP_G_1$ ?v0))) 0)))
+(let (($x175 (fun_app$ v_b_Visited_G_1$ ?v0)))
+(or $x175 $x997))) :qid k!38))
+))
+(let (($x2707 (not (or (not $x2571) $x2701 $x2702 $x2703 $x2704 (not $x2694)))))
+(let (($x2940 (or $x2707 $x2935)))
+(let (($x2557 (forall ((?v0 B_Vertex$) )(! (let ((?x171 (fun_app$a v_b_SP_G_1$ ?v0)))
+(let ((?x2123 (+ ?x171 (* (- 1) (fun_app$a v_b_SP_G_1$ (?v1!7 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!7 ?v0) ?v0))))))
+(let (($x2124 (= ?x2123 0)))
+(let (($x2108 (<= (+ ?x171 (* (- 1) (fun_app$a v_b_SP_G_1$ (?v1!7 ?v0)))) 0)))
+(let (($x2546 (not (or $x2108 (not (fun_app$ v_b_Visited_G_1$ (?v1!7 ?v0))) (not $x2124)))))
+(let (($x997 (<= (+ b_Infinity$ (* (- 1) ?x171)) 0)))
+(let (($x123 (= ?v0 b_Source$)))
+(or $x123 $x997 $x2546)))))))) :qid k!38))
+))
+(let (($x2529 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x171 (fun_app$a v_b_SP_G_1$ ?v1)))
+(let ((?x152 (b_G$ (pair$ ?v1 ?v0))))
+(let (($x985 (>= (+ ?x152 ?x171 (* (- 1) (fun_app$a v_b_SP_G_1$ ?v0))) 0)))
+(let (($x917 (<= (+ b_Infinity$ (* (- 1) ?x152)) 0)))
+(let (($x175 (fun_app$ v_b_Visited_G_1$ ?v1)))
+(let (($x176 (not $x175)))
+(or $x176 $x917 $x985))))))) :qid k!38))
+))
+(let (($x2507 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x171 (fun_app$a v_b_SP_G_1$ ?v1)))
+(let (($x1010 (>= (+ ?x171 (* (- 1) (fun_app$a v_b_SP_G_1$ ?v0))) 0)))
+(let (($x175 (fun_app$ v_b_Visited_G_1$ ?v1)))
+(or $x175 (not (fun_app$ v_b_Visited_G_1$ ?v0)) $x1010)))) :qid k!38))
+))
+(let (($x2484 (forall ((?v0 B_Vertex$) )(! (let ((?x124 (v_b_SP_G_0$ ?v0)))
+(let ((?x2085 (+ ?x124 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!6 ?v0) ?v0))))))
+(let (($x2086 (= ?x2085 0)))
+(let (($x2070 (<= (+ ?x124 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?v0)))) 0)))
+(let (($x2473 (not (or $x2070 (not (fun_app$ v_b_Visited_G_0$ (?v1!6 ?v0))) (not $x2086)))))
+(let (($x942 (<= (+ b_Infinity$ (* (- 1) ?x124)) 0)))
+(let (($x123 (= ?v0 b_Source$)))
+(or $x123 $x942 $x2473)))))))) :qid k!38))
+))
+(let (($x2953 (or (not $x2484) $x2947 (not $x1046) (not $x2507) (not $x2529) (not $x2557) (not $x2940))))
+(let (($x2954 (not $x2953)))
+(let (($x2446 (forall ((?v1 B_Vertex$) )(! (let ((?x1535 (v_b_SP_G_0$ ?v0!5)))
+(let ((?x1536 (* (- 1) ?x1535)))
+(let ((?x124 (v_b_SP_G_0$ ?v1)))
+(let (($x133 (fun_app$ v_b_Visited_G_0$ ?v1)))
+(let (($x134 (not $x133)))
+(or (>= (+ ?x124 ?x1536) 0) $x134 (not (= (+ ?x124 ?x1536 (b_G$ (pair$ ?v1 ?v0!5))) 0)))))))) :qid k!38))
+))
+(let (($x2454 (not (or $x1533 $x1538 (not $x2446)))))
+(let (($x2959 (or $x2454 $x2954)))
+(let (($x2431 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x152 (b_G$ (pair$ ?v1 ?v0))))
+(let ((?x124 (v_b_SP_G_0$ ?v1)))
+(let (($x928 (>= (+ ?x124 (* (- 1) (v_b_SP_G_0$ ?v0)) ?x152) 0)))
+(let (($x917 (<= (+ b_Infinity$ (* (- 1) ?x152)) 0)))
+(let (($x133 (fun_app$ v_b_Visited_G_0$ ?v1)))
+(let (($x134 (not $x133)))
+(or $x134 $x917 $x928))))))) :qid k!38))
+))
+(let (($x2968 (not (or (not $x2431) (not $x2959)))))
+(let (($x2973 (or $x2409 $x2968)))
+(let (($x2386 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let (($x902 (>= (+ (v_b_SP_G_0$ ?v1) (* (- 1) (v_b_SP_G_0$ ?v0))) 0)))
+(let (($x133 (fun_app$ v_b_Visited_G_0$ ?v1)))
+(or $x133 (not (fun_app$ v_b_Visited_G_0$ ?v0)) $x902))) :qid k!38))
+))
+(let (($x2982 (not (or (not $x2386) (not $x2973)))))
+(let (($x2987 (or $x2363 $x2982)))
+(let (($x2995 (not (or $x897 (not $x2987)))))
+(let (($x3000 (or $x1472 $x2995)))
+(let (($x3008 (not (or $x864 (not $x3000)))))
+(let (($x3013 (or $x864 $x3008)))
+(let (($x2832 (or (>= (+ ?x268 ?x1907) 0) $x295 (not (= (+ ?x268 ?x1907 (b_G$ (pair$ ?0 ?v0!20))) 0)))))
+(let ((@x3731 (monotonicity (quant-intro (refl (= $x2832 $x2832)) (= $x2843 $x3724)) (= (not $x2843) $x3729))))
+(let ((@x3719 (quant-intro (refl (= (or $x295 $x917 $x1277) (or $x295 $x917 $x1277))) (= $x2828 $x3715))))
+(let ((@x3734 (monotonicity (monotonicity @x3719 (= (not $x2828) $x3720)) @x3731 (= (or (not $x2828) $x1904 $x1909 (not $x2843)) $x3732))))
+(let ((@x3743 (monotonicity (monotonicity (monotonicity @x3734 (= $x2852 $x3735)) (= $x2857 $x3738)) (= (not $x2857) $x3741))))
+(let ((@x3711 (quant-intro (refl (= (or $x286 (not $x296) $x1257) (or $x286 (not $x296) $x1257))) (= $x2783 $x3707))))
+(let ((@x3746 (monotonicity (monotonicity @x3711 (= (not $x2783) $x3712)) @x3743 (= (or (not $x2783) (not $x2857)) $x3744))))
+(let ((@x3755 (monotonicity (monotonicity (monotonicity @x3746 (= $x2866 $x3747)) (= $x2871 $x3750)) (= (not $x2871) $x3753))))
+(let ((@x3702 (quant-intro (refl (= (>= ?x268 0) (>= ?x268 0))) (= $x1251 $x3698))))
+(let ((@x3758 (monotonicity (monotonicity @x3702 (= $x1254 $x3703)) @x3755 (= (or $x1254 (not $x2871)) $x3756))))
+(let ((@x3767 (monotonicity (monotonicity (monotonicity @x3758 (= $x2879 $x3759)) (= $x2884 $x3762)) (= (not $x2884) $x3765))))
+(let ((@x3773 (monotonicity (monotonicity @x3767 (= (or $x768 (not $x2884)) $x3768)) (= $x2892 $x3771))))
+(let ((@x3779 (monotonicity (monotonicity @x3773 (= $x2897 $x3774)) (= (not $x2897) $x3777))))
+(let ((@x3694 (quant-intro (refl (= (or $x295 $x273) (or $x295 $x273))) (= $x647 $x3690))))
+(let ((@x3782 (monotonicity (monotonicity @x3694 (= $x780 $x3695)) @x3779 (= (or $x780 (not $x2897)) $x3780))))
+(let ((@x3791 (monotonicity (monotonicity (monotonicity @x3782 (= $x2905 $x3783)) (= $x2910 $x3786)) (= (not $x2910) $x3789))))
+(let ((@x3688 (monotonicity (quant-intro (refl (= $x1238 $x1238)) (= $x1242 $x3681)) (= $x1245 $x3686))))
+(let ((@x3797 (monotonicity (monotonicity @x3688 @x3791 (= (or $x1245 (not $x2910)) $x3792)) (= $x2918 $x3795))))
+(let ((@x3803 (monotonicity (monotonicity @x3797 (= $x2923 $x3798)) (= (not $x2923) $x3801))))
+(let ((@x3675 (refl (= (or (not (or $x1164 $x1170)) $x273) (or (not (or $x1164 $x1170)) $x273)))))
+(let ((@x3680 (monotonicity (quant-intro @x3675 (= $x2737 $x3673)) (= (not $x2737) $x3678))))
+(let ((@x3669 (quant-intro (refl (= (or $x1164 $x1170 $x1180) (or $x1164 $x1170 $x1180))) (= $x2731 $x3665))))
+(let ((@x3662 (monotonicity (quant-intro (refl (= $x1201 $x1201)) (= $x1204 $x3655)) (= (not $x1204) $x3660))))
+(let ((@x3806 (monotonicity @x3662 (monotonicity @x3669 (= (not $x2731) $x3670)) @x3680 @x3803 (= $x2934 $x3804))))
+(let ((@x3621 (quant-intro (refl (= (or $x1094 $x917 $x1135) (or $x1094 $x917 $x1135))) (= $x2667 $x3617))))
+(let ((@x3627 (monotonicity (monotonicity @x3621 (= (not $x2667) $x3622)) (= (or (not $x2667) $x243) $x3625))))
+(let ((@x3636 (monotonicity (monotonicity (monotonicity @x3627 (= $x2675 $x3628)) (= $x2680 $x3631)) (= (not $x2680) $x3634))))
+(let ((?x2186 (+ ?x227 (* (- 1) (fun_app$a v_b_SP_G_3$ (?v1!9 ?0))) (* (- 1) (b_G$ (pair$ (?v1!9 ?0) ?0))))))
+(let (($x2187 (= ?x2186 0)))
+(let (($x2171 (<= (+ ?x227 (* (- 1) (fun_app$a v_b_SP_G_3$ (?v1!9 ?0)))) 0)))
+(let (($x2612 (not (or $x2171 (not $x2187)))))
+(let (($x2618 (or $x123 $x1094 $x2612)))
+(let ((@x3616 (monotonicity (quant-intro (refl (= $x2618 $x2618)) (= $x2623 $x3609)) (= (not $x2623) $x3614))))
+(let ((@x3642 (monotonicity (monotonicity @x3616 @x3636 (= (or (not $x2623) (not $x2680)) $x3637)) (= $x2689 $x3640))))
+(let ((?x1656 (fun_app$a v_b_SP_G_3$ ?v0!8)))
+(let ((?x1657 (* (- 1) ?x1656)))
+(let (($x2143 (= (+ ?x227 ?x1657 (b_G$ (pair$ ?0 ?v0!8))) 0)))
+(let (($x2575 (or (>= (+ ?x227 ?x1657) 0) (not $x2143))))
+(let ((@x3602 (monotonicity (quant-intro (refl (= $x2575 $x2575)) (= $x2586 $x3595)) (= (not $x2586) $x3600))))
+(let ((@x3608 (monotonicity (monotonicity @x3602 (= (or $x1654 $x1659 (not $x2586)) $x3603)) (= $x2594 $x3606))))
+(let ((@x3648 (monotonicity (monotonicity @x3608 @x3642 (= $x2694 $x3643)) (= (not $x2694) $x3646))))
+(let ((@x3589 (quant-intro (refl (= (or $x175 $x997) (or $x175 $x997))) (= $x2571 $x3585))))
+(let ((@x3651 (monotonicity (monotonicity @x3589 (= (not $x2571) $x3590)) @x3648 (= (or (not $x2571) $x2701 $x2702 $x2703 $x2704 (not $x2694)) $x3649))))
+(let ((@x3812 (monotonicity (monotonicity @x3651 (= $x2707 $x3652)) (monotonicity @x3806 (= $x2935 $x3807)) (= $x2940 $x3810))))
+(let ((?x2123 (+ ?x171 (* (- 1) (fun_app$a v_b_SP_G_1$ (?v1!7 ?0))) (* (- 1) (b_G$ (pair$ (?v1!7 ?0) ?0))))))
+(let (($x2124 (= ?x2123 0)))
+(let (($x2108 (<= (+ ?x171 (* (- 1) (fun_app$a v_b_SP_G_1$ (?v1!7 ?0)))) 0)))
+(let (($x2546 (not (or $x2108 (not (fun_app$ v_b_Visited_G_1$ (?v1!7 ?0))) (not $x2124)))))
+(let (($x2552 (or $x123 $x997 $x2546)))
+(let ((@x3583 (monotonicity (quant-intro (refl (= $x2552 $x2552)) (= $x2557 $x3576)) (= (not $x2557) $x3581))))
+(let ((@x3572 (quant-intro (refl (= (or $x176 $x917 $x985) (or $x176 $x917 $x985))) (= $x2529 $x3568))))
+(let ((@x3564 (quant-intro (refl (= (or $x175 (not $x177) $x1010) (or $x175 (not $x177) $x1010))) (= $x2507 $x3560))))
+(let ((@x3555 (quant-intro (refl (= (>= ?x171 0) (>= ?x171 0))) (= $x1046 $x3551))))
+(let ((?x2085 (+ ?x124 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?0))) (* (- 1) (b_G$ (pair$ (?v1!6 ?0) ?0))))))
+(let (($x2086 (= ?x2085 0)))
+(let (($x2070 (<= (+ ?x124 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?0)))) 0)))
+(let (($x2473 (not (or $x2070 (not (fun_app$ v_b_Visited_G_0$ (?v1!6 ?0))) (not $x2086)))))
+(let (($x942 (<= (+ b_Infinity$ (* (- 1) ?x124)) 0)))
+(let (($x2479 (or $x123 $x942 $x2473)))
+(let ((@x3549 (monotonicity (quant-intro (refl (= $x2479 $x2479)) (= $x2484 $x3542)) (= (not $x2484) $x3547))))
+(let ((@x3818 (monotonicity @x3549 (monotonicity @x3555 (= (not $x1046) $x3556)) (monotonicity @x3564 (= (not $x2507) $x3565)) (monotonicity @x3572 (= (not $x2529) $x3573)) @x3583 (monotonicity @x3812 (= (not $x2940) $x3813)) (= $x2953 $x3816))))
+(let (($x2435 (or (>= (+ ?x124 ?x1536) 0) $x134 (not (= (+ ?x124 ?x1536 (b_G$ (pair$ ?0 ?v0!5))) 0)))))
+(let ((@x3535 (monotonicity (quant-intro (refl (= $x2435 $x2435)) (= $x2446 $x3528)) (= (not $x2446) $x3533))))
+(let ((@x3541 (monotonicity (monotonicity @x3535 (= (or $x1533 $x1538 (not $x2446)) $x3536)) (= $x2454 $x3539))))
+(let ((@x3824 (monotonicity @x3541 (monotonicity @x3818 (= $x2954 $x3819)) (= $x2959 $x3822))))
+(let ((@x3523 (quant-intro (refl (= (or $x134 $x917 $x928) (or $x134 $x917 $x928))) (= $x2431 $x3519))))
+(let ((@x3830 (monotonicity (monotonicity @x3523 (= (not $x2431) $x3524)) (monotonicity @x3824 (= (not $x2959) $x3825)) (= (or (not $x2431) (not $x2959)) $x3828))))
+(let ((@x3839 (monotonicity (monotonicity (monotonicity @x3830 (= $x2968 $x3831)) (= $x2973 $x3834)) (= (not $x2973) $x3837))))
+(let (($x2381 (or $x133 (not (fun_app$ v_b_Visited_G_0$ ?1)) $x902)))
+(let ((@x3517 (monotonicity (quant-intro (refl (= $x2381 $x2381)) (= $x2386 $x3510)) (= (not $x2386) $x3515))))
+(let ((@x3845 (monotonicity (monotonicity @x3517 @x3839 (= (or (not $x2386) (not $x2973)) $x3840)) (= $x2982 $x3843))))
+(let ((@x3851 (monotonicity (monotonicity @x3845 (= $x2987 $x3846)) (= (not $x2987) $x3849))))
+(let ((@x3505 (quant-intro (refl (= (>= ?x124 0) (>= ?x124 0))) (= $x894 $x3501))))
+(let ((@x3854 (monotonicity (monotonicity @x3505 (= $x897 $x3506)) @x3851 (= (or $x897 (not $x2987)) $x3852))))
+(let ((@x3863 (monotonicity (monotonicity (monotonicity @x3854 (= $x2995 $x3855)) (= $x3000 $x3858)) (= (not $x3000) $x3861))))
+(let ((@x3869 (monotonicity (monotonicity @x3863 (= (or $x864 (not $x3000)) $x3864)) (= $x3008 $x3867))))
+(let (($x2246 (forall ((?v1 B_Vertex$) )(! (let ((?x1906 (v_b_SP_G_2$ ?v0!20)))
+(let ((?x1907 (* (- 1) ?x1906)))
+(let ((?x268 (v_b_SP_G_2$ ?v1)))
+(let (($x2237 (= (+ ?x268 ?x1907 (b_G$ (pair$ ?v1 ?v0!20))) 0)))
+(let (($x286 (fun_app$ v_b_Visited_G_2$ ?v1)))
+(let (($x2240 (and (not (>= (+ ?x268 ?x1907) 0)) $x286 $x2237)))
+(not $x2240))))))) :qid k!38))
+))
+(let (($x1910 (not $x1909)))
+(let (($x1905 (not $x1904)))
+(let (($x2255 (and $x1284 $x1905 $x1910 $x2246)))
+(let (($x1886 (not (and $x1878 (not $x1883)))))
+(let (($x1892 (or $x1886 $x1891)))
+(let (($x1893 (not $x1892)))
+(let (($x2260 (or $x1893 $x2255)))
+(let (($x2263 (and $x1265 $x2260)))
+(let (($x1859 (not (and (not $x1855) $x1857))))
+(let (($x1865 (or $x1859 $x1864)))
+(let (($x1866 (not $x1865)))
+(let (($x2266 (or $x1866 $x2263)))
+(let (($x2269 (and $x1251 $x2266)))
+(let (($x2272 (or $x1843 $x2269)))
+(let (($x2275 (and $x292 $x2272)))
+(let (($x2278 (or $x768 $x2275)))
+(let (($x2281 (and $x647 $x2278)))
+(let (($x2284 (or $x1825 $x2281)))
+(let (($x2287 (and $x1242 $x2284)))
+(let (($x2290 (or $x1808 $x2287)))
+(let (($x1774 (not $x1773)))
+(let (($x1769 (not $x1768)))
+(let (($x2296 (and $x1769 $x1774 $x253 $x1209 $x1204 $x261 $x1188 $x1194 $x2290)))
+(let (($x1744 (not $x243)))
+(let (($x1747 (and $x1141 $x1744)))
+(let (($x1728 (not (and (not $x1719) (not $x1725)))))
+(let (($x2207 (or $x1728 $x2204)))
+(let (($x2210 (not $x2207)))
+(let (($x2213 (or $x2210 $x1747)))
+(let (($x2198 (forall ((?v0 B_Vertex$) )(! (let ((?x227 (fun_app$a v_b_SP_G_3$ ?v0)))
+(let ((?x2186 (+ ?x227 (* (- 1) (fun_app$a v_b_SP_G_3$ (?v1!9 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!9 ?v0) ?v0))))))
+(let (($x2187 (= ?x2186 0)))
+(let (($x2171 (<= (+ ?x227 (* (- 1) (fun_app$a v_b_SP_G_3$ (?v1!9 ?v0)))) 0)))
+(let (($x2192 (and (not $x2171) $x2187)))
+(let (($x1094 (<= (+ b_Infinity$ (* (- 1) ?x227)) 0)))
+(let (($x1095 (not $x1094)))
+(let (($x123 (= ?v0 b_Source$)))
+(let (($x128 (not $x123)))
+(let (($x1098 (and $x128 $x1095)))
+(let (($x1101 (not $x1098)))
+(or $x1101 $x2192)))))))))))) :qid k!38))
+))
+(let (($x2216 (and $x2198 $x2213)))
+(let (($x2152 (forall ((?v1 B_Vertex$) )(! (let ((?x1656 (fun_app$a v_b_SP_G_3$ ?v0!8)))
+(let ((?x1657 (* (- 1) ?x1656)))
+(let ((?x227 (fun_app$a v_b_SP_G_3$ ?v1)))
+(let (($x2143 (= (+ ?x227 ?x1657 (b_G$ (pair$ ?v1 ?v0!8))) 0)))
+(let (($x2146 (and (not (>= (+ ?x227 ?x1657) 0)) $x2143)))
+(not $x2146)))))) :qid k!38))
+))
+(let (($x1660 (not $x1659)))
+(let (($x1655 (not $x1654)))
+(let (($x2158 (and $x1655 $x1660 $x2152)))
+(let (($x2219 (or $x2158 $x2216)))
+(let (($x1636 (forall ((?v0 B_Vertex$) )(! (let (($x997 (<= (+ b_Infinity$ (* (- 1) (fun_app$a v_b_SP_G_1$ ?v0))) 0)))
+(let (($x998 (not $x997)))
+(let (($x175 (fun_app$ v_b_Visited_G_1$ ?v0)))
+(let (($x176 (not $x175)))
+(let (($x1072 (and $x176 $x998)))
+(not $x1072)))))) :qid k!38))
+))
+(let (($x2225 (and $x1636 $x209 $x212 $x214 $x217 $x2219)))
+(let (($x2301 (or $x2225 $x2296)))
+(let (($x2135 (forall ((?v0 B_Vertex$) )(! (let ((?x171 (fun_app$a v_b_SP_G_1$ ?v0)))
+(let ((?x2123 (+ ?x171 (* (- 1) (fun_app$a v_b_SP_G_1$ (?v1!7 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!7 ?v0) ?v0))))))
+(let (($x2124 (= ?x2123 0)))
+(let ((?x1608 (?v1!7 ?v0)))
+(let (($x1613 (fun_app$ v_b_Visited_G_1$ ?x1608)))
+(let (($x2129 (and (not (<= (+ ?x171 (* (- 1) (fun_app$a v_b_SP_G_1$ ?x1608))) 0)) $x1613 $x2124)))
+(let (($x997 (<= (+ b_Infinity$ (* (- 1) ?x171)) 0)))
+(let (($x998 (not $x997)))
+(let (($x123 (= ?v0 b_Source$)))
+(let (($x128 (not $x123)))
+(let (($x1001 (and $x128 $x998)))
+(let (($x1004 (not $x1001)))
+(or $x1004 $x2129))))))))))))) :qid k!38))
+))
+(let (($x2097 (forall ((?v0 B_Vertex$) )(! (let ((?x124 (v_b_SP_G_0$ ?v0)))
+(let ((?x2085 (+ ?x124 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!6 ?v0) ?v0))))))
+(let (($x2086 (= ?x2085 0)))
+(let ((?x1573 (?v1!6 ?v0)))
+(let (($x1578 (fun_app$ v_b_Visited_G_0$ ?x1573)))
+(let (($x2091 (and (not (<= (+ ?x124 (* (- 1) (v_b_SP_G_0$ ?x1573))) 0)) $x1578 $x2086)))
+(let (($x123 (= ?v0 b_Source$)))
+(let (($x128 (not $x123)))
+(let (($x946 (and $x128 (not (<= (+ b_Infinity$ (* (- 1) ?x124)) 0)))))
+(let (($x949 (not $x946)))
+(or $x949 $x2091))))))))))) :qid k!38))
+))
+(let (($x2310 (and $x2097 $x170 $x1046 $x1040 $x992 $x2135 $x2301)))
+(let (($x1562 (forall ((?v1 B_Vertex$) )(! (let ((?x1535 (v_b_SP_G_0$ ?v0!5)))
+(let ((?x1536 (* (- 1) ?x1535)))
+(let ((?x124 (v_b_SP_G_0$ ?v1)))
+(let (($x133 (fun_app$ v_b_Visited_G_0$ ?v1)))
+(let (($x1549 (and (not (>= (+ ?x124 ?x1536) 0)) $x133 (= (+ ?x124 ?x1536 (b_G$ (pair$ ?v1 ?v0!5))) 0))))
+(not $x1549)))))) :qid k!38))
+))
+(let (($x2057 (and $x1534 $x1539 $x1562)))
+(let (($x2315 (or $x2057 $x2310)))
+(let (($x2318 (and $x934 $x2315)))
+(let (($x1515 (not (and $x1507 (not $x1512)))))
+(let (($x2046 (or $x1515 $x2043)))
+(let (($x2049 (not $x2046)))
+(let (($x2321 (or $x2049 $x2318)))
+(let (($x2324 (and $x909 $x2321)))
+(let (($x1488 (not (and (not $x1484) $x1486))))
+(let (($x1494 (or $x1488 $x1493)))
+(let (($x1495 (not $x1494)))
+(let (($x2327 (or $x1495 $x2324)))
+(let (($x2330 (and $x894 $x2327)))
+(let (($x2333 (or $x1472 $x2330)))
+(let (($x2336 (and $x142 $x2333)))
+(let (($x2339 (or $x864 $x2336)))
+(let ((@x2937 (rewrite (= (and $x1769 $x1774 $x253 $x1209 $x1204 $x261 $x2731 $x2737 $x2923) $x2935))))
+(let (($x2237 (= (+ ?x268 ?x1907 (b_G$ (pair$ ?0 ?v0!20))) 0)))
+(let (($x2240 (and (not (>= (+ ?x268 ?x1907) 0)) $x286 $x2237)))
+(let (($x2243 (not $x2240)))
+(let ((@x2838 (monotonicity (rewrite (= $x2240 (not $x2832))) (= $x2243 (not (not $x2832))))))
+(let ((@x2845 (quant-intro (trans @x2838 (rewrite (= (not (not $x2832)) $x2832)) (= $x2243 $x2832)) (= $x2246 $x2843))))
+(let ((@x2815 (monotonicity (rewrite (= $x1271 (not (or $x295 $x917)))) (= $x1274 (not (not (or $x295 $x917)))))))
+(let ((@x2819 (trans @x2815 (rewrite (= (not (not (or $x295 $x917))) (or $x295 $x917))) (= $x1274 (or $x295 $x917)))))
+(let ((@x2827 (trans (monotonicity @x2819 (= $x1281 (or (or $x295 $x917) $x1277))) (rewrite (= (or (or $x295 $x917) $x1277) (or $x295 $x917 $x1277))) (= $x1281 (or $x295 $x917 $x1277)))))
+(let ((@x2848 (monotonicity (quant-intro @x2827 (= $x1284 $x2828)) @x2845 (= $x2255 (and $x2828 $x1905 $x1910 $x2843)))))
+(let ((@x2856 (trans @x2848 (rewrite (= (and $x2828 $x1905 $x1910 $x2843) $x2852)) (= $x2255 $x2852))))
+(let ((@x2793 (monotonicity (rewrite (= (and $x1878 (not $x1883)) (not (or $x2786 $x1883)))) (= $x1886 (not (not (or $x2786 $x1883)))))))
+(let ((@x2797 (trans @x2793 (rewrite (= (not (not (or $x2786 $x1883))) (or $x2786 $x1883))) (= $x1886 (or $x2786 $x1883)))))
+(let ((@x2805 (trans (monotonicity @x2797 (= $x1892 (or (or $x2786 $x1883) $x1891))) (rewrite (= (or (or $x2786 $x1883) $x1891) $x2801)) (= $x1892 $x2801))))
+(let ((@x2859 (monotonicity (monotonicity @x2805 (= $x1893 $x2806)) @x2856 (= $x2260 $x2857))))
+(let ((@x2780 (rewrite (= (or (or $x286 (not $x296)) $x1257) (or $x286 (not $x296) $x1257)))))
+(let ((@x2772 (rewrite (= (not (not (or $x286 (not $x296)))) (or $x286 (not $x296))))))
+(let ((@x2770 (monotonicity (rewrite (= $x297 (not (or $x286 (not $x296))))) (= $x659 (not (not (or $x286 (not $x296))))))))
+(let ((@x2777 (monotonicity (trans @x2770 @x2772 (= $x659 (or $x286 (not $x296)))) (= $x1262 (or (or $x286 (not $x296)) $x1257)))))
+(let ((@x2785 (quant-intro (trans @x2777 @x2780 (= $x1262 (or $x286 (not $x296) $x1257))) (= $x1265 $x2783))))
+(let ((@x2870 (trans (monotonicity @x2785 @x2859 (= $x2263 (and $x2783 $x2857))) (rewrite (= (and $x2783 $x2857) $x2866)) (= $x2263 $x2866))))
+(let ((@x2747 (monotonicity (rewrite (= (and (not $x1855) $x1857) (not (or $x1855 $x2740)))) (= $x1859 (not (not (or $x1855 $x2740)))))))
+(let ((@x2751 (trans @x2747 (rewrite (= (not (not (or $x1855 $x2740))) (or $x1855 $x2740))) (= $x1859 (or $x1855 $x2740)))))
+(let ((@x2759 (trans (monotonicity @x2751 (= $x1865 (or (or $x1855 $x2740) $x1864))) (rewrite (= (or (or $x1855 $x2740) $x1864) $x2755)) (= $x1865 $x2755))))
+(let ((@x2873 (monotonicity (monotonicity @x2759 (= $x1866 $x2760)) @x2870 (= $x2266 $x2871))))
+(let ((@x2883 (trans (monotonicity @x2873 (= $x2269 (and $x1251 $x2871))) (rewrite (= (and $x1251 $x2871) $x2879)) (= $x2269 $x2879))))
+(let ((@x2889 (monotonicity (monotonicity @x2883 (= $x2272 $x2884)) (= $x2275 (and $x292 $x2884)))))
+(let ((@x2899 (monotonicity (trans @x2889 (rewrite (= (and $x292 $x2884) $x2892)) (= $x2275 $x2892)) (= $x2278 $x2897))))
+(let ((@x2909 (trans (monotonicity @x2899 (= $x2281 (and $x647 $x2897))) (rewrite (= (and $x647 $x2897) $x2905)) (= $x2281 $x2905))))
+(let ((@x2915 (monotonicity (monotonicity @x2909 (= $x2284 $x2910)) (= $x2287 (and $x1242 $x2910)))))
+(let ((@x2925 (monotonicity (trans @x2915 (rewrite (= (and $x1242 $x2910) $x2918)) (= $x2287 $x2918)) (= $x2290 $x2923))))
+(let ((@x2736 (monotonicity (rewrite (= $x1174 (not (or $x1164 $x1170)))) (= $x1191 (or (not (or $x1164 $x1170)) $x273)))))
+(let ((@x2718 (monotonicity (rewrite (= $x1174 (not (or $x1164 $x1170)))) (= $x1177 (not (not (or $x1164 $x1170)))))))
+(let ((@x2722 (trans @x2718 (rewrite (= (not (not (or $x1164 $x1170))) (or $x1164 $x1170))) (= $x1177 (or $x1164 $x1170)))))
+(let ((@x2730 (trans (monotonicity @x2722 (= $x1185 (or (or $x1164 $x1170) $x1180))) (rewrite (= (or (or $x1164 $x1170) $x1180) (or $x1164 $x1170 $x1180))) (= $x1185 (or $x1164 $x1170 $x1180)))))
+(let ((@x2928 (monotonicity (quant-intro @x2730 (= $x1188 $x2731)) (quant-intro @x2736 (= $x1194 $x2737)) @x2925 (= $x2296 (and $x1769 $x1774 $x253 $x1209 $x1204 $x261 $x2731 $x2737 $x2923)))))
+(let ((@x2654 (monotonicity (rewrite (= $x1129 (not (or $x1094 $x917)))) (= $x1132 (not (not (or $x1094 $x917)))))))
+(let ((@x2658 (trans @x2654 (rewrite (= (not (not (or $x1094 $x917))) (or $x1094 $x917))) (= $x1132 (or $x1094 $x917)))))
+(let ((@x2666 (trans (monotonicity @x2658 (= $x1138 (or (or $x1094 $x917) $x1135))) (rewrite (= (or (or $x1094 $x917) $x1135) (or $x1094 $x917 $x1135))) (= $x1138 (or $x1094 $x917 $x1135)))))
+(let ((@x2672 (monotonicity (quant-intro @x2666 (= $x1141 $x2667)) (= $x1747 (and $x2667 $x1744)))))
+(let ((@x2632 (monotonicity (rewrite (= (and (not $x1719) (not $x1725)) (not (or $x1719 $x1725)))) (= $x1728 (not (not (or $x1719 $x1725)))))))
+(let ((@x2636 (trans @x2632 (rewrite (= (not (not (or $x1719 $x1725))) (or $x1719 $x1725))) (= $x1728 (or $x1719 $x1725)))))
+(let ((@x2644 (trans (monotonicity @x2636 (= $x2207 (or (or $x1719 $x1725) $x2204))) (rewrite (= (or (or $x1719 $x1725) $x2204) $x2640)) (= $x2207 $x2640))))
+(let ((@x2682 (monotonicity (monotonicity @x2644 (= $x2210 $x2645)) (trans @x2672 (rewrite (= (and $x2667 $x1744) $x2675)) (= $x1747 $x2675)) (= $x2213 $x2680))))
+(let ((@x2605 (monotonicity (rewrite (= $x1098 (not (or $x123 $x1094)))) (= $x1101 (not (not (or $x123 $x1094)))))))
+(let ((@x2609 (trans @x2605 (rewrite (= (not (not (or $x123 $x1094))) (or $x123 $x1094))) (= $x1101 (or $x123 $x1094)))))
+(let ((@x2617 (monotonicity @x2609 (rewrite (= (and (not $x2171) $x2187) $x2612)) (= (or $x1101 (and (not $x2171) $x2187)) (or (or $x123 $x1094) $x2612)))))
+(let ((@x2622 (trans @x2617 (rewrite (= (or (or $x123 $x1094) $x2612) $x2618)) (= (or $x1101 (and (not $x2171) $x2187)) $x2618))))
+(let ((@x2685 (monotonicity (quant-intro @x2622 (= $x2198 $x2623)) @x2682 (= $x2216 (and $x2623 $x2680)))))
+(let (($x2146 (and (not (>= (+ ?x227 ?x1657) 0)) $x2143)))
+(let (($x2149 (not $x2146)))
+(let ((@x2581 (monotonicity (rewrite (= $x2146 (not $x2575))) (= $x2149 (not (not $x2575))))))
+(let ((@x2588 (quant-intro (trans @x2581 (rewrite (= (not (not $x2575)) $x2575)) (= $x2149 $x2575)) (= $x2152 $x2586))))
+(let ((@x2598 (trans (monotonicity @x2588 (= $x2158 (and $x1655 $x1660 $x2586))) (rewrite (= (and $x1655 $x1660 $x2586) $x2594)) (= $x2158 $x2594))))
+(let ((@x2696 (monotonicity @x2598 (trans @x2685 (rewrite (= (and $x2623 $x2680) $x2689)) (= $x2216 $x2689)) (= $x2219 $x2694))))
+(let ((@x2566 (monotonicity (rewrite (= $x1072 (not (or $x175 $x997)))) (= (not $x1072) (not (not (or $x175 $x997)))))))
+(let ((@x2570 (trans @x2566 (rewrite (= (not (not (or $x175 $x997))) (or $x175 $x997))) (= (not $x1072) (or $x175 $x997)))))
+(let ((@x2699 (monotonicity (quant-intro @x2570 (= $x1636 $x2571)) @x2696 (= $x2225 (and $x2571 $x209 $x212 $x214 $x217 $x2694)))))
+(let ((@x2711 (trans @x2699 (rewrite (= (and $x2571 $x209 $x212 $x214 $x217 $x2694) $x2707)) (= $x2225 $x2707))))
+(let ((?x1608 (?v1!7 ?0)))
+(let (($x1613 (fun_app$ v_b_Visited_G_1$ ?x1608)))
+(let (($x2129 (and (not $x2108) $x1613 $x2124)))
+(let (($x2132 (or $x1004 $x2129)))
+(let ((@x2538 (monotonicity (rewrite (= $x1001 (not (or $x123 $x997)))) (= $x1004 (not (not (or $x123 $x997)))))))
+(let ((@x2542 (trans @x2538 (rewrite (= (not (not (or $x123 $x997))) (or $x123 $x997))) (= $x1004 (or $x123 $x997)))))
+(let ((@x2551 (monotonicity @x2542 (rewrite (= $x2129 $x2546)) (= $x2132 (or (or $x123 $x997) $x2546)))))
+(let ((@x2556 (trans @x2551 (rewrite (= (or (or $x123 $x997) $x2546) $x2552)) (= $x2132 $x2552))))
+(let ((@x2516 (monotonicity (rewrite (= $x978 (not (or $x176 $x917)))) (= $x981 (not (not (or $x176 $x917)))))))
+(let ((@x2520 (trans @x2516 (rewrite (= (not (not (or $x176 $x917))) (or $x176 $x917))) (= $x981 (or $x176 $x917)))))
+(let ((@x2528 (trans (monotonicity @x2520 (= $x989 (or (or $x176 $x917) $x985))) (rewrite (= (or (or $x176 $x917) $x985) (or $x176 $x917 $x985))) (= $x989 (or $x176 $x917 $x985)))))
+(let ((@x2504 (rewrite (= (or (or $x175 (not $x177)) $x1010) (or $x175 (not $x177) $x1010)))))
+(let ((@x2496 (rewrite (= (not (not (or $x175 (not $x177)))) (or $x175 (not $x177))))))
+(let ((@x2494 (monotonicity (rewrite (= $x178 (not (or $x175 (not $x177))))) (= $x398 (not (not (or $x175 (not $x177))))))))
+(let ((@x2501 (monotonicity (trans @x2494 @x2496 (= $x398 (or $x175 (not $x177)))) (= $x1037 (or (or $x175 (not $x177)) $x1010)))))
+(let ((@x2509 (quant-intro (trans @x2501 @x2504 (= $x1037 (or $x175 (not $x177) $x1010))) (= $x1040 $x2507))))
+(let ((?x1573 (?v1!6 ?0)))
+(let (($x1578 (fun_app$ v_b_Visited_G_0$ ?x1573)))
+(let (($x2091 (and (not $x2070) $x1578 $x2086)))
+(let (($x2094 (or $x949 $x2091)))
+(let ((@x2465 (monotonicity (rewrite (= $x946 (not (or $x123 $x942)))) (= $x949 (not (not (or $x123 $x942)))))))
+(let ((@x2469 (trans @x2465 (rewrite (= (not (not (or $x123 $x942))) (or $x123 $x942))) (= $x949 (or $x123 $x942)))))
+(let ((@x2478 (monotonicity @x2469 (rewrite (= $x2091 $x2473)) (= $x2094 (or (or $x123 $x942) $x2473)))))
+(let ((@x2483 (trans @x2478 (rewrite (= (or (or $x123 $x942) $x2473) $x2479)) (= $x2094 $x2479))))
+(let ((@x2945 (monotonicity (quant-intro @x2483 (= $x2097 $x2484)) @x2509 (quant-intro @x2528 (= $x992 $x2529)) (quant-intro @x2556 (= $x2135 $x2557)) (monotonicity @x2711 (trans @x2928 @x2937 (= $x2296 $x2935)) (= $x2301 $x2940)) (= $x2310 (and $x2484 $x170 $x1046 $x2507 $x2529 $x2557 $x2940)))))
+(let ((@x2958 (trans @x2945 (rewrite (= (and $x2484 $x170 $x1046 $x2507 $x2529 $x2557 $x2940) $x2954)) (= $x2310 $x2954))))
+(let (($x1549 (and (not (>= (+ ?x124 ?x1536) 0)) $x133 (= (+ ?x124 ?x1536 (b_G$ (pair$ ?0 ?v0!5))) 0))))
+(let (($x1559 (not $x1549)))
+(let ((@x2441 (monotonicity (rewrite (= $x1549 (not $x2435))) (= $x1559 (not (not $x2435))))))
+(let ((@x2448 (quant-intro (trans @x2441 (rewrite (= (not (not $x2435)) $x2435)) (= $x1559 $x2435)) (= $x1562 $x2446))))
+(let ((@x2458 (trans (monotonicity @x2448 (= $x2057 (and $x1534 $x1539 $x2446))) (rewrite (= (and $x1534 $x1539 $x2446) $x2454)) (= $x2057 $x2454))))
+(let ((@x2418 (monotonicity (rewrite (= $x921 (not (or $x134 $x917)))) (= $x924 (not (not (or $x134 $x917)))))))
+(let ((@x2422 (trans @x2418 (rewrite (= (not (not (or $x134 $x917))) (or $x134 $x917))) (= $x924 (or $x134 $x917)))))
+(let ((@x2430 (trans (monotonicity @x2422 (= $x931 (or (or $x134 $x917) $x928))) (rewrite (= (or (or $x134 $x917) $x928) (or $x134 $x917 $x928))) (= $x931 (or $x134 $x917 $x928)))))
+(let ((@x2964 (monotonicity (quant-intro @x2430 (= $x934 $x2431)) (monotonicity @x2458 @x2958 (= $x2315 $x2959)) (= $x2318 (and $x2431 $x2959)))))
+(let ((@x2396 (monotonicity (rewrite (= (and $x1507 (not $x1512)) (not (or $x2389 $x1512)))) (= $x1515 (not (not (or $x2389 $x1512)))))))
+(let ((@x2400 (trans @x2396 (rewrite (= (not (not (or $x2389 $x1512))) (or $x2389 $x1512))) (= $x1515 (or $x2389 $x1512)))))
+(let ((@x2408 (trans (monotonicity @x2400 (= $x2046 (or (or $x2389 $x1512) $x2043))) (rewrite (= (or (or $x2389 $x1512) $x2043) $x2404)) (= $x2046 $x2404))))
+(let ((@x2975 (monotonicity (monotonicity @x2408 (= $x2049 $x2409)) (trans @x2964 (rewrite (= (and $x2431 $x2959) $x2968)) (= $x2318 $x2968)) (= $x2321 $x2973))))
+(let (($x2382 (= (or (or $x133 (not (fun_app$ v_b_Visited_G_0$ ?1))) $x902) $x2381)))
+(let (($x2379 (= $x906 (or (or $x133 (not (fun_app$ v_b_Visited_G_0$ ?1))) $x902))))
+(let (($x2367 (or $x133 (not (fun_app$ v_b_Visited_G_0$ ?1)))))
+(let ((@x2373 (monotonicity (rewrite (= $x146 (not $x2367))) (= $x377 (not (not $x2367))))))
+(let ((@x2380 (monotonicity (trans @x2373 (rewrite (= (not (not $x2367)) $x2367)) (= $x377 $x2367)) $x2379)))
+(let ((@x2388 (quant-intro (trans @x2380 (rewrite $x2382) (= $x906 $x2381)) (= $x909 $x2386))))
+(let ((@x2986 (trans (monotonicity @x2388 @x2975 (= $x2324 (and $x2386 $x2973))) (rewrite (= (and $x2386 $x2973) $x2982)) (= $x2324 $x2982))))
+(let ((@x2350 (monotonicity (rewrite (= (and (not $x1484) $x1486) (not (or $x1484 $x2343)))) (= $x1488 (not (not (or $x1484 $x2343)))))))
+(let ((@x2354 (trans @x2350 (rewrite (= (not (not (or $x1484 $x2343))) (or $x1484 $x2343))) (= $x1488 (or $x1484 $x2343)))))
+(let ((@x2362 (trans (monotonicity @x2354 (= $x1494 (or (or $x1484 $x2343) $x1493))) (rewrite (= (or (or $x1484 $x2343) $x1493) $x2358)) (= $x1494 $x2358))))
+(let ((@x2989 (monotonicity (monotonicity @x2362 (= $x1495 $x2363)) @x2986 (= $x2327 $x2987))))
+(let ((@x2999 (trans (monotonicity @x2989 (= $x2330 (and $x894 $x2987))) (rewrite (= (and $x894 $x2987) $x2995)) (= $x2330 $x2995))))
+(let ((@x3005 (monotonicity (monotonicity @x2999 (= $x2333 $x3000)) (= $x2336 (and $x142 $x3000)))))
+(let ((@x3015 (monotonicity (trans @x3005 (rewrite (= (and $x142 $x3000) $x3008)) (= $x2336 $x3008)) (= $x2339 $x3013))))
+(let (($x1933 (forall ((?v1 B_Vertex$) )(! (let ((?x1906 (v_b_SP_G_2$ ?v0!20)))
+(let ((?x1907 (* (- 1) ?x1906)))
+(let ((?x268 (v_b_SP_G_2$ ?v1)))
+(let (($x286 (fun_app$ v_b_Visited_G_2$ ?v1)))
+(let (($x1920 (and (not (>= (+ ?x268 ?x1907) 0)) $x286 (= (+ (b_G$ (pair$ ?v1 ?v0!20)) ?x268 ?x1907) 0))))
+(not $x1920)))))) :qid k!38))
+))
+(let (($x1927 (not (not (and $x1905 $x1910)))))
+(let (($x1937 (and $x1927 $x1933)))
+(let (($x1942 (and $x1284 $x1937)))
+(let (($x1946 (or $x1893 $x1942)))
+(let (($x1950 (and $x1265 $x1946)))
+(let (($x1954 (or $x1866 $x1950)))
+(let (($x1958 (and $x1251 $x1954)))
+(let (($x1962 (or $x1843 $x1958)))
+(let (($x1837 (not $x768)))
+(let (($x1966 (and $x1837 $x1962)))
+(let (($x1970 (or $x768 $x1966)))
+(let (($x1974 (and $x647 $x1970)))
+(let (($x1978 (or $x1825 $x1974)))
+(let (($x1982 (and $x1242 $x1978)))
+(let (($x1986 (or $x1808 $x1982)))
+(let (($x1796 (and (and $x1769 $x1774) $x253 $x1209 $x1204 $x261 $x1188 $x1194)))
+(let (($x1990 (and $x1796 $x1986)))
+(let (($x1734 (not (or $x1728 (>= (+ ?x1722 ?x1716 ?x1730) 0)))))
+(let (($x1751 (or $x1734 $x1747)))
+(let (($x1708 (forall ((?v0 B_Vertex$) )(! (let ((?x227 (fun_app$a v_b_SP_G_3$ ?v0)))
+(let ((?x1092 (* (- 1) ?x227)))
+(let ((?x1694 (fun_app$a v_b_SP_G_3$ (?v1!9 ?v0))))
+(let ((?x1699 (b_G$ (pair$ (?v1!9 ?v0) ?v0))))
+(let (($x1701 (= (+ ?x1699 ?x1694 ?x1092) 0)))
+(let (($x1702 (and (not (>= (+ ?x1694 ?x1092) 0)) $x1701)))
+(let (($x1094 (<= (+ b_Infinity$ ?x1092) 0)))
+(let (($x1095 (not $x1094)))
+(let (($x123 (= ?v0 b_Source$)))
+(let (($x128 (not $x123)))
+(let (($x1098 (and $x128 $x1095)))
+(let (($x1101 (not $x1098)))
+(or $x1101 $x1702))))))))))))) :qid k!38))
+))
+(let (($x1755 (and $x1708 $x1751)))
+(let (($x1682 (forall ((?v1 B_Vertex$) )(! (let ((?x1656 (fun_app$a v_b_SP_G_3$ ?v0!8)))
+(let ((?x1657 (* (- 1) ?x1656)))
+(let ((?x227 (fun_app$a v_b_SP_G_3$ ?v1)))
+(let (($x1670 (and (not (>= (+ ?x227 ?x1657) 0)) (= (+ (b_G$ (pair$ ?v1 ?v0!8)) ?x227 ?x1657) 0))))
+(not $x1670))))) :qid k!38))
+))
+(let (($x1676 (not (not (and $x1655 $x1660)))))
+(let (($x1686 (and $x1676 $x1682)))
+(let (($x1759 (or $x1686 $x1755)))
+(let (($x1647 (and $x1636 $x209 $x212 $x214 $x217)))
+(let (($x1763 (and $x1647 $x1759)))
+(let (($x1994 (or $x1763 $x1990)))
+(let (($x1624 (forall ((?v0 B_Vertex$) )(! (let ((?x171 (fun_app$a v_b_SP_G_1$ ?v0)))
+(let ((?x995 (* (- 1) ?x171)))
+(let ((?x1608 (?v1!7 ?v0)))
+(let ((?x1609 (fun_app$a v_b_SP_G_1$ ?x1608)))
+(let ((?x1615 (b_G$ (pair$ ?x1608 ?v0))))
+(let (($x1617 (= (+ ?x1615 ?x1609 ?x995) 0)))
+(let (($x1613 (fun_app$ v_b_Visited_G_1$ ?x1608)))
+(let (($x1618 (and (not (>= (+ ?x1609 ?x995) 0)) $x1613 $x1617)))
+(let (($x997 (<= (+ b_Infinity$ ?x995) 0)))
+(let (($x998 (not $x997)))
+(let (($x123 (= ?v0 b_Source$)))
+(let (($x128 (not $x123)))
+(let (($x1001 (and $x128 $x998)))
+(let (($x1004 (not $x1001)))
+(or $x1004 $x1618))))))))))))))) :qid k!38))
+))
+(let (($x1589 (forall ((?v0 B_Vertex$) )(! (let ((?x1580 (b_G$ (pair$ (?v1!6 ?v0) ?v0))))
+(let ((?x124 (v_b_SP_G_0$ ?v0)))
+(let ((?x940 (* (- 1) ?x124)))
+(let ((?x1573 (?v1!6 ?v0)))
+(let ((?x1574 (v_b_SP_G_0$ ?x1573)))
+(let (($x1582 (= (+ ?x1574 ?x940 ?x1580) 0)))
+(let (($x1578 (fun_app$ v_b_Visited_G_0$ ?x1573)))
+(let (($x1583 (and (not (>= (+ ?x1574 ?x940) 0)) $x1578 $x1582)))
+(let (($x123 (= ?v0 b_Source$)))
+(let (($x128 (not $x123)))
+(let (($x946 (and $x128 (not (<= (+ b_Infinity$ ?x940) 0)))))
+(let (($x949 (not $x946)))
+(or $x949 $x1583))))))))))))) :qid k!38))
+))
+(let (($x1627 (and $x1589 $x170 $x1046 $x1040 $x992 $x1624)))
+(let (($x1998 (and $x1627 $x1994)))
+(let (($x1556 (not (not (and $x1534 $x1539)))))
+(let (($x1566 (and $x1556 $x1562)))
+(let (($x2002 (or $x1566 $x1998)))
+(let (($x2006 (and $x934 $x2002)))
+(let (($x1522 (not (or $x1515 (>= (+ ?x1516 ?x1518 ?x1509) 0)))))
+(let (($x2010 (or $x1522 $x2006)))
+(let (($x2014 (and $x909 $x2010)))
+(let (($x2018 (or $x1495 $x2014)))
+(let (($x2022 (and $x894 $x2018)))
+(let (($x2026 (or $x1472 $x2022)))
+(let (($x1466 (not $x864)))
+(let (($x2030 (and $x1466 $x2026)))
+(let (($x2034 (or $x864 $x2030)))
+(let (($x1920 (and (not (>= (+ ?x268 ?x1907) 0)) $x286 (= (+ (b_G$ (pair$ ?0 ?v0!20)) ?x268 ?x1907) 0))))
+(let (($x1930 (not $x1920)))
+(let (($x2235 (= (+ (b_G$ (pair$ ?0 ?v0!20)) ?x268 ?x1907) (+ ?x268 ?x1907 (b_G$ (pair$ ?0 ?v0!20))))))
+(let ((@x2239 (monotonicity (rewrite $x2235) (= (= (+ (b_G$ (pair$ ?0 ?v0!20)) ?x268 ?x1907) 0) $x2237))))
+(let ((@x2248 (quant-intro (monotonicity (monotonicity @x2239 (= $x1920 $x2240)) (= $x1930 $x2243)) (= $x1933 $x2246))))
+(let ((@x2251 (monotonicity (rewrite (= $x1927 (and $x1905 $x1910))) @x2248 (= $x1937 (and (and $x1905 $x1910) $x2246)))))
+(let ((@x2259 (trans (monotonicity @x2251 (= $x1942 (and $x1284 (and (and $x1905 $x1910) $x2246)))) (rewrite (= (and $x1284 (and (and $x1905 $x1910) $x2246)) $x2255)) (= $x1942 $x2255))))
+(let ((@x2268 (monotonicity (monotonicity (monotonicity @x2259 (= $x1946 $x2260)) (= $x1950 $x2263)) (= $x1954 $x2266))))
+(let ((@x2277 (monotonicity (rewrite (= $x1837 $x292)) (monotonicity (monotonicity @x2268 (= $x1958 $x2269)) (= $x1962 $x2272)) (= $x1966 $x2275))))
+(let ((@x2286 (monotonicity (monotonicity (monotonicity @x2277 (= $x1970 $x2278)) (= $x1974 $x2281)) (= $x1978 $x2284))))
+(let ((@x2295 (monotonicity (monotonicity (monotonicity @x2286 (= $x1982 $x2287)) (= $x1986 $x2290)) (= $x1990 (and $x1796 $x2290)))))
+(let ((@x2206 (monotonicity (rewrite (= (+ ?x1722 ?x1716 ?x1730) ?x2201)) (= (>= (+ ?x1722 ?x1716 ?x1730) 0) $x2204))))
+(let ((@x2209 (monotonicity @x2206 (= (or $x1728 (>= (+ ?x1722 ?x1716 ?x1730) 0)) $x2207))))
+(let (($x2192 (and (not $x2171) $x2187)))
+(let (($x2195 (or $x1101 $x2192)))
+(let ((?x1092 (* (- 1) ?x227)))
+(let ((?x1694 (fun_app$a v_b_SP_G_3$ (?v1!9 ?0))))
+(let ((?x1699 (b_G$ (pair$ (?v1!9 ?0) ?0))))
+(let (($x1701 (= (+ ?x1699 ?x1694 ?x1092) 0)))
+(let (($x1702 (and (not (>= (+ ?x1694 ?x1092) 0)) $x1701)))
+(let (($x1705 (or $x1101 $x1702)))
+(let ((@x2184 (monotonicity (rewrite (= (+ ?x1699 ?x1694 ?x1092) (+ ?x1092 ?x1694 ?x1699))) (= $x1701 (= (+ ?x1092 ?x1694 ?x1699) 0)))))
+(let ((@x2191 (trans @x2184 (rewrite (= (= (+ ?x1092 ?x1694 ?x1699) 0) $x2187)) (= $x1701 $x2187))))
+(let ((@x2168 (monotonicity (rewrite (= (+ ?x1694 ?x1092) (+ ?x1092 ?x1694))) (= (>= (+ ?x1694 ?x1092) 0) (>= (+ ?x1092 ?x1694) 0)))))
+(let ((@x2175 (trans @x2168 (rewrite (= (>= (+ ?x1092 ?x1694) 0) $x2171)) (= (>= (+ ?x1694 ?x1092) 0) $x2171))))
+(let ((@x2194 (monotonicity (monotonicity @x2175 (= (not (>= (+ ?x1694 ?x1092) 0)) (not $x2171))) @x2191 (= $x1702 $x2192))))
+(let ((@x2218 (monotonicity (quant-intro (monotonicity @x2194 (= $x1705 $x2195)) (= $x1708 $x2198)) (monotonicity (monotonicity @x2209 (= $x1734 $x2210)) (= $x1751 $x2213)) (= $x1755 $x2216))))
+(let (($x1670 (and (not (>= (+ ?x227 ?x1657) 0)) (= (+ (b_G$ (pair$ ?0 ?v0!8)) ?x227 ?x1657) 0))))
+(let (($x1679 (not $x1670)))
+(let (($x2141 (= (+ (b_G$ (pair$ ?0 ?v0!8)) ?x227 ?x1657) (+ ?x227 ?x1657 (b_G$ (pair$ ?0 ?v0!8))))))
+(let ((@x2145 (monotonicity (rewrite $x2141) (= (= (+ (b_G$ (pair$ ?0 ?v0!8)) ?x227 ?x1657) 0) $x2143))))
+(let ((@x2154 (quant-intro (monotonicity (monotonicity @x2145 (= $x1670 $x2146)) (= $x1679 $x2149)) (= $x1682 $x2152))))
+(let ((@x2157 (monotonicity (rewrite (= $x1676 (and $x1655 $x1660))) @x2154 (= $x1686 (and (and $x1655 $x1660) $x2152)))))
+(let ((@x2162 (trans @x2157 (rewrite (= (and (and $x1655 $x1660) $x2152) $x2158)) (= $x1686 $x2158))))
+(let ((@x2224 (monotonicity (monotonicity @x2162 @x2218 (= $x1759 $x2219)) (= $x1763 (and $x1647 $x2219)))))
+(let ((@x2303 (monotonicity (trans @x2224 (rewrite (= (and $x1647 $x2219) $x2225)) (= $x1763 $x2225)) (trans @x2295 (rewrite (= (and $x1796 $x2290) $x2296)) (= $x1990 $x2296)) (= $x1994 $x2301))))
+(let ((?x995 (* (- 1) ?x171)))
+(let ((?x1609 (fun_app$a v_b_SP_G_1$ ?x1608)))
+(let ((?x1615 (b_G$ (pair$ ?x1608 ?0))))
+(let (($x1617 (= (+ ?x1615 ?x1609 ?x995) 0)))
+(let (($x1618 (and (not (>= (+ ?x1609 ?x995) 0)) $x1613 $x1617)))
+(let (($x1621 (or $x1004 $x1618)))
+(let ((@x2121 (monotonicity (rewrite (= (+ ?x1615 ?x1609 ?x995) (+ ?x995 ?x1609 ?x1615))) (= $x1617 (= (+ ?x995 ?x1609 ?x1615) 0)))))
+(let ((@x2128 (trans @x2121 (rewrite (= (= (+ ?x995 ?x1609 ?x1615) 0) $x2124)) (= $x1617 $x2124))))
+(let ((@x2105 (monotonicity (rewrite (= (+ ?x1609 ?x995) (+ ?x995 ?x1609))) (= (>= (+ ?x1609 ?x995) 0) (>= (+ ?x995 ?x1609) 0)))))
+(let ((@x2112 (trans @x2105 (rewrite (= (>= (+ ?x995 ?x1609) 0) $x2108)) (= (>= (+ ?x1609 ?x995) 0) $x2108))))
+(let ((@x2131 (monotonicity (monotonicity @x2112 (= (not (>= (+ ?x1609 ?x995) 0)) (not $x2108))) @x2128 (= $x1618 $x2129))))
+(let (($x1582 (= (+ (v_b_SP_G_0$ ?x1573) (* (- 1) ?x124) (b_G$ (pair$ ?x1573 ?0))) 0)))
+(let (($x1583 (and (not (>= (+ (v_b_SP_G_0$ ?x1573) (* (- 1) ?x124)) 0)) $x1578 $x1582)))
+(let (($x1586 (or $x949 $x1583)))
+(let (($x2081 (= (+ (* (- 1) ?x124) (v_b_SP_G_0$ ?x1573) (b_G$ (pair$ ?x1573 ?0))) 0)))
+(let (($x2079 (= (+ (v_b_SP_G_0$ ?x1573) (* (- 1) ?x124) (b_G$ (pair$ ?x1573 ?0))) (+ (* (- 1) ?x124) (v_b_SP_G_0$ ?x1573) (b_G$ (pair$ ?x1573 ?0))))))
+(let ((@x2090 (trans (monotonicity (rewrite $x2079) (= $x1582 $x2081)) (rewrite (= $x2081 $x2086)) (= $x1582 $x2086))))
+(let (($x2076 (= (not (>= (+ (v_b_SP_G_0$ ?x1573) (* (- 1) ?x124)) 0)) (not $x2070))))
+(let (($x1576 (>= (+ (v_b_SP_G_0$ ?x1573) (* (- 1) ?x124)) 0)))
+(let (($x2063 (= (+ (v_b_SP_G_0$ ?x1573) (* (- 1) ?x124)) (+ (* (- 1) ?x124) (v_b_SP_G_0$ ?x1573)))))
+(let ((@x2067 (monotonicity (rewrite $x2063) (= $x1576 (>= (+ (* (- 1) ?x124) (v_b_SP_G_0$ ?x1573)) 0)))))
+(let ((@x2074 (trans @x2067 (rewrite (= (>= (+ (* (- 1) ?x124) (v_b_SP_G_0$ ?x1573)) 0) $x2070)) (= $x1576 $x2070))))
+(let ((@x2096 (monotonicity (monotonicity (monotonicity @x2074 $x2076) @x2090 (= $x1583 $x2091)) (= $x1586 $x2094))))
+(let ((@x2306 (monotonicity (quant-intro @x2096 (= $x1589 $x2097)) (quant-intro (monotonicity @x2131 (= $x1621 $x2132)) (= $x1624 $x2135)) (= $x1627 (and $x2097 $x170 $x1046 $x1040 $x992 $x2135)))))
+(let ((@x2309 (monotonicity @x2306 @x2303 (= $x1998 (and (and $x2097 $x170 $x1046 $x1040 $x992 $x2135) $x2301)))))
+(let ((@x2314 (trans @x2309 (rewrite (= (and (and $x2097 $x170 $x1046 $x1040 $x992 $x2135) $x2301) $x2310)) (= $x1998 $x2310))))
+(let ((@x2056 (monotonicity (rewrite (= $x1556 (and $x1534 $x1539))) (= $x1566 (and (and $x1534 $x1539) $x1562)))))
+(let ((@x2061 (trans @x2056 (rewrite (= (and (and $x1534 $x1539) $x1562) $x2057)) (= $x1566 $x2057))))
+(let ((@x2320 (monotonicity (monotonicity @x2061 @x2314 (= $x2002 $x2315)) (= $x2006 $x2318))))
+(let ((@x2045 (monotonicity (rewrite (= (+ ?x1516 ?x1518 ?x1509) ?x2040)) (= (>= (+ ?x1516 ?x1518 ?x1509) 0) $x2043))))
+(let ((@x2048 (monotonicity @x2045 (= (or $x1515 (>= (+ ?x1516 ?x1518 ?x1509) 0)) $x2046))))
+(let ((@x2323 (monotonicity (monotonicity @x2048 (= $x1522 $x2049)) @x2320 (= $x2010 $x2321))))
+(let ((@x2332 (monotonicity (monotonicity (monotonicity @x2323 (= $x2014 $x2324)) (= $x2018 $x2327)) (= $x2022 $x2330))))
+(let ((@x2338 (monotonicity (rewrite (= $x1466 $x142)) (monotonicity @x2332 (= $x2026 $x2333)) (= $x2030 $x2336))))
+(let (($x1921 (exists ((?v1 B_Vertex$) )(! (let ((?x1906 (v_b_SP_G_2$ ?v0!20)))
+(let ((?x1907 (* (- 1) ?x1906)))
+(let ((?x268 (v_b_SP_G_2$ ?v1)))
+(let (($x286 (fun_app$ v_b_Visited_G_2$ ?v1)))
+(and (not (>= (+ ?x268 ?x1907) 0)) $x286 (= (+ (b_G$ (pair$ ?v1 ?v0!20)) ?x268 ?x1907) 0)))))) :qid k!38))
+))
+(let ((@x1939 (nnf-neg (refl (~ $x1927 $x1927)) (nnf-neg (refl (~ $x1930 $x1930)) (~ (not $x1921) $x1933)) (~ (not (or (not (and $x1905 $x1910)) $x1921)) $x1937))))
+(let ((@x1941 (trans (sk (~ (not $x1324) (not (or (not (and $x1905 $x1910)) $x1921)))) @x1939 (~ (not $x1324) $x1937))))
+(let ((@x1902 (nnf-neg (nnf-pos (refl (~ $x1281 $x1281)) (~ $x1284 $x1284)) (~ (not $x1287) $x1284))))
+(let ((@x1949 (nnf-neg (sk (~ $x1287 $x1893)) (nnf-neg @x1902 @x1941 (~ (not $x1327) $x1942)) (~ (not $x1330) $x1946))))
+(let ((@x1875 (nnf-neg (nnf-pos (refl (~ $x1262 $x1262)) (~ $x1265 $x1265)) (~ (not $x1268) $x1265))))
+(let ((@x1957 (nnf-neg (sk (~ $x1268 $x1866)) (nnf-neg @x1875 @x1949 (~ (not $x1333) $x1950)) (~ (not $x1336) $x1954))))
+(let ((@x1852 (nnf-neg (nnf-pos (refl (~ (>= ?x268 0) (>= ?x268 0))) (~ $x1251 $x1251)) (~ (not $x1254) $x1251))))
+(let ((@x1965 (nnf-neg (sk (~ $x1254 $x1843)) (nnf-neg @x1852 @x1957 (~ (not $x1339) $x1958)) (~ (not $x1342) $x1962))))
+(let ((@x1973 (nnf-neg (refl (~ $x768 $x768)) (nnf-neg (refl (~ $x1837 $x1837)) @x1965 (~ (not $x1345) $x1966)) (~ (not $x1348) $x1970))))
+(let ((@x1834 (nnf-neg (nnf-pos (refl (~ (or $x295 $x273) (or $x295 $x273))) (~ $x647 $x647)) (~ (not $x780) $x647))))
+(let ((@x1981 (nnf-neg (sk (~ $x780 $x1825)) (nnf-neg @x1834 @x1973 (~ (not $x1351) $x1974)) (~ (not $x1354) $x1978))))
+(let ((@x1817 (nnf-neg (nnf-pos (refl (~ $x1238 $x1238)) (~ $x1242 $x1242)) (~ (not $x1245) $x1242))))
+(let ((@x1989 (nnf-neg (sk (~ $x1245 $x1808)) (nnf-neg @x1817 @x1981 (~ (not $x1357) $x1982)) (~ (not $x1360) $x1986))))
+(let ((@x1798 (monotonicity (sk (~ $x1075 (and $x1769 $x1774))) (refl (~ $x253 $x253)) (refl (~ $x1209 $x1209)) (nnf-pos (refl (~ $x1201 $x1201)) (~ $x1204 $x1204)) (refl (~ $x261 $x261)) (nnf-pos (refl (~ $x1185 $x1185)) (~ $x1188 $x1188)) (nnf-pos (refl (~ $x1191 $x1191)) (~ $x1194 $x1194)) (~ $x1230 $x1796))))
+(let ((@x1993 (nnf-neg (nnf-neg @x1798 (~ (not $x1235) $x1796)) @x1989 (~ (not $x1363) $x1990))))
+(let ((@x1743 (nnf-neg (nnf-pos (refl (~ $x1138 $x1138)) (~ $x1141 $x1141)) (~ (not $x1144) $x1141))))
+(let ((@x1754 (nnf-neg (sk (~ $x1144 $x1734)) (nnf-neg @x1743 (refl (~ $x1744 $x1744)) (~ (not $x1147) $x1747)) (~ (not $x1150) $x1751))))
+(let ((@x1710 (nnf-pos (monotonicity (refl (~ $x1101 $x1101)) (sk (~ $x1117 $x1702)) (~ $x1120 $x1705)) (~ $x1123 $x1708))))
+(let ((@x1758 (nnf-neg (nnf-neg @x1710 (~ (not $x1126) $x1708)) @x1754 (~ (not $x1153) $x1755))))
+(let (($x1671 (exists ((?v1 B_Vertex$) )(! (let ((?x1656 (fun_app$a v_b_SP_G_3$ ?v0!8)))
+(let ((?x1657 (* (- 1) ?x1656)))
+(let ((?x227 (fun_app$a v_b_SP_G_3$ ?v1)))
+(and (not (>= (+ ?x227 ?x1657) 0)) (= (+ (b_G$ (pair$ ?v1 ?v0!8)) ?x227 ?x1657) 0))))) :qid k!38))
+))
+(let ((@x1688 (nnf-neg (refl (~ $x1676 $x1676)) (nnf-neg (refl (~ $x1679 $x1679)) (~ (not $x1671) $x1682)) (~ (not (or (not (and $x1655 $x1660)) $x1671)) $x1686))))
+(let ((@x1690 (trans (sk (~ $x1126 (not (or (not (and $x1655 $x1660)) $x1671)))) @x1688 (~ $x1126 $x1686))))
+(let ((@x1649 (monotonicity (nnf-neg (refl (~ (not $x1072) (not $x1072))) (~ $x1078 $x1636)) (refl (~ $x209 $x209)) (refl (~ $x212 $x212)) (refl (~ $x214 $x214)) (refl (~ $x217 $x217)) (~ $x1084 $x1647))))
+(let ((@x1766 (nnf-neg (nnf-neg @x1649 (~ (not $x1089) $x1647)) (nnf-neg @x1690 @x1758 (~ (not $x1156) $x1759)) (~ (not $x1159) $x1763))))
+(let ((@x1626 (nnf-pos (monotonicity (refl (~ $x1004 $x1004)) (sk (~ $x1026 $x1618)) (~ $x1029 $x1621)) (~ $x1032 $x1624))))
+(let ((@x1591 (nnf-pos (monotonicity (refl (~ $x949 $x949)) (sk (~ $x969 $x1583)) (~ $x972 $x1586)) (~ $x975 $x1589))))
+(let ((@x1629 (monotonicity @x1591 (refl (~ $x170 $x170)) (nnf-pos (refl (~ (>= ?x171 0) (>= ?x171 0))) (~ $x1046 $x1046)) (nnf-pos (refl (~ $x1037 $x1037)) (~ $x1040 $x1040)) (nnf-pos (refl (~ $x989 $x989)) (~ $x992 $x992)) @x1626 (~ $x1064 $x1627))))
+(let ((@x2001 (nnf-neg (nnf-neg @x1629 (~ (not $x1069) $x1627)) (nnf-neg @x1766 @x1993 (~ (not $x1366) $x1994)) (~ (not $x1369) $x1998))))
+(let (($x1550 (exists ((?v1 B_Vertex$) )(! (let ((?x1535 (v_b_SP_G_0$ ?v0!5)))
+(let ((?x1536 (* (- 1) ?x1535)))
+(let ((?x124 (v_b_SP_G_0$ ?v1)))
+(let (($x133 (fun_app$ v_b_Visited_G_0$ ?v1)))
+(and (not (>= (+ ?x124 ?x1536) 0)) $x133 (= (+ ?x124 ?x1536 (b_G$ (pair$ ?v1 ?v0!5))) 0)))))) :qid k!38))
+))
+(let ((@x1568 (nnf-neg (refl (~ $x1556 $x1556)) (nnf-neg (refl (~ $x1559 $x1559)) (~ (not $x1550) $x1562)) (~ (not (or (not (and $x1534 $x1539)) $x1550)) $x1566))))
+(let ((@x1570 (trans (sk (~ (not $x975) (not (or (not (and $x1534 $x1539)) $x1550)))) @x1568 (~ (not $x975) $x1566))))
+(let ((@x1531 (nnf-neg (nnf-pos (refl (~ $x931 $x931)) (~ $x934 $x934)) (~ (not $x937) $x934))))
+(let ((@x2009 (nnf-neg @x1531 (nnf-neg @x1570 @x2001 (~ (not $x1372) $x2002)) (~ (not $x1375) $x2006))))
+(let ((@x1504 (nnf-neg (nnf-pos (refl (~ $x906 $x906)) (~ $x909 $x909)) (~ (not $x912) $x909))))
+(let ((@x2017 (nnf-neg @x1504 (nnf-neg (sk (~ $x937 $x1522)) @x2009 (~ (not $x1378) $x2010)) (~ (not $x1381) $x2014))))
+(let ((@x1481 (nnf-neg (nnf-pos (refl (~ (>= ?x124 0) (>= ?x124 0))) (~ $x894 $x894)) (~ (not $x897) $x894))))
+(let ((@x2025 (nnf-neg @x1481 (nnf-neg (sk (~ $x912 $x1495)) @x2017 (~ (not $x1384) $x2018)) (~ (not $x1387) $x2022))))
+(let ((@x2033 (nnf-neg (refl (~ $x1466 $x1466)) (nnf-neg (sk (~ $x897 $x1472)) @x2025 (~ (not $x1390) $x2026)) (~ (not $x1393) $x2030))))
+(let ((@x2037 (mp~ (not-or-elim (mp (asserted $x344) @x1406 $x1402) (not $x1396)) (nnf-neg (refl (~ $x864 $x864)) @x2033 (~ (not $x1396) $x2034)) $x2034)))
+(let ((@x3873 (mp (mp (mp @x2037 (monotonicity @x2338 (= $x2034 $x2339)) $x2339) @x3015 $x3013) (monotonicity @x3869 (= $x3013 $x3870)) $x3870)))
+(let ((@x4276 (unit-resolution @x3873 (lemma (unit-resolution @x5800 @x3487 (hypothesis $x864) false) $x142) $x3867)))
+(let ((@x4278 (unit-resolution (def-axiom (or $x3861 $x1472 $x3855)) (unit-resolution (def-axiom (or $x3864 $x3858)) @x4276 $x3858) (lemma @x5085 $x1471) $x3855)))
+(let ((@x3051 (unit-resolution ((_ quant-inst ?v0!2) (or (not $x3495) $x2343)) @x3500 (hypothesis $x1486) false)))
+(let ((@x4352 (unit-resolution (def-axiom (or $x3849 $x2363 $x3843)) (unit-resolution (def-axiom (or $x2358 $x1486)) (lemma @x3051 $x2343) $x2358) (unit-resolution (def-axiom (or $x3852 $x3846)) @x4278 $x3846) $x3843)))
+(let ((@x4355 (unit-resolution (def-axiom (or $x3837 $x2409 $x3831)) (unit-resolution (def-axiom (or $x3840 $x3834)) @x4352 $x3834) (unit-resolution (def-axiom (or $x2404 $x1507)) (lemma @x4007 $x2389) $x2404) $x3831)))
+(let ((@x4357 (unit-resolution (def-axiom (or $x3825 $x3539 $x3819)) (unit-resolution (def-axiom (or $x3828 $x3822)) @x4355 $x3822) (lemma @x3189 $x3536) $x3819)))
+(let ((@x4135 (unit-resolution (def-axiom (or $x3816 $x170)) @x4357 $x170)))
+(let ((@x4159 (hypothesis $x3652)))
+(let ((@x4139 (unit-resolution (def-axiom (or $x3649 $x214)) @x4159 $x214)))
+(let ((@x4149 (unit-resolution (def-axiom (or $x3625 $x1744)) (trans (monotonicity @x4139 (= ?x242 ?x169)) @x4135 $x243) $x3625)))
+(let (($x1720 (not $x1719)))
+(let ((@x3125 (hypothesis $x2645)))
+(let (($x4264 (>= (+ ?x1716 (* (- 1) (fun_app$a v_b_SP_G_1$ ?v1!10))) 0)))
+(let ((@x4002 (symm (hypothesis $x214) (= v_b_SP_G_1$ v_b_SP_G_3$))))
+(let ((@x5768 (symm (monotonicity @x4002 (= (fun_app$a v_b_SP_G_1$ ?v1!10) ?x1716)) (= ?x1716 (fun_app$a v_b_SP_G_1$ ?v1!10)))))
+(let ((@x5656 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x1716 (fun_app$a v_b_SP_G_1$ ?v1!10))) $x4264)) @x5768 $x4264)))
+(let (($x5398 (<= (+ b_Infinity$ (* (- 1) (fun_app$a v_b_SP_G_1$ ?v1!10))) 0)))
+(let (($x5689 (fun_app$ v_b_Visited_G_1$ ?v1!10)))
+(let (($x6142 (not $x5689)))
+(let ((?x5569 (fun_app$a v_b_SP_G_1$ ?v1!10)))
+(let ((?x5512 (fun_app$a v_b_SP_G_1$ ?v0!11)))
+(let ((?x5709 (* (- 1) ?x5512)))
+(let ((?x4184 (+ ?x1722 ?x5709 ?x5569)))
+(let (($x4211 (>= ?x4184 0)))
+(let ((?x4266 (+ ?x1729 ?x5709)))
+(let (($x4267 (<= ?x4266 0)))
+(let ((@x4273 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x1729 ?x5512)) $x4267)) (symm (monotonicity @x4002 (= ?x5512 ?x1729)) (= ?x1729 ?x5512)) $x4267)))
+(let ((@x4363 ((_ th-lemma arith farkas 1 -1 -1 1) (hypothesis $x4267) (hypothesis $x4264) (hypothesis $x4211) (hypothesis (not $x2204)) false)))
+(let ((@x4274 (unit-resolution (lemma @x4363 (or (not $x4211) (not $x4267) (not $x4264) $x2204)) @x4273 @x5656 (unit-resolution (def-axiom (or $x2640 (not $x2204))) @x3125 (not $x2204)) (not $x4211))))
+(let (($x4220 (or $x3573 $x6142 $x1725 $x4211)))
+(let (($x5674 (or $x6142 $x1725 (>= (+ ?x1722 ?x5569 ?x5709) 0))))
+(let (($x4221 (or $x3573 $x5674)))
+(let ((@x4210 (monotonicity (rewrite (= (+ ?x1722 ?x5569 ?x5709) ?x4184)) (= (>= (+ ?x1722 ?x5569 ?x5709) 0) $x4211))))
+(let ((@x4224 (monotonicity (monotonicity @x4210 (= $x5674 (or $x6142 $x1725 $x4211))) (= $x4221 (or $x3573 (or $x6142 $x1725 $x4211))))))
+(let ((@x4227 (trans @x4224 (rewrite (= (or $x3573 (or $x6142 $x1725 $x4211)) $x4220)) (= $x4221 $x4220))))
+(let ((@x4360 (unit-resolution (mp ((_ quant-inst ?v0!11 ?v1!10) $x4221) @x4227 $x4220) (unit-resolution (def-axiom (or $x3816 $x3568)) @x4357 $x3568) (unit-resolution (def-axiom (or $x2640 (not $x1725))) @x3125 (not $x1725)) (or $x6142 $x4211))))
+(let (($x5857 (or $x5689 $x5398)))
+(let ((@x5652 (mp ((_ quant-inst ?v1!10) (or $x3590 $x5857)) (rewrite (= (or $x3590 $x5857) (or $x3590 $x5689 $x5398))) (or $x3590 $x5689 $x5398))))
+(let ((@x4367 (unit-resolution (unit-resolution @x5652 (hypothesis $x3585) $x5857) (unit-resolution @x4360 @x4274 $x6142) $x5398)))
+(let ((@x4362 ((_ th-lemma arith farkas -1 1 1) @x4367 @x5656 (unit-resolution (def-axiom (or $x2640 $x1720)) @x3125 $x1720) false)))
+(let ((@x4151 (unit-resolution (lemma @x4362 (or $x2640 $x3590 $x2703)) (unit-resolution (def-axiom (or $x3649 $x3585)) @x4159 $x3585) @x4139 $x2640)))
+(let ((@x4161 (unit-resolution (def-axiom (or $x3637 $x3631)) (unit-resolution (def-axiom (or $x3634 $x2645 $x3628)) @x4151 @x4149 $x3634) $x3637)))
+(let ((@x4158 (unit-resolution (def-axiom (or $x3646 $x3606 $x3640)) @x4161 (unit-resolution (def-axiom (or $x3649 $x3643)) @x4159 $x3643) $x3606)))
+(let (($x3139 (<= (+ b_Infinity$ (* (- 1) (fun_app$a v_b_SP_G_1$ ?v0!8))) 0)))
+(let ((?x5112 (fun_app$a v_b_SP_G_1$ ?v0!8)))
+(let ((?x5119 (* (- 1) ?x5112)))
+(let ((?x3935 (?v1!7 ?v0!8)))
+(let ((?x3976 (pair$ ?x3935 ?v0!8)))
+(let ((?x3971 (b_G$ ?x3976)))
+(let ((?x3928 (fun_app$a v_b_SP_G_1$ ?x3935)))
+(let ((?x3958 (+ ?x3928 ?x3971 ?x5119)))
+(let (($x3970 (= ?x3958 0)))
+(let (($x3980 (not $x3970)))
+(let (($x3930 (fun_app$ v_b_Visited_G_1$ ?x3935)))
+(let (($x3959 (not $x3930)))
+(let (($x3890 (>= (+ ?x3928 ?x5119) 0)))
+(let (($x4009 (or $x3890 $x3959 $x3980)))
+(let ((?x4378 (fun_app$a v_b_SP_G_3$ ?x3935)))
+(let ((?x4397 (* (- 1) ?x4378)))
+(let ((?x4601 (+ ?x3928 ?x4397)))
+(let (($x4605 (>= ?x4601 0)))
+(let ((@x4642 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x3928 ?x4378)) $x4605)) (symm (monotonicity (hypothesis $x214) (= ?x4378 ?x3928)) (= ?x3928 ?x4378)) $x4605)))
+(let ((?x4137 (+ ?x1656 ?x5119)))
+(let (($x4122 (>= ?x4137 0)))
+(let ((@x4625 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x1656 ?x5112)) $x4122)) (symm (monotonicity @x4002 (= ?x5112 ?x1656)) (= ?x1656 ?x5112)) $x4122)))
+(let (($x4065 (<= ?x3958 0)))
+(let ((@x5126 (unit-resolution (def-axiom (or $x4009 $x3970)) (hypothesis (not $x4009)) $x3970)))
+(let (($x4604 (<= ?x4601 0)))
+(let ((@x5858 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x3928 ?x4378)) $x4604)) (symm (monotonicity (hypothesis $x214) (= ?x4378 ?x3928)) (= ?x3928 ?x4378)) $x4604)))
+(let (($x4121 (<= ?x4137 0)))
+(let ((@x5140 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x1656 ?x5112)) $x4121)) (symm (monotonicity @x4002 (= ?x5112 ?x1656)) (= ?x1656 ?x5112)) $x4121)))
+(let (($x4058 (>= ?x3958 0)))
+(let (($x4399 (<= (+ ?x1656 ?x4397) 0)))
+(let (($x4338 (not $x4399)))
+(let ((@x4989 (unit-resolution (def-axiom (or $x4009 (not $x3890))) (hypothesis (not $x4009)) (not $x3890))))
+(let ((@x5003 (unit-resolution ((_ th-lemma arith assign-bounds -1 1 -1) (or $x4338 (not $x4122) $x3890 (not $x4605))) @x4989 @x4625 @x4642 $x4338)))
+(let (($x4758 (not $x4605)))
+(let (($x4757 (not $x4122)))
+(let (($x4898 (or $x4399 $x3600 (not $x4058) (not $x4121) (not $x4604) (not $x4065) $x4757 $x4758)))
+(let ((?x5665 (* (- 1) ?x3971)))
+(let ((?x4417 (+ ?x1656 ?x5665 ?x4397)))
+(let (($x4445 (>= ?x4417 0)))
+(let ((@x5038 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 -1) (or $x4445 (not $x4065) $x4757 $x4758)) (hypothesis $x4065) (hypothesis $x4122) (hypothesis $x4605) $x4445)))
+(let (($x4444 (<= ?x4417 0)))
+(let ((@x4331 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 -1) (or $x4444 (not $x4058) (not $x4121) (not $x4604))) (hypothesis $x4058) (hypothesis $x4121) (hypothesis $x4604) $x4444)))
+(let (($x4418 (= ?x4417 0)))
+(let (($x4428 (not $x4418)))
+(let (($x4430 (or $x4399 $x4428)))
+(let (($x4447 (or $x3600 $x4399 $x4428)))
+(let (($x4384 (>= (+ ?x4378 ?x1657) 0)))
+(let (($x4388 (or $x4384 (not (= (+ ?x4378 ?x1657 ?x3971) 0)))))
+(let (($x4432 (or $x3600 $x4388)))
+(let ((@x4414 (monotonicity (rewrite (= (+ ?x4378 ?x1657 ?x3971) (+ ?x1657 ?x3971 ?x4378))) (= (= (+ ?x4378 ?x1657 ?x3971) 0) (= (+ ?x1657 ?x3971 ?x4378) 0)))))
+(let ((@x4427 (trans @x4414 (rewrite (= (= (+ ?x1657 ?x3971 ?x4378) 0) $x4418)) (= (= (+ ?x4378 ?x1657 ?x3971) 0) $x4418))))
+(let ((@x4396 (monotonicity (rewrite (= (+ ?x4378 ?x1657) (+ ?x1657 ?x4378))) (= $x4384 (>= (+ ?x1657 ?x4378) 0)))))
+(let ((@x4406 (trans @x4396 (rewrite (= (>= (+ ?x1657 ?x4378) 0) $x4399)) (= $x4384 $x4399))))
+(let ((@x4446 (monotonicity @x4406 (monotonicity @x4427 (= (not (= (+ ?x4378 ?x1657 ?x3971) 0)) $x4428)) (= $x4388 $x4430))))
+(let ((@x4442 (trans (monotonicity @x4446 (= $x4432 (or $x3600 $x4430))) (rewrite (= (or $x3600 $x4430) $x4447)) (= $x4432 $x4447))))
+(let ((@x5041 (unit-resolution (mp ((_ quant-inst (?v1!7 ?v0!8)) $x4432) @x4442 $x4447) (hypothesis $x3595) $x4430)))
+(let ((@x4897 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x4418 (not $x4444) (not $x4445))) (unit-resolution @x5041 (hypothesis $x4338) $x4428) @x4331 @x5038 false)))
+(let ((@x3135 (unit-resolution (lemma @x4897 $x4898) @x5003 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x3980 $x4058)) @x5126 $x4058) (hypothesis $x3595) @x5140 @x5858 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x3980 $x4065)) @x5126 $x4065) @x4625 @x4642 false)))
+(let ((@x4168 (unit-resolution (lemma @x3135 (or $x4009 $x3600 $x2703)) (unit-resolution (def-axiom (or $x3603 $x3595)) @x4158 $x3595) @x4139 $x4009)))
+(let ((@x4189 (unit-resolution (def-axiom (or $x3816 $x3576)) @x4357 $x3576)))
+(let (($x4014 (not $x4009)))
+(let (($x4042 (or $x3581 $x1654 $x3139 $x4014)))
+(let (($x3956 (<= (+ ?x5112 (* (- 1) ?x3928)) 0)))
+(let (($x3033 (or $x1654 $x3139 (not (or $x3956 $x3959 (not (= (+ ?x5112 (* (- 1) ?x3928) ?x5665) 0)))))))
+(let (($x4043 (or $x3581 $x3033)))
+(let (($x3964 (= (not (or $x3956 $x3959 (not (= (+ ?x5112 (* (- 1) ?x3928) ?x5665) 0)))) $x4014)))
+(let (($x4010 (= (or $x3956 $x3959 (not (= (+ ?x5112 (* (- 1) ?x3928) ?x5665) 0))) $x4009)))
+(let (($x5977 (= (+ ?x5112 (* (- 1) ?x3928) ?x5665) 0)))
+(let ((@x3929 (rewrite (= (+ ?x5112 (* (- 1) ?x3928) ?x5665) (+ (* (- 1) ?x3928) ?x5665 ?x5112)))))
+(let ((@x3957 (monotonicity @x3929 (= $x5977 (= (+ (* (- 1) ?x3928) ?x5665 ?x5112) 0)))))
+(let ((@x3988 (trans @x3957 (rewrite (= (= (+ (* (- 1) ?x3928) ?x5665 ?x5112) 0) $x3970)) (= $x5977 $x3970))))
+(let ((@x3898 (monotonicity (rewrite (= (+ ?x5112 (* (- 1) ?x3928)) (+ (* (- 1) ?x3928) ?x5112))) (= $x3956 (<= (+ (* (- 1) ?x3928) ?x5112) 0)))))
+(let ((@x3927 (trans @x3898 (rewrite (= (<= (+ (* (- 1) ?x3928) ?x5112) 0) $x3890)) (= $x3956 $x3890))))
+(let ((@x4011 (monotonicity (monotonicity @x3927 (monotonicity @x3988 (= (not $x5977) $x3980)) $x4010) $x3964)))
+(let ((@x4050 (monotonicity (monotonicity @x4011 (= $x3033 (or $x1654 $x3139 $x4014))) (= $x4043 (or $x3581 (or $x1654 $x3139 $x4014))))))
+(let ((@x4053 (trans @x4050 (rewrite (= (or $x3581 (or $x1654 $x3139 $x4014)) $x4042)) (= $x4043 $x4042))))
+(let ((@x4248 (unit-resolution (mp ((_ quant-inst ?v0!8) $x4043) @x4053 $x4042) @x4189 (unit-resolution (def-axiom (or $x3603 $x1655)) @x4158 $x1655) (or $x3139 $x4014))))
+(let (($x4136 (= ?x1656 ?x5112)))
+(let ((@x4235 (monotonicity (symm @x4139 (= v_b_SP_G_1$ v_b_SP_G_3$)) (= ?x5112 ?x1656))))
+(let ((@x4237 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x4136) $x4122)) (symm @x4235 $x4136) $x4122)))
+(let ((@x4238 ((_ th-lemma arith farkas 1 -1 1) @x4237 (unit-resolution @x4248 @x4168 $x3139) (unit-resolution (def-axiom (or $x3603 $x1660)) @x4158 $x1660) false)))
+(let ((@x4802 (unit-resolution (def-axiom (or $x3813 $x3652 $x3807)) (lemma @x4238 $x3649) (unit-resolution (def-axiom (or $x3816 $x3810)) @x4357 $x3810) $x3807)))
+(let ((@x6739 (symm (unit-resolution (def-axiom (or $x3804 $x261)) @x4802 $x261) (= ?x260 v_b_Visited_G_2$))))
+(let ((@x10168 (symm (monotonicity @x6739 (= $x5237 (fun_app$ v_b_Visited_G_2$ ?v0!20))) (= (fun_app$ v_b_Visited_G_2$ ?v0!20) $x5237))))
+(let ((@x10119 (monotonicity @x10168 (= (not (fun_app$ v_b_Visited_G_2$ ?v0!20)) $x9037))))
+(let (($x4298 (fun_app$ v_b_Visited_G_2$ ?v0!20)))
+(let (($x4299 (not $x4298)))
+(let ((?x4413 (fun_app$a v_b_SP_G_1$ ?v0!20)))
+(let ((?x4438 (* (- 1) ?x4413)))
+(let ((?x4439 (+ ?x1906 ?x4438)))
+(let (($x6002 (>= ?x4439 0)))
+(let (($x9479 (not $x6002)))
+(let ((@x9476 (hypothesis $x6002)))
+(let (($x9588 (or (not (<= (+ ?x1906 (* (- 1) (v_b_SP_G_2$ (?v1!7 ?v0!20)))) 0)) $x9479)))
+(let ((?x4661 (?v1!7 ?v0!20)))
+(let ((?x4662 (fun_app$a v_b_SP_G_1$ ?x4661)))
+(let ((?x4663 (* (- 1) ?x4662)))
+(let ((?x4664 (+ ?x4413 ?x4663)))
+(let (($x4665 (<= ?x4664 0)))
+(let ((?x4668 (pair$ ?x4661 ?v0!20)))
+(let ((?x4669 (b_G$ ?x4668)))
+(let ((?x4670 (* (- 1) ?x4669)))
+(let ((?x4671 (+ ?x4413 ?x4663 ?x4670)))
+(let (($x4672 (= ?x4671 0)))
+(let (($x4673 (not $x4672)))
+(let (($x4666 (fun_app$ v_b_Visited_G_1$ ?x4661)))
+(let (($x4667 (not $x4666)))
+(let (($x4674 (or $x4665 $x4667 $x4673)))
+(let (($x4675 (not $x4674)))
+(let (($x1884 (not $x1883)))
+(let ((@x8699 (hypothesis $x2806)))
+(let (($x7517 (<= (+ b_Infinity$ (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0!19)))) 0)))
+(let ((?x7554 (pair$ v_b_v_G_1$ ?v0!19)))
+(let ((?x7555 (b_G$ ?x7554)))
+(let ((?x7388 (fun_app$a v_b_SP_G_1$ ?v0!19)))
+(let ((?x7461 (* (- 1) ?x7388)))
+(let (($x4944 (>= (+ ?x254 ?x7461 ?x7555) 0)))
+(let (($x8378 (or $x7517 $x4944)))
+(let ((?x7471 (+ ?x254 ?x1889 ?x7555)))
+(let (($x6876 (= ?x7471 0)))
+(let (($x8868 (not $x6876)))
+(let (($x6123 (>= ?x7471 0)))
+(let (($x8149 (not $x6123)))
+(let ((?x7512 (* (- 1) ?x7555)))
+(let ((?x9069 (+ ?x1880 ?x7512)))
+(let (($x8504 (>= ?x9069 0)))
+(let (($x6383 (= ?v1!18 v_b_v_G_1$)))
+(let (($x5168 (fun_app$ v_b_Visited_G_1$ ?v1!18)))
+(let (($x6179 (not $x5168)))
+(let (($x7401 (<= (+ ?x1888 ?x7461) 0)))
+(let ((?x5283 (b_G$ (pair$ v_b_v_G_1$ ?v0!13))))
+(let ((?x5139 (+ ?x254 ?x1805 ?x5283)))
+(let (($x4859 (= ?x5139 0)))
+(let (($x4202 (>= (+ ?x254 (* (- 1) ?x1803) ?x5283) 0)))
+(let (($x3165 (<= (+ b_Infinity$ (* (- 1) ?x5283)) 0)))
+(let (($x4930 (or $x3165 $x4202)))
+(let (($x4933 (not $x4930)))
+(let ((@x4771 (monotonicity (commutativity (= (= ?x1803 ?x1804) (= ?x1804 ?x1803))) (= (not (= ?x1803 ?x1804)) (not (= ?x1804 ?x1803))))))
+(let (($x4765 (not (= ?x1803 ?x1804))))
+(let ((@x4772 (mp (unit-resolution ((_ th-lemma arith triangle-eq) (or $x4765 $x1807)) (hypothesis $x1808) $x4765) @x4771 (not (= ?x1804 ?x1803)))))
+(let (($x4288 (= ?x1804 ?x1803)))
+(let (($x4284 (or $x4933 $x4288)))
+(let ((@x4803 (unit-resolution (def-axiom (or $x3804 $x3673)) @x4802 $x3673)))
+(let (($x4290 (or $x3678 $x4933 $x4288)))
+(let (($x4289 (or (not (or $x3165 (<= (+ ?x1803 ?x1168 (* (- 1) ?x5283)) 0))) $x4288)))
+(let (($x4291 (or $x3678 $x4289)))
+(let (($x3167 (<= (+ ?x1803 ?x1168 (* (- 1) ?x5283)) 0)))
+(let ((@x4198 (rewrite (= (+ ?x1803 ?x1168 (* (- 1) ?x5283)) (+ ?x1168 ?x1803 (* (- 1) ?x5283))))))
+(let ((@x4195 (monotonicity @x4198 (= $x3167 (<= (+ ?x1168 ?x1803 (* (- 1) ?x5283)) 0)))))
+(let ((@x5138 (trans @x4195 (rewrite (= (<= (+ ?x1168 ?x1803 (* (- 1) ?x5283)) 0) $x4202)) (= $x3167 $x4202))))
+(let ((@x4283 (monotonicity (monotonicity @x5138 (= (or $x3165 $x3167) $x4930)) (= (not (or $x3165 $x3167)) $x4933))))
+(let ((@x4294 (monotonicity (monotonicity @x4283 (= $x4289 $x4284)) (= $x4291 (or $x3678 $x4284)))))
+(let ((@x5050 (mp ((_ quant-inst ?v0!13) $x4291) (trans @x4294 (rewrite (= (or $x3678 $x4284) $x4290)) (= $x4291 $x4290)) $x4290)))
+(let ((@x4805 (unit-resolution (def-axiom (or $x4930 (not $x3165))) (unit-resolution (unit-resolution @x5050 @x4803 $x4284) @x4772 $x4933) (not $x3165))))
+(let ((@x4788 (unit-resolution (def-axiom (or $x4930 (not $x4202))) (unit-resolution (unit-resolution @x5050 @x4803 $x4284) @x4772 $x4933) (not $x4202))))
+(let (($x5127 (or $x3165 $x4202 $x4859)))
+(let ((@x4789 (unit-resolution (def-axiom (or $x3804 $x3665)) @x4802 $x3665)))
+(let (($x5129 (or $x3670 $x3165 $x4202 $x4859)))
+(let (($x4192 (or $x3165 $x3167 (= (+ ?x254 ?x5283 ?x1805) 0))))
+(let (($x5130 (or $x3670 $x4192)))
+(let ((@x4861 (monotonicity (rewrite (= (+ ?x254 ?x5283 ?x1805) ?x5139)) (= (= (+ ?x254 ?x5283 ?x1805) 0) $x4859))))
+(let ((@x5135 (monotonicity (monotonicity @x5138 @x4861 (= $x4192 $x5127)) (= $x5130 (or $x3670 $x5127)))))
+(let ((@x5160 (mp ((_ quant-inst ?v0!13) $x5130) (trans @x5135 (rewrite (= (or $x3670 $x5127) $x5129)) (= $x5130 $x5129)) $x5129)))
+(let ((@x4787 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x4859) (>= ?x5139 0))) (unit-resolution (unit-resolution @x5160 @x4789 $x5127) @x4788 @x4805 $x4859) (>= ?x5139 0))))
+(let ((@x4795 (unit-resolution ((_ th-lemma arith farkas 1 1) (or (<= ?x1806 0) $x1807)) (hypothesis $x1808) (<= ?x1806 0))))
+(let ((@x5162 (unit-resolution (def-axiom (or $x3801 $x1808 $x3795)) (unit-resolution (def-axiom (or $x3804 $x3798)) @x4802 $x3798) $x3798)))
+(let ((@x4711 (unit-resolution @x5162 (lemma ((_ th-lemma arith farkas 1 -1 1) @x4795 @x4788 @x4787 false) $x1807) $x3795)))
+(let ((@x4714 (unit-resolution (def-axiom (or $x3792 $x3681)) @x4711 $x3681)))
+(let (($x6395 (or $x3686 $x7401)))
+(let ((@x8489 (monotonicity (rewrite (= (+ ?x7388 ?x1889) (+ ?x1889 ?x7388))) (= (>= (+ ?x7388 ?x1889) 0) (>= (+ ?x1889 ?x7388) 0)))))
+(let ((@x7634 (trans @x8489 (rewrite (= (>= (+ ?x1889 ?x7388) 0) $x7401)) (= (>= (+ ?x7388 ?x1889) 0) $x7401))))
+(let ((@x8284 (trans (monotonicity @x7634 (= (or $x3686 (>= (+ ?x7388 ?x1889) 0)) $x6395)) (rewrite (= $x6395 $x6395)) (= (or $x3686 (>= (+ ?x7388 ?x1889) 0)) $x6395))))
+(let ((@x8710 (unit-resolution (mp ((_ quant-inst ?v0!19) (or $x3686 (>= (+ ?x7388 ?x1889) 0))) @x8284 $x6395) @x4714 $x7401)))
+(let (($x8129 (>= (+ ?x1887 (* (- 1) (fun_app$a v_b_SP_G_1$ ?v1!18))) 0)))
+(let ((?x6950 (fun_app$a v_b_SP_G_1$ ?v1!18)))
+(let (($x6951 (= ?x1887 ?x6950)))
+(let (($x1819 (fun_app$ v_b_Visited_G_2$ ?v0!14)))
+(let (($x3393 (not $x1823)))
+(let (($x5543 (fun_app$ v_b_Visited_G_1$ ?v0!14)))
+(let (($x5064 (= ?v0!14 v_b_v_G_1$)))
+(let (($x6244 (or $x5064 $x5543)))
+(let (($x5974 (fun_app$ ?x260 ?v0!14)))
+(let (($x6373 (= $x5974 $x6244)))
+(let (($x3463 (forall ((?v0 B_Vertex_bool_fun$) (?v1 B_Vertex$) (?v2 Bool) (?v3 B_Vertex$) )(! (let (($x63 (fun_app$ (fun_upd$ ?v0 ?v1 ?v2) ?v3)))
+(= $x63 (ite (= ?v3 ?v1) ?v2 (fun_app$ ?v0 ?v3)))) :pattern ( (fun_app$ (fun_upd$ ?v0 ?v1 ?v2) ?v3) ) :qid k!34))
+))
+(let (($x73 (forall ((?v0 B_Vertex_bool_fun$) (?v1 B_Vertex$) (?v2 Bool) (?v3 B_Vertex$) )(! (let (($x63 (fun_app$ (fun_upd$ ?v0 ?v1 ?v2) ?v3)))
+(= $x63 (ite (= ?v3 ?v1) ?v2 (fun_app$ ?v0 ?v3)))) :qid k!34))
+))
+(let (($x63 (fun_app$ (fun_upd$ ?3 ?2 ?1) ?0)))
+(let (($x70 (= $x63 (ite (= ?0 ?2) ?1 (fun_app$ ?3 ?0)))))
+(let (($x68 (forall ((?v0 B_Vertex_bool_fun$) (?v1 B_Vertex$) (?v2 Bool) (?v3 B_Vertex$) )(! (let (($x63 (fun_app$ (fun_upd$ ?v0 ?v1 ?v2) ?v3)))
+(= $x63 (ite (= ?v3 ?v1) ?v2 (fun_app$ ?v0 ?v3)))) :qid k!34))
+))
+(let ((@x72 (rewrite (= (= $x63 (ite (= ?0 ?2) ?1 (fun_app$ ?3 ?0))) $x70))))
+(let ((@x1438 (mp~ (mp (asserted $x68) (quant-intro @x72 (= $x68 $x73)) $x73) (nnf-pos (refl (~ $x70 $x70)) (~ $x73 $x73)) $x73)))
+(let ((@x3468 (mp @x1438 (quant-intro (refl (= $x70 $x70)) (= $x73 $x3463)) $x3463)))
+(let (($x4134 (not $x3463)))
+(let (($x5805 (or $x4134 $x6373)))
+(let ((@x5853 (monotonicity (rewrite (= (ite $x5064 true $x5543) $x6244)) (= (= $x5974 (ite $x5064 true $x5543)) $x6373))))
+(let ((@x3152 (monotonicity @x5853 (= (or $x4134 (= $x5974 (ite $x5064 true $x5543))) $x5805))))
+(let ((@x4912 (trans @x3152 (rewrite (= $x5805 $x5805)) (= (or $x4134 (= $x5974 (ite $x5064 true $x5543))) $x5805))))
+(let ((@x4913 (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true ?v0!14) (or $x4134 (= $x5974 (ite $x5064 true $x5543)))) @x4912 $x5805)))
+(let ((@x5240 (mp (hypothesis $x1819) (symm (monotonicity @x6739 (= $x5974 $x1819)) (= $x1819 $x5974)) $x5974)))
+(let ((@x5728 (unit-resolution (def-axiom (or (not $x6373) (not $x5974) $x6244)) @x5240 (unit-resolution @x4913 @x3468 $x6373) $x6244)))
+(let ((@x7078 (hypothesis $x3393)))
+(let ((?x3063 (v_b_SP_G_2$ v_b_v_G_1$)))
+(let (($x3024 (= ?x3063 ?x254)))
+(let ((?x3076 (pair$ v_b_v_G_1$ v_b_v_G_1$)))
+(let ((?x3077 (b_G$ ?x3076)))
+(let (($x3038 (>= ?x3077 0)))
+(let (($x3080 (<= (+ b_Infinity$ (* (- 1) ?x3077)) 0)))
+(let (($x4540 (or $x3080 $x3038)))
+(let (($x6342 (= ?x3077 0)))
+(let (($x3469 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (or (not (= ?v0 ?v1)) (= (b_G$ (pair$ ?v0 ?v1)) 0)) :pattern ( (pair$ ?v0 ?v1) ) :qid k!36))
+))
+(let (($x95 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (or (not (= ?v0 ?v1)) (= (b_G$ (pair$ ?v0 ?v1)) 0)) :qid k!36))
+))
+(let (($x92 (or (not (= ?1 ?0)) (= (b_G$ (pair$ ?1 ?0)) 0))))
+(let (($x89 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let (($x80 (= ?v0 ?v1)))
+(=> $x80 (= (b_G$ (pair$ ?v0 ?v1)) 0))) :qid k!36))
+))
+(let ((@x94 (rewrite (= (=> (= ?1 ?0) (= (b_G$ (pair$ ?1 ?0)) 0)) $x92))))
+(let ((@x1443 (mp~ (mp (asserted $x89) (quant-intro @x94 (= $x89 $x95)) $x95) (nnf-pos (refl (~ $x92 $x92)) (~ $x95 $x95)) $x95)))
+(let ((@x3474 (mp @x1443 (quant-intro (refl (= $x92 $x92)) (= $x95 $x3469)) $x3469)))
+(let (($x3045 (not $x3469)))
+(let (($x6595 (or $x3045 $x6342)))
+(let ((@x6585 (monotonicity (rewrite (= (= v_b_v_G_1$ v_b_v_G_1$) true)) (= (not (= v_b_v_G_1$ v_b_v_G_1$)) (not true)))))
+(let ((@x6587 (trans @x6585 (rewrite (= (not true) false)) (= (not (= v_b_v_G_1$ v_b_v_G_1$)) false))))
+(let ((@x6590 (monotonicity @x6587 (= (or (not (= v_b_v_G_1$ v_b_v_G_1$)) $x6342) (or false $x6342)))))
+(let ((@x6594 (trans @x6590 (rewrite (= (or false $x6342) $x6342)) (= (or (not (= v_b_v_G_1$ v_b_v_G_1$)) $x6342) $x6342))))
+(let ((@x6599 (monotonicity @x6594 (= (or $x3045 (or (not (= v_b_v_G_1$ v_b_v_G_1$)) $x6342)) $x6595))))
+(let ((@x6602 (trans @x6599 (rewrite (= $x6595 $x6595)) (= (or $x3045 (or (not (= v_b_v_G_1$ v_b_v_G_1$)) $x6342)) $x6595))))
+(let ((@x6603 (mp ((_ quant-inst v_b_v_G_1$ v_b_v_G_1$) (or $x3045 (or (not (= v_b_v_G_1$ v_b_v_G_1$)) $x6342))) @x6602 $x6595)))
+(let ((@x6616 (lemma (unit-resolution @x6603 @x3474 (hypothesis (not $x6342)) false) $x6342)))
+(let ((@x7085 (unit-resolution (def-axiom (or $x4540 (not $x3038))) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x6342) $x3038)) @x6616 $x3038) $x4540)))
+(let (($x4579 (not $x4540)))
+(let (($x4550 (or $x4579 $x3024)))
+(let (($x4556 (or $x3678 $x4579 $x3024)))
+(let (($x3874 (or (not (or $x3080 (<= (+ ?x254 ?x1168 (* (- 1) ?x3077)) 0))) $x3024)))
+(let (($x4557 (or $x3678 $x3874)))
+(let (($x3062 (<= (+ ?x254 ?x1168 (* (- 1) ?x3077)) 0)))
+(let ((@x4468 (monotonicity (rewrite (= (+ ?x254 ?x1168 (* (- 1) ?x3077)) (* (- 1) ?x3077))) (= $x3062 (<= (* (- 1) ?x3077) 0)))))
+(let ((@x4485 (trans @x4468 (rewrite (= (<= (* (- 1) ?x3077) 0) $x3038)) (= $x3062 $x3038))))
+(let ((@x4549 (monotonicity (monotonicity @x4485 (= (or $x3080 $x3062) $x4540)) (= (not (or $x3080 $x3062)) $x4579))))
+(let ((@x4561 (monotonicity (monotonicity @x4549 (= $x3874 $x4550)) (= $x4557 (or $x3678 $x4550)))))
+(let ((@x4574 (mp ((_ quant-inst v_b_v_G_1$) $x4557) (trans @x4561 (rewrite (= (or $x3678 $x4550) $x4556)) (= $x4557 $x4556)) $x4556)))
+(let ((@x7095 (trans (monotonicity (hypothesis $x5064) (= ?x1821 ?x3063)) (unit-resolution (unit-resolution @x4574 @x4803 $x4550) @x7085 $x3024) (= ?x1821 ?x254))))
+(let ((@x7096 (trans @x7095 (symm (monotonicity (hypothesis $x5064) (= ?x1822 ?x254)) (= ?x254 ?x1822)) $x1823)))
+(let ((@x6504 (unit-resolution (lemma (unit-resolution @x7078 @x7096 false) (or (not $x5064) $x1823)) @x7078 (not $x5064))))
+(let ((@x6501 (unit-resolution (def-axiom (or (not $x6244) $x5064 $x5543)) @x6504 (or (not $x6244) $x5543))))
+(let (($x6879 (>= (+ ?x254 (* (- 1) ?x1822)) 0)))
+(let (($x7105 (not $x6879)))
+(let (($x6372 (>= (+ ?x254 (* (- 1) ?x1822) (b_G$ (pair$ v_b_v_G_1$ ?v0!14))) 0)))
+(let (($x6043 (not $x6372)))
+(let (($x5623 (<= (+ b_Infinity$ (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0!14)))) 0)))
+(let (($x6328 (or $x5623 $x6372)))
+(let (($x5555 (not $x6328)))
+(let (($x5565 (or $x3678 $x5555 $x1823)))
+(let (($x5711 (<= (+ ?x1822 ?x1168 (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0!14)))) 0)))
+(let (($x5760 (or (not (or $x5623 $x5711)) $x1823)))
+(let (($x5490 (or $x3678 $x5760)))
+(let (($x5031 (<= (+ ?x1168 ?x1822 (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0!14)))) 0)))
+(let (($x5019 (= (+ ?x1822 ?x1168 (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0!14)))) (+ ?x1168 ?x1822 (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0!14)))))))
+(let ((@x6180 (trans (monotonicity (rewrite $x5019) (= $x5711 $x5031)) (rewrite (= $x5031 $x6372)) (= $x5711 $x6372))))
+(let ((@x5556 (monotonicity (monotonicity @x6180 (= (or $x5623 $x5711) $x6328)) (= (not (or $x5623 $x5711)) $x5555))))
+(let ((@x4918 (monotonicity (monotonicity @x5556 (= $x5760 (or $x5555 $x1823))) (= $x5490 (or $x3678 (or $x5555 $x1823))))))
+(let ((@x6362 (trans @x4918 (rewrite (= (or $x3678 (or $x5555 $x1823)) $x5565)) (= $x5490 $x5565))))
+(let ((@x6339 (unit-resolution (def-axiom (or $x6328 $x6043)) (unit-resolution (mp ((_ quant-inst ?v0!14) $x5490) @x6362 $x5565) @x4803 @x7078 $x5555) $x6043)))
+(let ((?x5617 (pair$ v_b_v_G_1$ ?v0!14)))
+(let ((?x5621 (b_G$ ?x5617)))
+(let (($x6266 (>= ?x5621 0)))
+(let ((@x6636 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x5621 0)) $x6266)) (hypothesis (not $x6266)) (not (= ?x5621 0)))))
+(let (($x6078 (= v_b_v_G_1$ ?v0!14)))
+(let (($x6076 (<= ?x5621 0)))
+(let ((@x6410 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x6266 $x6076)) (hypothesis (not $x6266)) $x6076)))
+(let (($x6080 (or $x6078 (not $x6076))))
+(let (($x3475 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let (($x80 (= ?v0 ?v1)))
+(or $x80 (not (<= (b_G$ (pair$ ?v0 ?v1)) 0)))) :pattern ( (pair$ ?v0 ?v1) ) :qid k!37))
+))
+(let (($x116 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let (($x80 (= ?v0 ?v1)))
+(or $x80 (not (<= (b_G$ (pair$ ?v0 ?v1)) 0)))) :qid k!37))
+))
+(let (($x80 (= ?1 ?0)))
+(let (($x113 (or $x80 (not (<= (b_G$ (pair$ ?1 ?0)) 0)))))
+(let (($x101 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x29 (pair$ ?v0 ?v1)))
+(let ((?x81 (b_G$ ?x29)))
+(let (($x98 (< 0 ?x81)))
+(=> (not (= ?v0 ?v1)) $x98)))) :qid k!37))
+))
+(let (($x106 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(! (let ((?x29 (pair$ ?v0 ?v1)))
+(let ((?x81 (b_G$ ?x29)))
+(let (($x98 (< 0 ?x81)))
+(let (($x80 (= ?v0 ?v1)))
+(or $x80 $x98))))) :qid k!37))
+))
+(let ((?x29 (pair$ ?1 ?0)))
+(let ((?x81 (b_G$ ?x29)))
+(let (($x98 (< 0 ?x81)))
+(let ((@x115 (monotonicity (rewrite (= $x98 (not (<= ?x81 0)))) (= (or $x80 $x98) $x113))))
+(let ((@x108 (quant-intro (rewrite (= (=> (not $x80) $x98) (or $x80 $x98))) (= $x101 $x106))))
+(let ((@x121 (mp (asserted $x101) (trans @x108 (quant-intro @x115 (= $x106 $x116)) (= $x101 $x116)) $x116)))
+(let ((@x3480 (mp (mp~ @x121 (nnf-pos (refl (~ $x113 $x113)) (~ $x116 $x116)) $x116) (quant-intro (refl (= $x113 $x113)) (= $x116 $x3475)) $x3475)))
+(let ((@x6389 (mp ((_ quant-inst v_b_v_G_1$ ?v0!14) (or (not $x3475) $x6080)) (rewrite (= (or (not $x3475) $x6080) (or (not $x3475) $x6078 (not $x6076)))) (or (not $x3475) $x6078 (not $x6076)))))
+(let (($x6086 (= ?x5621 0)))
+(let (($x6096 (or (not $x6078) $x6086)))
+(let ((@x6264 (mp ((_ quant-inst v_b_v_G_1$ ?v0!14) (or $x3045 $x6096)) (rewrite (= (or $x3045 $x6096) (or $x3045 (not $x6078) $x6086))) (or $x3045 (not $x6078) $x6086))))
+(let ((@x6993 (unit-resolution (unit-resolution @x6264 @x3474 $x6096) (unit-resolution (unit-resolution @x6389 @x3480 $x6080) @x6410 $x6078) @x6636 false)))
+(let ((@x7107 (lemma ((_ th-lemma arith farkas 1 -1 1) (hypothesis $x6266) (hypothesis $x6043) (hypothesis $x6879) false) (or (not $x6266) $x6372 $x7105))))
+(let ((@x6134 (unit-resolution (unit-resolution @x7107 (lemma @x6993 $x6266) (or $x6372 $x7105)) @x6339 $x7105)))
+(let ((@x6066 (unit-resolution (def-axiom (or $x3804 $x253)) @x4802 $x253)))
+(let ((@x6683 (unit-resolution (def-axiom (or $x3816 $x3560)) @x4357 $x3560)))
+(let (($x6034 (= (or $x3565 (or $x252 (not $x5543) $x6879)) (or $x3565 $x252 (not $x5543) $x6879))))
+(let ((@x6556 (mp ((_ quant-inst ?v0!14 v_b_v_G_1$) (or $x3565 (or $x252 (not $x5543) $x6879))) (rewrite $x6034) (or $x3565 $x252 (not $x5543) $x6879))))
+(let ((@x6850 (unit-resolution @x6556 @x6683 @x6066 @x6134 (unit-resolution @x6501 @x5728 $x5543) false)))
+(let ((@x5791 (unit-resolution (lemma @x6850 $x1824) (unit-resolution (def-axiom (or $x1824 $x3393)) (hypothesis $x1825) $x3393) (unit-resolution (def-axiom (or $x1824 $x1819)) (hypothesis $x1825) $x1819) false)))
+(let ((@x9261 (unit-resolution (def-axiom (or $x3789 $x1825 $x3783)) (unit-resolution (def-axiom (or $x3792 $x3786)) @x4711 $x3786) $x3786)))
+(let ((@x9263 (unit-resolution (def-axiom (or $x3780 $x3690)) (unit-resolution @x9261 (lemma @x5791 $x1824) $x3783) $x3690)))
+(let ((@x6271 (mp ((_ quant-inst ?v1!18) (or $x3695 (or $x2786 $x6951))) (rewrite (= (or $x3695 (or $x2786 $x6951)) (or $x3695 $x2786 $x6951))) (or $x3695 $x2786 $x6951))))
+(let ((@x5205 (unit-resolution @x6271 @x9263 (unit-resolution (def-axiom (or $x2801 $x1878)) @x8699 $x1878) $x6951)))
+(let ((@x8621 ((_ th-lemma arith assign-bounds -1 -1 1) (or (not (>= (+ ?x1880 ?x6950 ?x7461) 0)) (not $x7401) $x1891 (not $x8129)))))
+(let ((@x8189 (unit-resolution @x8621 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x6951) $x8129)) @x5205 $x8129) (unit-resolution (def-axiom (or $x2801 (not $x1891))) @x8699 (not $x1891)) @x8710 (not (>= (+ ?x1880 ?x6950 ?x7461) 0)))))
+(let (($x5620 (= (or $x3573 (or $x6179 $x1883 (>= (+ ?x1880 ?x6950 ?x7461) 0))) (or $x3573 $x6179 $x1883 (>= (+ ?x1880 ?x6950 ?x7461) 0)))))
+(let ((@x7205 (mp ((_ quant-inst ?v0!19 ?v1!18) (or $x3573 (or $x6179 $x1883 (>= (+ ?x1880 ?x6950 ?x7461) 0)))) (rewrite $x5620) (or $x3573 $x6179 $x1883 (>= (+ ?x1880 ?x6950 ?x7461) 0)))))
+(let ((@x8192 (unit-resolution @x7205 (unit-resolution (def-axiom (or $x3816 $x3568)) @x4357 $x3568) (unit-resolution (def-axiom (or $x2801 $x1884)) @x8699 $x1884) (or $x6179 (>= (+ ?x1880 ?x6950 ?x7461) 0)))))
+(let (($x8059 (or $x6383 $x5168)))
+(let (($x4914 (fun_app$ ?x260 ?v1!18)))
+(let (($x8555 (= $x4914 $x8059)))
+(let (($x7052 (or $x4134 $x8555)))
+(let ((@x8554 (monotonicity (rewrite (= (ite $x6383 true $x5168) $x8059)) (= (= $x4914 (ite $x6383 true $x5168)) $x8555))))
+(let ((@x8280 (monotonicity @x8554 (= (or $x4134 (= $x4914 (ite $x6383 true $x5168))) $x7052))))
+(let ((@x7080 (trans @x8280 (rewrite (= $x7052 $x7052)) (= (or $x4134 (= $x4914 (ite $x6383 true $x5168))) $x7052))))
+(let ((@x7791 (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true ?v1!18) (or $x4134 (= $x4914 (ite $x6383 true $x5168)))) @x7080 $x7052)))
+(let ((@x8161 (mp (unit-resolution (def-axiom (or $x2801 $x1878)) @x8699 $x1878) (symm (monotonicity @x6739 (= $x4914 $x1878)) (= $x1878 $x4914)) $x4914)))
+(let ((@x8162 (unit-resolution (def-axiom (or (not $x8555) (not $x4914) $x8059)) @x8161 (unit-resolution @x7791 @x3468 $x8555) $x8059)))
+(let ((@x8163 (unit-resolution (def-axiom (or (not $x8059) $x6383 $x5168)) @x8162 (unit-resolution @x8192 @x8189 $x6179) $x6383)))
+(let ((@x5864 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x1880 ?x7555)) $x8504)) (monotonicity (monotonicity @x8163 (= ?x1879 ?x7554)) (= ?x1880 ?x7555)) $x8504)))
+(let (($x7609 (>= (+ ?x1887 (* (- 1) ?x3063)) 0)))
+(let ((@x5835 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x1887 ?x3063)) $x7609)) (monotonicity @x8163 (= ?x1887 ?x3063)) $x7609)))
+(let ((?x3064 (* (- 1) ?x3063)))
+(let ((?x3904 (+ ?x254 ?x3064)))
+(let (($x3905 (<= ?x3904 0)))
+(let (($x4587 (= ?x254 ?x3063)))
+(let ((@x8351 (mp (unit-resolution (unit-resolution @x4574 @x4803 $x4550) @x7085 $x3024) (symm (commutativity (= $x4587 $x3024)) (= $x3024 $x4587)) $x4587)))
+(let ((@x8148 ((_ th-lemma arith farkas 1 -1 1 -1 1) (hypothesis $x6123) (hypothesis (not $x1891)) (hypothesis $x7609) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x4587) $x3905)) @x8351 $x3905) (hypothesis $x8504) false)))
+(let ((@x6098 (unit-resolution (lemma @x8148 (or $x8149 $x1891 (not $x7609) (not $x8504))) (unit-resolution (def-axiom (or $x2801 (not $x1891))) @x8699 (not $x1891)) @x5835 @x5864 $x8149)))
+(let ((@x8175 (unit-resolution (def-axiom (or $x8378 (not $x7517))) (hypothesis (not $x8378)) (not $x7517))))
+(let (($x7000 (not $x4944)))
+(let ((@x8640 (unit-resolution (def-axiom (or $x8378 $x7000)) (hypothesis (not $x8378)) $x7000)))
+(let (($x6310 (or $x7517 $x4944 $x6876)))
+(let (($x7071 (or $x3670 $x7517 $x4944 $x6876)))
+(let (($x7524 (<= (+ ?x7388 ?x1168 ?x7512) 0)))
+(let (($x7589 (or $x7517 $x7524 (= (+ ?x254 ?x7555 ?x1889) 0))))
+(let (($x6768 (or $x3670 $x7589)))
+(let ((@x6946 (monotonicity (rewrite (= (+ ?x254 ?x7555 ?x1889) ?x7471)) (= (= (+ ?x254 ?x7555 ?x1889) 0) $x6876))))
+(let ((@x7308 (monotonicity (rewrite (= (+ ?x7388 ?x1168 ?x7512) (+ ?x1168 ?x7388 ?x7512))) (= $x7524 (<= (+ ?x1168 ?x7388 ?x7512) 0)))))
+(let ((@x8377 (trans @x7308 (rewrite (= (<= (+ ?x1168 ?x7388 ?x7512) 0) $x4944)) (= $x7524 $x4944))))
+(let ((@x6639 (monotonicity (monotonicity @x8377 @x6946 (= $x7589 $x6310)) (= $x6768 (or $x3670 $x6310)))))
+(let ((@x6030 (mp ((_ quant-inst ?v0!19) $x6768) (trans @x6639 (rewrite (= (or $x3670 $x6310) $x7071)) (= $x6768 $x7071)) $x7071)))
+(let ((@x8762 (unit-resolution (unit-resolution @x6030 @x4789 $x6310) @x8640 @x8175 (hypothesis $x8868) false)))
+(let ((@x8475 (unit-resolution (lemma @x8762 (or $x8378 $x6876)) (unit-resolution ((_ th-lemma arith triangle-eq) (or $x8868 $x6123)) @x6098 $x8868) $x8378)))
+(let ((@x8713 (lemma ((_ th-lemma arith farkas -1 -1 1) @x8710 (hypothesis $x8149) (hypothesis $x4944) false) (or $x7000 $x6123))))
+(let ((@x7808 (unit-resolution (def-axiom (or (not $x8378) $x7517 $x4944)) (unit-resolution @x8713 @x6098 $x7000) @x8475 $x7517)))
+(let ((@x7807 ((_ th-lemma arith farkas 1 -1 1) @x5864 @x7808 (unit-resolution (def-axiom (or $x2801 $x1884)) @x8699 $x1884) false)))
+(let (($x3381 (not $x1864)))
+(let ((@x6859 (hypothesis $x2760)))
+(let ((@x6910 (unit-resolution (def-axiom (or $x2755 $x3381)) @x6859 $x3381)))
+(let (($x6437 (<= (+ ?x254 (* (- 1) (fun_app$a v_b_SP_G_1$ ?v1!16))) 0)))
+(let (($x4947 (fun_app$ v_b_Visited_G_1$ ?v1!16)))
+(let (($x6336 (= ?v1!16 v_b_v_G_1$)))
+(let (($x8534 (or $x6336 $x4947)))
+(let (($x6263 (fun_app$ ?x260 ?v1!16)))
+(let (($x6346 (= $x6263 $x8534)))
+(let (($x8582 (or $x4134 $x6346)))
+(let ((@x8309 (monotonicity (rewrite (= (ite $x6336 true $x4947) $x8534)) (= (= $x6263 (ite $x6336 true $x4947)) $x6346))))
+(let ((@x8586 (monotonicity @x8309 (= (or $x4134 (= $x6263 (ite $x6336 true $x4947))) $x8582))))
+(let ((@x8591 (trans @x8586 (rewrite (= $x8582 $x8582)) (= (or $x4134 (= $x6263 (ite $x6336 true $x4947))) $x8582))))
+(let ((@x8592 (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true ?v1!16) (or $x4134 (= $x6263 (ite $x6336 true $x4947)))) @x8591 $x8582)))
+(let ((@x7062 (monotonicity (symm (monotonicity @x6739 (= $x6263 $x1855)) (= $x1855 $x6263)) (= (not $x1855) (not $x6263)))))
+(let ((@x7109 (mp (unit-resolution (def-axiom (or $x2755 (not $x1855))) @x6859 (not $x1855)) @x7062 (not $x6263))))
+(let ((@x7053 (unit-resolution (def-axiom (or (not $x6346) $x6263 (not $x8534))) @x7109 (unit-resolution @x8592 @x3468 $x6346) (not $x8534))))
+(let (($x7664 (or $x4947 $x6437)))
+(let ((@x7108 (unit-resolution (def-axiom (or $x3804 $x3655)) @x4802 $x3655)))
+(let (($x6930 (or $x3660 $x4947 $x6437)))
+(let (($x7189 (>= (+ (fun_app$a v_b_SP_G_1$ ?v1!16) ?x1168) 0)))
+(let (($x7192 (or $x4947 $x7189)))
+(let (($x7392 (or $x3660 $x7192)))
+(let ((@x6696 (rewrite (= (>= (+ ?x1168 (fun_app$a v_b_SP_G_1$ ?v1!16)) 0) $x6437))))
+(let (($x7657 (= (+ (fun_app$a v_b_SP_G_1$ ?v1!16) ?x1168) (+ ?x1168 (fun_app$a v_b_SP_G_1$ ?v1!16)))))
+(let ((@x6394 (monotonicity (rewrite $x7657) (= $x7189 (>= (+ ?x1168 (fun_app$a v_b_SP_G_1$ ?v1!16)) 0)))))
+(let ((@x7789 (monotonicity (monotonicity (trans @x6394 @x6696 (= $x7189 $x6437)) (= $x7192 $x7664)) (= $x7392 (or $x3660 $x7664)))))
+(let ((@x7788 (mp ((_ quant-inst ?v1!16) $x7392) (trans @x7789 (rewrite (= (or $x3660 $x7664) $x6930)) (= $x7392 $x6930)) $x6930)))
+(let ((@x7110 (unit-resolution (unit-resolution @x7788 @x7108 $x7664) (unit-resolution (def-axiom (or $x8534 (not $x4947))) @x7053 (not $x4947)) $x6437)))
+(let (($x6906 (<= (+ (v_b_SP_G_2$ ?v0!17) (* (- 1) (fun_app$a v_b_SP_G_1$ ?v0!17))) 0)))
+(let (($x7394 (or $x3686 $x6906)))
+(let (($x6869 (>= (+ (fun_app$a v_b_SP_G_1$ ?v0!17) (* (- 1) (v_b_SP_G_2$ ?v0!17))) 0)))
+(let (($x7794 (>= (+ (* (- 1) (v_b_SP_G_2$ ?v0!17)) (fun_app$a v_b_SP_G_1$ ?v0!17)) 0)))
+(let (($x7505 (= (+ (fun_app$a v_b_SP_G_1$ ?v0!17) (* (- 1) (v_b_SP_G_2$ ?v0!17))) (+ (* (- 1) (v_b_SP_G_2$ ?v0!17)) (fun_app$a v_b_SP_G_1$ ?v0!17)))))
+(let ((@x6937 (trans (monotonicity (rewrite $x7505) (= $x6869 $x7794)) (rewrite (= $x7794 $x6906)) (= $x6869 $x6906))))
+(let ((@x7419 (trans (monotonicity @x6937 (= (or $x3686 $x6869) $x7394)) (rewrite (= $x7394 $x7394)) (= (or $x3686 $x6869) $x7394))))
+(let (($x6920 (>= (+ (v_b_SP_G_2$ ?v1!16) (* (- 1) (fun_app$a v_b_SP_G_1$ ?v1!16))) 0)))
+(let ((?x6958 (fun_app$a v_b_SP_G_1$ ?v1!16)))
+(let ((?x1860 (v_b_SP_G_2$ ?v1!16)))
+(let (($x6841 (= ?x1860 ?x6958)))
+(let (($x7027 (>= (+ ?x254 (b_G$ (pair$ v_b_v_G_1$ ?v1!16)) (* (- 1) ?x6958)) 0)))
+(let (($x6231 (<= (+ b_Infinity$ (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v1!16)))) 0)))
+(let (($x7455 (or $x6231 $x7027)))
+(let ((?x6824 (pair$ v_b_v_G_1$ ?v1!16)))
+(let ((?x6825 (b_G$ ?x6824)))
+(let ((?x6938 (* (- 1) ?x1860)))
+(let ((?x6929 (+ ?x254 ?x6938 ?x6825)))
+(let (($x7553 (= ?x6929 0)))
+(let (($x7206 (not $x7553)))
+(let (($x6067 (<= ?x6929 0)))
+(let (($x6919 (not $x6067)))
+(let (($x6631 (fun_app$ v_b_Visited_G_1$ ?v0!17)))
+(let (($x6844 (= ?v0!17 v_b_v_G_1$)))
+(let (($x6265 (or $x6844 $x6631)))
+(let (($x6895 (fun_app$ ?x260 ?v0!17)))
+(let (($x6665 (= $x6895 $x6265)))
+(let (($x5717 (or $x4134 $x6665)))
+(let ((@x6990 (monotonicity (rewrite (= (ite $x6844 true $x6631) $x6265)) (= (= $x6895 (ite $x6844 true $x6631)) $x6665))))
+(let ((@x7528 (monotonicity @x6990 (= (or $x4134 (= $x6895 (ite $x6844 true $x6631))) $x5717))))
+(let ((@x7133 (trans @x7528 (rewrite (= $x5717 $x5717)) (= (or $x4134 (= $x6895 (ite $x6844 true $x6631))) $x5717))))
+(let ((@x7043 (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true ?v0!17) (or $x4134 (= $x6895 (ite $x6844 true $x6631)))) @x7133 $x5717)))
+(let ((@x7214 (mp (unit-resolution (def-axiom (or $x2755 $x1857)) @x6859 $x1857) (symm (monotonicity @x6739 (= $x6895 $x1857)) (= $x1857 $x6895)) $x6895)))
+(let ((@x7215 (unit-resolution (def-axiom (or (not $x6665) (not $x6895) $x6265)) @x7214 (unit-resolution @x7043 @x3468 $x6665) $x6265)))
+(let (($x7558 (<= ?x6825 0)))
+(let (($x7559 (not $x7558)))
+(let ((@x6953 (symm (commutativity (= (= v_b_v_G_1$ ?v1!16) $x6336)) (= $x6336 (= v_b_v_G_1$ ?v1!16)))))
+(let ((@x6769 (mp (hypothesis (not $x6336)) (monotonicity @x6953 (= (not $x6336) (not (= v_b_v_G_1$ ?v1!16)))) (not (= v_b_v_G_1$ ?v1!16)))))
+(let (($x7557 (= v_b_v_G_1$ ?v1!16)))
+(let (($x7560 (or $x7557 $x7559)))
+(let ((@x5992 (mp ((_ quant-inst v_b_v_G_1$ ?v1!16) (or (not $x3475) $x7560)) (rewrite (= (or (not $x3475) $x7560) (or (not $x3475) $x7557 $x7559))) (or (not $x3475) $x7557 $x7559))))
+(let ((@x6161 (hypothesis $x3381)))
+(let ((?x6285 (fun_app$a v_b_SP_G_1$ ?v0!17)))
+(let ((?x6904 (* (- 1) ?x6285)))
+(let ((?x7131 (+ ?x254 ?x6904)))
+(let (($x6000 (>= ?x7131 0)))
+(let (($x6858 (not $x6844)))
+(let ((?x1861 (v_b_SP_G_2$ ?v0!17)))
+(let (($x6188 (= ?x1861 ?x3063)))
+(let (($x5847 (not $x6188)))
+(let ((?x5089 (+ ?x1861 ?x3064)))
+(let (($x5848 (<= ?x5089 0)))
+(let (($x6925 (not $x5848)))
+(let ((@x6267 (hypothesis $x6067)))
+(let (($x3906 (>= ?x3904 0)))
+(let (($x4341 (or $x3686 $x3906)))
+(let ((@x4906 ((_ quant-inst v_b_v_G_1$) $x4341)))
+(let ((@x6160 (unit-resolution @x4906 @x4714 $x3906)))
+(let ((@x6971 (lemma ((_ th-lemma arith farkas 1 1 1 1 1) @x6267 (hypothesis $x5848) @x6161 @x6160 (hypothesis $x7559) false) (or $x6925 $x6919 $x1864 $x7558))))
+(let ((@x6928 (unit-resolution @x6971 @x6267 @x6161 (unit-resolution (unit-resolution @x5992 @x3480 $x7560) @x6769 $x7559) $x6925)))
+(let ((@x6532 ((_ th-lemma arith triangle-eq) (or $x5847 $x5848))))
+(let ((@x5114 (unit-resolution (hypothesis $x5847) (monotonicity (hypothesis $x6844) $x6188) false)))
+(let ((@x5115 (lemma @x5114 (or $x6858 $x6188))))
+(let ((@x8623 (def-axiom (or (not $x6265) $x6844 $x6631))))
+(let ((@x4834 (unit-resolution @x8623 (unit-resolution @x5115 (unit-resolution @x6532 @x6928 $x5847) $x6858) (hypothesis $x6265) $x6631)))
+(let (($x5475 (= (or $x3565 (or $x252 (not $x6631) $x6000)) (or $x3565 $x252 (not $x6631) $x6000))))
+(let ((@x5735 (mp ((_ quant-inst ?v0!17 v_b_v_G_1$) (or $x3565 (or $x252 (not $x6631) $x6000))) (rewrite $x5475) (or $x3565 $x252 (not $x6631) $x6000))))
+(let ((@x6914 ((_ th-lemma arith farkas 1 1 1 1 1) @x6267 (unit-resolution @x5735 @x6683 @x6066 @x4834 $x6000) (unit-resolution (mp ((_ quant-inst ?v0!17) (or $x3686 $x6869)) @x7419 $x7394) @x4714 $x6906) @x6161 (unit-resolution (unit-resolution @x5992 @x3480 $x7560) @x6769 $x7559) false)))
+(let ((@x7217 (unit-resolution (lemma @x6914 (or $x6919 $x1864 (not $x6265) $x6336)) @x6910 @x7215 (unit-resolution (def-axiom (or $x8534 (not $x6336))) @x7053 (not $x6336)) $x6919)))
+(let ((@x6357 (unit-resolution (def-axiom (or $x7455 (not $x6231))) (hypothesis (not $x7455)) (not $x6231))))
+(let ((@x6426 (unit-resolution (def-axiom (or $x7455 (not $x7027))) (hypothesis (not $x7455)) (not $x7027))))
+(let (($x7603 (or $x6231 $x7027 $x7553)))
+(let (($x5113 (or $x3670 $x6231 $x7027 $x7553)))
+(let (($x6826 (<= (+ ?x6958 ?x1168 (* (- 1) ?x6825)) 0)))
+(let (($x6927 (or $x6231 $x6826 (= (+ ?x254 ?x6825 ?x6938) 0))))
+(let (($x7688 (or $x3670 $x6927)))
+(let ((@x7602 (monotonicity (rewrite (= (+ ?x254 ?x6825 ?x6938) ?x6929)) (= (= (+ ?x254 ?x6825 ?x6938) 0) $x7553))))
+(let ((@x7947 (rewrite (= (+ ?x6958 ?x1168 (* (- 1) ?x6825)) (+ ?x1168 (* (- 1) ?x6825) ?x6958)))))
+(let ((@x7737 (monotonicity @x7947 (= $x6826 (<= (+ ?x1168 (* (- 1) ?x6825) ?x6958) 0)))))
+(let ((@x8385 (trans @x7737 (rewrite (= (<= (+ ?x1168 (* (- 1) ?x6825) ?x6958) 0) $x7027)) (= $x6826 $x7027))))
+(let ((@x6604 (monotonicity (monotonicity @x8385 @x7602 (= $x6927 $x7603)) (= $x7688 (or $x3670 $x7603)))))
+(let ((@x7391 (mp ((_ quant-inst ?v1!16) $x7688) (trans @x6604 (rewrite (= (or $x3670 $x7603) $x5113)) (= $x7688 $x5113)) $x5113)))
+(let ((@x4197 (unit-resolution (unit-resolution @x7391 @x4789 $x7603) @x6426 @x6357 (hypothesis $x7206) false)))
+(let ((@x7250 (unit-resolution (lemma @x4197 (or $x7455 $x7553)) (unit-resolution ((_ th-lemma arith triangle-eq) (or $x7206 $x6067)) @x7217 $x7206) $x7455)))
+(let (($x7639 (not $x7455)))
+(let (($x7673 (or $x7639 $x6841)))
+(let (($x7669 (or $x3678 $x7639 $x6841)))
+(let ((@x7671 (monotonicity (monotonicity @x8385 (= (or $x6231 $x6826) $x7455)) (= (not (or $x6231 $x6826)) $x7639))))
+(let ((@x7677 (monotonicity (monotonicity @x7671 (= (or (not (or $x6231 $x6826)) $x6841) $x7673)) (= (or $x3678 (or (not (or $x6231 $x6826)) $x6841)) (or $x3678 $x7673)))))
+(let ((@x7387 (trans @x7677 (rewrite (= (or $x3678 $x7673) $x7669)) (= (or $x3678 (or (not (or $x6231 $x6826)) $x6841)) $x7669))))
+(let ((@x7252 (unit-resolution (mp ((_ quant-inst ?v1!16) (or $x3678 (or (not (or $x6231 $x6826)) $x6841))) @x7387 $x7669) @x4803 $x7673)))
+(let ((@x7315 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x6841) $x6920)) (unit-resolution @x7252 @x7250 $x6841) $x6920)))
+(let ((@x7323 (unit-resolution ((_ th-lemma arith assign-bounds -1 1 -1 -1) (or (not $x6000) (not $x6437) (not $x6920) (not $x6906) $x1864)) @x7315 (unit-resolution (mp ((_ quant-inst ?v0!17) (or $x3686 $x6869)) @x7419 $x7394) @x4714 $x6906) @x7110 @x6910 (not $x6000))))
+(let ((@x7351 (unit-resolution ((_ th-lemma arith assign-bounds -1 1 -1 1) (or $x6925 (not $x3906) (not $x6437) (not $x6920) $x1864)) @x7315 @x6160 @x7110 @x6910 $x6925)))
+(let ((@x7364 (unit-resolution @x8623 (unit-resolution @x5115 (unit-resolution @x6532 @x7351 $x5847) $x6858) @x7215 $x6631)))
+(let (($x6106 (not (<= (b_G$ (pair$ v_b_v_G_1$ ?v0!15)) 0))))
+(let (($x5808 (= v_b_v_G_1$ ?v0!15)))
+(let (($x5324 (not $x5808)))
+(let ((@x6624 (symm (commutativity (= $x5808 (= ?v0!15 v_b_v_G_1$))) (= (= ?v0!15 v_b_v_G_1$) $x5808))))
+(let (($x6044 (= ?v0!15 v_b_v_G_1$)))
+(let (($x6867 (not $x6044)))
+(let (($x5521 (fun_app$ v_b_Visited_G_1$ ?v0!15)))
+(let (($x6849 (or $x6044 $x5521)))
+(let (($x6408 (fun_app$ ?x260 ?v0!15)))
+(let (($x6494 (= $x6408 $x6849)))
+(let (($x5683 (or $x4134 $x6494)))
+(let ((@x6072 (monotonicity (rewrite (= (ite $x6044 true $x5521) $x6849)) (= (= $x6408 (ite $x6044 true $x5521)) $x6494))))
+(let ((@x6772 (monotonicity @x6072 (= (or $x4134 (= $x6408 (ite $x6044 true $x5521))) $x5683))))
+(let ((@x5812 (trans @x6772 (rewrite (= $x5683 $x5683)) (= (or $x4134 (= $x6408 (ite $x6044 true $x5521))) $x5683))))
+(let ((@x5804 (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true ?v0!15) (or $x4134 (= $x6408 (ite $x6044 true $x5521)))) @x5812 $x5683)))
+(let ((@x6715 (symm (monotonicity @x6739 (= $x6408 (fun_app$ v_b_Visited_G_2$ ?v0!15))) (= (fun_app$ v_b_Visited_G_2$ ?v0!15) $x6408))))
+(let ((@x6719 (monotonicity @x6715 (= (not (fun_app$ v_b_Visited_G_2$ ?v0!15)) (not $x6408)))))
+(let (($x6151 (fun_app$ v_b_Visited_G_2$ ?v0!15)))
+(let (($x6527 (not $x6151)))
+(let ((@x6833 (hypothesis $x1843)))
+(let (($x6836 (or (not (>= (+ ?x1841 (* (- 1) (fun_app$a v_b_SP_G_1$ ?v0!15))) 0)) $x1842)))
+(let (($x6830 (>= (+ ?x1841 (* (- 1) (fun_app$a v_b_SP_G_1$ ?v0!15))) 0)))
+(let ((?x6459 (fun_app$a v_b_SP_G_1$ ?v0!15)))
+(let (($x6119 (>= ?x6459 0)))
+(let ((@x4713 (unit-resolution (def-axiom (or $x3816 $x3551)) @x4357 $x3551)))
+(let ((@x6834 ((_ th-lemma arith farkas -1 1 1) @x6833 (unit-resolution ((_ quant-inst ?v0!15) (or $x3556 $x6119)) @x4713 $x6119) (hypothesis $x6830) false)))
+(let ((@x6656 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x1841 ?x6459)) $x6830)) (unit-resolution (lemma @x6834 $x6836) @x6833 (not $x6830)) (not (= ?x1841 ?x6459)))))
+(let (($x6618 (= (or $x3695 (or $x6527 (= ?x1841 ?x6459))) (or $x3695 $x6527 (= ?x1841 ?x6459)))))
+(let ((@x6610 (mp ((_ quant-inst ?v0!15) (or $x3695 (or $x6527 (= ?x1841 ?x6459)))) (rewrite $x6618) (or $x3695 $x6527 (= ?x1841 ?x6459)))))
+(let ((@x6720 (mp (unit-resolution @x6610 (hypothesis $x3690) @x6656 $x6527) @x6719 (not $x6408))))
+(let ((@x6725 (unit-resolution (def-axiom (or (not $x6494) $x6408 (not $x6849))) @x6720 (unit-resolution @x5804 @x3468 $x6494) (not $x6849))))
+(let ((@x6488 (mp (unit-resolution (def-axiom (or $x6849 $x6867)) @x6725 $x6867) (monotonicity @x6624 (= $x6867 $x5324)) $x5324)))
+(let (($x6164 (or $x5808 $x6106)))
+(let ((@x5318 (mp ((_ quant-inst v_b_v_G_1$ ?v0!15) (or (not $x3475) $x6164)) (rewrite (= (or (not $x3475) $x6164) (or (not $x3475) $x5808 $x6106))) (or (not $x3475) $x5808 $x6106))))
+(let (($x3157 (>= ?x169 0)))
+(let ((?x4056 (+ ?x169 ?x1168)))
+(let (($x6181 (<= ?x4056 0)))
+(let (($x3907 (= v_b_v_G_1$ b_Source$)))
+(let ((?x3908 (?v1!7 v_b_v_G_1$)))
+(let ((?x3915 (pair$ ?x3908 v_b_v_G_1$)))
+(let ((?x3916 (b_G$ ?x3915)))
+(let ((?x3917 (* (- 1) ?x3916)))
+(let ((?x3909 (fun_app$a v_b_SP_G_1$ ?x3908)))
+(let ((?x3910 (* (- 1) ?x3909)))
+(let ((?x3918 (+ ?x254 ?x3910 ?x3917)))
+(let (($x3919 (= ?x3918 0)))
+(let (($x3913 (fun_app$ v_b_Visited_G_1$ ?x3908)))
+(let (($x3914 (not $x3913)))
+(let ((?x3911 (+ ?x254 ?x3910)))
+(let (($x3912 (<= ?x3911 0)))
+(let (($x3921 (or $x3912 $x3914 (not $x3919))))
+(let (($x4342 (>= ?x3911 0)))
+(let (($x6807 (not $x4342)))
+(let ((@x6790 (hypothesis $x4342)))
+(let (($x5838 (>= ?x3909 0)))
+(let ((?x6528 (pair$ v_b_v_G_1$ ?v0!15)))
+(let ((?x6529 (b_G$ ?x6528)))
+(let ((?x6364 (* (- 1) ?x1841)))
+(let ((?x5981 (+ ?x254 ?x6364 ?x6529)))
+(let (($x6866 (<= ?x5981 0)))
+(let (($x6554 (= ?x5981 0)))
+(let (($x5936 (>= (+ ?x254 (* (- 1) ?x6459) ?x6529) 0)))
+(let (($x6303 (<= (+ b_Infinity$ (* (- 1) ?x6529)) 0)))
+(let (($x3933 (or $x6303 $x5936)))
+(let (($x6288 (not $x3933)))
+(let (($x6486 (= ?x1841 ?x6459)))
+(let (($x6685 (or $x3678 $x6288 $x6486)))
+(let (($x6462 (or (not (or $x6303 (<= (+ ?x6459 ?x1168 (* (- 1) ?x6529)) 0))) $x6486)))
+(let (($x6686 (or $x3678 $x6462)))
+(let (($x5681 (<= (+ ?x6459 ?x1168 (* (- 1) ?x6529)) 0)))
+(let ((@x3990 (rewrite (= (+ ?x6459 ?x1168 (* (- 1) ?x6529)) (+ ?x1168 ?x6459 (* (- 1) ?x6529))))))
+(let ((@x4138 (monotonicity @x3990 (= $x5681 (<= (+ ?x1168 ?x6459 (* (- 1) ?x6529)) 0)))))
+(let ((@x3932 (trans @x4138 (rewrite (= (<= (+ ?x1168 ?x6459 (* (- 1) ?x6529)) 0) $x5936)) (= $x5681 $x5936))))
+(let ((@x6693 (monotonicity (monotonicity @x3932 (= (or $x6303 $x5681) $x3933)) (= (not (or $x6303 $x5681)) $x6288))))
+(let ((@x6509 (monotonicity (monotonicity @x6693 (= $x6462 (or $x6288 $x6486))) (= $x6686 (or $x3678 (or $x6288 $x6486))))))
+(let ((@x5868 (trans @x6509 (rewrite (= (or $x3678 (or $x6288 $x6486)) $x6685)) (= $x6686 $x6685))))
+(let ((@x6885 (unit-resolution (def-axiom (or $x3933 (not $x6303))) (hypothesis $x6288) (not $x6303))))
+(let ((@x6886 (unit-resolution (def-axiom (or $x3933 (not $x5936))) (hypothesis $x6288) (not $x5936))))
+(let (($x4983 (or $x6303 $x5936 $x6554)))
+(let (($x3903 (or $x3670 $x6303 $x5936 $x6554)))
+(let (($x5258 (or $x6303 $x5681 (= (+ ?x254 ?x6529 ?x6364) 0))))
+(let (($x4854 (or $x3670 $x5258)))
+(let ((@x4987 (monotonicity (rewrite (= (+ ?x254 ?x6529 ?x6364) ?x5981)) (= (= (+ ?x254 ?x6529 ?x6364) 0) $x6554))))
+(let ((@x5496 (monotonicity (monotonicity @x3932 @x4987 (= $x5258 $x4983)) (= $x4854 (or $x3670 $x4983)))))
+(let ((@x5069 (mp ((_ quant-inst ?v0!15) $x4854) (trans @x5496 (rewrite (= (or $x3670 $x4983) $x3903)) (= $x4854 $x3903)) $x3903)))
+(let ((@x6888 (unit-resolution (unit-resolution @x5069 @x4789 $x4983) @x6886 @x6885 (hypothesis (not $x6554)) false)))
+(let ((@x6099 (unit-resolution (lemma @x6888 (or $x3933 $x6554)) (unit-resolution (mp ((_ quant-inst ?v0!15) $x6686) @x5868 $x6685) @x4803 @x6656 $x6288) $x6554)))
+(let ((@x6871 ((_ th-lemma arith farkas 1 1 1 1 1) @x6833 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x6554) $x6866)) @x6099 $x6866) (unit-resolution ((_ quant-inst (?v1!7 v_b_v_G_1$)) (or $x3556 $x5838)) @x4713 $x5838) @x6790 (unit-resolution (unit-resolution @x5318 @x3480 $x6164) @x6488 $x6106) false)))
+(let ((@x6225 (unit-resolution (lemma @x6871 (or $x3695 $x1842 $x6807)) (hypothesis $x3690) @x6833 $x6807)))
+(let ((@x3174 (def-axiom (or $x3921 (not $x3912)))))
+(let ((@x6645 (unit-resolution @x3174 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x4342 $x3912)) @x6225 $x3912) $x3921)))
+(let (($x3922 (not $x3921)))
+(let (($x4599 (or $x3581 $x3907 $x1208 $x3922)))
+(let ((@x4617 (mp ((_ quant-inst v_b_v_G_1$) (or $x3581 (or $x3907 $x1208 $x3922))) (rewrite (= (or $x3581 (or $x3907 $x1208 $x3922)) $x4599)) $x4599)))
+(let ((@x6649 (unit-resolution @x4617 @x4189 (unit-resolution (def-axiom (or $x3804 $x1209)) @x4802 $x1209) (or $x3907 $x3922))))
+(let ((@x5588 (symm (monotonicity (unit-resolution @x6649 @x6645 $x3907) (= ?x254 ?x169)) (= ?x169 ?x254))))
+(let ((@x5241 ((_ th-lemma arith farkas 1 1 1 1 1) @x6833 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x6554) $x6866)) @x6099 $x6866) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x169 ?x254)) $x6181)) @x5588 $x6181) (unit-resolution ((_ th-lemma arith triangle-eq) (or $x2947 $x3157)) @x4135 $x3157) (unit-resolution (unit-resolution @x5318 @x3480 $x6164) @x6488 $x6106) false)))
+(let ((@x8742 (unit-resolution (def-axiom (or $x3780 $x3774)) (unit-resolution @x9261 (lemma @x5791 $x1824) $x3783) $x3774)))
+(let (($x4076 (= ?x291 ?x169)))
+(let (($x4073 (<= (+ ?x169 ?x1168 (* (- 1) (b_G$ (pair$ v_b_v_G_1$ b_Source$)))) 0)))
+(let (($x4071 (<= (+ b_Infinity$ (* (- 1) (b_G$ (pair$ v_b_v_G_1$ b_Source$)))) 0)))
+(let (($x4074 (or $x4071 $x4073)))
+(let (($x3924 (>= ?x254 0)))
+(let (($x4636 (or $x3556 $x3924)))
+(let ((@x4637 ((_ quant-inst v_b_v_G_1$) $x4636)))
+(let (($x4075 (not $x4074)))
+(let ((@x5775 (hypothesis $x4075)))
+(let ((?x4061 (pair$ v_b_v_G_1$ b_Source$)))
+(let ((?x4062 (b_G$ ?x4061)))
+(let (($x5863 (>= ?x4062 0)))
+(let (($x5333 (= ?x4062 0)))
+(let (($x5329 (<= ?x4062 0)))
+(let (($x4173 (<= ?x291 0)))
+(let ((?x4078 (* (- 1) ?x291)))
+(let ((?x4144 (+ ?x169 ?x4078)))
+(let (($x4145 (>= ?x4144 0)))
+(let (($x4905 (or $x3686 $x4145)))
+(let ((@x5229 ((_ quant-inst b_Source$) $x4905)))
+(let (($x3158 (<= ?x169 0)))
+(let ((@x4838 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x2947 $x3158)) @x4135 $x3158)))
+(let ((@x4827 (unit-resolution ((_ th-lemma arith assign-bounds -1 1) (or $x4173 (not $x3158) (not $x4145))) @x4838 (unit-resolution @x5229 @x4714 $x4145) $x4173)))
+(let ((?x4096 (+ ?x254 ?x4078 ?x4062)))
+(let (($x4116 (<= ?x4096 0)))
+(let (($x4099 (= ?x4096 0)))
+(let (($x4102 (or $x4071 $x4073 $x4099)))
+(let (($x4105 (or $x3670 $x4071 $x4073 $x4099)))
+(let (($x4095 (or $x4071 $x4073 (= (+ ?x254 ?x4062 ?x4078) 0))))
+(let (($x4106 (or $x3670 $x4095)))
+(let ((@x4101 (monotonicity (rewrite (= (+ ?x254 ?x4062 ?x4078) ?x4096)) (= (= (+ ?x254 ?x4062 ?x4078) 0) $x4099))))
+(let ((@x4110 (monotonicity (monotonicity @x4101 (= $x4095 $x4102)) (= $x4106 (or $x3670 $x4102)))))
+(let ((@x4115 (mp ((_ quant-inst b_Source$) $x4106) (trans @x4110 (rewrite (= (or $x3670 $x4102) $x4105)) (= $x4106 $x4105)) $x4105)))
+(let ((@x5780 (unit-resolution (unit-resolution @x4115 (hypothesis $x3665) $x4102) (unit-resolution (def-axiom (or $x4074 (not $x4073))) @x5775 (not $x4073)) (unit-resolution (def-axiom (or $x4074 (not $x4071))) @x5775 (not $x4071)) (hypothesis (not $x4099)) false)))
+(let ((@x4831 (unit-resolution (lemma @x5780 (or $x4074 $x4099 $x3670)) @x4789 (or $x4074 $x4099))))
+(let ((@x4846 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x4099) $x4116)) (unit-resolution @x4831 @x5775 $x4099) $x4116)))
+(let ((@x5939 ((_ th-lemma arith farkas -1 1 -1 1) (hypothesis $x3924) (hypothesis $x4173) (hypothesis (not $x5329)) (hypothesis $x4116) false)))
+(let ((@x4867 (unit-resolution (lemma @x5939 (or $x5329 (not $x3924) (not $x4173) (not $x4116))) (unit-resolution @x4637 @x4713 $x3924) (or $x5329 (not $x4173) (not $x4116)))))
+(let (($x5274 (= (or (not $x3475) (or $x3907 (not $x5329))) (or (not $x3475) $x3907 (not $x5329)))))
+(let ((@x5275 (mp ((_ quant-inst v_b_v_G_1$ b_Source$) (or (not $x3475) (or $x3907 (not $x5329)))) (rewrite $x5274) (or (not $x3475) $x3907 (not $x5329)))))
+(let ((@x5099 (rewrite (= (or $x3045 (or (not $x3907) $x5333)) (or $x3045 (not $x3907) $x5333)))))
+(let ((@x5081 (mp ((_ quant-inst v_b_v_G_1$ b_Source$) (or $x3045 (or (not $x3907) $x5333))) @x5099 (or $x3045 (not $x3907) $x5333))))
+(let ((@x4868 (unit-resolution @x5081 @x3474 (unit-resolution @x5275 @x3480 (unit-resolution @x4867 @x4846 @x4827 $x5329) $x3907) $x5333)))
+(let ((@x4872 ((_ th-lemma arith farkas -1 1 1 1) @x4838 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x5333) $x5863)) @x4868 $x5863) (unit-resolution (def-axiom (or $x4074 (not $x4073))) @x5775 (not $x4073)) (unit-resolution @x4637 @x4713 $x3924) false)))
+(let (($x4077 (or $x4075 $x4076)))
+(let (($x5055 (or $x3678 $x4075 $x4076)))
+(let ((@x5303 (mp ((_ quant-inst b_Source$) (or $x3678 $x4077)) (rewrite (= (or $x3678 $x4077) $x5055)) $x5055)))
+(let ((@x8878 (unit-resolution (unit-resolution @x5303 @x4803 $x4077) (lemma @x4872 $x4074) $x4076)))
+(let ((@x9287 (unit-resolution (def-axiom (or $x3777 $x768 $x3771)) (mp @x8878 (monotonicity @x4135 (= $x4076 $x292)) $x292) (or $x3777 $x3771))))
+(let ((@x8755 (unit-resolution (def-axiom (or $x3768 $x3762)) (unit-resolution @x9287 @x8742 $x3771) $x3762)))
+(let ((@x8979 (unit-resolution (def-axiom (or $x3765 $x1843 $x3759)) @x8755 (unit-resolution (lemma @x5241 (or $x3695 $x1842)) @x9263 $x1842) $x3759)))
+(let ((@x9416 (unit-resolution (def-axiom (or $x3753 $x2760 $x3747)) (unit-resolution (def-axiom (or $x3756 $x3750)) @x8979 $x3750) $x3750)))
+(let ((@x9452 (unit-resolution @x9416 (lemma (unit-resolution @x5735 @x6683 @x6066 @x7364 @x7323 false) $x2755) $x3747)))
+(let ((@x9454 (unit-resolution (def-axiom (or $x3741 $x2806 $x3735)) (unit-resolution (def-axiom (or $x3744 $x3738)) @x9452 $x3738) $x3738)))
+(let ((@x9455 (unit-resolution @x9454 (lemma @x7807 $x2801) $x3735)))
+(let ((@x9475 (unit-resolution (def-axiom (or $x3732 $x1910)) @x9455 $x1910)))
+(let ((@x9478 ((_ th-lemma arith farkas -1 1 1) (hypothesis (<= (+ b_Infinity$ ?x4438) 0)) @x9476 @x9475 false)))
+(let ((@x9241 (unit-resolution (lemma @x9478 (or $x9479 (not (<= (+ b_Infinity$ ?x4438) 0)))) @x9476 (not (<= (+ b_Infinity$ ?x4438) 0)))))
+(let (($x4660 (<= (+ b_Infinity$ ?x4438) 0)))
+(let (($x8499 (or $x3581 $x1904 $x4660 $x4675)))
+(let ((@x7305 (mp ((_ quant-inst ?v0!20) (or $x3581 (or $x1904 $x4660 $x4675))) (rewrite (= (or $x3581 (or $x1904 $x4660 $x4675)) $x8499)) $x8499)))
+(let ((@x9599 (unit-resolution @x7305 @x4189 (unit-resolution (def-axiom (or $x3732 $x1905)) @x9455 $x1905) (or $x4660 $x4675))))
+(let ((@x9582 (unit-resolution @x9599 @x9241 $x4675)))
+(let ((?x4717 (v_b_SP_G_2$ ?x4661)))
+(let ((?x4720 (* (- 1) ?x4717)))
+(let ((?x4721 (+ ?x4662 ?x4720)))
+(let (($x4728 (>= ?x4721 0)))
+(let ((@x9586 ((_ th-lemma arith farkas 1 1 -1 1) @x9476 (unit-resolution ((_ quant-inst (?v1!7 ?v0!20)) (or $x3686 $x4728)) @x4714 $x4728) (hypothesis (<= (+ ?x1906 ?x4720) 0)) (unit-resolution (def-axiom (or $x4674 (not $x4665))) @x9582 (not $x4665)) false)))
+(let ((@x8898 (unit-resolution (lemma @x9586 $x9588) @x9476 (not (<= (+ ?x1906 ?x4720) 0)))))
+(let ((?x7341 (+ ?x1906 ?x4670 ?x4720)))
+(let (($x7121 (= ?x7341 0)))
+(let (($x5719 (<= ?x7341 0)))
+(let (($x4844 (<= (+ b_Infinity$ ?x4670) 0)))
+(let (($x8387 (not $x4844)))
+(let (($x7025 (>= ?x4671 0)))
+(let ((@x8158 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x4673 $x7025)) (unit-resolution (def-axiom (or $x4674 $x4672)) @x9582 $x4672) $x7025)))
+(let (($x4825 (>= ?x4662 0)))
+(let ((@x8897 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1 -1 -1) (or $x8387 (not $x4825) (not $x7025) $x1909 $x9479)) @x9475 (or $x8387 (not $x4825) (not $x7025) $x9479))))
+(let ((@x8874 (unit-resolution @x8897 (unit-resolution ((_ quant-inst (?v1!7 ?v0!20)) (or $x3556 $x4825)) @x4713 $x4825) @x9476 @x8158 $x8387)))
+(let (($x4709 (fun_app$ v_b_Visited_G_2$ ?x4661)))
+(let ((@x6057 (monotonicity (symm (hypothesis $x261) (= ?x260 v_b_Visited_G_2$)) (= (fun_app$ ?x260 ?x4661) $x4709))))
+(let ((@x6061 (monotonicity (symm @x6057 (= $x4709 (fun_app$ ?x260 ?x4661))) (= (not $x4709) (not (fun_app$ ?x260 ?x4661))))))
+(let (($x6003 (fun_app$ ?x260 ?x4661)))
+(let (($x6010 (= ?x4661 v_b_v_G_1$)))
+(let (($x6013 (or $x6010 $x4666)))
+(let (($x6016 (= $x6003 $x6013)))
+(let (($x6019 (or $x4134 $x6016)))
+(let ((@x6018 (monotonicity (rewrite (= (ite $x6010 true $x4666) $x6013)) (= (= $x6003 (ite $x6010 true $x4666)) $x6016))))
+(let ((@x6023 (monotonicity @x6018 (= (or $x4134 (= $x6003 (ite $x6010 true $x4666))) $x6019))))
+(let ((@x6026 (trans @x6023 (rewrite (= $x6019 $x6019)) (= (or $x4134 (= $x6003 (ite $x6010 true $x4666))) $x6019))))
+(let ((@x6027 (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true (?v1!7 ?v0!20)) (or $x4134 (= $x6003 (ite $x6010 true $x4666)))) @x6026 $x6019)))
+(let ((@x6050 (unit-resolution (def-axiom (or (not $x6016) $x6003 (not $x6013))) (unit-resolution (def-axiom (or $x6013 $x4667)) (hypothesis $x4666) $x6013) (or (not $x6016) $x6003))))
+(let ((@x6063 (unit-resolution (unit-resolution @x6050 (unit-resolution @x6027 @x3468 $x6016) $x6003) (mp (hypothesis (not $x4709)) @x6061 (not $x6003)) false)))
+(let ((@x8957 (unit-resolution (lemma @x6063 (or $x4709 $x2930 $x4667)) (unit-resolution (def-axiom (or $x3804 $x261)) @x4802 $x261) (or $x4709 $x4667))))
+(let ((@x8892 (unit-resolution @x8957 (unit-resolution (def-axiom (or $x4674 $x4666)) @x9582 $x4666) $x4709)))
+(let (($x4710 (not $x4709)))
+(let (($x6183 (or $x3720 $x4710 $x4844 $x5719)))
+(let (($x4848 (>= (+ ?x4669 ?x4717 ?x1907) 0)))
+(let (($x4849 (or $x4710 $x4844 $x4848)))
+(let (($x7891 (or $x3720 $x4849)))
+(let ((@x7340 (monotonicity (rewrite (= (+ ?x4669 ?x4717 ?x1907) (+ ?x1907 ?x4669 ?x4717))) (= $x4848 (>= (+ ?x1907 ?x4669 ?x4717) 0)))))
+(let ((@x7415 (trans @x7340 (rewrite (= (>= (+ ?x1907 ?x4669 ?x4717) 0) $x5719)) (= $x4848 $x5719))))
+(let ((@x7922 (monotonicity (monotonicity @x7415 (= $x4849 (or $x4710 $x4844 $x5719))) (= $x7891 (or $x3720 (or $x4710 $x4844 $x5719))))))
+(let ((@x7119 (trans @x7922 (rewrite (= (or $x3720 (or $x4710 $x4844 $x5719)) $x6183)) (= $x7891 $x6183))))
+(let ((@x8954 (unit-resolution (mp ((_ quant-inst ?v0!20 (?v1!7 ?v0!20)) $x7891) @x7119 $x6183) (unit-resolution (def-axiom (or $x3732 $x3715)) @x9455 $x3715) @x8892 (or $x4844 $x5719))))
+(let (($x8133 (>= ?x7341 0)))
+(let ((@x9055 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1 -1) (or $x8133 (not $x7025) $x9479 (not $x4728))) (unit-resolution ((_ quant-inst (?v1!7 ?v0!20)) (or $x3686 $x4728)) @x4714 $x4728) @x8158 @x9476 $x8133)))
+(let ((@x9049 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x7121 (not $x5719) (not $x8133))) @x9055 (unit-resolution @x8954 @x8874 $x5719) $x7121)))
+(let (($x7918 (not $x7121)))
+(let ((?x4888 (+ ?x1906 ?x4720)))
+(let (($x7874 (<= ?x4888 0)))
+(let (($x8072 (or $x3729 $x7874 $x4710 $x7918)))
+(let (($x4877 (>= (+ ?x4717 ?x1907) 0)))
+(let (($x4881 (or $x4877 $x4710 (not (= (+ ?x4717 ?x1907 ?x4669) 0)))))
+(let (($x8040 (or $x3729 $x4881)))
+(let ((@x6258 (monotonicity (rewrite (= (+ ?x4717 ?x1907 ?x4669) (+ ?x1907 ?x4669 ?x4717))) (= (= (+ ?x4717 ?x1907 ?x4669) 0) (= (+ ?x1907 ?x4669 ?x4717) 0)))))
+(let ((@x7178 (trans @x6258 (rewrite (= (= (+ ?x1907 ?x4669 ?x4717) 0) $x7121)) (= (= (+ ?x4717 ?x1907 ?x4669) 0) $x7121))))
+(let ((@x7871 (monotonicity (rewrite (= (+ ?x4717 ?x1907) (+ ?x1907 ?x4717))) (= $x4877 (>= (+ ?x1907 ?x4717) 0)))))
+(let ((@x7892 (trans @x7871 (rewrite (= (>= (+ ?x1907 ?x4717) 0) $x7874)) (= $x4877 $x7874))))
+(let ((@x8041 (monotonicity @x7892 (monotonicity @x7178 (= (not (= (+ ?x4717 ?x1907 ?x4669) 0)) $x7918)) (= $x4881 (or $x7874 $x4710 $x7918)))))
+(let ((@x8107 (trans (monotonicity @x8041 (= $x8040 (or $x3729 (or $x7874 $x4710 $x7918)))) (rewrite (= (or $x3729 (or $x7874 $x4710 $x7918)) $x8072)) (= $x8040 $x8072))))
+(let ((@x9051 (unit-resolution (mp ((_ quant-inst (?v1!7 ?v0!20)) $x8040) @x8107 $x8072) (unit-resolution (def-axiom (or $x3732 $x3724)) @x9455 $x3724) @x8892 (or $x7874 $x7918))))
+(let ((@x10024 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x1906 ?x4413)) $x6002)) (lemma (unit-resolution @x9051 @x9049 @x8898 false) $x9479) (not (= ?x1906 ?x4413)))))
+(let (($x4420 (= ?x1906 ?x4413)))
+(let (($x4423 (or $x4299 $x4420)))
+(let (($x8830 (or $x3695 $x4299 $x4420)))
+(let ((@x8691 (mp ((_ quant-inst ?v0!20) (or $x3695 $x4423)) (rewrite (= (or $x3695 $x4423) $x8830)) $x8830)))
+(let ((@x10120 (mp (unit-resolution (unit-resolution @x8691 @x9263 $x4423) @x10024 $x4299) @x10119 $x9037)))
+(let (($x4629 (fun_app$ v_b_Visited_G_1$ ?v0!20)))
+(let (($x5238 (= ?v0!20 v_b_v_G_1$)))
+(let (($x10274 (or $x5238 $x4629)))
+(let (($x10073 (= $x5237 $x10274)))
+(let (($x10506 (or $x4134 $x10073)))
+(let ((@x10500 (monotonicity (rewrite (= (ite $x5238 true $x4629) $x10274)) (= (= $x5237 (ite $x5238 true $x4629)) $x10073))))
+(let ((@x10183 (monotonicity @x10500 (= (or $x4134 (= $x5237 (ite $x5238 true $x4629))) $x10506))))
+(let ((@x10372 (trans @x10183 (rewrite (= $x10506 $x10506)) (= (or $x4134 (= $x5237 (ite $x5238 true $x4629))) $x10506))))
+(let ((@x10020 (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true ?v0!20) (or $x4134 (= $x5237 (ite $x5238 true $x4629)))) @x10372 $x10506)))
+(let ((?x4454 (pair$ v_b_v_G_1$ ?v0!20)))
+(let ((?x4455 (b_G$ ?x4454)))
+(let ((?x4507 (+ ?x254 ?x1907 ?x4455)))
+(let (($x4527 (<= ?x4507 0)))
+(let (($x8001 (= ?x4507 0)))
+(let ((?x9161 (+ ?x254 ?x4438 ?x4455)))
+(let (($x9165 (>= ?x9161 0)))
+(let ((?x4456 (* (- 1) ?x4455)))
+(let ((?x4457 (+ b_Infinity$ ?x4456)))
+(let (($x4458 (<= ?x4457 0)))
+(let (($x8810 (or $x4458 $x9165)))
+(let (($x8814 (not $x8810)))
+(let (($x8919 (or $x8814 $x4420)))
+(let (($x8679 (or $x3678 $x8814 $x4420)))
+(let (($x4463 (or (not (or $x4458 (<= (+ ?x4413 ?x1168 ?x4456) 0))) $x4420)))
+(let (($x9386 (or $x3678 $x4463)))
+(let ((@x9164 (monotonicity (rewrite (= (+ ?x4413 ?x1168 ?x4456) (+ ?x1168 ?x4413 ?x4456))) (= (<= (+ ?x4413 ?x1168 ?x4456) 0) (<= (+ ?x1168 ?x4413 ?x4456) 0)))))
+(let ((@x8891 (trans @x9164 (rewrite (= (<= (+ ?x1168 ?x4413 ?x4456) 0) $x9165)) (= (<= (+ ?x4413 ?x1168 ?x4456) 0) $x9165))))
+(let ((@x8813 (monotonicity @x8891 (= (or $x4458 (<= (+ ?x4413 ?x1168 ?x4456) 0)) $x8810))))
+(let ((@x8815 (monotonicity @x8813 (= (not (or $x4458 (<= (+ ?x4413 ?x1168 ?x4456) 0))) $x8814))))
+(let ((@x9295 (monotonicity (monotonicity @x8815 (= $x4463 $x8919)) (= $x9386 (or $x3678 $x8919)))))
+(let ((@x9441 (mp ((_ quant-inst ?v0!20) $x9386) (trans @x9295 (rewrite (= (or $x3678 $x8919) $x8679)) (= $x9386 $x8679)) $x8679)))
+(let ((@x9984 (unit-resolution (def-axiom (or $x8810 (not $x4458))) (hypothesis $x8814) (not $x4458))))
+(let ((@x9985 (unit-resolution (def-axiom (or $x8810 (not $x9165))) (hypothesis $x8814) (not $x9165))))
+(let (($x8926 (or $x4458 $x9165 $x8001)))
+(let (($x8928 (or $x3670 $x4458 $x9165 $x8001)))
+(let (($x4460 (<= (+ ?x4413 ?x1168 ?x4456) 0)))
+(let (($x4506 (or $x4458 $x4460 (= (+ ?x254 ?x4455 ?x1907) 0))))
+(let (($x8929 (or $x3670 $x4506)))
+(let ((@x8925 (monotonicity (rewrite (= (+ ?x254 ?x4455 ?x1907) ?x4507)) (= (= (+ ?x254 ?x4455 ?x1907) 0) $x8001))))
+(let ((@x8953 (monotonicity (monotonicity @x8891 @x8925 (= $x4506 $x8926)) (= $x8929 (or $x3670 $x8926)))))
+(let ((@x8682 (mp ((_ quant-inst ?v0!20) $x8929) (trans @x8953 (rewrite (= (or $x3670 $x8926) $x8928)) (= $x8929 $x8928)) $x8928)))
+(let ((@x9987 (unit-resolution (unit-resolution @x8682 @x4789 $x8926) @x9985 @x9984 (hypothesis (not $x8001)) false)))
+(let ((@x10276 (unit-resolution (lemma @x9987 (or $x8810 $x8001)) (unit-resolution (unit-resolution @x9441 @x4803 $x8919) @x10024 $x8814) $x8001)))
+(let ((?x4401 (+ ?x1906 ?x3064)))
+(let (($x6992 (<= ?x4401 0)))
+(let ((?x4566 (+ ?x1906 ?x3064 ?x4456)))
+(let (($x6987 (= ?x4566 0)))
+(let (($x4590 (>= ?x4566 0)))
+(let ((@x9966 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1) (or (not $x4527) $x4590 (not $x3906))) @x6160 (or (not $x4527) $x4590))))
+(let (($x4589 (<= ?x4566 0)))
+(let (($x4181 (>= ?x3063 0)))
+(let (($x6279 (or $x3703 $x4181)))
+(let ((@x6374 ((_ quant-inst v_b_v_G_1$) $x6279)))
+(let ((@x9257 (unit-resolution @x6374 (unit-resolution (def-axiom (or $x3756 $x3698)) @x8979 $x3698) $x4181)))
+(let (($x4146 (fun_app$ v_b_Visited_G_2$ v_b_v_G_1$)))
+(let (($x3097 (fun_app$ ?x260 v_b_v_G_1$)))
+(let (($x3456 (forall ((?v0 B_Vertex_bool_fun$) (?v1 B_Vertex$) (?v2 Bool) )(! (= (fun_app$ (fun_upd$ ?v0 ?v1 ?v2) ?v1) ?v2) :pattern ( (fun_upd$ ?v0 ?v1 ?v2) ) :qid k!33))
+))
+(let (($x55 (forall ((?v0 B_Vertex_bool_fun$) (?v1 B_Vertex$) (?v2 Bool) )(! (= (fun_app$ (fun_upd$ ?v0 ?v1 ?v2) ?v1) ?v2) :qid k!33))
+))
+(let (($x52 (= (fun_app$ (fun_upd$ ?2 ?1 ?0) ?1) ?0)))
+(let (($x50 (forall ((?v0 B_Vertex_bool_fun$) (?v1 B_Vertex$) (?v2 Bool) )(! (= (fun_app$ (fun_upd$ ?v0 ?v1 ?v2) ?v1) ?v2) :qid k!33))
+))
+(let ((@x54 (rewrite (= (= (fun_app$ (fun_upd$ ?2 ?1 ?0) ?1) ?0) $x52))))
+(let ((@x1427 (mp~ (mp (asserted $x50) (quant-intro @x54 (= $x50 $x55)) $x55) (nnf-pos (refl (~ $x52 $x52)) (~ $x55 $x55)) $x55)))
+(let ((@x3461 (mp @x1427 (quant-intro (refl (= $x52 $x52)) (= $x55 $x3456)) $x3456)))
+(let (($x4383 (or (not $x3456) $x3097)))
+(let ((@x4480 (monotonicity (rewrite (= (= $x3097 true) $x3097)) (= (or (not $x3456) (= $x3097 true)) $x4383))))
+(let ((@x4483 (trans @x4480 (rewrite (= $x4383 $x4383)) (= (or (not $x3456) (= $x3097 true)) $x4383))))
+(let ((@x4484 (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true) (or (not $x3456) (= $x3097 true))) @x4483 $x4383)))
+(let ((@x9972 (mp (unit-resolution @x4484 @x3461 $x3097) (monotonicity @x6739 (= $x3097 $x4146)) $x4146)))
+(let ((@x5439 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x4590 $x4589)) (hypothesis (not $x4589)) $x4590)))
+(let (($x4147 (not $x4146)))
+(let (($x5371 (or $x3720 $x4147 $x4458 $x4589)))
+(let ((?x5354 (+ ?x4455 ?x3063 ?x1907)))
+(let (($x5355 (>= ?x5354 0)))
+(let (($x5358 (or $x4147 $x4458 $x5355)))
+(let (($x5372 (or $x3720 $x5358)))
+(let ((@x5363 (monotonicity (rewrite (= ?x5354 (+ ?x1907 ?x3063 ?x4455))) (= $x5355 (>= (+ ?x1907 ?x3063 ?x4455) 0)))))
+(let ((@x5367 (trans @x5363 (rewrite (= (>= (+ ?x1907 ?x3063 ?x4455) 0) $x4589)) (= $x5355 $x4589))))
+(let ((@x5376 (monotonicity (monotonicity @x5367 (= $x5358 (or $x4147 $x4458 $x4589))) (= $x5372 (or $x3720 (or $x4147 $x4458 $x4589))))))
+(let ((@x5380 (trans @x5376 (rewrite (= (or $x3720 (or $x4147 $x4458 $x4589)) $x5371)) (= $x5372 $x5371))))
+(let ((@x5381 (mp ((_ quant-inst ?v0!20 v_b_v_G_1$) $x5372) @x5380 $x5371)))
+(let ((@x5443 (unit-resolution @x5381 (hypothesis $x3715) (hypothesis $x4146) (hypothesis (not $x4589)) $x4458)))
+(let ((@x5447 (lemma ((_ th-lemma arith farkas 1 1 1 1) @x5443 (hypothesis $x4181) @x5439 (hypothesis $x1910) false) (or $x4589 (not $x4181) $x1909 $x3720 $x4147))))
+(let ((@x9976 (unit-resolution (unit-resolution @x5447 @x9972 (or $x4589 (not $x4181) $x1909 $x3720)) @x9257 (or $x4589 $x1909 $x3720))))
+(let ((@x9977 (unit-resolution @x9976 (unit-resolution (def-axiom (or $x3732 $x3715)) @x9455 $x3715) @x9475 $x4589)))
+(let ((@x9991 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x6987 (not $x4589) (not $x4590))) @x9977 (or $x6987 (not $x4590)))))
+(let ((@x9992 (unit-resolution @x9991 (unit-resolution @x9966 (hypothesis $x4527) $x4590) $x6987)))
+(let (($x7023 (not $x6987)))
+(let (($x6921 (or $x3729 $x6992 $x4147 $x7023)))
+(let (($x4536 (>= (+ ?x3063 ?x1907) 0)))
+(let (($x4548 (or $x4536 $x4147 (not (= (+ ?x3063 ?x1907 ?x4455) 0)))))
+(let (($x8524 (or $x3729 $x4548)))
+(let ((@x7245 (monotonicity (rewrite (= (+ ?x3063 ?x1907 ?x4455) (+ ?x1907 ?x3063 ?x4455))) (= (= (+ ?x3063 ?x1907 ?x4455) 0) (= (+ ?x1907 ?x3063 ?x4455) 0)))))
+(let ((@x7022 (trans @x7245 (rewrite (= (= (+ ?x1907 ?x3063 ?x4455) 0) $x6987)) (= (= (+ ?x3063 ?x1907 ?x4455) 0) $x6987))))
+(let ((@x7049 (monotonicity (rewrite (= (+ ?x3063 ?x1907) (+ ?x1907 ?x3063))) (= $x4536 (>= (+ ?x1907 ?x3063) 0)))))
+(let ((@x8373 (trans @x7049 (rewrite (= (>= (+ ?x1907 ?x3063) 0) $x6992)) (= $x4536 $x6992))))
+(let ((@x7936 (monotonicity @x8373 (monotonicity @x7022 (= (not (= (+ ?x3063 ?x1907 ?x4455) 0)) $x7023)) (= $x4548 (or $x6992 $x4147 $x7023)))))
+(let ((@x8581 (trans (monotonicity @x7936 (= $x8524 (or $x3729 (or $x6992 $x4147 $x7023)))) (rewrite (= (or $x3729 (or $x6992 $x4147 $x7023)) $x6921)) (= $x8524 $x6921))))
+(let ((@x8053 (mp ((_ quant-inst v_b_v_G_1$) $x8524) @x8581 $x6921)))
+(let ((@x9995 (unit-resolution @x8053 (unit-resolution (def-axiom (or $x3732 $x3724)) @x9455 $x3724) @x9972 (or $x6992 $x7023))))
+(let (($x5406 (<= ?x4455 0)))
+(let (($x5407 (not $x5406)))
+(let (($x5405 (= v_b_v_G_1$ ?v0!20)))
+(let (($x5409 (not $x5405)))
+(let ((@x10003 (monotonicity (symm (commutativity (= $x5405 $x5238)) (= $x5238 $x5405)) (= (not $x5238) $x5409))))
+(let (($x5408 (or $x5405 $x5407)))
+(let (($x3099 (not $x3475)))
+(let (($x9955 (or $x3099 $x5405 $x5407)))
+(let ((@x9962 (mp ((_ quant-inst v_b_v_G_1$ ?v0!20) (or $x3099 $x5408)) (rewrite (= (or $x3099 $x5408) $x9955)) $x9955)))
+(let ((@x10006 (unit-resolution (unit-resolution @x9962 @x3480 $x5408) (mp (hypothesis (not $x5238)) @x10003 $x5409) $x5407)))
+(let ((@x10007 ((_ th-lemma arith farkas -1 -1 1 1) @x6160 @x10006 (hypothesis $x4527) (unit-resolution @x9995 @x9992 $x6992) false)))
+(let ((@x10279 (unit-resolution (lemma @x10007 (or (not $x4527) $x5238)) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x8001) $x4527)) @x10276 $x4527) $x5238)))
+(let ((@x10164 (unit-resolution (def-axiom (or (not $x10073) $x5237 (not $x10274))) (unit-resolution (def-axiom (or $x10274 (not $x5238))) @x10279 $x10274) (or (not $x10073) $x5237))))
+(unit-resolution (unit-resolution @x10164 (unit-resolution @x10020 @x3468 $x10073) $x5237) @x10120 false))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
+
--- a/src/HOL/SMT_Examples/Boogie_Max.certs	Wed Sep 30 23:31:18 2020 +0200
+++ b/src/HOL/SMT_Examples/Boogie_Max.certs	Wed Sep 30 23:37:07 2020 +0200
@@ -777,3 +777,782 @@
 (let ((@x2111 (unit-resolution (lemma @x1971 (or $x951 (not $x1522) $x1858 $x689 $x1895 $x1359 $x1361)) @x2102 (or $x951 (not $x1522) $x689 $x1895 $x1359 $x1361))))
 (unit-resolution @x2111 @x2109 @x2121 (unit-resolution (def-axiom (or $x1898 $x692)) @x2025 $x692) (unit-resolution (def-axiom (or $x1898 $x1892)) @x2025 $x1892) (unit-resolution (def-axiom (or $x1898 $x104)) @x2025 $x104) (unit-resolution (def-axiom (or $x1898 $x109)) @x2025 $x109) false))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
 
+5c906235df8ae94e7242f53402af877022224c12 778 0
+unsat
+((set-logic AUFLIA)
+(declare-fun ?v0!3 () Int)
+(declare-fun ?v0!2 () Int)
+(declare-fun ?v0!1 () Int)
+(declare-fun ?v0!0 () Int)
+(proof
+(let (($x109 (= v_b_max_G_3$ v_b_max_G_2$)))
+(let ((?x135 (v_b_array$ v_b_k_G_1$)))
+(let (($x136 (= ?x135 v_b_max_G_3$)))
+(let (($x1878 (forall ((?v0 Int) )(! (let (($x746 (<= (+ (v_b_array$ ?v0) (* (- 1) v_b_max_G_3$)) 0)))
+(let (($x733 (>= (+ ?v0 (* (- 1) v_b_p_G_1$)) 0)))
+(let (($x521 (>= ?v0 0)))
+(let (($x1157 (not $x521)))
+(or $x1157 $x733 $x746))))) :pattern ( (v_b_array$ ?v0) ) :qid k!17))
+))
+(let (($x1883 (not $x1878)))
+(let (($x1886 (or $x1883 $x136)))
+(let (($x1889 (not $x1886)))
+(let (($x1070 (>= (+ v_b_max_G_3$ (* (- 1) (v_b_array$ ?v0!3))) 0)))
+(let (($x1048 (<= (+ v_b_p_G_1$ (* (- 1) ?v0!3)) 0)))
+(let (($x931 (>= ?v0!3 0)))
+(let (($x1298 (not $x931)))
+(let (($x1313 (or $x1298 $x1048 $x1070)))
+(let (($x1318 (not $x1313)))
+(let (($x1892 (or $x1318 $x1889)))
+(let (($x1895 (not $x1892)))
+(let (($x682 (>= v_b_p_G_1$ 2)))
+(let (($x1364 (not $x682)))
+(let (($x679 (>= v_b_k_G_1$ 0)))
+(let (($x1363 (not $x679)))
+(let ((?x685 (* (- 1) v_b_p_G_1$)))
+(let ((?x686 (+ v_b_p_G_0$ ?x685)))
+(let (($x684 (= ?x686 (- 1))))
+(let (($x1362 (not $x684)))
+(let (($x573 (>= v_b_p_G_0$ 1)))
+(let (($x1287 (not $x573)))
+(let (($x1361 (not $x109)))
+(let (($x107 (= v_b_k_G_1$ v_b_p_G_0$)))
+(let (($x1360 (not $x107)))
+(let ((?x101 (v_b_array$ v_b_p_G_0$)))
+(let (($x104 (= v_b_max_G_2$ ?x101)))
+(let (($x1359 (not $x104)))
+(let (($x689 (>= (+ v_b_max_G_1$ (* (- 1) ?x101)) 0)))
+(let (($x571 (>= v_b_k_G_0$ 0)))
+(let (($x1286 (not $x571)))
+(let (($x1898 (or $x1286 $x689 $x1359 $x1360 $x1361 $x1287 $x1362 $x1363 $x1364 $x1895)))
+(let (($x1901 (not $x1898)))
+(let (($x145 (= v_b_max_G_3$ v_b_max_G_1$)))
+(let (($x1376 (not $x145)))
+(let (($x144 (= v_b_k_G_1$ v_b_k_G_0$)))
+(let (($x1375 (not $x144)))
+(let (($x692 (not $x689)))
+(let (($x1904 (or $x692 $x1286 $x1375 $x1376 $x1287 $x1362 $x1363 $x1364 $x1895)))
+(let ((?x937 (v_b_array$ ?v0!3)))
+(let (($x1559 (= ?x101 ?x937)))
+(let (($x1563 (not $x1559)))
+(let ((?x1068 (* (- 1) ?x937)))
+(let ((?x1461 (+ ?x101 ?x1068)))
+(let (($x1445 (>= ?x1461 0)))
+(let (($x1453 (not $x1445)))
+(let (($x1907 (not $x1904)))
+(let ((@x2130 (hypothesis $x1907)))
+(let ((?x744 (* (- 1) v_b_max_G_3$)))
+(let ((?x1781 (+ v_b_max_G_1$ ?x744)))
+(let (($x1782 (<= ?x1781 0)))
+(let (($x1780 (= v_b_max_G_1$ v_b_max_G_3$)))
+(let ((@x2143 (mp (unit-resolution (def-axiom (or $x1904 $x145)) @x2130 $x145) (symm (commutativity (= $x1780 $x145)) (= $x145 $x1780)) $x1780)))
+(let (($x1436 (not $x1070)))
+(let ((?x62 (v_b_array$ v_b_k_G_0$)))
+(let (($x63 (= ?x62 v_b_max_G_1$)))
+(let (($x1910 (or $x1901 $x1907)))
+(let (($x1913 (not $x1910)))
+(let ((?x549 (* (- 1) v_b_p_G_0$)))
+(let ((?x599 (+ v_b_length$ ?x549)))
+(let (($x600 (<= ?x599 0)))
+(let (($x1916 (or $x600 $x1286 $x1287 $x1913)))
+(let (($x1919 (not $x1916)))
+(let (($x1011 (>= (+ v_b_max_G_4$ (* (- 1) (v_b_array$ ?v0!2))) 0)))
+(let (($x900 (<= (+ v_b_length$ (* (- 1) ?v0!2)) 0)))
+(let (($x897 (>= ?v0!2 0)))
+(let (($x1247 (not $x897)))
+(let (($x889 (= (v_b_array$ ?v0!1) v_b_max_G_4$)))
+(let (($x884 (<= (+ v_b_length$ (* (- 1) ?v0!1)) 0)))
+(let (($x881 (>= ?v0!1 0)))
+(let (($x1227 (not $x881)))
+(let (($x1242 (or $x1227 $x884 $x889)))
+(let (($x1273 (not $x1242)))
+(let (($x1274 (or $x1273 $x1247 $x900 $x1011)))
+(let (($x1275 (not $x1274)))
+(let (($x1861 (forall ((?v0 Int) )(! (let ((?x46 (v_b_array$ ?v0)))
+(let (($x86 (= ?x46 v_b_max_G_4$)))
+(let (($x622 (<= (+ v_b_length$ (* (- 1) ?v0)) 0)))
+(let (($x521 (>= ?v0 0)))
+(let (($x1157 (not $x521)))
+(let (($x1216 (or $x1157 $x622 $x86)))
+(not $x1216))))))) :pattern ( (v_b_array$ ?v0) ) :qid k!17))
+))
+(let (($x1866 (or $x1861 $x1275)))
+(let (($x1869 (not $x1866)))
+(let (($x75 (= v_b_p_G_2$ v_b_p_G_0$)))
+(let (($x1290 (not $x75)))
+(let (($x73 (= v_b_max_G_4$ v_b_max_G_1$)))
+(let (($x1289 (not $x73)))
+(let (($x71 (= v_b_k_G_2$ v_b_k_G_0$)))
+(let (($x1288 (not $x71)))
+(let (($x661 (not $x600)))
+(let (($x1872 (or $x661 $x1286 $x1287 $x1288 $x1289 $x1290 $x1869)))
+(let (($x1875 (not $x1872)))
+(let (($x1922 (or $x1875 $x1919)))
+(let (($x1925 (not $x1922)))
+(let (($x1403 (not $x63)))
+(let (($x1853 (forall ((?v0 Int) )(! (let (($x561 (<= (+ (v_b_array$ ?v0) (* (- 1) v_b_max_G_1$)) 0)))
+(let (($x548 (>= (+ ?v0 (* (- 1) v_b_p_G_0$)) 0)))
+(let (($x521 (>= ?v0 0)))
+(let (($x1157 (not $x521)))
+(or $x1157 $x548 $x561))))) :pattern ( (v_b_array$ ?v0) ) :qid k!17))
+))
+(let (($x1858 (not $x1853)))
+(let ((?x30 (v_b_array$ 0)))
+(let (($x50 (= ?x30 v_b_max_G_0$)))
+(let (($x851 (not $x50)))
+(let (($x1928 (or $x851 $x1858 $x1403 $x1286 $x1287 $x1925)))
+(let (($x1931 (not $x1928)))
+(let (($x1934 (or $x851 $x1931)))
+(let (($x1937 (not $x1934)))
+(let (($x1845 (forall ((?v0 Int) )(! (let (($x534 (>= (+ v_b_max_G_0$ (* (- 1) (v_b_array$ ?v0))) 0)))
+(let (($x524 (>= ?v0 1)))
+(let (($x521 (>= ?v0 0)))
+(let (($x1157 (not $x521)))
+(or $x1157 $x524 $x534))))) :pattern ( (v_b_array$ ?v0) ) :qid k!17))
+))
+(let (($x1850 (not $x1845)))
+(let (($x1940 (or $x1850 $x1937)))
+(let (($x1943 (not $x1940)))
+(let (($x839 (>= (+ v_b_max_G_0$ (* (- 1) (v_b_array$ ?v0!0))) 0)))
+(let (($x832 (>= ?v0!0 1)))
+(let (($x835 (>= ?v0!0 0)))
+(let (($x1134 (not $x835)))
+(let (($x1149 (or $x1134 $x832 $x839)))
+(let (($x833 (not $x832)))
+(let (($x1154 (not $x1149)))
+(let ((@x1726 (hypothesis $x1154)))
+(let ((@x1711 ((_ th-lemma arith eq-propagate 0 0) (unit-resolution (def-axiom (or $x1149 $x835)) @x1726 $x835) (unit-resolution (def-axiom (or $x1149 $x833)) @x1726 $x833) (= ?v0!0 0))))
+(let ((@x1715 (symm (monotonicity @x1711 (= (v_b_array$ ?v0!0) ?x30)) (= ?x30 (v_b_array$ ?v0!0)))))
+(let (($x31 (= v_b_max_G_0$ ?x30)))
+(let (($x495 (<= v_b_length$ 0)))
+(let (($x496 (not $x495)))
+(let (($x511 (and $x496 $x31)))
+(let (($x752 (forall ((?v0 Int) )(! (let (($x746 (<= (+ (v_b_array$ ?v0) (* (- 1) v_b_max_G_3$)) 0)))
+(let (($x521 (>= ?v0 0)))
+(let (($x738 (and $x521 (not (>= (+ ?v0 (* (- 1) v_b_p_G_1$)) 0)))))
+(let (($x741 (not $x738)))
+(or $x741 $x746))))) :qid k!17))
+))
+(let (($x755 (not $x752)))
+(let (($x758 (or $x755 $x136)))
+(let (($x761 (and $x752 $x758)))
+(let (($x784 (and $x689 $x571 $x144 $x145 $x573 $x684 $x679 $x682)))
+(let (($x789 (not $x784)))
+(let (($x792 (or $x789 $x761)))
+(let (($x725 (and $x571 $x692 $x104 $x107 $x109 $x573 $x684 $x679 $x682)))
+(let (($x730 (not $x725)))
+(let (($x764 (or $x730 $x761)))
+(let (($x795 (and $x764 $x792)))
+(let (($x670 (and $x661 $x571 $x573)))
+(let (($x675 (not $x670)))
+(let (($x798 (or $x675 $x795)))
+(let (($x649 (forall ((?v0 Int) )(! (let (($x521 (>= ?v0 0)))
+(let (($x626 (and $x521 (not (<= (+ v_b_length$ (* (- 1) ?v0)) 0)))))
+(let (($x629 (not $x626)))
+(or $x629 (<= (+ (v_b_array$ ?v0) (* (- 1) v_b_max_G_4$)) 0))))) :qid k!17))
+))
+(let (($x635 (exists ((?v0 Int) )(! (let ((?x46 (v_b_array$ ?v0)))
+(let (($x86 (= ?x46 v_b_max_G_4$)))
+(let (($x521 (>= ?v0 0)))
+(let (($x626 (and $x521 (not (<= (+ v_b_length$ (* (- 1) ?v0)) 0)))))
+(let (($x629 (not $x626)))
+(or $x629 $x86)))))) :qid k!17))
+))
+(let (($x638 (not $x635)))
+(let (($x652 (or $x638 $x649)))
+(let (($x655 (and $x635 $x652)))
+(let (($x612 (and $x600 $x571 $x573 $x71 $x73 $x75)))
+(let (($x617 (not $x612)))
+(let (($x658 (or $x617 $x655)))
+(let (($x801 (and $x658 $x798)))
+(let (($x567 (forall ((?v0 Int) )(! (let (($x561 (<= (+ (v_b_array$ ?v0) (* (- 1) v_b_max_G_1$)) 0)))
+(let (($x521 (>= ?v0 0)))
+(let (($x553 (and $x521 (not (>= (+ ?v0 (* (- 1) v_b_p_G_0$)) 0)))))
+(let (($x556 (not $x553)))
+(or $x556 $x561))))) :qid k!17))
+))
+(let (($x591 (and $x50 $x567 $x63 $x571 $x573)))
+(let (($x596 (not $x591)))
+(let (($x804 (or $x596 $x801)))
+(let (($x807 (and $x50 $x804)))
+(let (($x541 (forall ((?v0 Int) )(! (let (($x534 (>= (+ v_b_max_G_0$ (* (- 1) (v_b_array$ ?v0))) 0)))
+(let (($x521 (>= ?v0 0)))
+(let (($x526 (and $x521 (not (>= ?v0 1)))))
+(let (($x529 (not $x526)))
+(or $x529 $x534))))) :qid k!17))
+))
+(let (($x544 (not $x541)))
+(let (($x810 (or $x544 $x807)))
+(let (($x813 (and $x541 $x810)))
+(let (($x819 (not (or (not $x511) $x813))))
+(let (($x138 (=> (and $x136 false) true)))
+(let (($x139 (and $x136 $x138)))
+(let (($x134 (forall ((?v0 Int) )(! (let ((?x46 (v_b_array$ ?v0)))
+(let (($x132 (<= ?x46 v_b_max_G_3$)))
+(let (($x43 (<= 0 ?v0)))
+(let (($x131 (and $x43 (< ?v0 v_b_p_G_1$))))
+(=> $x131 $x132))))) :qid k!17))
+))
+(let (($x140 (=> $x134 $x139)))
+(let (($x141 (and $x134 $x140)))
+(let (($x119 (and (= v_b_p_G_1$ (+ v_b_p_G_0$ 1)) (and (and (<= 0 v_b_k_G_1$) (<= 2 v_b_p_G_1$)) true))))
+(let (($x54 (<= 1 v_b_p_G_0$)))
+(let (($x110 (<= 0 v_b_k_G_1$)))
+(let (($x111 (and $x110 $x54)))
+(let (($x121 (and true (and $x111 $x119))))
+(let (($x148 (and true (and $x144 (and $x145 $x121)))))
+(let (($x55 (and (<= 0 v_b_k_G_0$) $x54)))
+(let (($x143 (<= ?x101 v_b_max_G_1$)))
+(let (($x152 (and true (and $x55 (and $x143 (and $x55 $x148))))))
+(let (($x153 (=> $x152 $x141)))
+(let (($x126 (and $x104 (and (and $x54 $x54) (and true (and $x107 (and $x109 $x121)))))))
+(let (($x102 (< v_b_max_G_1$ ?x101)))
+(let (($x129 (and true (and $x55 (and $x102 $x126)))))
+(let (($x142 (=> $x129 $x141)))
+(let (($x155 (=> (and true (and $x55 (and (< v_b_p_G_0$ v_b_length$) $x55))) (and $x142 $x153))))
+(let (($x91 (forall ((?v0 Int) )(! (let ((?x46 (v_b_array$ ?v0)))
+(let (($x89 (<= ?x46 v_b_max_G_4$)))
+(let (($x43 (<= 0 ?v0)))
+(let (($x85 (and $x43 (< ?v0 v_b_length$))))
+(=> $x85 $x89))))) :qid k!17))
+))
+(let (($x92 (=> $x91 true)))
+(let (($x93 (and $x91 $x92)))
+(let (($x88 (exists ((?v0 Int) )(! (let ((?x46 (v_b_array$ ?v0)))
+(let (($x86 (= ?x46 v_b_max_G_4$)))
+(let (($x43 (<= 0 ?v0)))
+(let (($x85 (and $x43 (< ?v0 v_b_length$))))
+(=> $x85 $x86))))) :qid k!17))
+))
+(let (($x94 (=> $x88 $x93)))
+(let (($x69 (<= v_b_length$ v_b_p_G_0$)))
+(let (($x81 (and $x69 (and $x55 (and true (and $x71 (and $x73 (and $x75 true))))))))
+(let (($x83 (and true (and $x55 $x81))))
+(let (($x96 (=> $x83 (and $x88 $x94))))
+(let (($x64 (and $x63 $x55)))
+(let (($x61 (forall ((?v0 Int) )(! (let ((?x46 (v_b_array$ ?v0)))
+(let (($x59 (<= ?x46 v_b_max_G_1$)))
+(let (($x43 (<= 0 ?v0)))
+(let (($x57 (and $x43 (< ?v0 v_b_p_G_0$))))
+(=> $x57 $x59))))) :qid k!17))
+))
+(let (($x67 (and true (and $x55 (and $x61 $x64)))))
+(let (($x157 (=> (and $x50 $x67) (and $x96 $x155))))
+(let (($x49 (forall ((?v0 Int) )(! (let ((?x46 (v_b_array$ ?v0)))
+(let (($x47 (<= ?x46 v_b_max_G_0$)))
+(let (($x43 (<= 0 ?v0)))
+(let (($x45 (and $x43 (< ?v0 1))))
+(=> $x45 $x47))))) :qid k!17))
+))
+(let (($x159 (=> $x49 (and $x50 $x157))))
+(let (($x32 (<= 0 0)))
+(let (($x38 (and $x31 (and $x32 (and $x32 (and (<= 1 1) (<= 1 1)))))))
+(let (($x39 (and true $x38)))
+(let (($x28 (< 0 v_b_length$)))
+(let (($x41 (and true (and $x28 $x39))))
+(let (($x161 (=> $x41 (and $x49 $x159))))
+(let (($x162 (not $x161)))
+(let (($x362 (forall ((?v0 Int) )(! (let ((?x46 (v_b_array$ ?v0)))
+(let (($x132 (<= ?x46 v_b_max_G_3$)))
+(or (not (and (<= 0 ?v0) (< ?v0 v_b_p_G_1$))) $x132))) :qid k!17))
+))
+(let (($x385 (or (not $x362) $x136)))
+(let (($x390 (and $x362 $x385)))
+(let (($x117 (and $x110 (<= 2 v_b_p_G_1$))))
+(let (($x308 (= v_b_p_G_1$ (+ 1 v_b_p_G_0$))))
+(let (($x313 (and $x308 $x117)))
+(let (($x316 (and $x111 $x313)))
+(let (($x402 (and $x145 $x316)))
+(let (($x405 (and $x144 $x402)))
+(let (($x415 (and $x55 $x405)))
+(let (($x418 (and $x143 $x415)))
+(let (($x421 (and $x55 $x418)))
+(let (($x435 (or (not $x421) $x390)))
+(let (($x326 (and $x109 $x316)))
+(let (($x329 (and $x107 $x326)))
+(let (($x339 (and $x54 $x329)))
+(let (($x342 (and $x104 $x339)))
+(let (($x345 (and $x102 $x342)))
+(let (($x348 (and $x55 $x345)))
+(let (($x397 (or (not $x348) $x390)))
+(let (($x440 (and $x397 $x435)))
+(let (($x447 (or (not (and $x55 (and (< v_b_p_G_0$ v_b_length$) $x55))) $x440)))
+(let (($x263 (forall ((?v0 Int) )(! (let ((?x46 (v_b_array$ ?v0)))
+(let (($x89 (<= ?x46 v_b_max_G_4$)))
+(let (($x43 (<= 0 ?v0)))
+(let (($x85 (and $x43 (< ?v0 v_b_length$))))
+(let (($x253 (not $x85)))
+(or $x253 $x89)))))) :qid k!17))
+))
+(let (($x257 (exists ((?v0 Int) )(! (let ((?x46 (v_b_array$ ?v0)))
+(let (($x86 (= ?x46 v_b_max_G_4$)))
+(let (($x43 (<= 0 ?v0)))
+(let (($x85 (and $x43 (< ?v0 v_b_length$))))
+(let (($x253 (not $x85)))
+(or $x253 $x86)))))) :qid k!17))
+))
+(let (($x284 (or (not $x257) $x263)))
+(let (($x289 (and $x257 $x284)))
+(let (($x296 (or (not (and $x55 (and $x69 (and $x55 (and $x71 (and $x73 $x75)))))) $x289)))
+(let (($x452 (and $x296 $x447)))
+(let (($x203 (forall ((?v0 Int) )(! (let ((?x46 (v_b_array$ ?v0)))
+(let (($x59 (<= ?x46 v_b_max_G_1$)))
+(or (not (and (<= 0 ?v0) (< ?v0 v_b_p_G_0$))) $x59))) :qid k!17))
+))
+(let (($x206 (and $x203 $x64)))
+(let (($x209 (and $x55 $x206)))
+(let (($x219 (and $x50 $x209)))
+(let (($x459 (or (not $x219) $x452)))
+(let (($x464 (and $x50 $x459)))
+(let (($x196 (forall ((?v0 Int) )(! (let ((?x46 (v_b_array$ ?v0)))
+(let (($x47 (<= ?x46 v_b_max_G_0$)))
+(or (not (and (<= 0 ?v0) (< ?v0 1))) $x47))) :qid k!17))
+))
+(let (($x471 (or (not $x196) $x464)))
+(let (($x476 (and $x196 $x471)))
+(let (($x483 (or (not (and $x28 (and $x31 (and $x32 (and $x32 (<= 1 1)))))) $x476)))
+(let (($x746 (<= (+ (v_b_array$ ?0) ?x744) 0)))
+(let (($x521 (>= ?0 0)))
+(let (($x738 (and $x521 (not (>= (+ ?0 ?x685) 0)))))
+(let (($x741 (not $x738)))
+(let (($x749 (or $x741 $x746)))
+(let ((?x46 (v_b_array$ ?0)))
+(let (($x132 (<= ?x46 v_b_max_G_3$)))
+(let (($x359 (or (not (and (<= 0 ?0) (< ?0 v_b_p_G_1$))) $x132)))
+(let ((@x520 (rewrite (= (<= 0 ?0) $x521))))
+(let ((@x740 (monotonicity @x520 (rewrite (= (< ?0 v_b_p_G_1$) (not (>= (+ ?0 ?x685) 0)))) (= (and (<= 0 ?0) (< ?0 v_b_p_G_1$)) $x738))))
+(let ((@x743 (monotonicity @x740 (= (not (and (<= 0 ?0) (< ?0 v_b_p_G_1$))) $x741))))
+(let ((@x754 (quant-intro (monotonicity @x743 (rewrite (= $x132 $x746)) (= $x359 $x749)) (= $x362 $x752))))
+(let ((@x760 (monotonicity (monotonicity @x754 (= (not $x362) $x755)) (= $x385 $x758))))
+(let (($x772 (and $x144 (and $x145 (and (and $x679 $x573) (and $x684 (and $x679 $x682)))))))
+(let (($x576 (and $x571 $x573)))
+(let (($x770 (= $x402 (and $x145 (and (and $x679 $x573) (and $x684 (and $x679 $x682)))))))
+(let ((@x697 (monotonicity (rewrite (= $x110 $x679)) (rewrite (= (<= 2 v_b_p_G_1$) $x682)) (= $x117 (and $x679 $x682)))))
+(let ((@x700 (monotonicity (rewrite (= $x308 $x684)) @x697 (= $x313 (and $x684 (and $x679 $x682))))))
+(let ((@x575 (rewrite (= $x54 $x573))))
+(let ((@x703 (monotonicity (rewrite (= $x110 $x679)) @x575 (= $x111 (and $x679 $x573)))))
+(let ((@x706 (monotonicity @x703 @x700 (= $x316 (and (and $x679 $x573) (and $x684 (and $x679 $x682)))))))
+(let ((@x578 (monotonicity (rewrite (= (<= 0 v_b_k_G_0$) $x571)) @x575 (= $x55 $x576))))
+(let ((@x777 (monotonicity @x578 (monotonicity (monotonicity @x706 $x770) (= $x405 $x772)) (= $x415 (and $x576 $x772)))))
+(let ((@x780 (monotonicity (rewrite (= $x143 $x689)) @x777 (= $x418 (and $x689 (and $x576 $x772))))))
+(let ((@x783 (monotonicity @x578 @x780 (= $x421 (and $x576 (and $x689 (and $x576 $x772)))))))
+(let ((@x788 (trans @x783 (rewrite (= (and $x576 (and $x689 (and $x576 $x772))) $x784)) (= $x421 $x784))))
+(let ((@x794 (monotonicity (monotonicity @x788 (= (not $x421) $x789)) (monotonicity @x754 @x760 (= $x390 $x761)) (= $x435 $x792))))
+(let (($x710 (and $x107 (and $x109 (and (and $x679 $x573) (and $x684 (and $x679 $x682)))))))
+(let ((@x727 (rewrite (= (and $x576 (and $x692 (and $x104 (and $x573 $x710)))) $x725))))
+(let (($x708 (= $x326 (and $x109 (and (and $x679 $x573) (and $x684 (and $x679 $x682)))))))
+(let ((@x715 (monotonicity @x575 (monotonicity (monotonicity @x706 $x708) (= $x329 $x710)) (= $x339 (and $x573 $x710)))))
+(let ((@x721 (monotonicity (rewrite (= $x102 $x692)) (monotonicity @x715 (= $x342 (and $x104 (and $x573 $x710)))) (= $x345 (and $x692 (and $x104 (and $x573 $x710)))))))
+(let ((@x724 (monotonicity @x578 @x721 (= $x348 (and $x576 (and $x692 (and $x104 (and $x573 $x710))))))))
+(let ((@x732 (monotonicity (trans @x724 @x727 (= $x348 $x725)) (= (not $x348) $x730))))
+(let ((@x766 (monotonicity @x732 (monotonicity @x754 @x760 (= $x390 $x761)) (= $x397 $x764))))
+(let (($x99 (and $x55 (and (< v_b_p_G_0$ v_b_length$) $x55))))
+(let ((@x666 (monotonicity (rewrite (= (< v_b_p_G_0$ v_b_length$) $x661)) @x578 (= (and (< v_b_p_G_0$ v_b_length$) $x55) (and $x661 $x576)))))
+(let ((@x674 (trans (monotonicity @x578 @x666 (= $x99 (and $x576 (and $x661 $x576)))) (rewrite (= (and $x576 (and $x661 $x576)) $x670)) (= $x99 $x670))))
+(let ((@x800 (monotonicity (monotonicity @x674 (= (not $x99) $x675)) (monotonicity @x766 @x794 (= $x440 $x795)) (= $x447 $x798))))
+(let (($x626 (and $x521 (not (<= (+ v_b_length$ (* (- 1) ?0)) 0)))))
+(let (($x629 (not $x626)))
+(let (($x89 (<= ?x46 v_b_max_G_4$)))
+(let (($x43 (<= 0 ?0)))
+(let (($x85 (and $x43 (< ?0 v_b_length$))))
+(let (($x253 (not $x85)))
+(let (($x260 (or $x253 $x89)))
+(let (($x624 (= (< ?0 v_b_length$) (not (<= (+ v_b_length$ (* (- 1) ?0)) 0)))))
+(let ((@x631 (monotonicity (monotonicity @x520 (rewrite $x624) (= $x85 $x626)) (= $x253 $x629))))
+(let ((@x648 (monotonicity @x631 (rewrite (= $x89 (<= (+ ?x46 (* (- 1) v_b_max_G_4$)) 0))) (= $x260 (or $x629 (<= (+ ?x46 (* (- 1) v_b_max_G_4$)) 0))))))
+(let (($x86 (= ?x46 v_b_max_G_4$)))
+(let (($x632 (or $x629 $x86)))
+(let (($x254 (or $x253 $x86)))
+(let ((@x640 (monotonicity (quant-intro (monotonicity @x631 (= $x254 $x632)) (= $x257 $x635)) (= (not $x257) $x638))))
+(let ((@x657 (monotonicity (quant-intro (monotonicity @x631 (= $x254 $x632)) (= $x257 $x635)) (monotonicity @x640 (quant-intro @x648 (= $x263 $x649)) (= $x284 $x652)) (= $x289 $x655))))
+(let (($x618 (= (not (and $x55 (and $x69 (and $x55 (and $x71 (and $x73 $x75)))))) $x617)))
+(let (($x227 (and $x71 (and $x73 $x75))))
+(let (($x237 (and $x55 $x227)))
+(let (($x240 (and $x69 $x237)))
+(let (($x243 (and $x55 $x240)))
+(let ((@x608 (monotonicity (rewrite (= $x69 $x600)) (monotonicity @x578 (= $x237 (and $x576 $x227))) (= $x240 (and $x600 (and $x576 $x227))))))
+(let ((@x611 (monotonicity @x578 @x608 (= $x243 (and $x576 (and $x600 (and $x576 $x227)))))))
+(let ((@x616 (trans @x611 (rewrite (= (and $x576 (and $x600 (and $x576 $x227))) $x612)) (= $x243 $x612))))
+(let ((@x803 (monotonicity (monotonicity (monotonicity @x616 $x618) @x657 (= $x296 $x658)) @x800 (= $x452 $x801))))
+(let ((@x593 (rewrite (= (and $x50 (and $x576 (and $x567 (and $x63 $x576)))) $x591))))
+(let (($x561 (<= (+ ?x46 (* (- 1) v_b_max_G_1$)) 0)))
+(let (($x553 (and $x521 (not (>= (+ ?0 ?x549) 0)))))
+(let (($x556 (not $x553)))
+(let (($x564 (or $x556 $x561)))
+(let (($x59 (<= ?x46 v_b_max_G_1$)))
+(let (($x200 (or (not (and $x43 (< ?0 v_b_p_G_0$))) $x59)))
+(let ((@x555 (monotonicity @x520 (rewrite (= (< ?0 v_b_p_G_0$) (not (>= (+ ?0 ?x549) 0)))) (= (and $x43 (< ?0 v_b_p_G_0$)) $x553))))
+(let ((@x566 (monotonicity (monotonicity @x555 (= (not (and $x43 (< ?0 v_b_p_G_0$))) $x556)) (rewrite (= $x59 $x561)) (= $x200 $x564))))
+(let ((@x584 (monotonicity (quant-intro @x566 (= $x203 $x567)) (monotonicity @x578 (= $x64 (and $x63 $x576))) (= $x206 (and $x567 (and $x63 $x576))))))
+(let ((@x587 (monotonicity @x578 @x584 (= $x209 (and $x576 (and $x567 (and $x63 $x576)))))))
+(let ((@x590 (monotonicity @x587 (= $x219 (and $x50 (and $x576 (and $x567 (and $x63 $x576))))))))
+(let ((@x598 (monotonicity (trans @x590 @x593 (= $x219 $x591)) (= (not $x219) $x596))))
+(let ((@x809 (monotonicity (monotonicity @x598 @x803 (= $x459 $x804)) (= $x464 $x807))))
+(let (($x534 (>= (+ v_b_max_G_0$ (* (- 1) ?x46)) 0)))
+(let (($x526 (and $x521 (not (>= ?0 1)))))
+(let (($x529 (not $x526)))
+(let (($x538 (or $x529 $x534)))
+(let (($x47 (<= ?x46 v_b_max_G_0$)))
+(let (($x193 (or (not (and $x43 (< ?0 1))) $x47)))
+(let ((@x528 (monotonicity @x520 (rewrite (= (< ?0 1) (not (>= ?0 1)))) (= (and $x43 (< ?0 1)) $x526))))
+(let ((@x540 (monotonicity (monotonicity @x528 (= (not (and $x43 (< ?0 1))) $x529)) (rewrite (= $x47 $x534)) (= $x193 $x538))))
+(let ((@x546 (monotonicity (quant-intro @x540 (= $x196 $x541)) (= (not $x196) $x544))))
+(let ((@x815 (monotonicity (quant-intro @x540 (= $x196 $x541)) (monotonicity @x546 @x809 (= $x471 $x810)) (= $x476 $x813))))
+(let (($x517 (= (not (and $x28 (and $x31 (and $x32 (and $x32 (<= 1 1)))))) (not $x511))))
+(let (($x34 (<= 1 1)))
+(let (($x166 (and $x32 $x34)))
+(let (($x169 (and $x32 $x166)))
+(let (($x172 (and $x31 $x169)))
+(let (($x182 (and $x28 $x172)))
+(let ((@x513 (rewrite (= (and $x496 (and $x31 (and true (and true true)))) $x511))))
+(let ((@x501 (monotonicity (rewrite (= $x32 true)) (rewrite (= $x34 true)) (= $x166 (and true true)))))
+(let ((@x504 (monotonicity (rewrite (= $x32 true)) @x501 (= $x169 (and true (and true true))))))
+(let ((@x507 (monotonicity @x504 (= $x172 (and $x31 (and true (and true true)))))))
+(let ((@x510 (monotonicity (rewrite (= $x28 $x496)) @x507 (= $x182 (and $x496 (and $x31 (and true (and true true))))))))
+(let ((@x818 (monotonicity (monotonicity (trans @x510 @x513 (= $x182 $x511)) $x517) @x815 (= $x483 (or (not $x511) $x813)))))
+(let ((@x369 (monotonicity (rewrite (= (and $x136 false) false)) (= $x138 (=> false true)))))
+(let ((@x373 (trans @x369 (rewrite (= (=> false true) true)) (= $x138 true))))
+(let ((@x380 (trans (monotonicity @x373 (= $x139 (and $x136 true))) (rewrite (= (and $x136 true) $x136)) (= $x139 $x136))))
+(let ((@x364 (quant-intro (rewrite (= (=> (and $x43 (< ?0 v_b_p_G_1$)) $x132) $x359)) (= $x134 $x362))))
+(let ((@x389 (trans (monotonicity @x364 @x380 (= $x140 (=> $x362 $x136))) (rewrite (= (=> $x362 $x136) $x385)) (= $x140 $x385))))
+(let ((@x310 (monotonicity (rewrite (= (+ v_b_p_G_0$ 1) (+ 1 v_b_p_G_0$))) (= (= v_b_p_G_1$ (+ v_b_p_G_0$ 1)) $x308))))
+(let ((@x315 (monotonicity @x310 (rewrite (= (and $x117 true) $x117)) (= $x119 $x313))))
+(let ((@x321 (monotonicity (monotonicity @x315 (= (and $x111 $x119) $x316)) (= $x121 (and true $x316)))))
+(let ((@x404 (monotonicity (trans @x321 (rewrite (= (and true $x316) $x316)) (= $x121 $x316)) (= (and $x145 $x121) $x402))))
+(let ((@x410 (monotonicity (monotonicity @x404 (= (and $x144 (and $x145 $x121)) $x405)) (= $x148 (and true $x405)))))
+(let ((@x417 (monotonicity (trans @x410 (rewrite (= (and true $x405) $x405)) (= $x148 $x405)) (= (and $x55 $x148) $x415))))
+(let ((@x423 (monotonicity (monotonicity @x417 (= (and $x143 (and $x55 $x148)) $x418)) (= (and $x55 (and $x143 (and $x55 $x148))) $x421))))
+(let ((@x430 (trans (monotonicity @x423 (= $x152 (and true $x421))) (rewrite (= (and true $x421) $x421)) (= $x152 $x421))))
+(let ((@x433 (monotonicity @x430 (monotonicity @x364 @x389 (= $x141 $x390)) (= $x153 (=> $x421 $x390)))))
+(let (($x340 (= (and (and $x54 $x54) (and true (and $x107 (and $x109 $x121)))) $x339)))
+(let ((@x328 (monotonicity (trans @x321 (rewrite (= (and true $x316) $x316)) (= $x121 $x316)) (= (and $x109 $x121) $x326))))
+(let ((@x334 (monotonicity (monotonicity @x328 (= (and $x107 (and $x109 $x121)) $x329)) (= (and true (and $x107 (and $x109 $x121))) (and true $x329)))))
+(let ((@x338 (trans @x334 (rewrite (= (and true $x329) $x329)) (= (and true (and $x107 (and $x109 $x121))) $x329))))
+(let ((@x344 (monotonicity (monotonicity (rewrite (= (and $x54 $x54) $x54)) @x338 $x340) (= $x126 $x342))))
+(let ((@x350 (monotonicity (monotonicity @x344 (= (and $x102 $x126) $x345)) (= (and $x55 (and $x102 $x126)) $x348))))
+(let ((@x357 (trans (monotonicity @x350 (= $x129 (and true $x348))) (rewrite (= (and true $x348) $x348)) (= $x129 $x348))))
+(let ((@x395 (monotonicity @x357 (monotonicity @x364 @x389 (= $x141 $x390)) (= $x142 (=> $x348 $x390)))))
+(let ((@x442 (monotonicity (trans @x395 (rewrite (= (=> $x348 $x390) $x397)) (= $x142 $x397)) (trans @x433 (rewrite (= (=> $x421 $x390) $x435)) (= $x153 $x435)) (= (and $x142 $x153) $x440))))
+(let ((@x445 (monotonicity (rewrite (= (and true $x99) $x99)) @x442 (= $x155 (=> $x99 $x440)))))
+(let ((@x268 (monotonicity (quant-intro (rewrite (= (=> $x85 $x89) $x260)) (= $x91 $x263)) (= $x92 (=> $x263 true)))))
+(let ((@x272 (trans @x268 (rewrite (= (=> $x263 true) true)) (= $x92 true))))
+(let ((@x275 (monotonicity (quant-intro (rewrite (= (=> $x85 $x89) $x260)) (= $x91 $x263)) @x272 (= $x93 (and $x263 true)))))
+(let ((@x282 (monotonicity (quant-intro (rewrite (= (=> $x85 $x86) $x254)) (= $x88 $x257)) (trans @x275 (rewrite (= (and $x263 true) $x263)) (= $x93 $x263)) (= $x94 (=> $x257 $x263)))))
+(let ((@x291 (monotonicity (quant-intro (rewrite (= (=> $x85 $x86) $x254)) (= $x88 $x257)) (trans @x282 (rewrite (= (=> $x257 $x263) $x284)) (= $x94 $x284)) (= (and $x88 $x94) $x289))))
+(let (($x238 (= (and $x55 (and true (and $x71 (and $x73 (and $x75 true))))) $x237)))
+(let (($x79 (and true (and $x71 (and $x73 (and $x75 true))))))
+(let ((@x226 (monotonicity (rewrite (= (and $x75 true) $x75)) (= (and $x73 (and $x75 true)) (and $x73 $x75)))))
+(let ((@x229 (monotonicity @x226 (= (and $x71 (and $x73 (and $x75 true))) $x227))))
+(let ((@x236 (trans (monotonicity @x229 (= $x79 (and true $x227))) (rewrite (= (and true $x227) $x227)) (= $x79 $x227))))
+(let ((@x245 (monotonicity (monotonicity (monotonicity @x236 $x238) (= $x81 $x240)) (= (and $x55 $x81) $x243))))
+(let ((@x252 (trans (monotonicity @x245 (= $x83 (and true $x243))) (rewrite (= (and true $x243) $x243)) (= $x83 $x243))))
+(let ((@x300 (trans (monotonicity @x252 @x291 (= $x96 (=> $x243 $x289))) (rewrite (= (=> $x243 $x289) $x296)) (= $x96 $x296))))
+(let ((@x454 (monotonicity @x300 (trans @x445 (rewrite (= (=> $x99 $x440) $x447)) (= $x155 $x447)) (= (and $x96 $x155) $x452))))
+(let ((@x205 (quant-intro (rewrite (= (=> (and $x43 (< ?0 v_b_p_G_0$)) $x59) $x200)) (= $x61 $x203))))
+(let ((@x211 (monotonicity (monotonicity @x205 (= (and $x61 $x64) $x206)) (= (and $x55 (and $x61 $x64)) $x209))))
+(let ((@x218 (trans (monotonicity @x211 (= $x67 (and true $x209))) (rewrite (= (and true $x209) $x209)) (= $x67 $x209))))
+(let ((@x457 (monotonicity (monotonicity @x218 (= (and $x50 $x67) $x219)) @x454 (= $x157 (=> $x219 $x452)))))
+(let ((@x466 (monotonicity (trans @x457 (rewrite (= (=> $x219 $x452) $x459)) (= $x157 $x459)) (= (and $x50 $x157) $x464))))
+(let ((@x198 (quant-intro (rewrite (= (=> (and $x43 (< ?0 1)) $x47) $x193)) (= $x49 $x196))))
+(let ((@x475 (trans (monotonicity @x198 @x466 (= $x159 (=> $x196 $x464))) (rewrite (= (=> $x196 $x464) $x471)) (= $x159 $x471))))
+(let ((@x168 (monotonicity (rewrite (= (and $x34 $x34) $x34)) (= (and $x32 (and $x34 $x34)) $x166))))
+(let ((@x174 (monotonicity (monotonicity @x168 (= (and $x32 (and $x32 (and $x34 $x34))) $x169)) (= $x38 $x172))))
+(let ((@x181 (trans (monotonicity @x174 (= $x39 (and true $x172))) (rewrite (= (and true $x172) $x172)) (= $x39 $x172))))
+(let ((@x187 (monotonicity (monotonicity @x181 (= (and $x28 $x39) $x182)) (= $x41 (and true $x182)))))
+(let ((@x481 (monotonicity (trans @x187 (rewrite (= (and true $x182) $x182)) (= $x41 $x182)) (monotonicity @x198 @x475 (= (and $x49 $x159) $x476)) (= $x161 (=> $x182 $x476)))))
+(let ((@x490 (monotonicity (trans @x481 (rewrite (= (=> $x182 $x476) $x483)) (= $x161 $x483)) (= $x162 (not $x483)))))
+(let ((@x823 (trans @x490 (monotonicity @x818 (= (not $x483) $x819)) (= $x162 $x819))))
+(let ((@x827 (and-elim (not-or-elim (mp (asserted $x162) @x823 $x819) $x511) $x31)))
+(let ((@x1690 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= v_b_max_G_0$ (v_b_array$ ?v0!0))) $x839)) (unit-resolution (def-axiom (or $x1149 (not $x839))) @x1726 (not $x839)) (trans @x827 @x1715 (= v_b_max_G_0$ (v_b_array$ ?v0!0))) false)))
+(let (($x1946 (or $x1154 $x1943)))
+(let (($x1340 (forall ((?v0 Int) )(! (let (($x746 (<= (+ (v_b_array$ ?v0) (* (- 1) v_b_max_G_3$)) 0)))
+(let (($x733 (>= (+ ?v0 (* (- 1) v_b_p_G_1$)) 0)))
+(let (($x521 (>= ?v0 0)))
+(let (($x1157 (not $x521)))
+(or $x1157 $x733 $x746))))) :qid k!17))
+))
+(let (($x1348 (not (or (not $x1340) $x136))))
+(let (($x1353 (or $x1318 $x1348)))
+(let (($x1365 (not $x1353)))
+(let (($x1378 (not (or $x692 $x1286 $x1375 $x1376 $x1287 $x1362 $x1363 $x1364 $x1365))))
+(let (($x1367 (not (or $x1286 $x689 $x1359 $x1360 $x1361 $x1287 $x1362 $x1363 $x1364 $x1365))))
+(let (($x1383 (or $x1367 $x1378)))
+(let (($x1391 (not (or $x600 $x1286 $x1287 (not $x1383)))))
+(let (($x1224 (forall ((?v0 Int) )(! (let ((?x46 (v_b_array$ ?v0)))
+(let (($x86 (= ?x46 v_b_max_G_4$)))
+(let (($x622 (<= (+ v_b_length$ (* (- 1) ?v0)) 0)))
+(let (($x521 (>= ?v0 0)))
+(let (($x1157 (not $x521)))
+(let (($x1216 (or $x1157 $x622 $x86)))
+(not $x1216))))))) :qid k!17))
+))
+(let (($x1280 (or $x1224 $x1275)))
+(let (($x1293 (not (or $x661 $x1286 $x1287 $x1288 $x1289 $x1290 (not $x1280)))))
+(let (($x1396 (or $x1293 $x1391)))
+(let (($x1199 (forall ((?v0 Int) )(! (let (($x561 (<= (+ (v_b_array$ ?v0) (* (- 1) v_b_max_G_1$)) 0)))
+(let (($x548 (>= (+ ?v0 (* (- 1) v_b_p_G_0$)) 0)))
+(let (($x521 (>= ?v0 0)))
+(let (($x1157 (not $x521)))
+(or $x1157 $x548 $x561))))) :qid k!17))
+))
+(let (($x1406 (not (or $x851 (not $x1199) $x1403 $x1286 $x1287 (not $x1396)))))
+(let (($x1411 (or $x851 $x1406)))
+(let (($x1177 (forall ((?v0 Int) )(! (let (($x534 (>= (+ v_b_max_G_0$ (* (- 1) (v_b_array$ ?v0))) 0)))
+(let (($x524 (>= ?v0 1)))
+(let (($x521 (>= ?v0 0)))
+(let (($x1157 (not $x521)))
+(or $x1157 $x524 $x534))))) :qid k!17))
+))
+(let (($x1420 (not (or (not $x1177) (not $x1411)))))
+(let (($x1425 (or $x1154 $x1420)))
+(let (($x733 (>= (+ ?0 ?x685) 0)))
+(let (($x1157 (not $x521)))
+(let (($x1335 (or $x1157 $x733 $x746)))
+(let ((@x1885 (monotonicity (quant-intro (refl (= $x1335 $x1335)) (= $x1340 $x1878)) (= (not $x1340) $x1883))))
+(let ((@x1891 (monotonicity (monotonicity @x1885 (= (or (not $x1340) $x136) $x1886)) (= $x1348 $x1889))))
+(let ((@x1906 (monotonicity (monotonicity (monotonicity @x1891 (= $x1353 $x1892)) (= $x1365 $x1895)) (= (or $x692 $x1286 $x1375 $x1376 $x1287 $x1362 $x1363 $x1364 $x1365) $x1904))))
+(let ((@x1900 (monotonicity (monotonicity (monotonicity @x1891 (= $x1353 $x1892)) (= $x1365 $x1895)) (= (or $x1286 $x689 $x1359 $x1360 $x1361 $x1287 $x1362 $x1363 $x1364 $x1365) $x1898))))
+(let ((@x1912 (monotonicity (monotonicity @x1900 (= $x1367 $x1901)) (monotonicity @x1906 (= $x1378 $x1907)) (= $x1383 $x1910))))
+(let ((@x1918 (monotonicity (monotonicity @x1912 (= (not $x1383) $x1913)) (= (or $x600 $x1286 $x1287 (not $x1383)) $x1916))))
+(let (($x622 (<= (+ v_b_length$ (* (- 1) ?0)) 0)))
+(let (($x1216 (or $x1157 $x622 $x86)))
+(let (($x1221 (not $x1216)))
+(let ((@x1868 (monotonicity (quant-intro (refl (= $x1221 $x1221)) (= $x1224 $x1861)) (= $x1280 $x1866))))
+(let ((@x1874 (monotonicity (monotonicity @x1868 (= (not $x1280) $x1869)) (= (or $x661 $x1286 $x1287 $x1288 $x1289 $x1290 (not $x1280)) $x1872))))
+(let ((@x1924 (monotonicity (monotonicity @x1874 (= $x1293 $x1875)) (monotonicity @x1918 (= $x1391 $x1919)) (= $x1396 $x1922))))
+(let (($x548 (>= (+ ?0 ?x549) 0)))
+(let (($x1194 (or $x1157 $x548 $x561)))
+(let ((@x1860 (monotonicity (quant-intro (refl (= $x1194 $x1194)) (= $x1199 $x1853)) (= (not $x1199) $x1858))))
+(let ((@x1930 (monotonicity @x1860 (monotonicity @x1924 (= (not $x1396) $x1925)) (= (or $x851 (not $x1199) $x1403 $x1286 $x1287 (not $x1396)) $x1928))))
+(let ((@x1939 (monotonicity (monotonicity (monotonicity @x1930 (= $x1406 $x1931)) (= $x1411 $x1934)) (= (not $x1411) $x1937))))
+(let ((@x1847 (refl (= (or $x1157 (>= ?0 1) $x534) (or $x1157 (>= ?0 1) $x534)))))
+(let ((@x1852 (monotonicity (quant-intro @x1847 (= $x1177 $x1845)) (= (not $x1177) $x1850))))
+(let ((@x1945 (monotonicity (monotonicity @x1852 @x1939 (= (or (not $x1177) (not $x1411)) $x1940)) (= $x1420 $x1943))))
+(let (($x951 (not $x136)))
+(let (($x954 (and $x752 $x951)))
+(let (($x1053 (not $x1048)))
+(let (($x1056 (and $x931 $x1053)))
+(let (($x1059 (not $x1056)))
+(let (($x1075 (or $x1059 $x1070)))
+(let (($x1078 (not $x1075)))
+(let (($x1081 (or $x1078 $x954)))
+(let (($x1097 (and $x689 $x571 $x144 $x145 $x573 $x684 $x679 $x682 $x1081)))
+(let (($x1087 (and $x571 $x692 $x104 $x107 $x109 $x573 $x684 $x679 $x682 $x1081)))
+(let (($x1102 (or $x1087 $x1097)))
+(let (($x1108 (and $x661 $x571 $x573 $x1102)))
+(let (($x903 (not (and $x897 (not $x900)))))
+(let (($x1016 (or $x903 $x1011)))
+(let (($x1019 (not $x1016)))
+(let (($x887 (not (and $x881 (not $x884)))))
+(let (($x890 (or $x887 $x889)))
+(let (($x1022 (and $x890 $x1019)))
+(let (($x877 (forall ((?v0 Int) )(! (let ((?x46 (v_b_array$ ?v0)))
+(let (($x86 (= ?x46 v_b_max_G_4$)))
+(let (($x521 (>= ?v0 0)))
+(let (($x626 (and $x521 (not (<= (+ v_b_length$ (* (- 1) ?v0)) 0)))))
+(let (($x629 (not $x626)))
+(let (($x632 (or $x629 $x86)))
+(not $x632))))))) :qid k!17))
+))
+(let (($x1025 (or $x877 $x1022)))
+(let (($x1031 (and $x600 $x571 $x573 $x71 $x73 $x75 $x1025)))
+(let (($x1113 (or $x1031 $x1108)))
+(let (($x1119 (and $x50 $x567 $x63 $x571 $x573 $x1113)))
+(let (($x1124 (or $x851 $x1119)))
+(let (($x1127 (and $x541 $x1124)))
+(let (($x831 (not (and $x835 $x833))))
+(let (($x840 (or $x831 $x839)))
+(let (($x841 (not $x840)))
+(let (($x1130 (or $x841 $x1127)))
+(let ((@x1380 (rewrite (= (and $x689 $x571 $x144 $x145 $x573 $x684 $x679 $x682 $x1353) $x1378))))
+(let ((@x1327 (monotonicity (rewrite (= $x738 (not (or $x1157 $x733)))) (= $x741 (not (not (or $x1157 $x733)))))))
+(let ((@x1331 (trans @x1327 (rewrite (= (not (not (or $x1157 $x733))) (or $x1157 $x733))) (= $x741 (or $x1157 $x733)))))
+(let ((@x1339 (trans (monotonicity @x1331 (= $x749 (or (or $x1157 $x733) $x746))) (rewrite (= (or (or $x1157 $x733) $x746) $x1335)) (= $x749 $x1335))))
+(let ((@x1345 (monotonicity (quant-intro @x1339 (= $x752 $x1340)) (= $x954 (and $x1340 $x951)))))
+(let ((@x1305 (monotonicity (rewrite (= $x1056 (not (or $x1298 $x1048)))) (= $x1059 (not (not (or $x1298 $x1048)))))))
+(let ((@x1309 (trans @x1305 (rewrite (= (not (not (or $x1298 $x1048))) (or $x1298 $x1048))) (= $x1059 (or $x1298 $x1048)))))
+(let ((@x1317 (trans (monotonicity @x1309 (= $x1075 (or (or $x1298 $x1048) $x1070))) (rewrite (= (or (or $x1298 $x1048) $x1070) $x1313)) (= $x1075 $x1313))))
+(let ((@x1355 (monotonicity (monotonicity @x1317 (= $x1078 $x1318)) (trans @x1345 (rewrite (= (and $x1340 $x951) $x1348)) (= $x954 $x1348)) (= $x1081 $x1353))))
+(let ((@x1374 (monotonicity @x1355 (= $x1097 (and $x689 $x571 $x144 $x145 $x573 $x684 $x679 $x682 $x1353)))))
+(let ((@x1369 (rewrite (= (and $x571 $x692 $x104 $x107 $x109 $x573 $x684 $x679 $x682 $x1353) $x1367))))
+(let ((@x1358 (monotonicity @x1355 (= $x1087 (and $x571 $x692 $x104 $x107 $x109 $x573 $x684 $x679 $x682 $x1353)))))
+(let ((@x1385 (monotonicity (trans @x1358 @x1369 (= $x1087 $x1367)) (trans @x1374 @x1380 (= $x1097 $x1378)) (= $x1102 $x1383))))
+(let ((@x1395 (trans (monotonicity @x1385 (= $x1108 (and $x661 $x571 $x573 $x1383))) (rewrite (= (and $x661 $x571 $x573 $x1383) $x1391)) (= $x1108 $x1391))))
+(let ((@x1254 (monotonicity (rewrite (= (and $x897 (not $x900)) (not (or $x1247 $x900)))) (= $x903 (not (not (or $x1247 $x900)))))))
+(let ((@x1258 (trans @x1254 (rewrite (= (not (not (or $x1247 $x900))) (or $x1247 $x900))) (= $x903 (or $x1247 $x900)))))
+(let ((@x1266 (trans (monotonicity @x1258 (= $x1016 (or (or $x1247 $x900) $x1011))) (rewrite (= (or (or $x1247 $x900) $x1011) (or $x1247 $x900 $x1011))) (= $x1016 (or $x1247 $x900 $x1011)))))
+(let ((@x1234 (monotonicity (rewrite (= (and $x881 (not $x884)) (not (or $x1227 $x884)))) (= $x887 (not (not (or $x1227 $x884)))))))
+(let ((@x1238 (trans @x1234 (rewrite (= (not (not (or $x1227 $x884))) (or $x1227 $x884))) (= $x887 (or $x1227 $x884)))))
+(let ((@x1246 (trans (monotonicity @x1238 (= $x890 (or (or $x1227 $x884) $x889))) (rewrite (= (or (or $x1227 $x884) $x889) $x1242)) (= $x890 $x1242))))
+(let ((@x1272 (monotonicity @x1246 (monotonicity @x1266 (= $x1019 (not (or $x1247 $x900 $x1011)))) (= $x1022 (and $x1242 (not (or $x1247 $x900 $x1011)))))))
+(let ((@x1279 (trans @x1272 (rewrite (= (and $x1242 (not (or $x1247 $x900 $x1011))) $x1275)) (= $x1022 $x1275))))
+(let ((@x1208 (monotonicity (rewrite (= $x626 (not (or $x1157 $x622)))) (= $x629 (not (not (or $x1157 $x622)))))))
+(let ((@x1212 (trans @x1208 (rewrite (= (not (not (or $x1157 $x622))) (or $x1157 $x622))) (= $x629 (or $x1157 $x622)))))
+(let ((@x1220 (trans (monotonicity @x1212 (= $x632 (or (or $x1157 $x622) $x86))) (rewrite (= (or (or $x1157 $x622) $x86) $x1216)) (= $x632 $x1216))))
+(let ((@x1226 (quant-intro (monotonicity @x1220 (= (not $x632) $x1221)) (= $x877 $x1224))))
+(let ((@x1285 (monotonicity (monotonicity @x1226 @x1279 (= $x1025 $x1280)) (= $x1031 (and $x600 $x571 $x573 $x71 $x73 $x75 $x1280)))))
+(let ((@x1297 (trans @x1285 (rewrite (= (and $x600 $x571 $x573 $x71 $x73 $x75 $x1280) $x1293)) (= $x1031 $x1293))))
+(let ((@x1186 (monotonicity (rewrite (= $x553 (not (or $x1157 $x548)))) (= $x556 (not (not (or $x1157 $x548)))))))
+(let ((@x1190 (trans @x1186 (rewrite (= (not (not (or $x1157 $x548))) (or $x1157 $x548))) (= $x556 (or $x1157 $x548)))))
+(let ((@x1198 (trans (monotonicity @x1190 (= $x564 (or (or $x1157 $x548) $x561))) (rewrite (= (or (or $x1157 $x548) $x561) $x1194)) (= $x564 $x1194))))
+(let ((@x1401 (monotonicity (quant-intro @x1198 (= $x567 $x1199)) (monotonicity @x1297 @x1395 (= $x1113 $x1396)) (= $x1119 (and $x50 $x1199 $x63 $x571 $x573 $x1396)))))
+(let ((@x1410 (trans @x1401 (rewrite (= (and $x50 $x1199 $x63 $x571 $x573 $x1396) $x1406)) (= $x1119 $x1406))))
+(let (($x524 (>= ?0 1)))
+(let (($x1172 (or $x1157 $x524 $x534)))
+(let ((@x1164 (monotonicity (rewrite (= $x526 (not (or $x1157 $x524)))) (= $x529 (not (not (or $x1157 $x524)))))))
+(let ((@x1168 (trans @x1164 (rewrite (= (not (not (or $x1157 $x524))) (or $x1157 $x524))) (= $x529 (or $x1157 $x524)))))
+(let ((@x1176 (trans (monotonicity @x1168 (= $x538 (or (or $x1157 $x524) $x534))) (rewrite (= (or (or $x1157 $x524) $x534) $x1172)) (= $x538 $x1172))))
+(let ((@x1416 (monotonicity (quant-intro @x1176 (= $x541 $x1177)) (monotonicity @x1410 (= $x1124 $x1411)) (= $x1127 (and $x1177 $x1411)))))
+(let ((@x1141 (monotonicity (rewrite (= (and $x835 $x833) (not (or $x1134 $x832)))) (= $x831 (not (not (or $x1134 $x832)))))))
+(let ((@x1145 (trans @x1141 (rewrite (= (not (not (or $x1134 $x832))) (or $x1134 $x832))) (= $x831 (or $x1134 $x832)))))
+(let ((@x1153 (trans (monotonicity @x1145 (= $x840 (or (or $x1134 $x832) $x839))) (rewrite (= (or (or $x1134 $x832) $x839) $x1149)) (= $x840 $x1149))))
+(let ((@x1427 (monotonicity (monotonicity @x1153 (= $x841 $x1154)) (trans @x1416 (rewrite (= (and $x1177 $x1411) $x1420)) (= $x1127 $x1420)) (= $x1130 $x1425))))
+(let (($x939 (<= (+ ?x937 ?x744) 0)))
+(let (($x941 (not (or (not (and $x931 (not (>= (+ ?v0!3 ?x685) 0)))) $x939))))
+(let (($x958 (or $x941 $x954)))
+(let (($x966 (not $x789)))
+(let (($x969 (and $x966 $x958)))
+(let (($x927 (not $x730)))
+(let (($x962 (and $x927 $x958)))
+(let (($x973 (or $x962 $x969)))
+(let (($x924 (not $x675)))
+(let (($x977 (and $x924 $x973)))
+(let (($x908 (not (or $x903 (<= (+ (v_b_array$ ?v0!2) (* (- 1) v_b_max_G_4$)) 0)))))
+(let (($x912 (and $x890 $x908)))
+(let (($x916 (or $x877 $x912)))
+(let (($x871 (not $x617)))
+(let (($x920 (and $x871 $x916)))
+(let (($x981 (or $x920 $x977)))
+(let (($x985 (and $x591 $x981)))
+(let (($x989 (or $x851 $x985)))
+(let (($x993 (and $x541 $x989)))
+(let (($x997 (or $x841 $x993)))
+(let (($x1076 (= (or (not (and $x931 (not (>= (+ ?v0!3 ?x685) 0)))) $x939) $x1075)))
+(let ((@x1067 (monotonicity (rewrite (= (+ ?x937 ?x744) (+ ?x744 ?x937))) (= $x939 (<= (+ ?x744 ?x937) 0)))))
+(let ((@x1074 (trans @x1067 (rewrite (= (<= (+ ?x744 ?x937) 0) $x1070)) (= $x939 $x1070))))
+(let ((@x1045 (monotonicity (rewrite (= (+ ?v0!3 ?x685) (+ ?x685 ?v0!3))) (= (>= (+ ?v0!3 ?x685) 0) (>= (+ ?x685 ?v0!3) 0)))))
+(let ((@x1052 (trans @x1045 (rewrite (= (>= (+ ?x685 ?v0!3) 0) $x1048)) (= (>= (+ ?v0!3 ?x685) 0) $x1048))))
+(let ((@x1058 (monotonicity (monotonicity @x1052 (= (not (>= (+ ?v0!3 ?x685) 0)) $x1053)) (= (and $x931 (not (>= (+ ?v0!3 ?x685) 0))) $x1056))))
+(let ((@x1061 (monotonicity @x1058 (= (not (and $x931 (not (>= (+ ?v0!3 ?x685) 0)))) $x1059))))
+(let ((@x1083 (monotonicity (monotonicity (monotonicity @x1061 @x1074 $x1076) (= $x941 $x1078)) (= $x958 $x1081))))
+(let ((@x1096 (monotonicity (rewrite (= $x966 $x784)) @x1083 (= $x969 (and $x784 $x1081)))))
+(let ((@x1086 (monotonicity (rewrite (= $x927 $x725)) @x1083 (= $x962 (and $x725 $x1081)))))
+(let ((@x1104 (monotonicity (trans @x1086 (rewrite (= (and $x725 $x1081) $x1087)) (= $x962 $x1087)) (trans @x1096 (rewrite (= (and $x784 $x1081) $x1097)) (= $x969 $x1097)) (= $x973 $x1102))))
+(let ((@x1107 (monotonicity (rewrite (= $x924 $x670)) @x1104 (= $x977 (and $x670 $x1102)))))
+(let (($x1017 (= (or $x903 (<= (+ (v_b_array$ ?v0!2) (* (- 1) v_b_max_G_4$)) 0)) $x1016)))
+(let (($x906 (<= (+ (v_b_array$ ?v0!2) (* (- 1) v_b_max_G_4$)) 0)))
+(let (($x1012 (= (<= (+ (* (- 1) v_b_max_G_4$) (v_b_array$ ?v0!2)) 0) $x1011)))
+(let (($x1007 (= $x906 (<= (+ (* (- 1) v_b_max_G_4$) (v_b_array$ ?v0!2)) 0))))
+(let (($x1004 (= (+ (v_b_array$ ?v0!2) (* (- 1) v_b_max_G_4$)) (+ (* (- 1) v_b_max_G_4$) (v_b_array$ ?v0!2)))))
+(let ((@x1015 (trans (monotonicity (rewrite $x1004) $x1007) (rewrite $x1012) (= $x906 $x1011))))
+(let ((@x1024 (monotonicity (monotonicity (monotonicity @x1015 $x1017) (= $x908 $x1019)) (= $x912 $x1022))))
+(let ((@x1030 (monotonicity (rewrite (= $x871 $x612)) (monotonicity @x1024 (= $x916 $x1025)) (= $x920 (and $x612 $x1025)))))
+(let ((@x1115 (monotonicity (trans @x1030 (rewrite (= (and $x612 $x1025) $x1031)) (= $x920 $x1031)) (trans @x1107 (rewrite (= (and $x670 $x1102) $x1108)) (= $x977 $x1108)) (= $x981 $x1113))))
+(let ((@x1123 (trans (monotonicity @x1115 (= $x985 (and $x591 $x1113))) (rewrite (= (and $x591 $x1113) $x1119)) (= $x985 $x1119))))
+(let ((@x1132 (monotonicity (monotonicity (monotonicity @x1123 (= $x989 $x1124)) (= $x993 $x1127)) (= $x997 $x1130))))
+(let ((@x950 (nnf-neg (nnf-pos (refl (~ $x749 $x749)) (~ $x752 $x752)) (~ (not $x755) $x752))))
+(let ((@x961 (nnf-neg (sk (~ $x755 $x941)) (nnf-neg @x950 (refl (~ $x951 $x951)) (~ (not $x758) $x954)) (~ (not $x761) $x958))))
+(let ((@x976 (nnf-neg (nnf-neg (refl (~ $x927 $x927)) @x961 (~ (not $x764) $x962)) (nnf-neg (refl (~ $x966 $x966)) @x961 (~ (not $x792) $x969)) (~ (not $x795) $x973))))
+(let ((@x915 (nnf-neg (nnf-neg (sk (~ $x635 $x890)) (~ (not $x638) $x890)) (sk (~ (not $x649) $x908)) (~ (not $x652) $x912))))
+(let ((@x919 (nnf-neg (nnf-neg (refl (~ (not $x632) (not $x632))) (~ $x638 $x877)) @x915 (~ (not $x655) $x916))))
+(let ((@x984 (nnf-neg (nnf-neg (refl (~ $x871 $x871)) @x919 (~ (not $x658) $x920)) (nnf-neg (refl (~ $x924 $x924)) @x976 (~ (not $x798) $x977)) (~ (not $x801) $x981))))
+(let ((@x867 (monotonicity (refl (~ $x50 $x50)) (nnf-pos (refl (~ $x564 $x564)) (~ $x567 $x567)) (refl (~ $x63 $x63)) (refl (~ $x571 $x571)) (refl (~ $x573 $x573)) (~ $x591 $x591))))
+(let ((@x988 (nnf-neg (nnf-neg @x867 (~ (not $x596) $x591)) @x984 (~ (not $x804) $x985))))
+(let ((@x850 (nnf-neg (nnf-pos (refl (~ $x538 $x538)) (~ $x541 $x541)) (~ (not $x544) $x541))))
+(let ((@x996 (nnf-neg @x850 (nnf-neg (refl (~ $x851 $x851)) @x988 (~ (not $x807) $x989)) (~ (not $x810) $x993))))
+(let ((@x1000 (mp~ (not-or-elim (mp (asserted $x162) @x823 $x819) (not $x813)) (nnf-neg (sk (~ $x544 $x841)) @x996 (~ (not $x813) $x997)) $x997)))
+(let ((@x1949 (mp (mp (mp @x1000 @x1132 $x1130) @x1427 $x1425) (monotonicity @x1945 (= $x1425 $x1946)) $x1946)))
+(let ((@x2086 (unit-resolution (def-axiom (or $x1940 $x1934)) (unit-resolution @x1949 (lemma @x1690 $x1149) $x1943) $x1934)))
+(let ((@x2093 (unit-resolution (def-axiom (or $x1937 $x851 $x1931)) (mp @x827 (symm (commutativity (= $x50 $x31)) (= $x31 $x50)) $x50) (or $x1937 $x1931))))
+(let ((@x2094 (unit-resolution @x2093 @x2086 $x1931)))
+(let ((@x2151 (monotonicity (unit-resolution (def-axiom (or $x1904 $x144)) @x2130 $x144) (= ?x135 ?x62))))
+(let ((@x2154 (trans @x2151 (unit-resolution (def-axiom (or $x1928 $x63)) @x2094 $x63) (= ?x135 v_b_max_G_1$))))
+(let ((@x2155 (trans @x2154 (symm (unit-resolution (def-axiom (or $x1904 $x145)) @x2130 $x145) $x1780) $x136)))
+(let ((@x1523 (def-axiom (or $x1886 $x951))))
+(let ((@x1808 (def-axiom (or $x1895 $x1318 $x1889))))
+(let ((@x2157 (unit-resolution @x1808 (unit-resolution @x1523 @x2155 $x1886) (unit-resolution (def-axiom (or $x1904 $x1892)) @x2130 $x1892) $x1318)))
+(let ((@x1812 (def-axiom (or $x1313 $x1436))))
+(let ((@x2162 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 -1) (or $x1453 $x692 $x1070 (not $x1782))) (unit-resolution @x1812 @x2157 $x1436) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x1780) $x1782)) @x2143 $x1782) (unit-resolution (def-axiom (or $x1904 $x689)) @x2130 $x689) $x1453)))
+(let ((@x1565 ((_ th-lemma arith triangle-eq) (or $x1563 $x1445))))
+(let (($x1558 (= v_b_p_G_0$ ?v0!3)))
+(let ((?x1046 (* (- 1) ?v0!3)))
+(let ((?x1510 (+ v_b_p_G_0$ ?x1046)))
+(let (($x1560 (>= ?x1510 0)))
+(let (($x1522 (>= ?x686 (- 1))))
+(let ((@x2167 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1362 $x1522)) (unit-resolution (def-axiom (or $x1904 $x684)) @x2130 $x684) $x1522)))
+(let ((@x2171 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1) (or $x1560 $x1048 (not $x1522))) (unit-resolution (def-axiom (or $x1313 $x1053)) @x2157 $x1053) @x2167 $x1560)))
+(let (($x1511 (<= ?x1510 0)))
+(let (($x1488 (>= (+ v_b_max_G_1$ ?x1068) 0)))
+(let (($x1955 (not $x1488)))
+(let ((@x2174 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1) (or $x1955 $x1070 (not $x1782))) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x1780) $x1782)) @x2143 $x1782) (unit-resolution @x1812 @x2157 $x1436) $x1955)))
+(let ((@x2102 (unit-resolution (def-axiom (or $x1928 $x1853)) @x2094 $x1853)))
+(let (($x1476 (or $x1858 $x1298 $x1511 $x1488)))
+(let (($x1535 (<= (+ ?x937 (* (- 1) v_b_max_G_1$)) 0)))
+(let (($x1549 (>= (+ ?v0!3 ?x549) 0)))
+(let (($x1501 (or $x1298 $x1549 $x1535)))
+(let (($x1464 (or $x1858 $x1501)))
+(let (($x1478 (= (+ ?x937 (* (- 1) v_b_max_G_1$)) (+ (* (- 1) v_b_max_G_1$) ?x937))))
+(let ((@x1486 (monotonicity (rewrite $x1478) (= $x1535 (<= (+ (* (- 1) v_b_max_G_1$) ?x937) 0)))))
+(let ((@x1472 (trans @x1486 (rewrite (= (<= (+ (* (- 1) v_b_max_G_1$) ?x937) 0) $x1488)) (= $x1535 $x1488))))
+(let ((@x1509 (monotonicity (rewrite (= (+ ?v0!3 ?x549) (+ ?x549 ?v0!3))) (= $x1549 (>= (+ ?x549 ?v0!3) 0)))))
+(let ((@x1497 (trans @x1509 (rewrite (= (>= (+ ?x549 ?v0!3) 0) $x1511)) (= $x1549 $x1511))))
+(let ((@x1470 (monotonicity (monotonicity @x1497 @x1472 (= $x1501 (or $x1298 $x1511 $x1488))) (= $x1464 (or $x1858 (or $x1298 $x1511 $x1488))))))
+(let ((@x1450 (trans @x1470 (rewrite (= (or $x1858 (or $x1298 $x1511 $x1488)) $x1476)) (= $x1464 $x1476))))
+(let ((@x2176 (unit-resolution (mp ((_ quant-inst ?v0!3) $x1464) @x1450 $x1476) @x2102 (unit-resolution (def-axiom (or $x1313 $x931)) @x2157 $x931) @x2174 $x1511)))
+(let ((@x2177 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1558 (not $x1511) (not $x1560))) @x2176 @x2171 $x1558)))
+(let ((@x1551 (monotonicity (symm (hypothesis $x1558) (= ?v0!3 v_b_p_G_0$)) (= ?x937 ?x101))))
+(let ((@x1540 (lemma (unit-resolution (hypothesis $x1563) (symm @x1551 $x1559) false) (or (not $x1558) $x1559))))
+(let ((@x2179 (lemma (unit-resolution @x1540 @x2177 (unit-resolution @x1565 @x2162 $x1563) false) $x1904)))
+(let ((@x2036 (symm (unit-resolution (def-axiom (or $x1872 $x73)) (hypothesis $x1875) $x73) (= v_b_max_G_1$ v_b_max_G_4$))))
+(let (($x2082 (or (not (= v_b_max_G_1$ v_b_max_G_4$)) (<= (+ v_b_max_G_1$ (* (- 1) v_b_max_G_4$)) 0))))
+(let ((@x2084 (unit-resolution ((_ th-lemma arith triangle-eq) $x2082) @x2036 (<= (+ v_b_max_G_1$ (* (- 1) v_b_max_G_4$)) 0))))
+(let ((@x2018 (hypothesis $x1875)))
+(let (($x2015 (= ?x62 v_b_max_G_4$)))
+(let (($x2016 (or $x1286 (<= (+ v_b_length$ (* (- 1) v_b_k_G_0$)) 0) $x2015)))
+(let ((@x2038 (unit-resolution (def-axiom (or $x2016 (not $x2015))) (trans (hypothesis $x63) @x2036 $x2015) $x2016)))
+(let ((@x2041 (unit-resolution (def-axiom (or $x1869 $x1861 $x1275)) (unit-resolution (def-axiom (or $x1872 $x1866)) @x2018 $x1866) (hypothesis $x1274) $x1861)))
+(let ((@x2042 (unit-resolution ((_ quant-inst v_b_k_G_0$) (or (not $x1861) (not $x2016))) @x2041 @x2038 false)))
+(let ((@x2096 (unit-resolution (lemma @x2042 (or $x1872 $x1403 $x1275)) @x2018 (unit-resolution (def-axiom (or $x1928 $x63)) @x2094 $x63) $x1275)))
+(let (($x2055 (>= (+ v_b_max_G_1$ (* (- 1) (v_b_array$ ?v0!2))) 0)))
+(let ((@x2077 ((_ th-lemma arith farkas -1 -1 1) (hypothesis (<= (+ v_b_p_G_0$ (* (- 1) ?v0!2)) 0)) (hypothesis $x600) (hypothesis (not $x900)) false)))
+(let ((@x2080 (lemma @x2077 (or (not (<= (+ v_b_p_G_0$ (* (- 1) ?v0!2)) 0)) $x661 $x900))))
+(let ((@x2100 (unit-resolution @x2080 (unit-resolution (def-axiom (or $x1872 $x600)) @x2018 $x600) (unit-resolution (def-axiom (or $x1274 (not $x900))) @x2096 (not $x900)) (not (<= (+ v_b_p_G_0$ (* (- 1) ?v0!2)) 0)))))
+(let (($x2023 (<= (+ v_b_p_G_0$ (* (- 1) ?v0!2)) 0)))
+(let (($x2063 (or $x1858 $x1247 $x2023 $x2055)))
+(let (($x2033 (<= (+ (v_b_array$ ?v0!2) (* (- 1) v_b_max_G_1$)) 0)))
+(let (($x1999 (>= (+ ?v0!2 ?x549) 0)))
+(let (($x2034 (or $x1247 $x1999 $x2033)))
+(let (($x2064 (or $x1858 $x2034)))
+(let (($x2056 (= (<= (+ (* (- 1) v_b_max_G_1$) (v_b_array$ ?v0!2)) 0) $x2055)))
+(let (($x2052 (= $x2033 (<= (+ (* (- 1) v_b_max_G_1$) (v_b_array$ ?v0!2)) 0))))
+(let (($x2049 (= (+ (v_b_array$ ?v0!2) (* (- 1) v_b_max_G_1$)) (+ (* (- 1) v_b_max_G_1$) (v_b_array$ ?v0!2)))))
+(let ((@x2059 (trans (monotonicity (rewrite $x2049) $x2052) (rewrite $x2056) (= $x2033 $x2055))))
+(let ((@x2004 (monotonicity (rewrite (= (+ ?v0!2 ?x549) (+ ?x549 ?v0!2))) (= $x1999 (>= (+ ?x549 ?v0!2) 0)))))
+(let ((@x2047 (trans @x2004 (rewrite (= (>= (+ ?x549 ?v0!2) 0) $x2023)) (= $x1999 $x2023))))
+(let ((@x2068 (monotonicity (monotonicity @x2047 @x2059 (= $x2034 (or $x1247 $x2023 $x2055))) (= $x2064 (or $x1858 (or $x1247 $x2023 $x2055))))))
+(let ((@x2072 (trans @x2068 (rewrite (= (or $x1858 (or $x1247 $x2023 $x2055)) $x2063)) (= $x2064 $x2063))))
+(let ((@x2104 (unit-resolution (mp ((_ quant-inst ?v0!2) $x2064) @x2072 $x2063) @x2102 (unit-resolution (def-axiom (or $x1274 $x897)) @x2096 $x897) (or $x2023 $x2055))))
+(let ((@x2106 ((_ th-lemma arith farkas -1 1 1) (unit-resolution @x2104 @x2100 $x2055) (unit-resolution (def-axiom (or $x1274 (not $x1011))) @x2096 (not $x1011)) @x2084 false)))
+(let ((@x2114 (unit-resolution (def-axiom (or $x1925 $x1875 $x1919)) (lemma @x2106 $x1872) (unit-resolution (def-axiom (or $x1928 $x1922)) @x2094 $x1922) $x1919)))
+(let ((@x2001 (unit-resolution (def-axiom (or $x1913 $x1901 $x1907)) (unit-resolution (def-axiom (or $x1916 $x1910)) @x2114 $x1910) $x1910)))
+(let ((@x2025 (unit-resolution @x2001 @x2179 $x1901)))
+(let ((@x1557 (trans (monotonicity (hypothesis $x107) (= ?x135 ?x101)) (symm (hypothesis $x104) (= ?x101 v_b_max_G_2$)) (= ?x135 v_b_max_G_2$))))
+(let ((@x1975 (trans @x1557 (symm (hypothesis $x109) (= v_b_max_G_2$ v_b_max_G_3$)) $x136)))
+(let ((@x1978 (lemma (unit-resolution (hypothesis $x951) @x1975 false) (or $x136 $x1361 $x1359 $x1360))))
+(let ((@x2121 (unit-resolution @x1978 (unit-resolution (def-axiom (or $x1898 $x109)) @x2025 $x109) (unit-resolution (def-axiom (or $x1898 $x104)) @x2025 $x104) (unit-resolution (def-axiom (or $x1898 $x107)) @x2025 $x107) $x136)))
+(let ((@x2109 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1362 $x1522)) (unit-resolution (def-axiom (or $x1898 $x684)) @x2025 $x684) $x1522)))
+(let ((@x1460 (unit-resolution @x1808 (unit-resolution @x1523 (hypothesis $x136) $x1886) (hypothesis $x1892) $x1318)))
+(let ((@x1539 (def-axiom (or $x1313 $x1053))))
+(let (($x1965 (not $x1560)))
+(let (($x1597 (<= (+ ?x101 ?x744) 0)))
+(let ((@x1431 (trans (symm (hypothesis $x104) (= ?x101 v_b_max_G_2$)) (symm (hypothesis $x109) (= v_b_max_G_2$ v_b_max_G_3$)) (= ?x101 v_b_max_G_3$))))
+(let ((@x1435 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x101 v_b_max_G_3$)) $x1597)) @x1431 $x1597)))
+(let ((@x1437 (lemma ((_ th-lemma arith farkas -1 -1 1) (hypothesis $x1436) (hypothesis $x1597) (hypothesis $x1445) false) (or $x1453 $x1070 (not $x1597)))))
+(let ((@x1952 (unit-resolution @x1565 (unit-resolution @x1437 (unit-resolution @x1812 @x1460 $x1436) @x1435 $x1453) $x1563)))
+(let ((@x1958 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1) (or $x1955 $x1070 (not $x1597) $x689)) (unit-resolution @x1812 @x1460 $x1436) @x1435 (hypothesis $x692) $x1955)))
+(let ((@x1962 (unit-resolution (mp ((_ quant-inst ?v0!3) $x1464) @x1450 $x1476) (hypothesis $x1853) (unit-resolution (def-axiom (or $x1313 $x931)) @x1460 $x931) (or $x1511 $x1488))))
+(let ((@x1969 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1558 (not $x1511) $x1965)) (unit-resolution @x1962 @x1958 $x1511) (or $x1558 $x1965))))
+(let ((@x1971 ((_ th-lemma arith farkas -1 1 1) (unit-resolution @x1969 (unit-resolution @x1540 @x1952 (not $x1558)) $x1965) (hypothesis $x1522) (unit-resolution @x1539 @x1460 $x1053) false)))
+(let ((@x2111 (unit-resolution (lemma @x1971 (or $x951 (not $x1522) $x1858 $x689 $x1895 $x1359 $x1361)) @x2102 (or $x951 (not $x1522) $x689 $x1895 $x1359 $x1361))))
+(unit-resolution @x2111 @x2109 @x2121 (unit-resolution (def-axiom (or $x1898 $x692)) @x2025 $x692) (unit-resolution (def-axiom (or $x1898 $x1892)) @x2025 $x1892) (unit-resolution (def-axiom (or $x1898 $x104)) @x2025 $x104) (unit-resolution (def-axiom (or $x1898 $x109)) @x2025 $x109) false))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
+
--- a/src/HOL/SMT_Examples/SMT_Examples.certs	Wed Sep 30 23:31:18 2020 +0200
+++ b/src/HOL/SMT_Examples/SMT_Examples.certs	Wed Sep 30 23:37:07 2020 +0200
@@ -6086,3 +6086,4829 @@
 (let ((@x133 (not-or-elim (mp (asserted $x96) @x129 $x125) (not (>= ?x89 1)))))
 ((_ th-lemma arith farkas -4 1 1) @x133 (unit-resolution (def-axiom (or $x683 $x668)) @x479 $x668) @x551 false))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
 
+032a981d2d971a3ae58910db408d3838b7de586f 7 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let ((@x36 (monotonicity (rewrite (= (or p$ (not p$)) true)) (= (not (or p$ (not p$))) (not true)))))
+(let ((@x40 (trans @x36 (rewrite (= (not true) false)) (= (not (or p$ (not p$))) false))))
+(mp (asserted (not (or p$ (not p$)))) @x40 false)))))
+
+d251ca4335382db5b789cf4827abd98b9e46f2bf 9 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let ((@x36 (monotonicity (rewrite (= (and p$ true) p$)) (= (= (and p$ true) p$) (= p$ p$)))))
+(let ((@x40 (trans @x36 (rewrite (= (= p$ p$) true)) (= (= (and p$ true) p$) true))))
+(let ((@x43 (monotonicity @x40 (= (not (= (and p$ true) p$)) (not true)))))
+(let ((@x47 (trans @x43 (rewrite (= (not true) false)) (= (not (= (and p$ true) p$)) false))))
+(mp (asserted (not (= (and p$ true) p$))) @x47 false)))))))
+
+98b44ed25900b5731029a0f9910e7ccad7cfa5cf 13 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x33 (not (=> (and (or p$ q$) (not p$)) q$))))
+(let (($x37 (= (=> (and (or p$ q$) (not p$)) q$) (or (not (and (or p$ q$) (not p$))) q$))))
+(let ((@x41 (monotonicity (rewrite $x37) (= $x33 (not (or (not (and (or p$ q$) (not p$))) q$))))))
+(let ((@x44 (mp (asserted $x33) @x41 (not (or (not (and (or p$ q$) (not p$))) q$)))))
+(let ((@x45 (and-elim (not-or-elim @x44 (and (or p$ q$) (not p$))) (not p$))))
+(let ((@x54 (monotonicity (iff-false @x45 (= p$ false)) (iff-false (not-or-elim @x44 (not q$)) (= q$ false)) (= (or p$ q$) (or false false)))))
+(let ((@x58 (trans @x54 (rewrite (= (or false false) false)) (= (or p$ q$) false))))
+(let (($x29 (or p$ q$)))
+(mp (and-elim (not-or-elim @x44 (and $x29 (not p$))) $x29) @x58 false)))))))))))
+
+c4510ae6be30b994919ed3a724999fe0329aac46 6 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let ((@x30 (rewrite (= (not true) false))))
+(mp (asserted (not true)) @x30 false))))
+
+d79b20c3fa2c3156619ed0d2d824ef5eb5776ea3 11 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x32 (and c$ d$)))
+(let (($x29 (and a$ b$)))
+(let (($x33 (or $x29 $x32)))
+(let (($x34 (=> $x33 $x33)))
+(let (($x35 (not $x34)))
+(let ((@x45 (trans (monotonicity (rewrite (= $x34 true)) (= $x35 (not true))) (rewrite (= (not true) false)) (= $x35 false))))
+(mp (asserted $x35) @x45 false)))))))))
+
+2b81235bea88ad32b47b62d270d5f8604cdbea46 24 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x28 (= p$ p$)))
+(let (($x29 (= $x28 p$)))
+(let (($x30 (= $x29 p$)))
+(let (($x31 (= $x30 p$)))
+(let (($x32 (= $x31 p$)))
+(let (($x33 (= $x32 p$)))
+(let (($x34 (= $x33 p$)))
+(let (($x35 (= $x34 p$)))
+(let (($x36 (= $x35 p$)))
+(let (($x37 (not $x36)))
+(let ((@x40 (rewrite (= $x28 true))))
+(let ((@x45 (rewrite (= (= true p$) p$))))
+(let ((@x47 (trans (monotonicity @x40 (= $x29 (= true p$))) @x45 (= $x29 p$))))
+(let ((@x53 (monotonicity (trans (monotonicity @x47 (= $x30 $x28)) @x40 (= $x30 true)) (= $x31 (= true p$)))))
+(let ((@x59 (trans (monotonicity (trans @x53 @x45 (= $x31 p$)) (= $x32 $x28)) @x40 (= $x32 true))))
+(let ((@x63 (trans (monotonicity @x59 (= $x33 (= true p$))) @x45 (= $x33 p$))))
+(let ((@x69 (monotonicity (trans (monotonicity @x63 (= $x34 $x28)) @x40 (= $x34 true)) (= $x35 (= true p$)))))
+(let ((@x75 (trans (monotonicity (trans @x69 @x45 (= $x35 p$)) (= $x36 $x28)) @x40 (= $x36 true))))
+(let ((@x82 (trans (monotonicity @x75 (= $x37 (not true))) (rewrite (= (not true) false)) (= $x37 false))))
+(mp (asserted $x37) @x82 false))))))))))))))))))))))
+
+bd97c872cfd055e1504521fb8cd9167911452904 23 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x33 (and p1$ p3$)))
+(let (($x32 (and p3$ p2$)))
+(let (($x34 (or $x32 $x33)))
+(let (($x35 (=> p1$ $x34)))
+(let (($x36 (or $x35 p1$)))
+(let (($x29 (and p1$ p2$)))
+(let (($x31 (or $x29 p3$)))
+(let (($x37 (=> $x31 $x36)))
+(let (($x38 (not $x37)))
+(let (($x40 (not p1$)))
+(let (($x41 (or $x40 $x34)))
+(let (($x44 (or $x41 p1$)))
+(let (($x50 (not $x31)))
+(let (($x51 (or $x50 $x44)))
+(let (($x56 (not $x51)))
+(let ((@x67 (trans (monotonicity (rewrite (= $x51 true)) (= $x56 (not true))) (rewrite (= (not true) false)) (= $x56 false))))
+(let ((@x49 (monotonicity (monotonicity (rewrite (= $x35 $x41)) (= $x36 $x44)) (= $x37 (=> $x31 $x44)))))
+(let ((@x58 (monotonicity (trans @x49 (rewrite (= (=> $x31 $x44) $x51)) (= $x37 $x51)) (= $x38 $x56))))
+(mp (asserted $x38) (trans @x58 @x67 (= $x38 false)) false)))))))))))))))))))))
+
+a4102e588c1974e32fabf0cded52102a5448e5f2 39 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x100 (not d$)))
+(let (($x45 (not c$)))
+(let (($x112 (or p$ (and q$ (not q$)))))
+(let (($x113 (and (not p$) $x112)))
+(let (($x114 (or c$ $x113)))
+(let (($x115 (not $x114)))
+(let ((@x121 (monotonicity (rewrite (= (and q$ (not q$)) false)) (= $x112 (or p$ false)))))
+(let ((@x128 (monotonicity (trans @x121 (rewrite (= (or p$ false) p$)) (= $x112 p$)) (= $x113 (and (not p$) p$)))))
+(let ((@x132 (trans @x128 (rewrite (= (and (not p$) p$) false)) (= $x113 false))))
+(let ((@x139 (trans (monotonicity @x132 (= $x114 (or c$ false))) (rewrite (= (or c$ false) c$)) (= $x114 c$))))
+(let ((@x153 (iff-false (mp (asserted $x115) (monotonicity @x139 (= $x115 $x45)) $x45) (= c$ false))))
+(let ((@x147 (trans (monotonicity @x153 (= (or $x100 c$) (or $x100 false))) (rewrite (= (or $x100 false) $x100)) (= (or $x100 c$) $x100))))
+(let (($x103 (or $x100 c$)))
+(let ((@x102 (monotonicity (rewrite (= (or d$ false) d$)) (= (not (or d$ false)) $x100))))
+(let ((@x108 (mp (asserted (or (not (or d$ false)) c$)) (monotonicity @x102 (= (or (not (or d$ false)) c$) $x103)) $x103)))
+(let (($x87 (not b$)))
+(let ((@x164 (trans (monotonicity @x153 (= (or $x87 c$) (or $x87 false))) (rewrite (= (or $x87 false) $x87)) (= (or $x87 c$) $x87))))
+(let (($x90 (or $x87 c$)))
+(let ((@x82 (monotonicity (rewrite (= (or x$ (not x$)) true)) (= (and b$ (or x$ (not x$))) (and b$ true)))))
+(let ((@x86 (trans @x82 (rewrite (= (and b$ true) b$)) (= (and b$ (or x$ (not x$))) b$))))
+(let ((@x92 (monotonicity (monotonicity @x86 (= (not (and b$ (or x$ (not x$)))) $x87)) (= (or (not (and b$ (or x$ (not x$)))) c$) $x90))))
+(let ((@x95 (mp (asserted (or (not (and b$ (or x$ (not x$)))) c$)) @x92 $x90)))
+(let (($x64 (not a$)))
+(let ((@x170 (monotonicity (iff-false (mp @x95 @x164 $x87) (= b$ false)) (= (or $x64 b$) (or $x64 false)))))
+(let ((@x174 (trans @x170 (rewrite (= (or $x64 false) $x64)) (= (or $x64 b$) $x64))))
+(let (($x67 (or $x64 b$)))
+(let ((@x59 (monotonicity (rewrite (= (and c$ $x45) false)) (= (or a$ (and c$ $x45)) (or a$ false)))))
+(let ((@x63 (trans @x59 (rewrite (= (or a$ false) a$)) (= (or a$ (and c$ $x45)) a$))))
+(let ((@x69 (monotonicity (monotonicity @x63 (= (not (or a$ (and c$ $x45))) $x64)) (= (or (not (or a$ (and c$ $x45))) b$) $x67))))
+(let ((@x175 (mp (mp (asserted (or (not (or a$ (and c$ $x45))) b$)) @x69 $x67) @x174 $x64)))
+(let ((@x198 (monotonicity (iff-false @x175 (= a$ false)) (iff-false (mp @x95 @x164 $x87) (= b$ false)) @x153 (iff-false (mp @x108 @x147 $x100) (= d$ false)) (= (or a$ b$ c$ d$) (or false false false false)))))
+(let ((@x202 (trans @x198 (rewrite (= (or false false false false) false)) (= (or a$ b$ c$ d$) false))))
+(let (($x37 (or a$ b$ c$ d$)))
+(let ((@x40 (mp (asserted (or a$ (or b$ (or c$ d$)))) (rewrite (= (or a$ (or b$ (or c$ d$))) $x37)) $x37)))
+(mp @x40 @x202 false)))))))))))))))))))))))))))))))))))))
+
+2281aab3f66d02faebd1a91e2e39f2078773cec5 27 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let ((?x38 (symm_f$ b$ a$)))
+(let ((?x37 (symm_f$ a$ b$)))
+(let (($x39 (= ?x37 ?x38)))
+(let (($x52 (not $x39)))
+(let ((@x47 (monotonicity (rewrite (= (= a$ a$) true)) (= (and (= a$ a$) $x39) (and true $x39)))))
+(let ((@x51 (trans @x47 (rewrite (= (and true $x39) $x39)) (= (and (= a$ a$) $x39) $x39))))
+(let ((@x57 (mp (asserted (not (and (= a$ a$) $x39))) (monotonicity @x51 (= (not (and (= a$ a$) $x39)) $x52)) $x52)))
+(let (($x480 (forall ((?v0 A$) (?v1 A$) )(! (let ((?x30 (symm_f$ ?v1 ?v0)))
+(let ((?x29 (symm_f$ ?v0 ?v1)))
+(= ?x29 ?x30))) :pattern ( (symm_f$ ?v0 ?v1) ) :pattern ( (symm_f$ ?v1 ?v0) ) :qid k!8))
+))
+(let (($x32 (forall ((?v0 A$) (?v1 A$) )(! (let ((?x30 (symm_f$ ?v1 ?v0)))
+(let ((?x29 (symm_f$ ?v0 ?v1)))
+(= ?x29 ?x30))) :qid k!8))
+))
+(let ((?x30 (symm_f$ ?0 ?1)))
+(let ((?x29 (symm_f$ ?1 ?0)))
+(let (($x31 (= ?x29 ?x30)))
+(let ((@x60 (mp~ (asserted $x32) (nnf-pos (refl (~ $x31 $x31)) (~ $x32 $x32)) $x32)))
+(let ((@x485 (mp @x60 (quant-intro (refl (= $x31 $x31)) (= $x32 $x480)) $x480)))
+(let (($x149 (or (not $x480) $x39)))
+(let ((@x61 ((_ quant-inst a$ b$) $x149)))
+(unit-resolution @x61 @x485 @x57 false)))))))))))))))))))
+
+4ca4f2a22247b4d3cfbc48b28d5380dcd65f92bd 637 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x397 (not x38$)))
+(let (($x553 (not x51$)))
+(let (($x657 (not x25$)))
+(let (($x610 (not x56$)))
+(let (($x538 (not x17$)))
+(let ((@x897 (hypothesis $x538)))
+(let (($x482 (not x45$)))
+(let (($x609 (not x22$)))
+(let (($x453 (not x11$)))
+(let ((@x815 (hypothesis $x453)))
+(let (($x667 (not x27$)))
+(let (($x638 (not x58$)))
+(let (($x567 (not x52$)))
+(let ((@x756 (hypothesis $x567)))
+(let (($x509 (not x47$)))
+(let (($x637 (not x24$)))
+(let (($x566 (not x19$)))
+(let (($x294 (or x24$ x53$)))
+(let ((@x774 (monotonicity (iff-false (asserted (not x59$)) (= x59$ false)) (= (or x59$ x24$ x53$) (or false x24$ x53$)))))
+(let ((@x778 (trans @x774 (rewrite (= (or false x24$ x53$) $x294)) (= (or x59$ x24$ x53$) $x294))))
+(let (($x303 (or x59$ x24$ x53$)))
+(let ((@x306 (mp (asserted (or x59$ $x294)) (rewrite (= (or x59$ $x294) $x303)) $x303)))
+(let ((@x779 (mp @x306 @x778 $x294)))
+(let ((@x1181 (unit-resolution @x779 (unit-resolution (asserted (or $x637 $x638)) (hypothesis x58$) $x637) x53$)))
+(let (($x580 (not x53$)))
+(let (($x581 (or $x580 $x566)))
+(let ((@x582 (asserted $x581)))
+(let ((@x1182 (unit-resolution @x582 @x1181 $x566)))
+(let (($x496 (not x46$)))
+(let (($x583 (or $x580 $x509)))
+(let ((@x584 (asserted $x583)))
+(let ((@x1183 (unit-resolution @x584 @x1181 $x509)))
+(let (($x438 (not x41$)))
+(let (($x363 (not x4$)))
+(let (($x347 (not x2$)))
+(let (($x336 (not x31$)))
+(let (($x623 (not x23$)))
+(let (($x645 (or $x638 $x623)))
+(let ((@x646 (asserted $x645)))
+(let ((@x974 (hypothesis $x509)))
+(let ((@x757 (hypothesis $x566)))
+(let ((@x853 (hypothesis $x397)))
+(let (($x410 (not x8$)))
+(let (($x355 (not x3$)))
+(let (($x467 (not x12$)))
+(let ((@x882 (hypothesis $x467)))
+(let ((@x845 (hypothesis $x347)))
+(let (($x356 (not x33$)))
+(let (($x481 (not x13$)))
+(let (($x424 (not x9$)))
+(let ((@x728 (hypothesis x41$)))
+(let (($x439 (or $x438 $x424)))
+(let ((@x440 (asserted $x439)))
+(let ((@x922 (unit-resolution @x440 @x728 $x424)))
+(let (($x364 (not x34$)))
+(let (($x72 (or x35$ x4$)))
+(let ((@x77 (asserted $x72)))
+(let ((@x994 (unit-resolution @x77 (unit-resolution (asserted (or $x438 (not x35$))) @x728 (not x35$)) x4$)))
+(let (($x365 (or $x363 $x364)))
+(let ((@x366 (asserted $x365)))
+(let ((@x999 (unit-resolution @x366 @x994 $x364)))
+(let (($x396 (not x7$)))
+(let (($x414 (or $x410 $x396)))
+(let ((@x415 (asserted $x414)))
+(let (($x348 (not x32$)))
+(let ((@x942 (hypothesis $x355)))
+(let (($x64 (or x3$ x33$ x2$)))
+(let ((@x67 (mp (asserted (or x3$ (or x33$ x2$))) (rewrite (= (or x3$ (or x33$ x2$)) $x64)) $x64)))
+(let ((@x1048 (unit-resolution @x67 (unit-resolution (asserted (or $x410 $x356)) (hypothesis x8$) $x356) @x942 x2$)))
+(let (($x349 (or $x347 $x348)))
+(let ((@x350 (asserted $x349)))
+(let (($x105 (or x7$ x38$ x6$ x32$)))
+(let ((@x108 (mp (asserted (or x7$ (or x38$ (or x6$ x32$)))) (rewrite (= (or x7$ (or x38$ (or x6$ x32$))) $x105)) $x105)))
+(let ((@x842 (unit-resolution @x108 (unit-resolution @x350 @x1048 $x348) (unit-resolution @x415 (hypothesis x8$) $x396) @x853 x6$)))
+(let (($x701 (or x1$ x31$)))
+(let ((@x700 (monotonicity (iff-false (asserted (not x0$)) (= x0$ false)) (= (or x1$ x31$ x0$) (or x1$ x31$ false)))))
+(let ((@x705 (trans @x700 (rewrite (= (or x1$ x31$ false) $x701)) (= (or x1$ x31$ x0$) $x701))))
+(let (($x46 (or x1$ x31$ x0$)))
+(let ((@x49 (mp (asserted (or x1$ (or x31$ x0$))) (rewrite (= (or x1$ (or x31$ x0$)) $x46)) $x46)))
+(let ((@x706 (mp @x49 @x705 $x701)))
+(let ((@x1002 (unit-resolution @x706 (unit-resolution (asserted (or $x347 (not x1$))) @x1048 (not x1$)) x31$)))
+(let (($x382 (not x6$)))
+(let (($x388 (or $x382 $x336)))
+(let ((@x389 (asserted $x388)))
+(let ((@x1011 (lemma (unit-resolution @x389 @x1002 @x842 false) (or $x410 x38$ x3$))))
+(let ((@x952 (unit-resolution @x1011 (unit-resolution (asserted (or $x363 $x355)) @x994 $x355) @x853 $x410)))
+(let (($x125 (or x9$ x40$ x8$ x34$)))
+(let ((@x128 (mp (asserted (or x9$ (or x40$ (or x8$ x34$)))) (rewrite (= (or x9$ (or x40$ (or x8$ x34$))) $x125)) $x125)))
+(let (($x425 (not x40$)))
+(let (($x505 (or $x496 $x425)))
+(let ((@x506 (asserted $x505)))
+(let ((@x868 (unit-resolution @x506 (unit-resolution @x128 @x952 @x999 @x922 x40$) $x496)))
+(let (($x239 (or x19$ x52$ x18$ x46$)))
+(let ((@x242 (mp (asserted (or x19$ (or x52$ (or x18$ x46$)))) (rewrite (= (or x19$ (or x52$ (or x18$ x46$))) $x239)) $x239)))
+(let (($x411 (not x39$)))
+(let ((@x992 (unit-resolution @x67 (unit-resolution (asserted (or $x363 $x355)) @x994 $x355) @x845 x33$)))
+(let (($x420 (or $x411 $x356)))
+(let ((@x421 (asserted $x420)))
+(let (($x507 (or $x481 $x425)))
+(let ((@x508 (asserted $x507)))
+(let ((@x1036 (unit-resolution @x508 (unit-resolution @x128 @x952 @x999 @x922 x40$) $x481)))
+(let (($x172 (or x13$ x45$ x12$ x39$)))
+(let ((@x175 (mp (asserted (or x13$ (or x45$ (or x12$ x39$)))) (rewrite (= (or x13$ (or x45$ (or x12$ x39$))) $x172)) $x172)))
+(let ((@x1037 (unit-resolution @x175 @x1036 @x882 (unit-resolution @x421 @x992 $x411) x45$)))
+(let (($x552 (not x18$)))
+(let (($x558 (or $x552 $x482)))
+(let ((@x559 (asserted $x558)))
+(let ((@x1080 (unit-resolution @x559 @x1037 (unit-resolution @x242 @x868 @x757 @x756 x18$) false)))
+(let ((@x1051 (unit-resolution (lemma @x1080 (or $x438 x12$ x19$ x52$ x2$ x38$)) @x845 @x757 @x756 @x882 @x853 $x438)))
+(let (($x190 (or x47$ x14$ x41$)))
+(let ((@x193 (mp (asserted (or x47$ (or x14$ x41$))) (rewrite (= (or x47$ (or x14$ x41$)) $x190)) $x190)))
+(let ((@x732 (unit-resolution @x193 @x1051 @x974 x14$)))
+(let (($x495 (not x14$)))
+(let (($x499 (or $x495 $x481)))
+(let ((@x500 (asserted $x499)))
+(let ((@x941 (unit-resolution @x242 (unit-resolution (asserted (or $x495 $x496)) @x732 $x496) @x757 @x756 x18$)))
+(let ((@x991 (unit-resolution @x175 (unit-resolution @x559 @x941 $x482) @x882 (unit-resolution @x500 @x732 $x481) x39$)))
+(let (($x367 (or $x363 $x355)))
+(let ((@x368 (asserted $x367)))
+(let ((@x980 (unit-resolution @x368 (unit-resolution @x67 (unit-resolution @x421 @x991 $x356) @x845 x3$) $x363)))
+(let (($x369 (or $x364 $x355)))
+(let ((@x370 (asserted $x369)))
+(let ((@x878 (unit-resolution @x370 (unit-resolution @x67 (unit-resolution @x421 @x991 $x356) @x845 x3$) $x364)))
+(let ((@x879 (unit-resolution @x128 @x878 (unit-resolution (asserted (or $x495 $x425)) @x732 $x425) (unit-resolution (asserted (or $x410 $x411)) @x991 $x410) x9$)))
+(let (($x371 (not x35$)))
+(let (($x443 (or $x424 $x371)))
+(let ((@x444 (asserted $x443)))
+(let ((@x912 (lemma (unit-resolution @x444 @x879 (unit-resolution @x77 @x980 x35$) false) (or x2$ x12$ x19$ x52$ x47$ x38$))))
+(let ((@x1091 (unit-resolution @x912 @x882 @x757 @x756 @x974 @x853 x2$)))
+(let (($x359 (or $x355 $x347)))
+(let ((@x360 (asserted $x359)))
+(let ((@x784 (unit-resolution @x706 (unit-resolution (asserted (or $x347 (not x1$))) @x1091 (not x1$)) x31$)))
+(let ((@x808 (unit-resolution @x108 (unit-resolution @x389 @x784 $x382) (unit-resolution @x350 @x1091 $x348) @x853 x7$)))
+(let (($x418 (or $x411 $x396)))
+(let ((@x419 (asserted $x418)))
+(let ((@x913 (hypothesis $x410)))
+(let ((@x931 (unit-resolution @x193 (unit-resolution @x500 (hypothesis x13$) $x495) @x974 x41$)))
+(let ((@x867 (unit-resolution @x128 (unit-resolution @x440 @x931 $x424) (unit-resolution @x508 (hypothesis x13$) $x425) @x913 x34$)))
+(let ((@x917 (unit-resolution @x77 (unit-resolution (asserted (or $x438 $x371)) @x931 $x371) x4$)))
+(let ((@x1090 (lemma (unit-resolution @x366 @x917 @x867 false) (or $x481 x8$ x47$))))
+(let ((@x1056 (unit-resolution @x1090 (unit-resolution @x1011 (unit-resolution @x360 @x1091 $x355) @x853 $x410) @x974 $x481)))
+(let ((@x1057 (unit-resolution @x175 @x1056 @x882 (unit-resolution @x419 @x808 $x411) x45$)))
+(let ((@x937 (unit-resolution @x242 (unit-resolution @x559 @x1057 $x552) @x757 @x756 x46$)))
+(let ((@x884 (unit-resolution @x193 (unit-resolution (asserted (or $x495 $x496)) @x937 $x495) @x974 x41$)))
+(let ((@x800 (unit-resolution @x128 (unit-resolution @x440 @x884 $x424) (unit-resolution @x506 @x937 $x425) (unit-resolution @x1011 (unit-resolution @x360 @x1091 $x355) @x853 $x410) x34$)))
+(let ((@x864 (unit-resolution @x77 (unit-resolution (asserted (or $x438 $x371)) @x884 $x371) x4$)))
+(let ((@x1089 (lemma (unit-resolution @x366 @x864 @x800 false) (or x12$ x47$ x19$ x52$ x38$))))
+(let ((@x1116 (unit-resolution @x1089 @x853 @x757 @x756 @x974 x12$)))
+(let (($x489 (or $x482 $x467)))
+(let ((@x490 (asserted $x489)))
+(let (($x539 (not x50$)))
+(let (($x619 (or $x610 $x539)))
+(let ((@x620 (asserted $x619)))
+(let ((@x1058 (unit-resolution @x620 (hypothesis x56$) $x539)))
+(let (($x524 (not x16$)))
+(let (($x587 (not x20$)))
+(let ((@x896 (hypothesis $x539)))
+(let (($x517 (not x48$)))
+(let ((@x841 (hypothesis $x517)))
+(let ((@x989 (unit-resolution @x193 (unit-resolution (asserted (or $x495 $x496)) (hypothesis x46$) $x495) @x974 x41$)))
+(let (($x441 (or $x438 $x371)))
+(let ((@x442 (asserted $x441)))
+(let ((@x838 (unit-resolution @x368 (unit-resolution @x77 (unit-resolution @x442 @x989 $x371) x4$) $x355)))
+(let ((@x1053 (unit-resolution @x366 (unit-resolution @x77 (unit-resolution @x442 @x989 $x371) x4$) $x364)))
+(let ((@x862 (unit-resolution @x128 @x1053 (unit-resolution @x440 @x989 $x424) (unit-resolution @x506 (hypothesis x46$) $x425) x8$)))
+(let (($x416 (or $x410 $x356)))
+(let ((@x417 (asserted $x416)))
+(let ((@x987 (unit-resolution @x350 (unit-resolution @x67 (unit-resolution @x417 @x862 $x356) @x838 x2$) $x348)))
+(let (($x335 (not x1$)))
+(let (($x351 (or $x347 $x335)))
+(let ((@x352 (asserted $x351)))
+(let ((@x935 (unit-resolution @x352 (unit-resolution @x67 (unit-resolution @x417 @x862 $x356) @x838 x2$) $x335)))
+(let ((@x746 (unit-resolution @x706 @x935 x31$)))
+(let ((@x1060 (unit-resolution @x108 (unit-resolution @x389 @x746 $x382) (unit-resolution @x415 @x862 $x396) @x987 x38$)))
+(let (($x479 (or $x453 $x397)))
+(let ((@x480 (asserted $x479)))
+(let (($x445 (not x10$)))
+(let (($x720 (or x5$ x36$)))
+(let ((@x719 (monotonicity (iff-false (asserted (not x30$)) (= x30$ false)) (= (or x5$ x36$ x30$) (or x5$ x36$ false)))))
+(let ((@x724 (trans @x719 (rewrite (= (or x5$ x36$ false) $x720)) (= (or x5$ x36$ x30$) $x720))))
+(let (($x85 (or x5$ x36$ x30$)))
+(let ((@x88 (mp (asserted (or x5$ (or x36$ x30$))) (rewrite (= (or x5$ (or x36$ x30$)) $x85)) $x85)))
+(let ((@x725 (mp @x88 @x724 $x720)))
+(let ((@x810 (unit-resolution @x725 (unit-resolution (asserted (or (not x5$) $x336)) @x746 (not x5$)) x36$)))
+(let (($x375 (not x36$)))
+(let (($x449 (or $x445 $x375)))
+(let ((@x450 (asserted $x449)))
+(let (($x152 (or x11$ x43$ x10$ x37$)))
+(let ((@x155 (mp (asserted (or x11$ (or x43$ (or x10$ x37$)))) (rewrite (= (or x11$ (or x43$ (or x10$ x37$))) $x152)) $x152)))
+(let ((@x840 (unit-resolution @x155 (unit-resolution @x450 @x810 $x445) (unit-resolution (asserted (or (not x37$) $x336)) @x746 (not x37$)) (unit-resolution @x480 @x1060 $x453) x43$)))
+(let (($x199 (or x15$ x48$ x42$)))
+(let ((@x202 (mp (asserted (or x15$ (or x48$ x42$))) (rewrite (= (or x15$ (or x48$ x42$)) $x199)) $x199)))
+(let ((@x712 (unit-resolution @x202 (unit-resolution (asserted (or (not x42$) $x375)) @x810 (not x42$)) @x841 x15$)))
+(let (($x454 (not x43$)))
+(let (($x516 (not x15$)))
+(let (($x536 (or $x516 $x454)))
+(let ((@x537 (asserted $x536)))
+(let ((@x844 (lemma (unit-resolution @x537 @x712 @x840 false) (or $x496 x48$ x47$))))
+(let ((@x893 (unit-resolution @x242 (unit-resolution @x844 @x841 @x974 $x496) @x757 @x756 x18$)))
+(let (($x556 (or $x552 $x538)))
+(let ((@x557 (asserted $x556)))
+(let (($x446 (not x42$)))
+(let ((@x1023 (unit-resolution @x559 @x893 $x482)))
+(let (($x468 (not x44$)))
+(let ((@x738 (unit-resolution @x725 (unit-resolution (asserted (or $x446 $x375)) (hypothesis x42$) $x375) x5$)))
+(let (($x374 (not x5$)))
+(let (($x394 (or $x374 $x336)))
+(let ((@x395 (asserted $x394)))
+(let (($x353 (or $x348 $x335)))
+(let ((@x354 (asserted $x353)))
+(let ((@x1005 (unit-resolution @x354 (unit-resolution @x706 (unit-resolution @x395 @x738 $x336) x1$) $x348)))
+(let ((@x983 (unit-resolution @x352 (unit-resolution @x706 (unit-resolution @x395 @x738 $x336) x1$) $x347)))
+(let ((@x998 (hypothesis $x482)))
+(let ((@x932 (unit-resolution @x128 (unit-resolution @x417 @x992 $x410) @x922 @x999 x40$)))
+(let ((@x1030 (hypothesis $x348)))
+(let ((@x1031 (hypothesis $x382)))
+(let ((@x1039 (unit-resolution @x108 (unit-resolution (asserted (or $x396 $x356)) @x992 $x396) @x1031 @x1030 x38$)))
+(let (($x473 (or $x467 $x397)))
+(let ((@x474 (asserted $x473)))
+(let ((@x971 (unit-resolution @x175 (unit-resolution @x474 @x1039 $x467) (unit-resolution @x508 @x932 $x481) @x998 (unit-resolution @x421 @x992 $x411) false)))
+(let ((@x1013 (lemma @x971 (or $x438 x45$ x6$ x32$ x2$))))
+(let ((@x1040 (unit-resolution @x1013 (unit-resolution (asserted (or $x382 $x374)) @x738 $x382) @x998 @x1005 @x983 $x438)))
+(let (($x447 (or $x445 $x446)))
+(let ((@x448 (asserted $x447)))
+(let ((@x830 (unit-resolution @x448 (hypothesis x42$) $x445)))
+(let ((@x1020 (hypothesis x12$)))
+(let (($x469 (or $x467 $x468)))
+(let ((@x470 (asserted $x469)))
+(let ((@x1021 (unit-resolution @x470 @x1020 $x468)))
+(let (($x219 (or x17$ x50$ x16$ x44$)))
+(let ((@x222 (mp (asserted (or x17$ (or x50$ (or x16$ x44$)))) (rewrite (= (or x17$ (or x50$ (or x16$ x44$))) $x219)) $x219)))
+(let (($x471 (or $x467 $x453)))
+(let ((@x472 (asserted $x471)))
+(let ((@x889 (unit-resolution @x472 @x1020 $x453)))
+(let ((@x924 (unit-resolution @x155 @x889 (hypothesis $x445) (hypothesis (not x37$)) x43$)))
+(let (($x530 (or $x524 $x454)))
+(let ((@x531 (asserted $x530)))
+(let ((@x925 (unit-resolution @x531 @x924 (unit-resolution @x222 @x1021 @x897 @x896 x16$) false)))
+(let ((@x1075 (lemma @x925 (or $x467 x10$ x37$ x17$ x50$))))
+(let ((@x831 (unit-resolution @x1075 @x830 (unit-resolution (asserted (or (not x37$) $x374)) @x738 (not x37$)) @x897 @x896 $x467)))
+(let ((@x856 (unit-resolution @x175 @x831 @x998 (unit-resolution @x500 (unit-resolution @x193 @x1040 @x974 x14$) $x481) x39$)))
+(let ((@x715 (unit-resolution @x108 (unit-resolution @x419 @x856 $x396) (unit-resolution (asserted (or $x382 $x374)) @x738 $x382) @x1005 x38$)))
+(let (($x477 (or $x468 $x397)))
+(let ((@x478 (asserted $x477)))
+(let ((@x850 (unit-resolution @x222 (unit-resolution @x478 @x715 $x468) @x897 @x896 x16$)))
+(let ((@x828 (unit-resolution @x155 (unit-resolution @x480 @x715 $x453) @x830 (unit-resolution (asserted (or (not x37$) $x374)) @x738 (not x37$)) x43$)))
+(let ((@x1001 (lemma (unit-resolution @x531 @x828 @x850 false) (or $x446 x17$ x50$ x45$ x47$))))
+(let ((@x762 (unit-resolution @x1001 (unit-resolution @x557 @x893 $x538) @x896 @x1023 @x974 $x446)))
+(let (($x528 (or $x524 $x516)))
+(let ((@x529 (asserted $x528)))
+(let ((@x1017 (unit-resolution @x222 (unit-resolution @x529 (unit-resolution @x202 @x762 @x841 x15$) $x524) (unit-resolution @x557 @x893 $x538) @x896 x44$)))
+(let ((@x901 (unit-resolution @x706 (unit-resolution @x395 (hypothesis x5$) $x336) x1$)))
+(let ((@x823 (unit-resolution @x108 (unit-resolution @x354 @x901 $x348) @x853 (unit-resolution (asserted (or $x382 $x374)) (hypothesis x5$) $x382) x7$)))
+(let ((@x740 (unit-resolution @x1013 (unit-resolution @x354 @x901 $x348) @x998 (unit-resolution (asserted (or $x382 $x374)) (hypothesis x5$) $x382) (unit-resolution @x352 @x901 $x347) $x438)))
+(let ((@x835 (unit-resolution @x175 (unit-resolution @x500 (unit-resolution @x193 @x740 @x974 x14$) $x481) (unit-resolution @x419 @x823 $x411) @x998 @x882 false)))
+(let ((@x769 (lemma @x835 (or $x374 x45$ x12$ x47$ x38$))))
+(let ((@x898 (unit-resolution @x769 @x1023 (unit-resolution @x470 @x1017 $x467) @x974 (unit-resolution @x478 @x1017 $x397) $x374)))
+(let ((@x735 (unit-resolution @x155 (unit-resolution @x450 (unit-resolution @x725 @x898 x36$) $x445) (unit-resolution @x537 (unit-resolution @x202 @x762 @x841 x15$) $x454) (unit-resolution (asserted (or $x468 $x453)) @x1017 $x453) x37$)))
+(let (($x383 (not x37$)))
+(let (($x384 (or $x382 $x383)))
+(let ((@x385 (asserted $x384)))
+(let ((@x946 (unit-resolution @x706 (unit-resolution (asserted (or $x383 $x336)) @x735 $x336) x1$)))
+(let ((@x836 (unit-resolution @x108 (unit-resolution @x354 @x946 $x348) (unit-resolution @x478 @x1017 $x397) (unit-resolution @x385 @x735 $x382) x7$)))
+(let ((@x1025 (unit-resolution @x1013 (unit-resolution @x354 @x946 $x348) @x1023 (unit-resolution @x385 @x735 $x382) (unit-resolution @x352 @x946 $x347) $x438)))
+(let ((@x886 (unit-resolution @x175 (unit-resolution @x500 (unit-resolution @x193 @x1025 @x974 x14$) $x481) (unit-resolution @x419 @x836 $x411) @x1023 (unit-resolution @x470 @x1017 $x467) false)))
+(let ((@x1059 (unit-resolution (lemma @x886 (or x48$ x47$ x50$ x19$ x52$)) @x1058 @x974 @x757 @x756 x48$)))
+(let (($x591 (or $x587 $x517)))
+(let ((@x592 (asserted $x591)))
+(let (($x595 (not x21$)))
+(let (($x617 (or $x610 $x595)))
+(let ((@x618 (asserted $x617)))
+(let (($x596 (not x55$)))
+(let (($x302 (or x25$ x54$)))
+(let ((@x307 (asserted $x302)))
+(let ((@x855 (unit-resolution @x307 (unit-resolution (asserted (or (not x54$) $x517)) @x1059 (not x54$)) x25$)))
+(let (($x665 (or $x657 $x596)))
+(let ((@x666 (asserted $x665)))
+(let (($x266 (or x21$ x55$ x20$ x49$)))
+(let ((@x269 (mp (asserted (or x21$ (or x55$ (or x20$ x49$)))) (rewrite (= (or x21$ (or x55$ (or x20$ x49$))) $x266)) $x266)))
+(let ((@x911 (unit-resolution @x269 (unit-resolution @x666 @x855 $x596) (unit-resolution @x618 (hypothesis x56$) $x595) (unit-resolution @x592 @x1059 $x587) x49$)))
+(let (($x525 (not x49$)))
+(let (($x526 (or $x524 $x525)))
+(let ((@x527 (asserted $x526)))
+(let ((@x1006 (unit-resolution @x242 (unit-resolution @x557 (hypothesis x17$) $x552) @x757 @x756 x46$)))
+(let (($x503 (or $x496 $x481)))
+(let ((@x504 (asserted $x503)))
+(let ((@x752 (unit-resolution @x175 (unit-resolution @x504 @x1006 $x481) (unit-resolution (asserted (or $x538 $x482)) (hypothesis x17$) $x482) @x882 x39$)))
+(let (($x412 (or $x410 $x411)))
+(let ((@x413 (asserted $x412)))
+(let ((@x806 (unit-resolution @x193 (unit-resolution (asserted (or $x495 $x496)) @x1006 $x495) @x974 x41$)))
+(let ((@x954 (unit-resolution @x128 (unit-resolution @x440 @x806 $x424) (unit-resolution @x506 @x1006 $x425) (unit-resolution @x413 @x752 $x410) x34$)))
+(let ((@x745 (unit-resolution @x366 (unit-resolution @x77 (unit-resolution @x442 @x806 $x371) x4$) @x954 false)))
+(let ((@x771 (lemma @x745 (or $x538 x12$ x47$ x19$ x52$))))
+(let ((@x928 (unit-resolution @x222 (unit-resolution @x771 @x882 @x974 @x757 @x756 $x538) (hypothesis $x524) @x896 x44$)))
+(let ((@x929 (unit-resolution @x478 @x928 $x397)))
+(let ((@x832 (hypothesis $x454)))
+(let ((@x859 (unit-resolution @x242 (unit-resolution (asserted (or $x495 $x496)) (hypothesis x14$) $x496) @x757 @x756 x18$)))
+(let ((@x951 (unit-resolution @x175 (unit-resolution @x559 @x859 $x482) (unit-resolution @x500 (hypothesis x14$) $x481) @x882 x39$)))
+(let ((@x833 (unit-resolution @x769 (unit-resolution @x559 @x859 $x482) @x882 @x974 @x853 $x374)))
+(let ((@x1076 (unit-resolution @x155 (unit-resolution @x450 (unit-resolution @x725 @x833 x36$) $x445) @x832 @x815 x37$)))
+(let ((@x872 (unit-resolution @x108 (unit-resolution @x385 @x1076 $x382) (unit-resolution @x419 @x951 $x396) @x853 x32$)))
+(let ((@x962 (unit-resolution @x706 (unit-resolution (asserted (or $x383 $x336)) @x1076 $x336) x1$)))
+(let ((@x861 (lemma (unit-resolution @x354 @x962 @x872 false) (or $x495 x38$ x43$ x11$ x12$ x47$ x19$ x52$))))
+(let ((@x1079 (unit-resolution @x861 @x929 @x832 (unit-resolution (asserted (or $x468 $x453)) @x928 $x453) @x882 @x974 @x757 @x756 $x495)))
+(let ((@x709 (unit-resolution @x77 (unit-resolution @x442 (unit-resolution @x193 @x1079 @x974 x41$) $x371) x4$)))
+(let ((@x939 (unit-resolution @x128 (unit-resolution @x1011 @x929 (unit-resolution @x368 @x709 $x355) $x410) (unit-resolution @x440 (unit-resolution @x193 @x1079 @x974 x41$) $x424) (unit-resolution @x366 @x709 $x364) x40$)))
+(let ((@x754 (unit-resolution @x242 (unit-resolution @x506 @x939 $x496) @x757 @x756 x18$)))
+(let ((@x904 (unit-resolution @x175 (unit-resolution @x559 @x754 $x482) (unit-resolution @x508 @x939 $x481) @x882 x39$)))
+(let ((@x877 (unit-resolution @x67 (unit-resolution @x421 @x904 $x356) (unit-resolution @x368 @x709 $x355) x2$)))
+(let ((@x927 (unit-resolution @x769 (unit-resolution @x559 @x754 $x482) @x882 @x974 @x929 $x374)))
+(let ((@x880 (unit-resolution @x155 (unit-resolution @x450 (unit-resolution @x725 @x927 x36$) $x445) @x832 (unit-resolution (asserted (or $x468 $x453)) @x928 $x453) x37$)))
+(let ((@x812 (unit-resolution @x108 (unit-resolution @x385 @x880 $x382) (unit-resolution @x350 @x877 $x348) (unit-resolution @x419 @x904 $x396) @x929 false)))
+(let ((@x713 (unit-resolution (lemma @x812 (or x12$ x43$ x47$ x19$ x52$ x16$ x50$)) (unit-resolution (asserted (or $x525 $x454)) @x911 $x454) @x974 @x757 @x756 (unit-resolution @x527 @x911 $x524) @x1058 x12$)))
+(let ((@x817 (unit-resolution @x222 (unit-resolution @x470 @x713 $x468) (unit-resolution @x527 @x911 $x524) @x1058 x17$)))
+(let ((@x903 (unit-resolution @x242 (unit-resolution @x557 @x817 $x552) @x757 @x756 x46$)))
+(let (($x497 (or $x495 $x496)))
+(let ((@x498 (asserted $x497)))
+(let ((@x748 (unit-resolution @x442 (unit-resolution @x193 (unit-resolution @x498 @x903 $x495) @x974 x41$) $x371)))
+(let ((@x1027 (unit-resolution @x440 (unit-resolution @x193 (unit-resolution @x498 @x903 $x495) @x974 x41$) $x424)))
+(let ((@x890 (unit-resolution @x128 (unit-resolution @x366 (unit-resolution @x77 @x748 x4$) $x364) (unit-resolution @x506 @x903 $x425) @x1027 x8$)))
+(let ((@x891 (unit-resolution @x1011 @x890 (unit-resolution @x368 (unit-resolution @x77 @x748 x4$) $x355) (unit-resolution @x474 @x713 $x397) false)))
+(let ((@x1118 (unit-resolution (lemma @x891 (or $x610 x47$ x19$ x52$)) @x974 @x757 @x756 $x610)))
+(let ((@x802 (hypothesis $x623)))
+(let ((@x914 (hypothesis $x610)))
+(let (($x392 (or $x383 $x336)))
+(let ((@x393 (asserted $x392)))
+(let ((@x969 (unit-resolution @x393 (hypothesis x31$) $x383)))
+(let ((@x1047 (unit-resolution @x725 (unit-resolution @x395 (hypothesis x31$) $x374) x36$)))
+(let ((@x966 (unit-resolution @x450 @x1047 $x445)))
+(let (($x615 (or $x609 $x539)))
+(let ((@x616 (asserted $x615)))
+(let ((@x730 (unit-resolution @x616 (unit-resolution @x1075 @x966 @x1020 @x897 @x969 x50$) $x609)))
+(let (($x286 (or x23$ x57$ x22$ x51$)))
+(let ((@x289 (mp (asserted (or x23$ (or x57$ (or x22$ x51$)))) (rewrite (= (or x23$ (or x57$ (or x22$ x51$))) $x286)) $x286)))
+(let (($x624 (not x57$)))
+(let (($x679 (or $x667 $x624)))
+(let ((@x680 (asserted $x679)))
+(let ((@x948 (unit-resolution @x680 (unit-resolution @x289 @x730 @x802 (hypothesis $x553) x57$) $x667)))
+(let (($x322 (or x27$ x26$ x56$)))
+(let ((@x325 (mp (asserted (or x27$ (or x26$ x56$))) (rewrite (= (or x27$ (or x26$ x56$)) $x322)) $x322)))
+(let (($x588 (not x54$)))
+(let ((@x798 (unit-resolution @x537 (unit-resolution @x155 @x966 @x889 @x969 x43$) $x516)))
+(let ((@x799 (unit-resolution @x202 @x798 (unit-resolution (asserted (or $x446 $x375)) @x1047 $x446) x48$)))
+(let (($x593 (or $x588 $x517)))
+(let ((@x594 (asserted $x593)))
+(let (($x660 (not x26$)))
+(let (($x661 (or $x660 $x657)))
+(let ((@x662 (asserted $x661)))
+(let ((@x1094 (unit-resolution @x662 (unit-resolution @x307 (unit-resolution @x594 @x799 $x588) x25$) (unit-resolution @x325 @x948 @x914 x26$) false)))
+(let ((@x1096 (lemma @x1094 (or $x336 x56$ x23$ x51$ $x467 x17$))))
+(let ((@x1099 (unit-resolution @x1096 (unit-resolution (asserted (or $x552 $x553)) @x859 $x553) @x802 @x914 @x1020 (unit-resolution @x557 @x859 $x538) $x336)))
+(let ((@x804 (unit-resolution @x725 (unit-resolution (asserted (or $x382 $x374)) (hypothesis x6$) $x374) x36$)))
+(let ((@x1008 (unit-resolution @x1075 (unit-resolution @x450 @x804 $x445) @x1020 @x897 (unit-resolution @x385 (hypothesis x6$) $x383) x50$)))
+(let ((@x874 (unit-resolution @x289 (unit-resolution @x616 @x1008 $x609) @x802 (hypothesis $x553) x57$)))
+(let ((@x766 (unit-resolution @x155 (unit-resolution @x450 @x804 $x445) @x889 (unit-resolution @x385 (hypothesis x6$) $x383) x43$)))
+(let ((@x818 (unit-resolution @x202 (unit-resolution @x537 @x766 $x516) (unit-resolution (asserted (or $x446 $x375)) @x804 $x446) x48$)))
+(let ((@x783 (unit-resolution @x662 (unit-resolution @x307 (unit-resolution @x594 @x818 $x588) x25$) (unit-resolution @x325 (unit-resolution @x680 @x874 $x667) @x914 x26$) false)))
+(let ((@x737 (lemma @x783 (or $x382 x56$ x23$ x51$ $x467 x17$))))
+(let ((@x1102 (unit-resolution @x737 (unit-resolution (asserted (or $x552 $x553)) @x859 $x553) @x802 @x914 @x1020 (unit-resolution @x557 @x859 $x538) $x382)))
+(let ((@x1104 (unit-resolution @x108 (unit-resolution @x354 (unit-resolution @x706 @x1099 x1$) $x348) @x1102 @x853 x7$)))
+(let (($x422 (or $x396 $x356)))
+(let ((@x423 (asserted $x422)))
+(let ((@x1106 (unit-resolution @x67 (unit-resolution @x423 @x1104 $x356) (unit-resolution @x352 (unit-resolution @x706 @x1099 x1$) $x347) x3$)))
+(let ((@x1112 (unit-resolution @x128 (unit-resolution @x370 @x1106 $x364) (unit-resolution (asserted (or $x495 $x425)) (hypothesis x14$) $x425) (unit-resolution @x415 @x1104 $x410) x9$)))
+(let ((@x1113 (unit-resolution @x444 @x1112 (unit-resolution @x77 (unit-resolution @x368 @x1106 $x363) x35$) false)))
+(let ((@x1119 (unit-resolution (lemma @x1113 (or $x495 x38$ x23$ x56$ $x467 x19$ x52$)) @x853 @x802 @x1118 @x1116 @x757 @x756 $x495)))
+(let ((@x1120 (unit-resolution @x193 @x1119 @x974 x41$)))
+(let ((@x1123 (unit-resolution @x366 (unit-resolution @x77 (unit-resolution @x442 @x1120 $x371) x4$) $x364)))
+(let ((@x1125 (unit-resolution @x368 (unit-resolution @x77 (unit-resolution @x442 @x1120 $x371) x4$) $x355)))
+(let ((@x1127 (unit-resolution @x128 (unit-resolution @x1011 @x1125 @x853 $x410) (unit-resolution @x440 @x1120 $x424) @x1123 x40$)))
+(let ((@x1129 (unit-resolution @x242 (unit-resolution @x506 @x1127 $x496) @x757 @x756 x18$)))
+(let ((@x1132 (unit-resolution @x737 (unit-resolution (asserted (or $x552 $x553)) @x1129 $x553) @x802 @x1118 @x1116 (unit-resolution @x557 @x1129 $x538) $x382)))
+(let ((@x1133 (unit-resolution @x1096 (unit-resolution (asserted (or $x552 $x553)) @x1129 $x553) @x802 @x1118 @x1116 (unit-resolution @x557 @x1129 $x538) $x336)))
+(let ((@x1137 (unit-resolution @x1013 (unit-resolution @x354 (unit-resolution @x706 @x1133 x1$) $x348) (unit-resolution @x352 (unit-resolution @x706 @x1133 x1$) $x347) @x1120 @x1132 (unit-resolution @x490 @x1116 $x482) false)))
+(let ((@x1185 (unit-resolution (lemma @x1137 (or x38$ x23$ x19$ x52$ x47$)) (unit-resolution @x646 (hypothesis x58$) $x623) @x1182 @x756 @x1183 x38$)))
+(let ((@x1188 (unit-resolution @x474 @x1185 $x467)))
+(let ((@x1140 (unit-resolution @x155 @x966 @x815 @x969 x43$)))
+(let (($x534 (or $x525 $x454)))
+(let ((@x535 (asserted $x534)))
+(let ((@x1142 (hypothesis $x468)))
+(let ((@x1144 (unit-resolution @x222 (unit-resolution @x531 @x1140 $x524) @x897 @x1142 x50$)))
+(let (($x621 (or $x595 $x539)))
+(let ((@x622 (asserted $x621)))
+(let ((@x1147 (unit-resolution @x202 (unit-resolution @x537 @x1140 $x516) (unit-resolution (asserted (or $x446 $x375)) @x1047 $x446) x48$)))
+(let ((@x1149 (unit-resolution @x269 (unit-resolution @x592 @x1147 $x587) (unit-resolution @x622 @x1144 $x595) (unit-resolution @x535 @x1140 $x525) x55$)))
+(let ((@x1152 (unit-resolution @x666 (unit-resolution @x307 (unit-resolution @x594 @x1147 $x588) x25$) @x1149 false)))
+(let ((@x1154 (lemma @x1152 (or $x336 x17$ x44$ x11$))))
+(let ((@x1190 (unit-resolution @x1154 (unit-resolution @x771 @x1188 @x1183 @x1182 @x756 $x538) (unit-resolution @x478 @x1185 $x468) (unit-resolution @x480 @x1185 $x453) $x336)))
+(let ((@x1156 (unit-resolution @x559 (unit-resolution @x1013 @x728 @x1030 @x1031 @x845 x45$) $x552)))
+(let ((@x1159 (unit-resolution @x506 (unit-resolution @x128 @x999 @x913 @x922 x40$) (unit-resolution @x242 @x1156 @x757 @x756 x46$) false)))
+(let ((@x1163 (unit-resolution (lemma @x1159 (or $x438 x8$ x19$ x52$ x32$ x6$ x2$)) @x913 @x757 @x756 @x1030 @x1031 @x845 $x438)))
+(let ((@x1166 (unit-resolution @x242 (unit-resolution @x498 (unit-resolution @x193 @x1163 @x974 x14$) $x496) @x757 @x756 x18$)))
+(let ((@x1168 (unit-resolution @x175 (unit-resolution @x559 @x1166 $x482) @x882 (unit-resolution @x1090 @x913 @x974 $x481) x39$)))
+(let ((@x1171 (unit-resolution @x368 (unit-resolution @x67 (unit-resolution @x421 @x1168 $x356) @x845 x3$) $x363)))
+(let (($x501 (or $x495 $x425)))
+(let ((@x502 (asserted $x501)))
+(let ((@x1174 (unit-resolution @x370 (unit-resolution @x67 (unit-resolution @x421 @x1168 $x356) @x845 x3$) $x364)))
+(let ((@x1175 (unit-resolution @x128 @x1174 @x913 (unit-resolution @x502 (unit-resolution @x193 @x1163 @x974 x14$) $x425) x9$)))
+(let ((@x1178 (lemma (unit-resolution @x444 @x1175 (unit-resolution @x77 @x1171 x35$) false) (or x8$ x2$ x12$ x19$ x52$ x47$ x32$ x6$))))
+(let ((@x1195 (unit-resolution @x1178 (unit-resolution @x352 (unit-resolution @x706 @x1190 x1$) $x347) @x1188 @x1182 @x756 @x1183 (unit-resolution (asserted (or $x397 $x348)) @x1185 $x348) (unit-resolution (asserted (or $x397 $x382)) @x1185 $x382) x8$)))
+(let ((@x1197 (unit-resolution @x67 (unit-resolution @x417 @x1195 $x356) (unit-resolution @x352 (unit-resolution @x706 @x1190 x1$) $x347) x3$)))
+(let ((@x1200 (unit-resolution @x442 (unit-resolution @x77 (unit-resolution @x368 @x1197 $x363) x35$) $x438)))
+(let ((@x1203 (unit-resolution @x242 (unit-resolution @x498 (unit-resolution @x193 @x1200 @x1183 x14$) $x496) @x1182 @x756 x18$)))
+(let ((@x1206 (unit-resolution @x175 (unit-resolution @x500 (unit-resolution @x193 @x1200 @x1183 x14$) $x481) @x1188 (unit-resolution @x413 @x1195 $x411) x45$)))
+(let ((@x1215 (unit-resolution (lemma (unit-resolution @x559 @x1206 @x1203 false) (or $x638 x52$)) @x756 $x638)))
+(let (($x328 (or x28$ x58$)))
+(let ((@x792 (monotonicity (iff-false (asserted (not x29$)) (= x29$ false)) (= (or x29$ x28$ x58$) (or false x28$ x58$)))))
+(let ((@x796 (trans @x792 (rewrite (= (or false x28$ x58$) $x328)) (= (or x29$ x28$ x58$) $x328))))
+(let (($x337 (or x29$ x28$ x58$)))
+(let ((@x340 (mp (asserted (or x29$ $x328)) (rewrite (= (or x29$ $x328) $x337)) $x337)))
+(let ((@x797 (mp @x340 @x796 $x328)))
+(let (($x674 (not x28$)))
+(let (($x675 (or $x674 $x667)))
+(let ((@x676 (asserted $x675)))
+(let ((@x1224 (unit-resolution @x676 (unit-resolution @x797 @x1215 x28$) $x667)))
+(let ((@x1285 (hypothesis $x438)))
+(let ((@x708 (hypothesis $x411)))
+(let ((@x1210 (hypothesis $x496)))
+(let ((@x1213 (unit-resolution @x242 (unit-resolution (asserted (or $x566 $x509)) (hypothesis x47$) $x566) @x1210 @x756 x18$)))
+(let (($x554 (or $x552 $x553)))
+(let ((@x555 (asserted $x554)))
+(let (($x677 (or $x674 $x624)))
+(let ((@x678 (asserted $x677)))
+(let ((@x1217 (unit-resolution @x678 (unit-resolution @x797 @x1215 x28$) $x624)))
+(let ((@x1219 (unit-resolution @x779 (unit-resolution @x584 (hypothesis x47$) $x580) x24$)))
+(let (($x641 (or $x637 $x623)))
+(let ((@x642 (asserted $x641)))
+(let ((@x1221 (unit-resolution @x289 (unit-resolution @x642 @x1219 $x623) @x1217 (unit-resolution @x555 @x1213 $x553) x22$)))
+(let ((@x1226 (unit-resolution @x325 (unit-resolution (asserted (or $x609 $x610)) @x1221 $x610) @x1224 x26$)))
+(let (($x663 (or $x660 $x596)))
+(let ((@x664 (asserted $x663)))
+(let (($x589 (or $x587 $x588)))
+(let ((@x590 (asserted $x589)))
+(let ((@x1231 (unit-resolution @x590 (unit-resolution @x307 (unit-resolution @x662 @x1226 $x657) x54$) $x587)))
+(let ((@x1232 (unit-resolution @x269 @x1231 (unit-resolution (asserted (or $x609 $x595)) @x1221 $x595) (unit-resolution @x664 @x1226 $x596) x49$)))
+(let ((@x1234 (unit-resolution @x222 (unit-resolution @x527 @x1232 $x524) (unit-resolution @x557 @x1213 $x538) (unit-resolution @x616 @x1221 $x539) x44$)))
+(let (($x475 (or $x468 $x453)))
+(let ((@x476 (asserted $x475)))
+(let ((@x1237 (unit-resolution @x594 (unit-resolution @x307 (unit-resolution @x662 @x1226 $x657) x54$) $x517)))
+(let ((@x1239 (unit-resolution @x202 (unit-resolution (asserted (or $x525 $x516)) @x1232 $x516) @x1237 x42$)))
+(let ((@x1241 (unit-resolution @x155 (unit-resolution @x448 @x1239 $x445) (unit-resolution @x535 @x1232 $x454) (unit-resolution @x476 @x1234 $x453) x37$)))
+(let ((@x1243 (unit-resolution @x725 (unit-resolution (asserted (or $x446 $x375)) @x1239 $x375) x5$)))
+(let (($x390 (or $x383 $x374)))
+(let ((@x391 (asserted $x390)))
+(let ((@x1246 (lemma (unit-resolution @x391 @x1243 @x1241 false) (or $x509 x46$ x52$))))
+(let ((@x1247 (unit-resolution @x1246 @x1210 @x756 $x509)))
+(let ((@x1249 (unit-resolution @x175 (unit-resolution @x1090 @x1247 @x913 $x481) @x882 @x708 x45$)))
+(let (($x562 (or $x553 $x482)))
+(let ((@x563 (asserted $x562)))
+(let ((@x1252 (unit-resolution @x242 (unit-resolution @x559 @x1249 $x552) @x1210 @x756 x19$)))
+(let ((@x1255 (unit-resolution @x642 (unit-resolution @x779 (unit-resolution @x582 @x1252 $x580) x24$) $x623)))
+(let ((@x1256 (unit-resolution @x289 @x1255 @x1217 (unit-resolution @x563 @x1249 $x553) x22$)))
+(let ((@x1260 (unit-resolution @x325 (unit-resolution (asserted (or $x609 $x610)) @x1256 $x610) @x1224 x26$)))
+(let ((@x1265 (unit-resolution @x590 (unit-resolution @x307 (unit-resolution @x662 @x1260 $x657) x54$) $x587)))
+(let ((@x1266 (unit-resolution @x269 @x1265 (unit-resolution (asserted (or $x609 $x595)) @x1256 $x595) (unit-resolution @x664 @x1260 $x596) x49$)))
+(let ((@x1268 (unit-resolution @x222 (unit-resolution @x527 @x1266 $x524) (unit-resolution (asserted (or $x538 $x482)) @x1249 $x538) (unit-resolution @x616 @x1256 $x539) x44$)))
+(let ((@x1271 (unit-resolution @x594 (unit-resolution @x307 (unit-resolution @x662 @x1260 $x657) x54$) $x517)))
+(let ((@x1273 (unit-resolution @x202 (unit-resolution (asserted (or $x525 $x516)) @x1266 $x516) @x1271 x42$)))
+(let ((@x1275 (unit-resolution @x155 (unit-resolution @x448 @x1273 $x445) (unit-resolution @x535 @x1266 $x454) (unit-resolution @x476 @x1268 $x453) x37$)))
+(let ((@x1277 (unit-resolution @x725 (unit-resolution (asserted (or $x446 $x375)) @x1273 $x375) x5$)))
+(let ((@x1280 (lemma (unit-resolution @x391 @x1277 @x1275 false) (or x46$ x52$ x12$ x39$ x8$))))
+(let ((@x1282 (unit-resolution @x504 (unit-resolution @x1280 @x708 @x882 @x756 @x913 x46$) $x481)))
+(let ((@x1284 (unit-resolution @x563 (unit-resolution @x175 @x1282 @x882 @x708 x45$) $x553)))
+(let ((@x1286 (unit-resolution @x498 (unit-resolution @x1280 @x708 @x882 @x756 @x913 x46$) $x495)))
+(let ((@x1289 (unit-resolution @x779 (unit-resolution @x584 (unit-resolution @x193 @x1286 @x1285 x47$) $x580) x24$)))
+(let ((@x1291 (unit-resolution @x289 (unit-resolution @x642 @x1289 $x623) @x1217 @x1284 x22$)))
+(let (($x564 (or $x538 $x482)))
+(let ((@x565 (asserted $x564)))
+(let ((@x1293 (unit-resolution @x565 (unit-resolution @x175 @x1282 @x882 @x708 x45$) $x538)))
+(let ((@x1295 (unit-resolution @x325 (unit-resolution (asserted (or $x609 $x610)) @x1291 $x610) @x1224 x26$)))
+(let ((@x1300 (unit-resolution @x590 (unit-resolution @x307 (unit-resolution @x662 @x1295 $x657) x54$) $x587)))
+(let ((@x1301 (unit-resolution @x269 @x1300 (unit-resolution (asserted (or $x609 $x595)) @x1291 $x595) (unit-resolution @x664 @x1295 $x596) x49$)))
+(let ((@x1303 (unit-resolution @x222 (unit-resolution @x527 @x1301 $x524) @x1293 (unit-resolution @x616 @x1291 $x539) x44$)))
+(let ((@x1306 (unit-resolution @x594 (unit-resolution @x307 (unit-resolution @x662 @x1295 $x657) x54$) $x517)))
+(let ((@x1308 (unit-resolution @x202 (unit-resolution (asserted (or $x525 $x516)) @x1301 $x516) @x1306 x42$)))
+(let ((@x1310 (unit-resolution @x155 (unit-resolution @x448 @x1308 $x445) (unit-resolution @x535 @x1301 $x454) (unit-resolution @x476 @x1303 $x453) x37$)))
+(let ((@x1312 (unit-resolution @x725 (unit-resolution (asserted (or $x446 $x375)) @x1308 $x375) x5$)))
+(let ((@x1315 (lemma (unit-resolution @x391 @x1312 @x1310 false) (or x39$ x12$ x41$ x52$ x8$))))
+(let ((@x1317 (unit-resolution @x421 (unit-resolution @x1315 @x1285 @x882 @x756 @x913 x39$) $x356)))
+(let ((@x1321 (unit-resolution @x77 (unit-resolution @x368 (unit-resolution @x67 @x1317 @x845 x3$) $x363) x35$)))
+(let ((@x1323 (unit-resolution @x128 (unit-resolution @x444 @x1321 $x424) @x913 (unit-resolution @x370 (unit-resolution @x67 @x1317 @x845 x3$) $x364) x40$)))
+(let ((@x1327 (unit-resolution @x1246 (unit-resolution @x193 (unit-resolution @x502 @x1323 $x495) @x1285 x47$) (unit-resolution @x506 @x1323 $x496) @x756 false)))
+(let ((@x1330 (unit-resolution (lemma @x1327 (or x41$ x52$ x8$ x2$ x12$)) @x845 @x913 @x756 @x882 x41$)))
+(let ((@x1334 (unit-resolution @x366 (unit-resolution @x77 (unit-resolution @x442 @x1330 $x371) x4$) $x364)))
+(let ((@x1335 (unit-resolution @x128 @x1334 @x913 (unit-resolution @x440 @x1330 $x424) x40$)))
+(let ((@x1337 (unit-resolution @x368 (unit-resolution @x77 (unit-resolution @x442 @x1330 $x371) x4$) $x355)))
+(let ((@x1340 (unit-resolution @x1280 (unit-resolution @x421 (unit-resolution @x67 @x1337 @x845 x33$) $x411) (unit-resolution @x506 @x1335 $x496) @x882 @x756 @x913 false)))
+(let ((@x1343 (unit-resolution (lemma @x1340 (or x2$ x12$ x52$ x8$)) @x913 @x756 @x882 x2$)))
+(let ((@x1345 (unit-resolution @x706 (unit-resolution @x352 @x1343 $x335) x31$)))
+(let (($x451 (or $x446 $x375)))
+(let ((@x452 (asserted $x451)))
+(let ((@x1348 (unit-resolution @x452 (unit-resolution @x725 (unit-resolution @x395 @x1345 $x374) x36$) $x446)))
+(let ((@x1349 (unit-resolution @x450 (unit-resolution @x725 (unit-resolution @x395 @x1345 $x374) x36$) $x445)))
+(let ((@x1354 (unit-resolution @x419 (unit-resolution @x1280 @x1210 @x882 @x756 @x913 x39$) $x396)))
+(let ((@x1355 (unit-resolution @x108 @x1354 (unit-resolution @x350 @x1343 $x348) (unit-resolution @x389 @x1345 $x382) x38$)))
+(let ((@x1357 (unit-resolution @x155 (unit-resolution @x480 @x1355 $x453) (unit-resolution @x393 @x1345 $x383) @x1349 x43$)))
+(let ((@x1360 (unit-resolution @x594 (unit-resolution @x202 (unit-resolution @x537 @x1357 $x516) @x1348 x48$) $x588)))
+(let ((@x1364 (unit-resolution @x1154 (unit-resolution @x478 @x1355 $x468) @x1345 (unit-resolution @x480 @x1355 $x453) x17$)))
+(let (($x560 (or $x553 $x538)))
+(let ((@x561 (asserted $x560)))
+(let ((@x1367 (unit-resolution @x582 (unit-resolution @x771 @x1364 @x882 @x1247 @x756 x19$) $x580)))
+(let ((@x1370 (unit-resolution @x289 (unit-resolution @x642 (unit-resolution @x779 @x1367 x24$) $x623) @x1217 (unit-resolution @x561 @x1364 $x553) x22$)))
+(let (($x611 (or $x609 $x610)))
+(let ((@x612 (asserted $x611)))
+(let ((@x1372 (unit-resolution @x325 (unit-resolution @x612 @x1370 $x610) (unit-resolution @x662 (unit-resolution @x307 @x1360 x25$) $x660) @x1224 false)))
+(let ((@x1384 (unit-resolution (lemma @x1372 (or x46$ x12$ x52$ x8$)) @x913 @x756 @x882 x46$)))
+(let ((@x1376 (unit-resolution (lemma @x891 (or $x610 x47$ x19$ x52$)) @x974 (unit-resolution (asserted (or $x566 $x496)) (hypothesis x46$) $x566) @x756 $x610)))
+(let ((@x1379 (unit-resolution @x594 (unit-resolution @x844 @x974 (hypothesis x46$) x48$) $x588)))
+(let ((@x1381 (unit-resolution @x662 (unit-resolution @x307 @x1379 x25$) (unit-resolution @x325 @x1376 @x1224 x26$) false)))
+(let ((@x1383 (lemma @x1381 (or x47$ x52$ $x496))))
+(let (($x512 (or $x509 $x438)))
+(let ((@x513 (asserted $x512)))
+(let ((@x1387 (unit-resolution @x1315 (unit-resolution @x513 (unit-resolution @x1383 @x1384 @x756 x47$) $x438) @x882 @x756 @x913 x39$)))
+(let ((@x1389 (unit-resolution @x108 (unit-resolution @x419 @x1387 $x396) (unit-resolution @x350 @x1343 $x348) (unit-resolution @x389 @x1345 $x382) x38$)))
+(let ((@x1391 (unit-resolution @x155 (unit-resolution @x480 @x1389 $x453) (unit-resolution @x393 @x1345 $x383) @x1349 x43$)))
+(let ((@x1394 (unit-resolution @x594 (unit-resolution @x202 (unit-resolution @x537 @x1391 $x516) @x1348 x48$) $x588)))
+(let ((@x1397 (unit-resolution @x779 (unit-resolution @x584 (unit-resolution @x1383 @x1384 @x756 x47$) $x580) x24$)))
+(let ((@x1400 (unit-resolution @x1154 (unit-resolution @x480 @x1389 $x453) @x1345 (unit-resolution @x478 @x1389 $x468) x17$)))
+(let ((@x1402 (unit-resolution @x289 (unit-resolution @x561 @x1400 $x553) @x1217 (unit-resolution @x642 @x1397 $x623) x22$)))
+(let ((@x1405 (unit-resolution @x662 (unit-resolution @x325 (unit-resolution @x612 @x1402 $x610) @x1224 x26$) (unit-resolution @x307 @x1394 x25$) false)))
+(let ((@x1440 (unit-resolution (lemma @x1405 (or x8$ x12$ x52$)) @x882 @x756 x8$)))
+(let ((@x1411 (unit-resolution @x242 (unit-resolution @x559 (hypothesis x45$) $x552) @x1210 @x756 x19$)))
+(let ((@x1414 (unit-resolution @x642 (unit-resolution @x779 (unit-resolution @x582 @x1411 $x580) x24$) $x623)))
+(let ((@x1415 (unit-resolution @x289 @x1414 @x1217 (unit-resolution @x563 (hypothesis x45$) $x553) x22$)))
+(let ((@x1418 (unit-resolution @x662 (unit-resolution @x325 (unit-resolution @x612 @x1415 $x610) @x1224 x26$) $x657)))
+(let ((@x1421 (unit-resolution @x664 (unit-resolution @x325 (unit-resolution @x612 @x1415 $x610) @x1224 x26$) $x596)))
+(let ((@x1424 (unit-resolution @x269 (unit-resolution @x590 (unit-resolution @x307 @x1418 x54$) $x587) (unit-resolution (asserted (or $x609 $x595)) @x1415 $x595) @x1421 x49$)))
+(let (($x532 (or $x525 $x516)))
+(let ((@x533 (asserted $x532)))
+(let ((@x1426 (unit-resolution @x202 (unit-resolution @x533 @x1424 $x516) (unit-resolution @x594 (unit-resolution @x307 @x1418 x54$) $x517) x42$)))
+(let ((@x1432 (unit-resolution @x222 (unit-resolution @x527 @x1424 $x524) (unit-resolution @x565 (hypothesis x45$) $x538) (unit-resolution @x616 @x1415 $x539) x44$)))
+(let ((@x1434 (unit-resolution @x155 (unit-resolution @x476 @x1432 $x453) (unit-resolution @x535 @x1424 $x454) (unit-resolution @x448 @x1426 $x445) x37$)))
+(let ((@x1437 (unit-resolution @x391 (unit-resolution @x725 (unit-resolution @x452 @x1426 $x375) x5$) @x1434 false)))
+(let ((@x1444 (unit-resolution @x175 (unit-resolution (lemma @x1437 (or $x482 x46$ x52$)) @x1210 @x756 $x482) @x882 (unit-resolution @x413 @x1440 $x411) x13$)))
+(let ((@x1447 (unit-resolution @x442 (unit-resolution @x193 (unit-resolution @x500 @x1444 $x495) @x1247 x41$) $x371)))
+(let ((@x1450 (unit-resolution @x67 (unit-resolution @x368 (unit-resolution @x77 @x1447 x4$) $x355) (unit-resolution @x417 @x1440 $x356) x2$)))
+(let ((@x1452 (unit-resolution @x706 (unit-resolution @x352 @x1450 $x335) x31$)))
+(let ((@x1455 (unit-resolution @x452 (unit-resolution @x725 (unit-resolution @x395 @x1452 $x374) x36$) $x446)))
+(let ((@x1457 (unit-resolution @x1011 (unit-resolution @x368 (unit-resolution @x77 @x1447 x4$) $x355) @x1440 x38$)))
+(let ((@x1459 (unit-resolution @x450 (unit-resolution @x725 (unit-resolution @x395 @x1452 $x374) x36$) $x445)))
+(let ((@x1460 (unit-resolution @x155 @x1459 (unit-resolution @x480 @x1457 $x453) (unit-resolution @x393 @x1452 $x383) x43$)))
+(let ((@x1463 (unit-resolution @x594 (unit-resolution @x202 (unit-resolution @x537 @x1460 $x516) @x1455 x48$) $x588)))
+(let ((@x1466 (unit-resolution @x1154 @x1452 (unit-resolution @x478 @x1457 $x468) (unit-resolution @x480 @x1457 $x453) x17$)))
+(let ((@x1469 (unit-resolution @x582 (unit-resolution @x771 @x1466 @x882 @x1247 @x756 x19$) $x580)))
+(let ((@x1472 (unit-resolution @x289 (unit-resolution @x642 (unit-resolution @x779 @x1469 x24$) $x623) @x1217 (unit-resolution @x561 @x1466 $x553) x22$)))
+(let ((@x1475 (unit-resolution @x662 (unit-resolution @x325 (unit-resolution @x612 @x1472 $x610) @x1224 x26$) (unit-resolution @x307 @x1463 x25$) false)))
+(let ((@x1478 (unit-resolution (lemma @x1475 (or x46$ x12$ x52$)) @x882 @x756 x46$)))
+(let ((@x1480 (unit-resolution @x175 (unit-resolution @x504 @x1478 $x481) @x882 (unit-resolution @x413 @x1440 $x411) x45$)))
+(let ((@x1484 (unit-resolution @x779 (unit-resolution @x584 (unit-resolution @x1383 @x1478 @x756 x47$) $x580) x24$)))
+(let ((@x1486 (unit-resolution @x289 (unit-resolution @x642 @x1484 $x623) @x1217 (unit-resolution @x563 @x1480 $x553) x22$)))
+(let ((@x1491 (unit-resolution @x664 (unit-resolution @x325 (unit-resolution @x612 @x1486 $x610) @x1224 x26$) $x596)))
+(let ((@x1493 (unit-resolution @x662 (unit-resolution @x325 (unit-resolution @x612 @x1486 $x610) @x1224 x26$) $x657)))
+(let ((@x1496 (unit-resolution @x269 (unit-resolution @x590 (unit-resolution @x307 @x1493 x54$) $x587) (unit-resolution (asserted (or $x609 $x595)) @x1486 $x595) @x1491 x49$)))
+(let ((@x1498 (unit-resolution @x222 (unit-resolution @x527 @x1496 $x524) (unit-resolution @x565 @x1480 $x538) (unit-resolution @x616 @x1486 $x539) x44$)))
+(let ((@x1503 (unit-resolution @x202 (unit-resolution @x533 @x1496 $x516) (unit-resolution @x594 (unit-resolution @x307 @x1493 x54$) $x517) x42$)))
+(let ((@x1505 (unit-resolution @x155 (unit-resolution @x448 @x1503 $x445) (unit-resolution @x535 @x1496 $x454) (unit-resolution @x476 @x1498 $x453) x37$)))
+(let ((@x1508 (unit-resolution @x391 (unit-resolution @x725 (unit-resolution @x452 @x1503 $x375) x5$) @x1505 false)))
+(let ((@x1576 (unit-resolution @x472 (unit-resolution (lemma @x1508 (or x12$ x52$)) @x756 x12$) $x453)))
+(let ((@x1547 (hypothesis $x667)))
+(let ((@x1557 (unit-resolution @x325 (unit-resolution @x612 (hypothesis x22$) $x610) @x1547 x26$)))
+(let ((@x1561 (unit-resolution @x590 (unit-resolution @x307 (unit-resolution @x662 @x1557 $x657) x54$) $x587)))
+(let ((@x1562 (unit-resolution @x269 @x1561 (unit-resolution @x664 @x1557 $x596) (unit-resolution (asserted (or $x609 $x595)) (hypothesis x22$) $x595) x49$)))
+(let ((@x1564 (unit-resolution @x594 (unit-resolution @x307 (unit-resolution @x662 @x1557 $x657) x54$) $x517)))
+(let ((@x1512 (unit-resolution @x391 @x738 (unit-resolution @x155 @x830 @x832 @x815 x37$) false)))
+(let ((@x1514 (lemma @x1512 (or $x446 x43$ x11$))))
+(let ((@x1567 (unit-resolution @x1514 (unit-resolution @x202 (unit-resolution @x533 @x1562 $x516) @x1564 x42$) (unit-resolution @x535 @x1562 $x454) @x815 false)))
+(let ((@x1569 (lemma @x1567 (or $x609 x11$ x27$))))
+(let ((@x1584 (hypothesis $x446)))
+(let ((@x1587 (unit-resolution @x307 (unit-resolution @x662 (hypothesis x26$) $x657) x54$)))
+(let ((@x1590 (unit-resolution @x529 (unit-resolution @x202 (unit-resolution @x594 @x1587 $x517) @x1584 x15$) $x524)))
+(let ((@x1594 (unit-resolution @x533 (unit-resolution @x202 (unit-resolution @x594 @x1587 $x517) @x1584 x15$) $x525)))
+(let ((@x1595 (unit-resolution @x269 @x1594 (unit-resolution @x664 (hypothesis x26$) $x596) (unit-resolution @x590 @x1587 $x587) x21$)))
+(let ((@x1596 (unit-resolution @x622 @x1595 (unit-resolution @x222 @x1590 @x1142 @x897 x50$) false)))
+(let ((@x1599 (unit-resolution (lemma @x1596 (or $x660 x44$ x17$ x42$)) @x1584 @x897 @x1142 $x660)))
+(let ((@x1602 (unit-resolution @x222 (unit-resolution @x620 (unit-resolution @x325 @x1599 @x1547 x56$) $x539) @x1142 @x897 x16$)))
+(let ((@x1607 (unit-resolution @x592 (unit-resolution @x202 (unit-resolution @x529 @x1602 $x516) @x1584 x48$) $x587)))
+(let ((@x1608 (unit-resolution @x269 @x1607 (unit-resolution @x618 (unit-resolution @x325 @x1599 @x1547 x56$) $x595) (unit-resolution @x527 @x1602 $x525) x55$)))
+(let ((@x1609 (unit-resolution @x594 (unit-resolution @x202 (unit-resolution @x529 @x1602 $x516) @x1584 x48$) $x588)))
+(let ((@x1613 (lemma (unit-resolution @x666 (unit-resolution @x307 @x1609 x25$) @x1608 false) (or x42$ x44$ x17$ x27$))))
+(let ((@x1615 (unit-resolution @x448 (unit-resolution @x1613 @x897 @x1021 @x1547 x42$) $x445)))
+(let ((@x1616 (unit-resolution @x1514 (unit-resolution @x1613 @x897 @x1021 @x1547 x42$) @x889 x43$)))
+(let (($x463 (or $x454 $x383)))
+(let ((@x464 (asserted $x463)))
+(let ((@x1618 (unit-resolution @x1075 (unit-resolution @x464 @x1616 $x383) @x1020 @x897 @x1615 x50$)))
+(let ((@x1621 (unit-resolution @x662 (unit-resolution @x325 (unit-resolution @x620 @x1618 $x610) @x1547 x26$) $x657)))
+(let ((@x1625 (unit-resolution @x664 (unit-resolution @x325 (unit-resolution @x620 @x1618 $x610) @x1547 x26$) $x596)))
+(let ((@x1626 (unit-resolution @x269 @x1625 (unit-resolution @x622 @x1618 $x595) (unit-resolution @x535 @x1616 $x525) x20$)))
+(let ((@x1629 (lemma (unit-resolution @x590 @x1626 (unit-resolution @x307 @x1621 x54$) false) (or x17$ x27$ $x467))))
+(let ((@x1630 (unit-resolution @x1629 @x1224 (unit-resolution (lemma @x1508 (or x12$ x52$)) @x756 x12$) x17$)))
+(let ((@x1632 (unit-resolution @x289 (unit-resolution @x561 @x1630 $x553) @x1217 (unit-resolution @x1569 @x1576 @x1224 $x609) x23$)))
+(let ((@x1635 (unit-resolution @x584 (unit-resolution @x779 (unit-resolution @x642 @x1632 $x637) x53$) $x509)))
+(let ((@x1637 (unit-resolution @x582 (unit-resolution @x779 (unit-resolution @x642 @x1632 $x637) x53$) $x566)))
+(let ((@x1638 (unit-resolution @x242 @x1637 (unit-resolution @x557 @x1630 $x552) @x756 x46$)))
+(let ((@x1640 (lemma (unit-resolution @x1383 @x1638 @x1635 @x756 false) x52$)))
+(let (($x647 (or $x638 $x567)))
+(let ((@x648 (asserted $x647)))
+(let ((@x1665 (unit-resolution @x676 (unit-resolution @x797 (unit-resolution @x648 @x1640 $x638) x28$) $x667)))
+(let ((@x1668 (unit-resolution (unit-resolution @x1569 @x1665 (or $x609 x11$)) @x815 $x609)))
+(let ((@x1669 (unit-resolution @x678 (unit-resolution @x797 (unit-resolution @x648 @x1640 $x638) x28$) $x624)))
+(let ((@x1671 (unit-resolution @x289 (unit-resolution (asserted (or $x623 $x567)) @x1640 $x623) @x1669 (or x22$ x51$))))
+(let ((@x1673 (unit-resolution @x563 (unit-resolution @x1671 @x1668 x51$) $x482)))
+(let ((@x1676 (unit-resolution (unit-resolution @x1629 @x1665 (or x17$ $x467)) @x897 $x467)))
+(let ((@x1650 (unit-resolution @x77 (unit-resolution @x368 (hypothesis x3$) $x363) x35$)))
+(let ((@x1579 (unit-resolution @x779 (unit-resolution (asserted (or $x637 $x567)) @x1640 $x637) x53$)))
+(let ((@x1580 (unit-resolution @x584 @x1579 $x509)))
+(let ((@x1653 (unit-resolution (unit-resolution @x193 @x1580 (or x14$ x41$)) (unit-resolution @x442 @x1650 $x438) x14$)))
+(let ((@x1655 (unit-resolution @x175 (unit-resolution @x500 @x1653 $x481) @x882 @x998 x39$)))
+(let ((@x1659 (unit-resolution @x128 (unit-resolution @x502 @x1653 $x425) (unit-resolution @x444 @x1650 $x424) (unit-resolution @x370 (hypothesis x3$) $x364) x8$)))
+(let ((@x1662 (lemma (unit-resolution @x413 @x1659 @x1655 false) (or $x355 x12$ x45$))))
+(let ((@x1574 (unit-resolution (unit-resolution @x1090 @x1580 (or $x481 x8$)) (unit-resolution @x1011 @x942 @x853 $x410) $x481)))
+(let ((@x1581 (unit-resolution @x419 (unit-resolution @x175 @x1574 @x882 @x998 x39$) $x396)))
+(let ((@x1582 (unit-resolution @x421 (unit-resolution @x175 @x1574 @x882 @x998 x39$) $x356)))
+(let ((@x1642 (unit-resolution @x108 (unit-resolution @x350 (unit-resolution @x67 @x1582 @x942 x2$) $x348) @x1581 @x853 x6$)))
+(let ((@x1644 (unit-resolution @x706 (unit-resolution @x352 (unit-resolution @x67 @x1582 @x942 x2$) $x335) x31$)))
+(let ((@x1647 (lemma (unit-resolution @x389 @x1644 @x1642 false) (or x3$ x38$ x12$ x45$))))
+(let ((@x1678 (unit-resolution @x1647 (unit-resolution @x1662 @x1673 @x1676 $x355) @x1676 @x1673 x38$)))
+(let ((@x1681 (unit-resolution @x706 (unit-resolution @x1154 (unit-resolution @x478 @x1678 $x468) @x897 @x815 $x336) x1$)))
+(let ((@x1683 (unit-resolution @x67 (unit-resolution @x352 @x1681 $x347) (unit-resolution @x1662 @x1673 @x1676 $x355) x33$)))
+(let ((@x1686 (unit-resolution (unit-resolution @x1090 @x1580 (or $x481 x8$)) (unit-resolution @x417 @x1683 $x410) $x481)))
+(let ((@x1687 (unit-resolution @x175 @x1686 (unit-resolution @x421 @x1683 $x411) @x1676 @x1673 false)))
+(let ((@x1691 (unit-resolution @x480 (unit-resolution (lemma @x1687 (or x11$ x17$)) @x897 x11$) $x397)))
+(let ((@x1692 (unit-resolution @x476 (unit-resolution (lemma @x1687 (or x11$ x17$)) @x897 x11$) $x468)))
+(let ((@x1695 (unit-resolution (unit-resolution @x1613 @x1665 (or x42$ x44$ x17$)) @x1692 @x897 x42$)))
+(let ((@x1700 (unit-resolution (unit-resolution @x769 @x1580 (or $x374 x45$ x12$ x38$)) (unit-resolution @x725 (unit-resolution @x452 @x1695 $x375) x5$) @x1676 @x1691 x45$)))
+(let ((@x1702 (unit-resolution @x1671 (unit-resolution @x563 @x1700 $x553) x22$)))
+(let ((@x1705 (unit-resolution (unit-resolution @x325 @x1665 (or x26$ x56$)) (unit-resolution @x612 @x1702 $x610) x26$)))
+(let ((@x1709 (unit-resolution @x222 (unit-resolution @x616 @x1702 $x539) @x897 @x1692 x16$)))
+(let ((@x1713 (unit-resolution @x269 (unit-resolution @x664 @x1705 $x596) (unit-resolution (asserted (or $x609 $x595)) @x1702 $x595) (unit-resolution @x527 @x1709 $x525) x20$)))
+(let ((@x1714 (unit-resolution @x590 @x1713 (unit-resolution @x307 (unit-resolution @x662 @x1705 $x657) x54$) false)))
+(let ((@x1715 (lemma @x1714 x17$)))
+(let ((@x1718 (unit-resolution (unit-resolution @x1569 @x1665 (or $x609 x11$)) (unit-resolution @x1671 (unit-resolution @x561 @x1715 $x553) x22$) x11$)))
+(let ((@x1722 (unit-resolution @x1662 (unit-resolution @x472 @x1718 $x467) (unit-resolution @x565 @x1715 $x482) $x355)))
+(unit-resolution @x1647 @x1722 (unit-resolution @x472 @x1718 $x467) (unit-resolution @x565 @x1715 $x482) (unit-resolution @x480 @x1718 $x397) false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
+
+5b5847cff590025b823cc0b87a8a109505cf26d0 38 0
+unsat
+((set-logic AUFLIA)
+(declare-fun ?v0!0 () Int)
+(declare-fun ?v1!1 () Int)
+(proof
+(let (($x48 (p$ ?v0!0)))
+(let (($x50 (not $x48)))
+(let (($x63 (not (or $x48 (p$ ?v1!1)))))
+(let ((@x77 (monotonicity (rewrite (= (not $x50) $x48)) (= (and (not $x50) $x63) (and $x48 $x63)))))
+(let (($x57 (not $x50)))
+(let (($x67 (and $x57 $x63)))
+(let (($x41 (forall ((?v0 Int) )(! (let (($x32 (forall ((?v1 Int) )(! (let (($x28 (p$ ?v1)))
+(or (p$ ?v0) $x28)) :qid k!5))
+))
+(or (not (p$ ?v0)) $x32)) :qid k!5))
+))
+(let (($x44 (not $x41)))
+(let (($x52 (forall ((?v1 Int) )(! (let (($x28 (p$ ?v1)))
+(let (($x48 (p$ ?v0!0)))
+(or $x48 $x28))) :qid k!5))
+))
+(let ((@x69 (nnf-neg (refl (~ $x57 $x57)) (sk (~ (not $x52) $x63)) (~ (not (or $x50 $x52)) $x67))))
+(let (($x34 (forall ((?v0 Int) )(! (let (($x32 (forall ((?v1 Int) )(! (let (($x28 (p$ ?v1)))
+(or (p$ ?v0) $x28)) :qid k!5))
+))
+(let (($x28 (p$ ?v0)))
+(=> $x28 $x32))) :qid k!5))
+))
+(let (($x35 (not $x34)))
+(let (($x32 (forall ((?v1 Int) )(! (let (($x28 (p$ ?v1)))
+(or (p$ ?0) $x28)) :qid k!5))
+))
+(let ((@x43 (quant-intro (rewrite (= (=> (p$ ?0) $x32) (or (not (p$ ?0)) $x32))) (= $x34 $x41))))
+(let ((@x72 (mp~ (mp (asserted $x35) (monotonicity @x43 (= $x35 $x44)) $x44) (trans (sk (~ $x44 (not (or $x50 $x52)))) @x69 (~ $x44 $x67)) $x67)))
+(let ((@x81 (not-or-elim (and-elim (mp @x72 @x77 (and $x48 $x63)) $x63) $x50)))
+(let ((@x79 (and-elim (mp @x72 @x77 (and $x48 $x63)) $x48)))
+(unit-resolution @x79 @x81 false))))))))))))))))))))
+
+373c19e76251b161134a463d5e2a74af5c6b8f8c 53 0
+unsat
+((set-logic AUFLIA)
+(declare-fun ?v0!0 () A$)
+(proof
+(let (($x517 (forall ((?v0 A$) )(! (let (($x40 (p$ x$ ?v0)))
+(not $x40)) :pattern ( (p$ x$ ?v0) ) :qid k!9))
+))
+(let (($x44 (p$ x$ c$)))
+(let (($x91 (= $x44 x$)))
+(let (($x510 (forall ((?v0 Bool) (?v1 A$) )(! (let (($x29 (p$ ?v0 ?v1)))
+(= $x29 ?v0)) :pattern ( (p$ ?v0 ?v1) ) :qid k!8))
+))
+(let (($x36 (forall ((?v0 Bool) (?v1 A$) )(! (let (($x29 (p$ ?v0 ?v1)))
+(= $x29 ?v0)) :qid k!8))
+))
+(let ((@x514 (quant-intro (refl (= (= (p$ ?1 ?0) ?1) (= (p$ ?1 ?0) ?1))) (= $x36 $x510))))
+(let ((@x64 (nnf-pos (refl (~ (= (p$ ?1 ?0) ?1) (= (p$ ?1 ?0) ?1))) (~ $x36 $x36))))
+(let (($x31 (forall ((?v0 Bool) (?v1 A$) )(! (let (($x29 (p$ ?v0 ?v1)))
+(= $x29 ?v0)) :qid k!8))
+))
+(let ((@x38 (quant-intro (rewrite (= (= (p$ ?1 ?0) ?1) (= (p$ ?1 ?0) ?1))) (= $x31 $x36))))
+(let ((@x515 (mp (mp~ (mp (asserted $x31) @x38 $x36) @x64 $x36) @x514 $x510)))
+(let (($x170 (or (not $x510) $x91)))
+(let ((@x503 ((_ quant-inst x$ c$) $x170)))
+(let (($x73 (p$ x$ ?v0!0)))
+(let (($x179 (= $x73 x$)))
+(let (($x85 (or $x73 $x44)))
+(let (($x81 (not $x44)))
+(let (($x69 (forall ((?v0 A$) )(! (let (($x40 (p$ x$ ?v0)))
+(not $x40)) :qid k!9))
+))
+(let (($x84 (or $x69 $x81)))
+(let (($x42 (exists ((?v0 A$) )(! (p$ x$ ?v0) :qid k!9))
+))
+(let (($x54 (not $x42)))
+(let (($x55 (= $x54 $x44)))
+(let ((@x71 (nnf-neg (refl (~ (not (p$ x$ ?0)) (not (p$ x$ ?0)))) (~ $x54 $x69))))
+(let ((@x88 (nnf-pos @x71 (nnf-neg (sk (~ $x42 $x73)) (~ (not $x54) $x73)) (refl (~ $x44 $x44)) (refl (~ $x81 $x81)) (~ $x55 (and $x85 $x84)))))
+(let ((@x53 (monotonicity (rewrite (= (= $x42 $x44) (= $x42 $x44))) (= (not (= $x42 $x44)) (not (= $x42 $x44))))))
+(let ((@x59 (trans @x53 (rewrite (= (not (= $x42 $x44)) $x55)) (= (not (= $x42 $x44)) $x55))))
+(let ((@x89 (mp~ (mp (asserted (not (= $x42 $x44))) @x59 $x55) @x88 (and $x85 $x84))))
+(let ((@x92 (and-elim @x89 $x85)))
+(let ((@x484 (unit-resolution (def-axiom (or (not $x179) (not $x73) x$)) (unit-resolution @x92 (hypothesis $x81) $x73) (or (not $x179) x$))))
+(let ((@x145 (unit-resolution @x484 (unit-resolution ((_ quant-inst x$ ?v0!0) (or (not $x510) $x179)) @x515 $x179) x$)))
+(let ((@x147 (unit-resolution (def-axiom (or (not $x91) $x44 (not x$))) (hypothesis $x81) (or (not $x91) (not x$)))))
+(let ((@x485 (lemma (unit-resolution @x147 @x145 (unit-resolution @x503 @x515 $x91) false) $x44)))
+(let (($x522 (or $x517 $x81)))
+(let ((@x521 (quant-intro (refl (= (not (p$ x$ ?0)) (not (p$ x$ ?0)))) (= $x69 $x517))))
+(let ((@x525 (mp (and-elim @x89 $x84) (monotonicity @x521 (= $x84 $x522)) $x522)))
+(let (($x160 (or (not $x517) $x81)))
+(let ((@x161 ((_ quant-inst c$) $x160)))
+(unit-resolution @x161 @x485 (unit-resolution @x525 @x485 $x517) false)))))))))))))))))))))))))))))))))))))))
+
+73d33aacc4f76cc1b4edd5b56d4a9b1cb27da391 53 0
+unsat
+((set-logic AUFLIA)
+(declare-fun ?v0!3 () A$)
+(proof
+(let (($x584 (forall ((?v0 A$) )(! (let (($x52 (p$ x$ ?v0)))
+(not $x52)) :pattern ( (p$ x$ ?v0) ) :qid k!10))
+))
+(let (($x55 (p$ x$ c$)))
+(let (($x230 (= $x55 x$)))
+(let (($x561 (forall ((?v0 Bool) (?v1 A$) )(! (let (($x29 (p$ ?v0 ?v1)))
+(= $x29 ?v0)) :pattern ( (p$ ?v0 ?v1) ) :qid k!8))
+))
+(let (($x36 (forall ((?v0 Bool) (?v1 A$) )(! (let (($x29 (p$ ?v0 ?v1)))
+(= $x29 ?v0)) :qid k!8))
+))
+(let ((@x565 (quant-intro (refl (= (= (p$ ?1 ?0) ?1) (= (p$ ?1 ?0) ?1))) (= $x36 $x561))))
+(let ((@x75 (nnf-pos (refl (~ (= (p$ ?1 ?0) ?1) (= (p$ ?1 ?0) ?1))) (~ $x36 $x36))))
+(let (($x31 (forall ((?v0 Bool) (?v1 A$) )(! (let (($x29 (p$ ?v0 ?v1)))
+(= $x29 ?v0)) :qid k!8))
+))
+(let ((@x38 (quant-intro (rewrite (= (= (p$ ?1 ?0) ?1) (= (p$ ?1 ?0) ?1))) (= $x31 $x36))))
+(let ((@x566 (mp (mp~ (mp (asserted $x31) @x38 $x36) @x75 $x36) @x565 $x561)))
+(let (($x220 (or (not $x561) $x230)))
+(let ((@x221 ((_ quant-inst x$ c$) $x220)))
+(let (($x124 (p$ x$ ?v0!3)))
+(let (($x141 (= $x124 x$)))
+(let (($x136 (or $x124 $x55)))
+(let (($x132 (not $x55)))
+(let (($x120 (forall ((?v0 A$) )(! (let (($x52 (p$ x$ ?v0)))
+(not $x52)) :qid k!10))
+))
+(let (($x135 (or $x120 $x132)))
+(let (($x54 (exists ((?v0 A$) )(! (p$ x$ ?v0) :qid k!10))
+))
+(let (($x65 (not $x54)))
+(let (($x66 (= $x65 $x55)))
+(let ((@x122 (nnf-neg (refl (~ (not (p$ x$ ?0)) (not (p$ x$ ?0)))) (~ $x65 $x120))))
+(let ((@x139 (nnf-pos @x122 (nnf-neg (sk (~ $x54 $x124)) (~ (not $x65) $x124)) (refl (~ $x55 $x55)) (refl (~ $x132 $x132)) (~ $x66 (and $x136 $x135)))))
+(let ((@x64 (monotonicity (rewrite (= (= $x54 $x55) (= $x54 $x55))) (= (not (= $x54 $x55)) (not (= $x54 $x55))))))
+(let ((@x70 (trans @x64 (rewrite (= (not (= $x54 $x55)) $x66)) (= (not (= $x54 $x55)) $x66))))
+(let ((@x140 (mp~ (mp (asserted (not (= $x54 $x55))) @x70 $x66) @x139 (and $x136 $x135))))
+(let ((@x143 (and-elim @x140 $x136)))
+(let ((@x193 (unit-resolution (def-axiom (or (not $x141) (not $x124) x$)) (unit-resolution @x143 (hypothesis $x132) $x124) (or (not $x141) x$))))
+(let ((@x535 (unit-resolution @x193 (unit-resolution ((_ quant-inst x$ ?v0!3) (or (not $x561) $x141)) @x566 $x141) x$)))
+(let ((@x197 (unit-resolution (def-axiom (or (not $x230) $x55 (not x$))) (hypothesis $x132) (or (not $x230) (not x$)))))
+(let ((@x199 (lemma (unit-resolution @x197 @x535 (unit-resolution @x221 @x566 $x230) false) $x55)))
+(let (($x589 (or $x584 $x132)))
+(let ((@x588 (quant-intro (refl (= (not (p$ x$ ?0)) (not (p$ x$ ?0)))) (= $x120 $x584))))
+(let ((@x592 (mp (and-elim @x140 $x135) (monotonicity @x588 (= $x135 $x589)) $x589)))
+(let (($x549 (or (not $x584) $x132)))
+(let ((@x211 ((_ quant-inst c$) $x549)))
+(unit-resolution @x211 @x199 (unit-resolution @x592 @x199 $x584) false)))))))))))))))))))))))))))))))))))))))
+
+5865554a06d92ae737f15d4517f201cb6a56c4e7 26 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x28 (p$ x$)))
+(let ((@x48 (monotonicity (rewrite (= (=> $x28 (p$ y$)) (or (not $x28) (p$ y$)))) (= (not (=> $x28 (p$ y$))) (not (or (not $x28) (p$ y$)))))))
+(let ((@x51 (mp (asserted (not (=> $x28 (p$ y$)))) @x48 (not (or (not $x28) (p$ y$))))))
+(let ((@x49 (not-or-elim @x51 $x28)))
+(let (($x486 (forall ((?v0 A$) )(! (let (($x30 (p$ ?v0)))
+(not $x30)) :pattern ( (p$ ?v0) ) :qid k!8))
+))
+(let (($x34 (forall ((?v0 A$) )(! (let (($x30 (p$ ?v0)))
+(not $x30)) :qid k!8))
+))
+(let ((@x490 (quant-intro (refl (= (not (p$ ?0)) (not (p$ ?0)))) (= $x34 $x486))))
+(let (($x31 (exists ((?v0 A$) )(! (p$ ?v0) :qid k!8))
+))
+(let (($x32 (not $x31)))
+(let ((@x59 (monotonicity (iff-true @x49 (= $x28 true)) (= (ite $x28 $x32 $x34) (ite true $x32 $x34)))))
+(let ((@x63 (trans @x59 (rewrite (= (ite true $x32 $x34) $x32)) (= (ite $x28 $x32 $x34) $x32))))
+(let ((@x67 (mp~ (mp (asserted (ite $x28 $x32 $x34)) @x63 $x32) (nnf-neg (refl (~ (not (p$ ?0)) (not (p$ ?0)))) (~ $x32 $x34)) $x34)))
+(let ((@x491 (mp @x67 @x490 $x486)))
+(let (($x42 (not $x28)))
+(let (($x156 (or (not $x486) $x42)))
+(let ((@x70 ((_ quant-inst x$) $x156)))
+(unit-resolution @x70 @x491 @x49 false)))))))))))))))))))
+
+2e7aa15df0632240a3bbe8b448df847c6a5afa7c 7 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let ((@x35 (monotonicity (rewrite (= (= 3 3) true)) (= (not (= 3 3)) (not true)))))
+(let ((@x39 (trans @x35 (rewrite (= (not true) false)) (= (not (= 3 3)) false))))
+(mp (asserted (not (= 3 3))) @x39 false)))))
+
+b2313f7d5e8f2049d0fc86a5290b5b01c50a1956 7 0
+unsat
+((set-logic AUFLIRA)
+(proof
+(let ((@x35 (monotonicity (rewrite (= (= 3.0 3.0) true)) (= (not (= 3.0 3.0)) (not true)))))
+(let ((@x39 (trans @x35 (rewrite (= (not true) false)) (= (not (= 3.0 3.0)) false))))
+(mp (asserted (not (= 3.0 3.0))) @x39 false)))))
+
+6114093ed426a317c79d6cee4b92be3fd329859f 9 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let ((@x37 (monotonicity (rewrite (= (+ 3 1) 4)) (= (= (+ 3 1) 4) (= 4 4)))))
+(let ((@x41 (trans @x37 (rewrite (= (= 4 4) true)) (= (= (+ 3 1) 4) true))))
+(let ((@x44 (monotonicity @x41 (= (not (= (+ 3 1) 4)) (not true)))))
+(let ((@x48 (trans @x44 (rewrite (= (not true) false)) (= (not (= (+ 3 1) 4)) false))))
+(mp (asserted (not (= (+ 3 1) 4))) @x48 false)))))))
+
+a203b3db2a53411ee3d79b9aeda0b90634f85bed 16 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let ((?x32 (+ z$ x$)))
+(let ((?x33 (+ y$ ?x32)))
+(let ((?x30 (+ y$ z$)))
+(let ((?x31 (+ x$ ?x30)))
+(let (($x34 (= ?x31 ?x33)))
+(let (($x35 (not $x34)))
+(let ((@x45 (monotonicity (rewrite (= ?x32 (+ x$ z$))) (= ?x33 (+ y$ (+ x$ z$))))))
+(let ((@x49 (trans @x45 (rewrite (= (+ y$ (+ x$ z$)) (+ x$ y$ z$))) (= ?x33 (+ x$ y$ z$)))))
+(let ((@x52 (monotonicity (rewrite (= ?x31 (+ x$ y$ z$))) @x49 (= $x34 (= (+ x$ y$ z$) (+ x$ y$ z$))))))
+(let ((@x56 (trans @x52 (rewrite (= (= (+ x$ y$ z$) (+ x$ y$ z$)) true)) (= $x34 true))))
+(let ((@x63 (trans (monotonicity @x56 (= $x35 (not true))) (rewrite (= (not true) false)) (= $x35 false))))
+(mp (asserted $x35) @x63 false))))))))))))))
+
+2a15e56e254da2b0d703c710a918cea09184c4fd 11 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let ((@x41 (monotonicity (rewrite (= (<= 3 8) true)) (= (ite (<= 3 8) 8 3) (ite true 8 3)))))
+(let ((@x45 (trans @x41 (rewrite (= (ite true 8 3) 8)) (= (ite (<= 3 8) 8 3) 8))))
+(let ((@x48 (monotonicity @x45 (= (< 5 (ite (<= 3 8) 8 3)) (< 5 8)))))
+(let ((@x52 (trans @x48 (rewrite (= (< 5 8) true)) (= (< 5 (ite (<= 3 8) 8 3)) true))))
+(let ((@x55 (monotonicity @x52 (= (not (< 5 (ite (<= 3 8) 8 3))) (not true)))))
+(let ((@x59 (trans @x55 (rewrite (= (not true) false)) (= (not (< 5 (ite (<= 3 8) 8 3))) false))))
+(mp (asserted (not (< 5 (ite (<= 3 8) 8 3)))) @x59 false)))))))))
+
+e5c3e298abc0852046f636c11356417cc1ca2609 88 0
+unsat
+((set-logic AUFLIRA)
+(proof
+(let ((?x44 (* (- 1.0) x$)))
+(let (($x83 (>= x$ 0.0)))
+(let ((?x90 (ite $x83 x$ ?x44)))
+(let ((?x113 (* (- 1.0) ?x90)))
+(let ((?x148 (+ x$ ?x113)))
+(let (($x149 (<= ?x148 0.0)))
+(let (($x133 (= x$ ?x90)))
+(let ((?x45 (* (- 1.0) y$)))
+(let ((?x46 (+ ?x44 ?x45)))
+(let ((?x29 (+ x$ y$)))
+(let (($x71 (>= ?x29 0.0)))
+(let ((?x78 (ite $x71 ?x29 ?x46)))
+(let ((?x151 (* (- 1.0) ?x78)))
+(let ((?x179 (+ ?x46 ?x151)))
+(let (($x181 (>= ?x179 0.0)))
+(let (($x130 (= ?x46 ?x78)))
+(let (($x72 (not $x71)))
+(let (($x95 (>= y$ 0.0)))
+(let (($x96 (not $x95)))
+(let (($x154 (>= (+ ?x29 ?x151) 0.0)))
+(let (($x129 (= ?x29 ?x78)))
+(let (($x190 (not $x181)))
+(let ((@x161 (hypothesis $x95)))
+(let ((?x102 (ite $x95 y$ ?x45)))
+(let ((?x114 (* (- 1.0) ?x102)))
+(let ((?x115 (+ ?x78 ?x113 ?x114)))
+(let (($x116 (<= ?x115 0.0)))
+(let (($x121 (not $x116)))
+(let ((?x39 (+ (ite (< x$ 0.0) (- x$) x$) (ite (< y$ 0.0) (- y$) y$))))
+(let (($x41 (not (<= (ite (< ?x29 0.0) (- ?x29) ?x29) ?x39))))
+(let (($x36 (< y$ 0.0)))
+(let ((?x59 (ite $x36 ?x45 y$)))
+(let (($x33 (< x$ 0.0)))
+(let ((?x54 (ite $x33 ?x44 x$)))
+(let ((?x62 (+ ?x54 ?x59)))
+(let (($x30 (< ?x29 0.0)))
+(let ((?x49 (ite $x30 ?x46 ?x29)))
+(let (($x65 (<= ?x49 ?x62)))
+(let ((@x106 (trans (monotonicity (rewrite (= $x36 $x96)) (= ?x59 (ite $x96 ?x45 y$))) (rewrite (= (ite $x96 ?x45 y$) ?x102)) (= ?x59 ?x102))))
+(let ((@x89 (monotonicity (rewrite (= $x33 (not $x83))) (= ?x54 (ite (not $x83) ?x44 x$)))))
+(let ((@x94 (trans @x89 (rewrite (= (ite (not $x83) ?x44 x$) ?x90)) (= ?x54 ?x90))))
+(let ((@x82 (trans (monotonicity (rewrite (= $x30 $x72)) (= ?x49 (ite $x72 ?x46 ?x29))) (rewrite (= (ite $x72 ?x46 ?x29) ?x78)) (= ?x49 ?x78))))
+(let ((@x112 (monotonicity @x82 (monotonicity @x94 @x106 (= ?x62 (+ ?x90 ?x102))) (= $x65 (<= ?x78 (+ ?x90 ?x102))))))
+(let ((@x120 (trans @x112 (rewrite (= (<= ?x78 (+ ?x90 ?x102)) $x116)) (= $x65 $x116))))
+(let ((@x61 (monotonicity (rewrite (= (- y$) ?x45)) (= (ite $x36 (- y$) y$) ?x59))))
+(let ((@x56 (monotonicity (rewrite (= (- x$) ?x44)) (= (ite $x33 (- x$) x$) ?x54))))
+(let ((@x51 (monotonicity (rewrite (= (- ?x29) ?x46)) (= (ite $x30 (- ?x29) ?x29) ?x49))))
+(let ((@x67 (monotonicity @x51 (monotonicity @x56 @x61 (= ?x39 ?x62)) (= (<= (ite $x30 (- ?x29) ?x29) ?x39) $x65))))
+(let ((@x125 (trans (monotonicity @x67 (= $x41 (not $x65))) (monotonicity @x120 (= (not $x65) $x121)) (= $x41 $x121))))
+(let ((@x126 (mp (asserted $x41) @x125 $x121)))
+(let (($x139 (= y$ ?x102)))
+(let ((@x174 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x139) (<= (+ y$ ?x114) 0.0))) (unit-resolution (def-axiom (or $x96 $x139)) @x161 $x139) (<= (+ y$ ?x114) 0.0))))
+(let ((?x150 (+ ?x44 ?x113)))
+(let (($x153 (<= ?x150 0.0)))
+(let (($x134 (= ?x44 ?x90)))
+(let (($x84 (not $x83)))
+(let ((@x159 ((_ th-lemma arith triangle-eq) (or (not $x133) $x149))))
+(let ((@x160 (unit-resolution @x159 (unit-resolution (def-axiom (or $x84 $x133)) (hypothesis $x83) $x133) $x149)))
+(let ((@x164 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1) (or $x71 $x84 $x96)) (hypothesis $x83) @x161 $x71)))
+(let ((@x128 (def-axiom (or $x72 $x129))))
+(let ((@x168 ((_ th-lemma arith triangle-eq) (or (not $x129) $x154))))
+(let ((@x175 ((_ th-lemma arith farkas 1 -1 -1 1) @x174 (unit-resolution @x168 (unit-resolution @x128 @x164 $x129) $x154) @x126 @x160 false)))
+(let ((@x138 (def-axiom (or $x83 $x134))))
+(let ((@x184 (unit-resolution @x138 (unit-resolution (lemma @x175 (or $x84 $x96)) @x161 $x84) $x134)))
+(let ((@x189 ((_ th-lemma arith farkas 2 -1 -1 1 1) @x161 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x134) $x153)) @x184 $x153) @x174 @x126 (hypothesis $x181) false)))
+(let ((@x198 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x130) $x181)) (hypothesis $x130) (hypothesis $x190) false)))
+(let ((@x199 (lemma @x198 (or (not $x130) $x181))))
+(let ((@x201 (unit-resolution @x199 (unit-resolution (lemma @x189 (or $x190 $x96)) @x161 $x190) (not $x130))))
+(let ((@x132 (def-axiom (or $x71 $x130))))
+(let ((@x204 (unit-resolution @x168 (unit-resolution @x128 (unit-resolution @x132 @x201 $x71) $x129) $x154)))
+(let ((@x205 ((_ th-lemma arith farkas 2 1 1 1 1) (unit-resolution (lemma @x175 (or $x84 $x96)) @x161 $x84) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x134) $x153)) @x184 $x153) @x174 @x126 @x204 false)))
+(let ((@x206 (lemma @x205 $x96)))
+(let ((@x212 (unit-resolution ((_ th-lemma arith assign-bounds 1 1) (or $x83 $x95 $x72)) (hypothesis $x71) @x206 $x83)))
+(let ((@x136 (def-axiom (or $x84 $x133))))
+(let ((@x216 (unit-resolution @x168 (unit-resolution @x128 (hypothesis $x71) $x129) $x154)))
+(let ((?x147 (+ ?x45 ?x114)))
+(let (($x178 (<= ?x147 0.0)))
+(let (($x140 (= ?x45 ?x102)))
+(let ((@x221 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x140) $x178)) (unit-resolution (def-axiom (or $x95 $x140)) @x206 $x140) $x178)))
+(let ((@x222 ((_ th-lemma arith farkas 2 1 1 1 1) @x206 @x221 @x126 @x216 (unit-resolution @x159 (unit-resolution @x136 @x212 $x133) $x149) false)))
+(let ((@x226 (unit-resolution @x199 (unit-resolution @x132 (lemma @x222 $x72) $x130) $x181)))
+(let ((@x231 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x134) $x153)) (hypothesis $x134) (lemma ((_ th-lemma arith farkas 1 -1 -1 1) @x221 @x126 @x226 (hypothesis $x153) false) (not $x153)) false)))
+(let ((@x234 (unit-resolution @x136 (unit-resolution @x138 (lemma @x231 (not $x134)) $x83) $x133)))
+((_ th-lemma arith farkas -2 1 -1 -1 1) (unit-resolution @x138 (lemma @x231 (not $x134)) $x83) @x221 @x126 @x226 (unit-resolution @x159 @x234 $x149) false))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
+
+d09b2dcc4d3d4032a6fad44744e069f775d9561a 12 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let ((?x31 (p$ true)))
+(let (($x29 (< 2 3)))
+(let ((?x30 (p$ $x29)))
+(let (($x32 (= ?x30 ?x31)))
+(let ((@x42 (monotonicity (monotonicity (rewrite (= $x29 true)) $x32) (= $x32 (= ?x31 ?x31)))))
+(let ((@x49 (monotonicity (trans @x42 (rewrite (= (= ?x31 ?x31) true)) (= $x32 true)) (= (not $x32) (not true)))))
+(let ((@x53 (trans @x49 (rewrite (= (not true) false)) (= (not $x32) false))))
+(mp (asserted (not $x32)) @x53 false))))))))))
+
+a8c64b00c4a9d6a3ceb426e6cbf6c1185a064051 16 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x33 (< x$ 1)))
+(let ((?x37 (+ 3 x$)))
+(let (($x40 (<= 4 ?x37)))
+(let (($x43 (or $x40 $x33)))
+(let (($x46 (not $x43)))
+(let ((@x57 (monotonicity (rewrite (= $x40 (>= x$ 1))) (rewrite (= $x33 (not (>= x$ 1)))) (= $x43 (or (>= x$ 1) (not (>= x$ 1)))))))
+(let ((@x61 (trans @x57 (rewrite (= (or (>= x$ 1) (not (>= x$ 1))) true)) (= $x43 true))))
+(let ((@x68 (trans (monotonicity @x61 (= $x46 (not true))) (rewrite (= (not true) false)) (= $x46 false))))
+(let ((@x42 (monotonicity (rewrite (= (+ x$ 3) ?x37)) (= (<= 4 (+ x$ 3)) $x40))))
+(let ((@x48 (monotonicity (monotonicity @x42 (= (or (<= 4 (+ x$ 3)) $x33) $x43)) (= (not (or (<= 4 (+ x$ 3)) $x33)) $x46))))
+(let ((@x70 (trans @x48 @x68 (= (not (or (<= 4 (+ x$ 3)) $x33)) false))))
+(mp (asserted (not (or (<= 4 (+ x$ 3)) $x33))) @x70 false))))))))))))))
+
+591b2369e8eb5c0fb224471236573b23130483ae 18 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x51 (= (+ x$ (* (- 1) y$)) (- 4))))
+(let ((@x45 (monotonicity (rewrite (= (+ x$ 4) (+ 4 x$))) (= (= y$ (+ x$ 4)) (= y$ (+ 4 x$))))))
+(let ((@x54 (trans @x45 (rewrite (= (= y$ (+ 4 x$)) $x51)) (= (= y$ (+ x$ 4)) $x51))))
+(let ((@x88 (monotonicity (mp (asserted (= y$ (+ x$ 4))) @x54 $x51) (= (>= (+ x$ (* (- 1) y$)) 0) (>= (- 4) 0)))))
+(let ((@x90 (trans @x88 (rewrite (= (>= (- 4) 0) false)) (= (>= (+ x$ (* (- 1) y$)) 0) false))))
+(let (($x70 (>= (+ x$ (* (- 1) y$)) 0)))
+(let ((@x76 (monotonicity (rewrite (= (< 0 (+ (* (- 1) x$) y$)) (not $x70))) (= (not (< 0 (+ (* (- 1) x$) y$))) (not (not $x70))))))
+(let ((@x80 (trans @x76 (rewrite (= (not (not $x70)) $x70)) (= (not (< 0 (+ (* (- 1) x$) y$))) $x70))))
+(let (($x64 (< 0 (+ (* (- 1) x$) y$))))
+(let (($x67 (not $x64)))
+(let (($x58 (not (< 0 (- y$ x$)))))
+(let ((@x66 (monotonicity (rewrite (= (- y$ x$) (+ (* (- 1) x$) y$))) (= (< 0 (- y$ x$)) $x64))))
+(let ((@x83 (mp (asserted $x58) (trans (monotonicity @x66 (= $x58 $x67)) @x80 (= $x58 $x70)) $x70)))
+(mp @x83 @x90 false))))))))))))))))
+
+895fc717670fb918a1eb39f2d045d84196651462 11 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let ((@x39 (monotonicity (rewrite (= (+ 2 2) 4)) (= (= (+ 2 2) 5) (= 4 5)))))
+(let ((@x43 (trans @x39 (rewrite (= (= 4 5) false)) (= (= (+ 2 2) 5) false))))
+(let ((@x46 (monotonicity @x43 (= (not (= (+ 2 2) 5)) (not false)))))
+(let ((@x50 (trans @x46 (rewrite (= (not false) true)) (= (not (= (+ 2 2) 5)) true))))
+(let ((@x53 (monotonicity @x50 (= (not (not (= (+ 2 2) 5))) (not true)))))
+(let ((@x57 (trans @x53 (rewrite (= (not true) false)) (= (not (not (= (+ 2 2) 5))) false))))
+(mp (asserted (not (not (= (+ 2 2) 5)))) @x57 false)))))))))
+
+1660d807dc8fd7dfaeb6cc49abbc1931fb4d9cf2 19 0
+unsat
+((set-logic AUFLIRA)
+(proof
+(let ((?x32 (* 7.0 a$)))
+(let ((?x29 (* 3.0 x$)))
+(let ((?x33 (+ ?x29 ?x32)))
+(let (($x43 (>= ?x33 4.0)))
+(let (($x41 (not $x43)))
+(let ((@x40 (mp (asserted (< ?x33 4.0)) (rewrite (= (< ?x33 4.0) $x41)) $x41)))
+(let ((?x38 (* 2.0 x$)))
+(let (($x48 (<= ?x38 3.0)))
+(let (($x49 (not $x48)))
+(let ((@x52 (mp (asserted (< 3.0 ?x38)) (rewrite (= (< 3.0 ?x38) $x49)) $x49)))
+(let (($x58 (>= a$ 0.0)))
+(let ((@x62 (monotonicity (rewrite (= (< a$ 0.0) (not $x58))) (= (not (< a$ 0.0)) (not (not $x58))))))
+(let ((@x66 (trans @x62 (rewrite (= (not (not $x58)) $x58)) (= (not (< a$ 0.0)) $x58))))
+(let ((@x67 (mp (asserted (not (< a$ 0.0))) @x66 $x58)))
+((_ th-lemma arith farkas 7 3/2 1) @x67 @x52 @x40 false)))))))))))))))))
+
+efc376658e37c2b65f19b46a152779e140165df2 22 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x38 (not false)))
+(let (($x34 (<= 0 x$)))
+(let (($x35 (not $x34)))
+(let (($x36 (or $x35 $x34)))
+(let ((?x29 (- 1)))
+(let ((?x31 (* ?x29 x$)))
+(let ((?x32 (+ y$ ?x31)))
+(let (($x33 (<= 0 ?x32)))
+(let (($x37 (or $x33 $x36)))
+(let (($x39 (= $x37 $x38)))
+(let (($x40 (not $x39)))
+(let ((@x60 (rewrite (= (or (<= 0 (+ y$ (* (- 1) x$))) true) true))))
+(let ((@x50 (monotonicity (monotonicity (rewrite (= ?x29 (- 1))) (= ?x31 (* (- 1) x$))) (= ?x32 (+ y$ (* (- 1) x$))))))
+(let ((@x58 (monotonicity (monotonicity @x50 (= $x33 (<= 0 (+ y$ (* (- 1) x$))))) (rewrite (= $x36 true)) (= $x37 (or (<= 0 (+ y$ (* (- 1) x$))) true)))))
+(let ((@x67 (monotonicity (trans @x58 @x60 (= $x37 true)) (rewrite (= $x38 true)) (= $x39 (= true true)))))
+(let ((@x71 (trans @x67 (rewrite (= (= true true) true)) (= $x39 true))))
+(let ((@x78 (trans (monotonicity @x71 (= $x40 (not true))) (rewrite (= (not true) false)) (= $x40 false))))
+(mp (asserted $x40) @x78 false))))))))))))))))))))
+
+78d6ded86e460dba6a16db8a6cfb789446760fa1 159 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x44 (= m$ n$)))
+(let ((@x480 (symm (commutativity (= $x44 (= n$ m$))) (= (= n$ m$) $x44))))
+(let (($x40 (= n$ m$)))
+(let ((?x102 (* (- 1) m$)))
+(let ((?x103 (+ n$ ?x102)))
+(let (($x118 (>= ?x103 0)))
+(let ((?x78 (* (- 1) n$a)))
+(let ((?x96 (+ m$ ?x78)))
+(let (($x127 (<= ?x96 0)))
+(let ((?x79 (+ n$ ?x78)))
+(let (($x88 (>= ?x79 0)))
+(let (($x239 (or $x88 $x127)))
+(let ((@x251 (monotonicity (rewrite (= (and (not $x88) (not $x127)) (not $x239))) (= (not (and (not $x88) (not $x127))) (not (not $x239))))))
+(let ((@x271 (trans @x251 (rewrite (= (not (not $x239)) $x239)) (= (not (and (not $x88) (not $x127))) $x239))))
+(let (($x128 (not $x127)))
+(let (($x87 (not $x88)))
+(let (($x143 (and $x87 $x128)))
+(let (($x210 (not $x143)))
+(let (($x50 (= n$a m$)))
+(let (($x57 (and $x50 $x44)))
+(let (($x80 (<= ?x79 0)))
+(let (($x81 (not $x80)))
+(let (($x33 (= m$ n$a)))
+(let (($x84 (and $x33 $x81)))
+(let (($x91 (and $x44 $x87)))
+(let (($x95 (>= ?x96 0)))
+(let (($x94 (not $x95)))
+(let (($x99 (and $x94 $x81)))
+(let (($x48 (= n$a n$)))
+(let (($x104 (<= ?x103 0)))
+(let (($x105 (not $x104)))
+(let (($x108 (and $x105 $x48)))
+(let (($x111 (and $x105 $x87)))
+(let (($x114 (and $x50 $x105)))
+(let (($x117 (not $x118)))
+(let (($x121 (and $x48 $x117)))
+(let (($x124 (and $x81 $x117)))
+(let (($x131 (and $x128 $x44)))
+(let (($x134 (and $x128 $x105)))
+(let (($x137 (and $x40 $x94)))
+(let (($x38 (= n$ n$a)))
+(let (($x140 (and $x38 $x128)))
+(let (($x146 (and $x117 $x33)))
+(let (($x149 (and $x117 $x94)))
+(let (($x197 (or $x149 $x146 $x143 $x140 $x137 $x134 $x131 $x124 $x121 $x114 $x111 $x108 $x99 $x91 $x84 $x57)))
+(let (($x60 (or (and (< m$ n$a) (< n$a n$)) (or (and $x44 (< n$ n$a)) (or (and $x33 (< n$a n$)) $x57)))))
+(let (($x62 (or (and (< m$ n$) (< n$ n$a)) (or (and (< m$ n$) $x48) $x60))))
+(let (($x65 (or (and (< n$a n$) (< n$ m$)) (or (and $x48 (< n$ m$)) (or (and $x50 (< m$ n$)) $x62)))))
+(let (($x67 (or (and (< n$a m$) (< m$ n$)) (or (and (< n$a m$) $x44) $x65))))
+(let (($x70 (or (and (< n$ n$a) (< n$a m$)) (or (and $x38 (< n$a m$)) (or (and $x40 (< m$ n$a)) $x67)))))
+(let (($x72 (or (and (< n$ m$) (< m$ n$a)) (or (and (< n$ m$) $x33) $x70))))
+(let (($x73 (not $x72)))
+(let (($x170 (or $x121 (or $x114 (or $x111 (or $x108 (or $x99 (or $x91 (or $x84 $x57)))))))))
+(let (($x191 (or $x146 (or $x143 (or $x140 (or $x137 (or $x134 (or $x131 (or $x124 $x170)))))))))
+(let (($x189 (= $x70 (or $x143 (or $x140 (or $x137 (or $x134 (or $x131 (or $x124 $x170)))))))))
+(let (($x186 (= (or (and $x38 (< n$a m$)) (or (and $x40 (< m$ n$a)) $x67)) (or $x140 (or $x137 (or $x134 (or $x131 (or $x124 $x170))))))))
+(let (($x183 (= (or (and $x40 (< m$ n$a)) $x67) (or $x137 (or $x134 (or $x131 (or $x124 $x170)))))))
+(let (($x171 (= (or (and $x48 (< n$ m$)) (or (and $x50 (< m$ n$)) $x62)) $x170)))
+(let (($x168 (= (or (and $x50 (< m$ n$)) $x62) (or $x114 (or $x111 (or $x108 (or $x99 (or $x91 (or $x84 $x57)))))))))
+(let (($x162 (= (or (and (< m$ n$) $x48) $x60) (or $x108 (or $x99 (or $x91 (or $x84 $x57)))))))
+(let (($x156 (= (or (and $x44 (< n$ n$a)) (or (and $x33 (< n$a n$)) $x57)) (or $x91 (or $x84 $x57)))))
+(let ((@x83 (rewrite (= (< n$a n$) $x81))))
+(let ((@x154 (monotonicity (monotonicity @x83 (= (and $x33 (< n$a n$)) $x84)) (= (or (and $x33 (< n$a n$)) $x57) (or $x84 $x57)))))
+(let ((@x90 (rewrite (= (< n$ n$a) $x87))))
+(let ((@x157 (monotonicity (monotonicity @x90 (= (and $x44 (< n$ n$a)) $x91)) @x154 $x156)))
+(let ((@x98 (rewrite (= (< m$ n$a) $x94))))
+(let ((@x101 (monotonicity @x98 @x83 (= (and (< m$ n$a) (< n$a n$)) $x99))))
+(let ((@x160 (monotonicity @x101 @x157 (= $x60 (or $x99 (or $x91 (or $x84 $x57)))))))
+(let ((@x107 (rewrite (= (< m$ n$) $x105))))
+(let ((@x163 (monotonicity (monotonicity @x107 (= (and (< m$ n$) $x48) $x108)) @x160 $x162)))
+(let ((@x113 (monotonicity @x107 @x90 (= (and (< m$ n$) (< n$ n$a)) $x111))))
+(let ((@x166 (monotonicity @x113 @x163 (= $x62 (or $x111 (or $x108 (or $x99 (or $x91 (or $x84 $x57)))))))))
+(let ((@x169 (monotonicity (monotonicity @x107 (= (and $x50 (< m$ n$)) $x114)) @x166 $x168)))
+(let ((@x120 (rewrite (= (< n$ m$) $x117))))
+(let ((@x172 (monotonicity (monotonicity @x120 (= (and $x48 (< n$ m$)) $x121)) @x169 $x171)))
+(let ((@x126 (monotonicity @x83 @x120 (= (and (< n$a n$) (< n$ m$)) $x124))))
+(let ((@x130 (rewrite (= (< n$a m$) $x128))))
+(let ((@x178 (monotonicity (monotonicity @x130 (= (and (< n$a m$) $x44) $x131)) (monotonicity @x126 @x172 (= $x65 (or $x124 $x170))) (= (or (and (< n$a m$) $x44) $x65) (or $x131 (or $x124 $x170))))))
+(let ((@x136 (monotonicity @x130 @x107 (= (and (< n$a m$) (< m$ n$)) $x134))))
+(let ((@x181 (monotonicity @x136 @x178 (= $x67 (or $x134 (or $x131 (or $x124 $x170)))))))
+(let ((@x184 (monotonicity (monotonicity @x98 (= (and $x40 (< m$ n$a)) $x137)) @x181 $x183)))
+(let ((@x187 (monotonicity (monotonicity @x130 (= (and $x38 (< n$a m$)) $x140)) @x184 $x186)))
+(let ((@x145 (monotonicity @x90 @x130 (= (and (< n$ n$a) (< n$a m$)) $x143))))
+(let ((@x193 (monotonicity (monotonicity @x120 (= (and (< n$ m$) $x33) $x146)) (monotonicity @x145 @x187 $x189) (= (or (and (< n$ m$) $x33) $x70) $x191))))
+(let ((@x151 (monotonicity @x120 @x98 (= (and (< n$ m$) (< m$ n$a)) $x149))))
+(let ((@x201 (trans (monotonicity @x151 @x193 (= $x72 (or $x149 $x191))) (rewrite (= (or $x149 $x191) $x197)) (= $x72 $x197))))
+(let ((@x205 (mp (asserted $x73) (monotonicity @x201 (= $x73 (not $x197))) (not $x197))))
+(let ((@x272 (mp (not-or-elim @x205 $x210) @x271 $x239)))
+(let (($x273 (not $x38)))
+(let (($x274 (or $x273 $x127)))
+(let ((@x280 (monotonicity (rewrite (= $x140 (not $x274))) (= (not $x140) (not (not $x274))))))
+(let ((@x284 (trans @x280 (rewrite (= (not (not $x274)) $x274)) (= (not $x140) $x274))))
+(let ((@x285 (mp (not-or-elim @x205 (not $x140)) @x284 $x274)))
+(let (($x286 (not $x40)))
+(let (($x311 (not $x44)))
+(let ((@x434 (hypothesis $x81)))
+(let (($x386 (or $x95 $x80)))
+(let ((@x392 (monotonicity (rewrite (= $x99 (not $x386))) (= (not $x99) (not (not $x386))))))
+(let ((@x396 (trans @x392 (rewrite (= (not (not $x386)) $x386)) (= (not $x99) $x386))))
+(let ((@x397 (mp (not-or-elim @x205 (not $x99)) @x396 $x386)))
+(let (($x246 (not $x33)))
+(let (($x410 (or $x246 $x80)))
+(let ((@x416 (monotonicity (rewrite (= $x84 (not $x410))) (= (not $x84) (not (not $x410))))))
+(let ((@x420 (trans @x416 (rewrite (= (not (not $x410)) $x410)) (= (not $x84) $x410))))
+(let ((@x421 (mp (not-or-elim @x205 (not $x84)) @x420 $x410)))
+(let ((@x439 ((_ th-lemma arith triangle-eq) (or $x33 $x128 $x94))))
+(let ((@x440 (unit-resolution @x439 (unit-resolution @x421 @x434 $x246) (unit-resolution @x397 @x434 $x95) $x128)))
+(let (($x312 (or $x127 $x311)))
+(let ((@x318 (monotonicity (rewrite (= $x131 (not $x312))) (= (not $x131) (not (not $x312))))))
+(let ((@x322 (trans @x318 (rewrite (= (not (not $x312)) $x312)) (= (not $x131) $x312))))
+(let ((@x323 (mp (not-or-elim @x205 (not $x131)) @x322 $x312)))
+(let ((@x450 (mp (unit-resolution @x323 @x440 $x311) (monotonicity (commutativity (= $x44 $x40)) (= $x311 $x286)) $x286)))
+(let (($x324 (or $x80 $x118)))
+(let ((@x330 (monotonicity (rewrite (= $x124 (not $x324))) (= (not $x124) (not (not $x324))))))
+(let ((@x334 (trans @x330 (rewrite (= (not (not $x324)) $x324)) (= (not $x124) $x324))))
+(let ((@x335 (mp (not-or-elim @x205 (not $x124)) @x334 $x324)))
+(let (($x299 (or $x127 $x104)))
+(let ((@x305 (monotonicity (rewrite (= $x134 (not $x299))) (= (not $x134) (not (not $x299))))))
+(let ((@x309 (trans @x305 (rewrite (= (not (not $x299)) $x299)) (= (not $x134) $x299))))
+(let ((@x310 (mp (not-or-elim @x205 (not $x134)) @x309 $x299)))
+(let ((@x444 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x40 $x105 $x117)) (unit-resolution @x310 @x440 $x104) (unit-resolution @x335 @x434 $x118) $x40)))
+(let ((@x459 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x38 $x81 $x87)) (lemma (unit-resolution @x444 @x450 false) $x80) (or $x38 $x87))))
+(let ((@x460 (unit-resolution @x459 (unit-resolution @x285 (hypothesis $x128) $x273) (unit-resolution @x272 (hypothesis $x128) $x88) false)))
+(let ((@x461 (lemma @x460 $x127)))
+(let (($x254 (or $x118 $x95)))
+(let ((@x262 (monotonicity (rewrite (= $x149 (not $x254))) (= (not $x149) (not (not $x254))))))
+(let ((@x256 (trans @x262 (rewrite (= (not (not $x254)) $x254)) (= (not $x149) $x254))))
+(let ((@x257 (mp (not-or-elim @x205 (not $x149)) @x256 $x254)))
+(let (($x247 (or $x118 $x246)))
+(let ((@x259 (monotonicity (rewrite (= $x146 (not $x247))) (= (not $x146) (not (not $x247))))))
+(let ((@x245 (trans @x259 (rewrite (= (not (not $x247)) $x247)) (= (not $x146) $x247))))
+(let ((@x238 (mp (not-or-elim @x205 (not $x146)) @x245 $x247)))
+(let ((@x465 (unit-resolution @x439 (unit-resolution @x238 (hypothesis $x117) $x246) (unit-resolution @x257 (hypothesis $x117) $x95) @x461 false)))
+(let (($x336 (not $x48)))
+(let (($x374 (or $x104 $x336)))
+(let ((@x380 (monotonicity (rewrite (= $x108 (not $x374))) (= (not $x108) (not (not $x374))))))
+(let ((@x384 (trans @x380 (rewrite (= (not (not $x374)) $x374)) (= (not $x108) $x374))))
+(let ((@x385 (mp (not-or-elim @x205 (not $x108)) @x384 $x374)))
+(let ((@x475 (mp (unit-resolution @x385 (hypothesis $x105) $x336) (monotonicity (commutativity (= $x48 $x38)) (= $x336 $x273)) $x273)))
+(let (($x362 (or $x104 $x88)))
+(let ((@x368 (monotonicity (rewrite (= $x111 (not $x362))) (= (not $x111) (not (not $x362))))))
+(let ((@x372 (trans @x368 (rewrite (= (not (not $x362)) $x362)) (= (not $x111) $x362))))
+(let ((@x373 (mp (not-or-elim @x205 (not $x111)) @x372 $x362)))
+(let ((@x469 (unit-resolution @x459 (unit-resolution @x373 (hypothesis $x105) $x88) $x38)))
+(let ((@x478 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x40 $x105 $x117)) (lemma (unit-resolution @x469 @x475 false) $x104) (lemma @x465 $x118) $x40)))
+(let (($x287 (or $x286 $x95)))
+(let ((@x293 (monotonicity (rewrite (= $x137 (not $x287))) (= (not $x137) (not (not $x287))))))
+(let ((@x297 (trans @x293 (rewrite (= (not (not $x287)) $x287)) (= (not $x137) $x287))))
+(let ((@x298 (mp (not-or-elim @x205 (not $x137)) @x297 $x287)))
+(let ((@x488 (mp (unit-resolution @x439 (unit-resolution @x298 @x478 $x95) @x461 $x33) (symm (commutativity (= $x50 $x33)) (= $x33 $x50)) $x50)))
+(let (($x422 (or (not $x50) $x311)))
+(let ((@x428 (monotonicity (rewrite (= $x57 (not $x422))) (= (not $x57) (not (not $x422))))))
+(let ((@x432 (trans @x428 (rewrite (= (not (not $x422)) $x422)) (= (not $x57) $x422))))
+(let ((@x433 (mp (not-or-elim @x205 (not $x57)) @x432 $x422)))
+(unit-resolution @x433 @x488 (mp @x478 @x480 $x44) false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
+
+b6bd2aa84f7a041a3cc8dfe1a48fdb09417bc088 20 0
+unsat
+((set-logic AUFLIRA)
+(proof
+(let ((?x30 (* 2.0 x$)))
+(let ((?x32 (+ ?x30 1.0)))
+(let ((?x28 (+ x$ x$)))
+(let (($x33 (< ?x28 ?x32)))
+(let (($x34 (or false $x33)))
+(let (($x35 (or $x33 $x34)))
+(let (($x36 (not $x35)))
+(let ((@x67 (monotonicity (rewrite (= (< ?x30 (+ 1.0 ?x30)) true)) (= (not (< ?x30 (+ 1.0 ?x30))) (not true)))))
+(let ((@x71 (trans @x67 (rewrite (= (not true) false)) (= (not (< ?x30 (+ 1.0 ?x30))) false))))
+(let ((?x40 (+ 1.0 ?x30)))
+(let (($x43 (< ?x30 ?x40)))
+(let ((@x45 (monotonicity (rewrite (= ?x28 ?x30)) (rewrite (= ?x32 ?x40)) (= $x33 $x43))))
+(let ((@x52 (trans (monotonicity @x45 (= $x34 (or false $x43))) (rewrite (= (or false $x43) $x43)) (= $x34 $x43))))
+(let ((@x59 (trans (monotonicity @x45 @x52 (= $x35 (or $x43 $x43))) (rewrite (= (or $x43 $x43) $x43)) (= $x35 $x43))))
+(let ((@x62 (monotonicity @x59 (= $x36 (not $x43)))))
+(mp (asserted $x36) (trans @x62 @x71 (= $x36 false)) false))))))))))))))))))
+
+b0ad6ddc59e366ae155bead277fca4821b2e4a76 878 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let ((?x184 (* (- 1) x7$)))
+(let (($x363 (>= x7$ 0)))
+(let ((?x370 (ite $x363 x7$ ?x184)))
+(let ((?x381 (* (- 1) ?x370)))
+(let ((?x668 (+ x7$ ?x381)))
+(let (($x670 (>= ?x668 0)))
+(let (($x707 (not $x670)))
+(let ((?x655 (* (- 1) x11$)))
+(let ((?x656 (+ x2$ ?x655)))
+(let (($x657 (<= ?x656 0)))
+(let (($x766 (not $x657)))
+(let (($x92 (= x2$ x11$)))
+(let (($x583 (not $x92)))
+(let (($x91 (= x1$ x10$)))
+(let ((?x235 (* (- 1) x10$)))
+(let ((?x652 (+ x1$ ?x235)))
+(let (($x653 (<= ?x652 0)))
+(let ((?x133 (* (- 1) x4$)))
+(let (($x438 (>= x4$ 0)))
+(let ((?x445 (ite $x438 x4$ ?x133)))
+(let ((?x456 (* (- 1) ?x445)))
+(let ((?x677 (+ x4$ ?x456)))
+(let (($x678 (<= ?x677 0)))
+(let ((?x150 (* (- 1) x5$)))
+(let (($x413 (>= x5$ 0)))
+(let ((?x420 (ite $x413 x5$ ?x150)))
+(let ((?x431 (* (- 1) ?x420)))
+(let ((?x757 (+ x5$ ?x431)))
+(let (($x776 (>= ?x757 0)))
+(let (($x604 (= x5$ ?x420)))
+(let (($x313 (>= x10$ 0)))
+(let ((?x320 (ite $x313 x10$ ?x235)))
+(let ((?x331 (* (- 1) ?x320)))
+(let ((?x662 (+ x10$ ?x331)))
+(let (($x1381 (<= ?x662 0)))
+(let (($x644 (= x10$ ?x320)))
+(let (($x645 (= ?x235 ?x320)))
+(let (($x1121 (not $x645)))
+(let ((?x1103 (+ ?x235 ?x331)))
+(let (($x1249 (<= ?x1103 0)))
+(let (($x1261 (not $x1249)))
+(let ((?x218 (* (- 1) x9$)))
+(let (($x288 (>= x9$ 0)))
+(let ((?x295 (ite $x288 x9$ ?x218)))
+(let ((?x306 (* (- 1) ?x295)))
+(let ((?x1356 (+ ?x218 ?x306)))
+(let (($x1369 (>= ?x1356 0)))
+(let (($x637 (= ?x218 ?x295)))
+(let (($x289 (not $x288)))
+(let (($x414 (not $x413)))
+(let ((@x844 (hypothesis $x414)))
+(let (($x388 (>= x6$ 0)))
+(let (($x596 (= x4$ ?x445)))
+(let ((@x1078 (hypothesis $x288)))
+(let ((?x201 (* (- 1) x8$)))
+(let (($x338 (>= x8$ 0)))
+(let ((?x345 (ite $x338 x8$ ?x201)))
+(let ((?x356 (* (- 1) ?x345)))
+(let ((?x665 (+ x8$ ?x356)))
+(let (($x667 (>= ?x665 0)))
+(let (($x860 (not $x667)))
+(let (($x439 (not $x438)))
+(let ((@x763 (hypothesis $x439)))
+(let ((?x432 (+ x4$ x6$ ?x431)))
+(let (($x611 (>= ?x432 0)))
+(let (($x433 (= ?x432 0)))
+(let ((?x332 (+ x9$ x11$ ?x331)))
+(let (($x333 (= ?x332 0)))
+(let ((?x307 (+ x8$ x10$ ?x306)))
+(let (($x308 (= ?x307 0)))
+(let ((?x357 (+ x7$ x9$ ?x356)))
+(let (($x358 (= ?x357 0)))
+(let ((?x382 (+ x6$ x8$ ?x381)))
+(let (($x383 (= ?x382 0)))
+(let ((?x167 (* (- 1) x6$)))
+(let ((?x395 (ite $x388 x6$ ?x167)))
+(let ((?x406 (* (- 1) ?x395)))
+(let ((?x407 (+ x5$ x7$ ?x406)))
+(let (($x408 (= ?x407 0)))
+(let ((?x457 (+ x3$ x5$ ?x456)))
+(let (($x458 (= ?x457 0)))
+(let ((?x116 (* (- 1) x3$)))
+(let (($x463 (>= x3$ 0)))
+(let ((?x470 (ite $x463 x3$ ?x116)))
+(let ((?x481 (* (- 1) ?x470)))
+(let ((?x482 (+ x2$ x4$ ?x481)))
+(let (($x483 (= ?x482 0)))
+(let ((?x98 (* (- 1) x2$)))
+(let (($x488 (>= x2$ 0)))
+(let ((?x495 (ite $x488 x2$ ?x98)))
+(let ((?x506 (* (- 1) ?x495)))
+(let ((?x507 (+ x3$ x1$ ?x506)))
+(let (($x508 (= ?x507 0)))
+(let (($x537 (and $x508 $x483 $x458 $x433 $x408 $x383 $x358 $x308 $x333)))
+(let (($x548 (not (or (not $x537) (and $x91 $x92)))))
+(let (($x93 (and $x91 $x92)))
+(let (($x83 (and (= x10$ (- (ite (< x9$ 0) (- x9$) x9$) x8$)) (= x11$ (- (ite (< x10$ 0) (- x10$) x10$) x9$)))))
+(let (($x85 (and (= x8$ (- (ite (< x7$ 0) (- x7$) x7$) x6$)) (and (= x9$ (- (ite (< x8$ 0) (- x8$) x8$) x7$)) $x83))))
+(let (($x87 (and (= x6$ (- (ite (< x5$ 0) (- x5$) x5$) x4$)) (and (= x7$ (- (ite (< x6$ 0) (- x6$) x6$) x5$)) $x85))))
+(let (($x89 (and (= x4$ (- (ite (< x3$ 0) (- x3$) x3$) x2$)) (and (= x5$ (- (ite (< x4$ 0) (- x4$) x4$) x3$)) $x87))))
+(let (($x94 (=> (and (= x3$ (- (ite (< x2$ 0) (- x2$) x2$) x1$)) $x89) $x93)))
+(let (($x95 (not $x94)))
+(let (($x78 (< x10$ 0)))
+(let ((?x238 (ite $x78 ?x235 x10$)))
+(let ((?x244 (+ ?x218 ?x238)))
+(let (($x249 (= x11$ ?x244)))
+(let (($x72 (< x9$ 0)))
+(let ((?x221 (ite $x72 ?x218 x9$)))
+(let ((?x227 (+ ?x201 ?x221)))
+(let (($x232 (= x10$ ?x227)))
+(let (($x252 (and $x232 $x249)))
+(let (($x66 (< x8$ 0)))
+(let ((?x204 (ite $x66 ?x201 x8$)))
+(let ((?x210 (+ ?x184 ?x204)))
+(let (($x215 (= x9$ ?x210)))
+(let (($x255 (and $x215 $x252)))
+(let (($x60 (< x7$ 0)))
+(let ((?x187 (ite $x60 ?x184 x7$)))
+(let ((?x193 (+ ?x167 ?x187)))
+(let (($x198 (= x8$ ?x193)))
+(let (($x258 (and $x198 $x255)))
+(let (($x54 (< x6$ 0)))
+(let ((?x170 (ite $x54 ?x167 x6$)))
+(let ((?x176 (+ ?x150 ?x170)))
+(let (($x181 (= x7$ ?x176)))
+(let (($x261 (and $x181 $x258)))
+(let (($x48 (< x5$ 0)))
+(let ((?x153 (ite $x48 ?x150 x5$)))
+(let ((?x159 (+ ?x133 ?x153)))
+(let (($x164 (= x6$ ?x159)))
+(let (($x264 (and $x164 $x261)))
+(let (($x42 (< x4$ 0)))
+(let ((?x136 (ite $x42 ?x133 x4$)))
+(let ((?x142 (+ ?x116 ?x136)))
+(let (($x147 (= x5$ ?x142)))
+(let (($x267 (and $x147 $x264)))
+(let (($x36 (< x3$ 0)))
+(let ((?x119 (ite $x36 ?x116 x3$)))
+(let ((?x125 (+ ?x98 ?x119)))
+(let (($x130 (= x4$ ?x125)))
+(let (($x270 (and $x130 $x267)))
+(let (($x29 (< x2$ 0)))
+(let ((?x101 (ite $x29 ?x98 x2$)))
+(let ((?x108 (+ (* (- 1) x1$) ?x101)))
+(let (($x113 (= x3$ ?x108)))
+(let (($x273 (and $x113 $x270)))
+(let (($x280 (or (not $x273) $x93)))
+(let (($x528 (and $x458 (and $x433 (and $x408 (and $x383 (and $x358 (and $x308 $x333))))))))
+(let (($x526 (= $x264 (and $x433 (and $x408 (and $x383 (and $x358 (and $x308 $x333))))))))
+(let ((@x319 (monotonicity (rewrite (= $x78 (not $x313))) (= ?x238 (ite (not $x313) ?x235 x10$)))))
+(let ((@x324 (trans @x319 (rewrite (= (ite (not $x313) ?x235 x10$) ?x320)) (= ?x238 ?x320))))
+(let ((@x330 (monotonicity (monotonicity @x324 (= ?x244 (+ ?x218 ?x320))) (= $x249 (= x11$ (+ ?x218 ?x320))))))
+(let ((@x337 (trans @x330 (rewrite (= (= x11$ (+ ?x218 ?x320)) $x333)) (= $x249 $x333))))
+(let ((@x294 (monotonicity (rewrite (= $x72 $x289)) (= ?x221 (ite $x289 ?x218 x9$)))))
+(let ((@x302 (monotonicity (trans @x294 (rewrite (= (ite $x289 ?x218 x9$) ?x295)) (= ?x221 ?x295)) (= ?x227 (+ ?x201 ?x295)))))
+(let ((@x312 (trans (monotonicity @x302 (= $x232 (= x10$ (+ ?x201 ?x295)))) (rewrite (= (= x10$ (+ ?x201 ?x295)) $x308)) (= $x232 $x308))))
+(let ((@x344 (monotonicity (rewrite (= $x66 (not $x338))) (= ?x204 (ite (not $x338) ?x201 x8$)))))
+(let ((@x349 (trans @x344 (rewrite (= (ite (not $x338) ?x201 x8$) ?x345)) (= ?x204 ?x345))))
+(let ((@x355 (monotonicity (monotonicity @x349 (= ?x210 (+ ?x184 ?x345))) (= $x215 (= x9$ (+ ?x184 ?x345))))))
+(let ((@x362 (trans @x355 (rewrite (= (= x9$ (+ ?x184 ?x345)) $x358)) (= $x215 $x358))))
+(let ((@x518 (monotonicity @x362 (monotonicity @x312 @x337 (= $x252 (and $x308 $x333))) (= $x255 (and $x358 (and $x308 $x333))))))
+(let ((@x369 (monotonicity (rewrite (= $x60 (not $x363))) (= ?x187 (ite (not $x363) ?x184 x7$)))))
+(let ((@x374 (trans @x369 (rewrite (= (ite (not $x363) ?x184 x7$) ?x370)) (= ?x187 ?x370))))
+(let ((@x380 (monotonicity (monotonicity @x374 (= ?x193 (+ ?x167 ?x370))) (= $x198 (= x8$ (+ ?x167 ?x370))))))
+(let ((@x387 (trans @x380 (rewrite (= (= x8$ (+ ?x167 ?x370)) $x383)) (= $x198 $x383))))
+(let ((@x521 (monotonicity @x387 @x518 (= $x258 (and $x383 (and $x358 (and $x308 $x333)))))))
+(let ((@x394 (monotonicity (rewrite (= $x54 (not $x388))) (= ?x170 (ite (not $x388) ?x167 x6$)))))
+(let ((@x399 (trans @x394 (rewrite (= (ite (not $x388) ?x167 x6$) ?x395)) (= ?x170 ?x395))))
+(let ((@x405 (monotonicity (monotonicity @x399 (= ?x176 (+ ?x150 ?x395))) (= $x181 (= x7$ (+ ?x150 ?x395))))))
+(let ((@x412 (trans @x405 (rewrite (= (= x7$ (+ ?x150 ?x395)) $x408)) (= $x181 $x408))))
+(let ((@x524 (monotonicity @x412 @x521 (= $x261 (and $x408 (and $x383 (and $x358 (and $x308 $x333))))))))
+(let ((@x419 (monotonicity (rewrite (= $x48 $x414)) (= ?x153 (ite $x414 ?x150 x5$)))))
+(let ((@x427 (monotonicity (trans @x419 (rewrite (= (ite $x414 ?x150 x5$) ?x420)) (= ?x153 ?x420)) (= ?x159 (+ ?x133 ?x420)))))
+(let ((@x437 (trans (monotonicity @x427 (= $x164 (= x6$ (+ ?x133 ?x420)))) (rewrite (= (= x6$ (+ ?x133 ?x420)) $x433)) (= $x164 $x433))))
+(let ((@x444 (monotonicity (rewrite (= $x42 $x439)) (= ?x136 (ite $x439 ?x133 x4$)))))
+(let ((@x452 (monotonicity (trans @x444 (rewrite (= (ite $x439 ?x133 x4$) ?x445)) (= ?x136 ?x445)) (= ?x142 (+ ?x116 ?x445)))))
+(let ((@x462 (trans (monotonicity @x452 (= $x147 (= x5$ (+ ?x116 ?x445)))) (rewrite (= (= x5$ (+ ?x116 ?x445)) $x458)) (= $x147 $x458))))
+(let ((@x469 (monotonicity (rewrite (= $x36 (not $x463))) (= ?x119 (ite (not $x463) ?x116 x3$)))))
+(let ((@x474 (trans @x469 (rewrite (= (ite (not $x463) ?x116 x3$) ?x470)) (= ?x119 ?x470))))
+(let ((@x480 (monotonicity (monotonicity @x474 (= ?x125 (+ ?x98 ?x470))) (= $x130 (= x4$ (+ ?x98 ?x470))))))
+(let ((@x487 (trans @x480 (rewrite (= (= x4$ (+ ?x98 ?x470)) $x483)) (= $x130 $x483))))
+(let ((@x533 (monotonicity @x487 (monotonicity @x462 (monotonicity @x437 @x524 $x526) (= $x267 $x528)) (= $x270 (and $x483 $x528)))))
+(let ((@x494 (monotonicity (rewrite (= $x29 (not $x488))) (= ?x101 (ite (not $x488) ?x98 x2$)))))
+(let ((@x499 (trans @x494 (rewrite (= (ite (not $x488) ?x98 x2$) ?x495)) (= ?x101 ?x495))))
+(let ((@x505 (monotonicity (monotonicity @x499 (= ?x108 (+ (* (- 1) x1$) ?x495))) (= $x113 (= x3$ (+ (* (- 1) x1$) ?x495))))))
+(let ((@x512 (trans @x505 (rewrite (= (= x3$ (+ (* (- 1) x1$) ?x495)) $x508)) (= $x113 $x508))))
+(let ((@x541 (trans (monotonicity @x512 @x533 (= $x273 (and $x508 (and $x483 $x528)))) (rewrite (= (and $x508 (and $x483 $x528)) $x537)) (= $x273 $x537))))
+(let ((@x547 (monotonicity (monotonicity @x541 (= (not $x273) (not $x537))) (= $x280 (or (not $x537) $x93)))))
+(let ((@x240 (monotonicity (rewrite (= (- x10$) ?x235)) (= (ite $x78 (- x10$) x10$) ?x238))))
+(let ((@x243 (monotonicity @x240 (= (- (ite $x78 (- x10$) x10$) x9$) (- ?x238 x9$)))))
+(let ((@x248 (trans @x243 (rewrite (= (- ?x238 x9$) ?x244)) (= (- (ite $x78 (- x10$) x10$) x9$) ?x244))))
+(let ((@x251 (monotonicity @x248 (= (= x11$ (- (ite $x78 (- x10$) x10$) x9$)) $x249))))
+(let ((@x223 (monotonicity (rewrite (= (- x9$) ?x218)) (= (ite $x72 (- x9$) x9$) ?x221))))
+(let ((@x226 (monotonicity @x223 (= (- (ite $x72 (- x9$) x9$) x8$) (- ?x221 x8$)))))
+(let ((@x231 (trans @x226 (rewrite (= (- ?x221 x8$) ?x227)) (= (- (ite $x72 (- x9$) x9$) x8$) ?x227))))
+(let ((@x234 (monotonicity @x231 (= (= x10$ (- (ite $x72 (- x9$) x9$) x8$)) $x232))))
+(let ((@x206 (monotonicity (rewrite (= (- x8$) ?x201)) (= (ite $x66 (- x8$) x8$) ?x204))))
+(let ((@x209 (monotonicity @x206 (= (- (ite $x66 (- x8$) x8$) x7$) (- ?x204 x7$)))))
+(let ((@x214 (trans @x209 (rewrite (= (- ?x204 x7$) ?x210)) (= (- (ite $x66 (- x8$) x8$) x7$) ?x210))))
+(let ((@x217 (monotonicity @x214 (= (= x9$ (- (ite $x66 (- x8$) x8$) x7$)) $x215))))
+(let ((@x257 (monotonicity @x217 (monotonicity @x234 @x251 (= $x83 $x252)) (= (and (= x9$ (- (ite $x66 (- x8$) x8$) x7$)) $x83) $x255))))
+(let ((@x189 (monotonicity (rewrite (= (- x7$) ?x184)) (= (ite $x60 (- x7$) x7$) ?x187))))
+(let ((@x192 (monotonicity @x189 (= (- (ite $x60 (- x7$) x7$) x6$) (- ?x187 x6$)))))
+(let ((@x197 (trans @x192 (rewrite (= (- ?x187 x6$) ?x193)) (= (- (ite $x60 (- x7$) x7$) x6$) ?x193))))
+(let ((@x200 (monotonicity @x197 (= (= x8$ (- (ite $x60 (- x7$) x7$) x6$)) $x198))))
+(let ((@x172 (monotonicity (rewrite (= (- x6$) ?x167)) (= (ite $x54 (- x6$) x6$) ?x170))))
+(let ((@x175 (monotonicity @x172 (= (- (ite $x54 (- x6$) x6$) x5$) (- ?x170 x5$)))))
+(let ((@x180 (trans @x175 (rewrite (= (- ?x170 x5$) ?x176)) (= (- (ite $x54 (- x6$) x6$) x5$) ?x176))))
+(let ((@x183 (monotonicity @x180 (= (= x7$ (- (ite $x54 (- x6$) x6$) x5$)) $x181))))
+(let ((@x263 (monotonicity @x183 (monotonicity @x200 @x257 (= $x85 $x258)) (= (and (= x7$ (- (ite $x54 (- x6$) x6$) x5$)) $x85) $x261))))
+(let ((@x155 (monotonicity (rewrite (= (- x5$) ?x150)) (= (ite $x48 (- x5$) x5$) ?x153))))
+(let ((@x158 (monotonicity @x155 (= (- (ite $x48 (- x5$) x5$) x4$) (- ?x153 x4$)))))
+(let ((@x163 (trans @x158 (rewrite (= (- ?x153 x4$) ?x159)) (= (- (ite $x48 (- x5$) x5$) x4$) ?x159))))
+(let ((@x166 (monotonicity @x163 (= (= x6$ (- (ite $x48 (- x5$) x5$) x4$)) $x164))))
+(let ((@x138 (monotonicity (rewrite (= (- x4$) ?x133)) (= (ite $x42 (- x4$) x4$) ?x136))))
+(let ((@x141 (monotonicity @x138 (= (- (ite $x42 (- x4$) x4$) x3$) (- ?x136 x3$)))))
+(let ((@x146 (trans @x141 (rewrite (= (- ?x136 x3$) ?x142)) (= (- (ite $x42 (- x4$) x4$) x3$) ?x142))))
+(let ((@x149 (monotonicity @x146 (= (= x5$ (- (ite $x42 (- x4$) x4$) x3$)) $x147))))
+(let ((@x269 (monotonicity @x149 (monotonicity @x166 @x263 (= $x87 $x264)) (= (and (= x5$ (- (ite $x42 (- x4$) x4$) x3$)) $x87) $x267))))
+(let ((@x121 (monotonicity (rewrite (= (- x3$) ?x116)) (= (ite $x36 (- x3$) x3$) ?x119))))
+(let ((@x124 (monotonicity @x121 (= (- (ite $x36 (- x3$) x3$) x2$) (- ?x119 x2$)))))
+(let ((@x129 (trans @x124 (rewrite (= (- ?x119 x2$) ?x125)) (= (- (ite $x36 (- x3$) x3$) x2$) ?x125))))
+(let ((@x132 (monotonicity @x129 (= (= x4$ (- (ite $x36 (- x3$) x3$) x2$)) $x130))))
+(let ((@x103 (monotonicity (rewrite (= (- x2$) ?x98)) (= (ite $x29 (- x2$) x2$) ?x101))))
+(let ((@x106 (monotonicity @x103 (= (- (ite $x29 (- x2$) x2$) x1$) (- ?x101 x1$)))))
+(let ((@x112 (trans @x106 (rewrite (= (- ?x101 x1$) ?x108)) (= (- (ite $x29 (- x2$) x2$) x1$) ?x108))))
+(let ((@x115 (monotonicity @x112 (= (= x3$ (- (ite $x29 (- x2$) x2$) x1$)) $x113))))
+(let ((@x275 (monotonicity @x115 (monotonicity @x132 @x269 (= $x89 $x270)) (= (and (= x3$ (- (ite $x29 (- x2$) x2$) x1$)) $x89) $x273))))
+(let ((@x284 (trans (monotonicity @x275 (= $x94 (=> $x273 $x93))) (rewrite (= (=> $x273 $x93) $x280)) (= $x94 $x280))))
+(let ((@x552 (trans (monotonicity @x284 (= $x95 (not $x280))) (monotonicity @x547 (= (not $x280) $x548)) (= $x95 $x548))))
+(let ((@x554 (not-or-elim (mp (asserted $x95) @x552 $x548) $x537)))
+(let ((@x558 (and-elim @x554 $x433)))
+(let ((@x799 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x433) $x611)) @x558 $x611)))
+(let ((?x931 (+ ?x150 ?x431)))
+(let (($x933 (<= ?x931 0)))
+(let (($x605 (= ?x150 ?x420)))
+(let ((@x1000 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x605) $x933)) (unit-resolution (def-axiom (or $x413 $x605)) @x844 $x605) $x933)))
+(let (($x634 (<= ?x357 0)))
+(let ((@x561 (and-elim @x554 $x358)))
+(let ((@x857 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x358) $x634)) @x561 $x634)))
+(let (($x620 (= x7$ ?x370)))
+(let ((?x777 (+ ?x167 ?x406)))
+(let (($x780 (<= ?x777 0)))
+(let (($x613 (= ?x167 ?x395)))
+(let (($x389 (not $x388)))
+(let (($x364 (not $x363)))
+(let ((@x1027 (hypothesis $x364)))
+(let ((@x1026 (hypothesis $x388)))
+(let (($x619 (>= ?x407 0)))
+(let ((@x559 (and-elim @x554 $x408)))
+(let ((@x853 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x408) $x619)) @x559 $x619)))
+(let ((?x671 (+ x6$ ?x406)))
+(let (($x936 (<= ?x671 0)))
+(let (($x612 (= x6$ ?x395)))
+(let ((@x615 (def-axiom (or $x389 $x612))))
+(let ((@x950 ((_ th-lemma arith triangle-eq) (or (not $x612) $x936))))
+(let ((@x1029 (unit-resolution @x950 (unit-resolution @x615 @x1026 $x612) $x936)))
+(let ((@x1032 (lemma ((_ th-lemma arith farkas 1 1 1 1 1) @x1029 @x853 @x1027 @x844 @x1026 false) (or $x363 $x413 $x389))))
+(let ((@x617 (def-axiom (or $x388 $x613))))
+(let ((@x1063 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x613) $x780)) (unit-resolution @x617 (unit-resolution @x1032 @x1027 @x844 $x389) $x613) $x780)))
+(let ((@x1064 ((_ th-lemma arith farkas 1 1 1 1 1) (unit-resolution @x1032 @x1027 @x844 $x389) @x1027 @x853 @x844 @x1063 false)))
+(let ((@x623 (def-axiom (or $x364 $x620))))
+(let ((@x1087 (unit-resolution @x623 (unit-resolution (lemma @x1064 (or $x363 $x413)) @x844 $x363) $x620)))
+(let ((@x926 ((_ th-lemma arith triangle-eq) (or (not $x620) $x670))))
+(let ((@x1088 (unit-resolution @x926 @x1087 $x670)))
+(let (($x626 (<= ?x382 0)))
+(let ((@x560 (and-elim @x554 $x383)))
+(let ((@x703 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x383) $x626)) @x560 $x626)))
+(let ((@x858 (hypothesis $x667)))
+(let ((@x1104 (lemma ((_ th-lemma arith farkas 1 1 1 1 1 1 1 1 1) @x858 @x703 @x1088 @x857 @x763 @x1000 @x844 @x799 @x1078 false) (or $x438 $x860 $x413 $x289))))
+(let (($x628 (= x8$ ?x345)))
+(let (($x840 (<= ?x668 0)))
+(let ((@x865 ((_ th-lemma arith triangle-eq) (or (not $x620) $x840))))
+(let ((@x1089 (unit-resolution @x865 @x1087 $x840)))
+(let (($x627 (>= ?x382 0)))
+(let ((@x835 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x383) $x627)) @x560 $x627)))
+(let ((@x1241 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1) (or $x438 (not $x933) $x413 (not $x611) $x388)) @x763 @x799 @x1000 @x844 $x388)))
+(let ((@x1094 ((_ th-lemma arith assign-bounds 1 1 1 1 1) (or $x338 (not $x627) (not $x840) (not $x936) (not $x619) $x413))))
+(let ((@x1244 (unit-resolution @x1094 (unit-resolution @x950 (unit-resolution @x615 @x1241 $x612) $x936) @x835 @x844 @x1089 @x853 $x338)))
+(let ((@x631 (def-axiom (or (not $x338) $x628))))
+(let ((@x1117 ((_ th-lemma arith triangle-eq) (or (not $x628) $x667))))
+(let ((@x1246 (unit-resolution @x1117 (unit-resolution @x631 @x1244 $x628) (unit-resolution @x1104 @x763 @x844 @x1078 $x860) false)))
+(let ((@x599 (def-axiom (or $x439 $x596))))
+(let ((@x1327 (unit-resolution @x599 (unit-resolution (lemma @x1246 (or $x438 $x413 $x289)) @x844 @x1078 $x438) $x596)))
+(let ((@x693 ((_ th-lemma arith triangle-eq) (or (not $x596) $x678))))
+(let ((?x659 (+ x9$ ?x306)))
+(let (($x661 (>= ?x659 0)))
+(let (($x636 (= x9$ ?x295)))
+(let ((@x639 (def-axiom (or $x289 $x636))))
+(let ((@x1146 ((_ th-lemma arith triangle-eq) (or (not $x636) $x661))))
+(let ((@x1147 (unit-resolution @x1146 (unit-resolution @x639 @x1078 $x636) $x661)))
+(let (($x660 (<= ?x659 0)))
+(let ((@x1151 ((_ th-lemma arith triangle-eq) (or (not $x636) $x660))))
+(let ((@x1152 (unit-resolution @x1151 (unit-resolution @x639 @x1078 $x636) $x660)))
+(let (($x658 (>= ?x656 0)))
+(let (($x673 (>= ?x671 0)))
+(let (($x706 (not $x673)))
+(let (($x663 (<= ?x665 0)))
+(let (($x643 (>= ?x307 0)))
+(let ((@x562 (and-elim @x554 $x308)))
+(let ((@x1138 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x308) $x643)) @x562 $x643)))
+(let (($x314 (not $x313)))
+(let (($x1164 (not $x644)))
+(let (($x664 (>= ?x662 0)))
+(let (($x734 (not $x664)))
+(let (($x710 (not $x658)))
+(let ((@x711 (hypothesis $x710)))
+(let ((@x731 (hypothesis $x661)))
+(let ((@x716 (hypothesis $x664)))
+(let (($x621 (= ?x184 ?x370)))
+(let (($x823 (not $x621)))
+(let ((?x778 (+ ?x184 ?x381)))
+(let (($x779 (<= ?x778 0)))
+(let (($x902 (not $x779)))
+(let (($x669 (>= ?x677 0)))
+(let (($x464 (not $x463)))
+(let ((@x688 (hypothesis $x464)))
+(let (($x847 (not $x613)))
+(let (($x839 (>= ?x777 0)))
+(let (($x872 (not $x839)))
+(let ((?x680 (+ x3$ ?x481)))
+(let (($x681 (<= ?x680 0)))
+(let ((?x676 (+ ?x116 ?x481)))
+(let (($x679 (<= ?x676 0)))
+(let (($x589 (= ?x116 ?x470)))
+(let ((@x758 (unit-resolution (def-axiom (or $x463 $x589)) @x688 $x589)))
+(let ((@x762 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x589) $x679)) @x758 $x679)))
+(let ((?x674 (+ ?x133 ?x456)))
+(let (($x675 (<= ?x674 0)))
+(let (($x597 (= ?x133 ?x445)))
+(let ((@x601 (def-axiom (or $x438 $x597))))
+(let ((@x941 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x597) $x675)) (unit-resolution @x601 @x763 $x597) $x675)))
+(let ((@x944 (unit-resolution ((_ th-lemma arith assign-bounds 2 1) (or $x678 $x438 (not $x675))) @x941 @x763 $x678)))
+(let ((@x869 (hypothesis $x681)))
+(let ((@x868 (hypothesis $x678)))
+(let ((@x867 (hypothesis $x839)))
+(let ((@x866 (unit-resolution @x865 (unit-resolution @x623 (hypothesis $x363) $x620) $x840)))
+(let ((@x841 (hypothesis $x363)))
+(let (($x618 (<= ?x407 0)))
+(let ((@x698 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x408) $x618)) @x559 $x618)))
+(let (($x603 (>= ?x457 0)))
+(let ((@x557 (and-elim @x554 $x458)))
+(let ((@x687 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x458) $x603)) @x557 $x603)))
+(let (($x650 (<= ?x332 0)))
+(let ((@x563 (and-elim @x554 $x333)))
+(let ((@x715 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x333) $x650)) @x563 $x650)))
+(let (($x595 (>= ?x482 0)))
+(let ((@x556 (and-elim @x554 $x483)))
+(let ((@x720 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x483) $x595)) @x556 $x595)))
+(let (($x642 (<= ?x307 0)))
+(let ((@x730 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x308) $x642)) @x562 $x642)))
+(let ((@x870 ((_ th-lemma arith farkas -1 1 -1 1 -1 -1 1 1 -1 1 1 -1 -2 1) @x835 @x869 @x731 @x730 @x720 @x716 @x715 @x711 @x687 @x868 @x698 @x867 @x841 @x866 false)))
+(let ((@x874 (lemma @x870 (or $x364 (not $x681) (not $x661) $x734 $x658 (not $x678) $x872))))
+(let ((@x625 (def-axiom (or $x363 $x621))))
+(let ((@x880 (unit-resolution @x625 (unit-resolution @x874 @x867 @x731 @x716 @x711 @x868 @x869 $x364) $x621)))
+(let ((@x882 ((_ th-lemma arith farkas -1 1 -1 1 -1 -1 1 1 -1 1 1 -1 1) @x835 @x869 @x731 @x730 @x720 @x716 @x715 @x711 @x687 @x868 @x698 @x867 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x823 $x779)) @x880 $x779) false)))
+(let ((@x884 (lemma @x882 (or $x872 (not $x681) (not $x661) $x734 $x658 (not $x678)))))
+(let ((@x945 (unit-resolution @x884 @x944 @x731 @x716 @x711 (unit-resolution ((_ th-lemma arith assign-bounds 1 2) (or $x681 (not $x679) $x463)) @x762 @x688 $x681) $x872)))
+(let ((@x892 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x847 $x839)) (hypothesis $x613) (hypothesis $x872) false)))
+(let ((@x893 (lemma @x892 (or $x847 $x839))))
+(let ((@x948 (unit-resolution @x615 (unit-resolution @x617 (unit-resolution @x893 @x945 $x847) $x388) $x612)))
+(let (($x775 (<= ?x757 0)))
+(let ((@x954 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1) (or $x413 (not $x675) (not $x603) $x463 $x438)) @x763 @x687 @x688 @x941 $x413)))
+(let ((@x607 (def-axiom (or $x414 $x604))))
+(let ((@x794 ((_ th-lemma arith triangle-eq) (or (not $x604) $x775))))
+(let ((@x960 ((_ th-lemma arith assign-bounds 1 1 1 1 1) (or $x363 (not $x936) (not $x619) $x438 (not $x775) (not $x611)))))
+(let ((@x961 (unit-resolution @x960 @x763 @x853 @x799 (unit-resolution @x794 (unit-resolution @x607 @x954 $x604) $x775) (unit-resolution @x950 @x948 $x936) $x363)))
+(let (($x602 (<= ?x457 0)))
+(let ((@x832 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x458) $x602)) @x557 $x602)))
+(let (($x932 (>= ?x674 0)))
+(let ((@x966 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x597) $x932)) (unit-resolution @x601 @x763 $x597) $x932)))
+(let ((@x967 ((_ th-lemma arith farkas -1 -1 1 1 -1 -1 1 1 1 -1 -1 1 1) @x835 @x731 @x730 @x762 @x720 @x716 @x715 @x711 (unit-resolution @x950 @x948 $x936) @x853 @x966 @x832 (unit-resolution @x865 (unit-resolution @x623 @x961 $x620) $x840) false)))
+(let ((@x974 (unit-resolution (lemma @x967 (or $x438 (not $x661) $x734 $x658 $x463)) @x688 @x716 @x711 @x731 $x438)))
+(let ((@x828 ((_ th-lemma arith triangle-eq) (or (not $x596) $x669))))
+(let ((@x978 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1) (or $x413 (not $x603) $x463 $x439 (not $x678))) (unit-resolution @x693 (unit-resolution @x599 @x974 $x596) $x678) @x687 @x688 @x974 $x413)))
+(let ((@x791 ((_ th-lemma arith triangle-eq) (or (not $x604) $x776))))
+(let ((@x981 (unit-resolution @x884 (unit-resolution @x693 (unit-resolution @x599 @x974 $x596) $x678) @x731 @x716 @x711 (unit-resolution ((_ th-lemma arith assign-bounds 1 2) (or $x681 (not $x679) $x463)) @x762 @x688 $x681) $x872)))
+(let ((@x984 (unit-resolution @x615 (unit-resolution @x617 (unit-resolution @x893 @x981 $x847) $x388) $x612)))
+(let ((@x808 ((_ th-lemma arith triangle-eq) (or (not $x612) $x673))))
+(let (($x903 (not $x669)))
+(let (($x817 (not $x776)))
+(let (($x813 (not $x679)))
+(let (($x733 (not $x661)))
+(let ((@x900 (hypothesis $x669)))
+(let (($x610 (<= ?x432 0)))
+(let ((@x812 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x433) $x610)) @x558 $x610)))
+(let ((@x699 (hypothesis $x673)))
+(let ((@x934 (hypothesis $x679)))
+(let ((@x935 ((_ th-lemma arith farkas -1 -1 1 1 -1 -1 1 1 -1 1 -2 2 -1 1 1) @x835 @x731 @x730 @x934 @x720 @x716 @x715 @x711 @x699 @x698 (hypothesis $x776) @x812 @x900 @x832 (hypothesis $x779) false)))
+(let ((@x986 (unit-resolution (lemma @x935 (or $x902 $x733 $x813 $x734 $x658 $x706 $x817 $x903)) @x762 @x731 @x716 @x711 (unit-resolution @x808 @x984 $x673) (unit-resolution @x791 (unit-resolution @x607 @x978 $x604) $x776) (unit-resolution @x828 (unit-resolution @x599 @x974 $x596) $x669) $x902)))
+(let ((@x906 (hypothesis $x902)))
+(let ((@x908 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x823 $x779)) (hypothesis $x621) @x906 false)))
+(let ((@x909 (lemma @x908 (or $x823 $x779))))
+(let ((@x989 (unit-resolution @x623 (unit-resolution @x625 (unit-resolution @x909 @x986 $x823) $x363) $x620)))
+(let ((@x991 ((_ th-lemma arith farkas -1 -1 1 1 -1 -1 1 1 -1 1 -2 2 -2 -1 1 1) @x835 @x731 @x730 @x762 @x720 @x716 @x715 @x711 (unit-resolution @x808 @x984 $x673) @x698 (unit-resolution @x791 (unit-resolution @x607 @x978 $x604) $x776) @x812 (unit-resolution @x625 (unit-resolution @x909 @x986 $x823) $x363) (unit-resolution @x828 (unit-resolution @x599 @x974 $x596) $x669) @x832 (unit-resolution @x865 @x989 $x840) false)))
+(let ((@x972 (unit-resolution (lemma @x991 (or $x463 $x733 $x734 $x658)) @x716 @x731 @x711 $x463)))
+(let (($x588 (= x3$ ?x470)))
+(let ((@x591 (def-axiom (or $x464 $x588))))
+(let ((@x725 ((_ th-lemma arith triangle-eq) (or (not $x588) $x681))))
+(let ((@x994 (unit-resolution @x725 (unit-resolution @x591 @x972 $x588) $x681)))
+(let ((@x1011 (unit-resolution @x893 (unit-resolution @x884 @x944 @x731 @x716 @x711 @x994 $x872) $x847)))
+(let ((@x1014 (unit-resolution @x950 (unit-resolution @x615 (unit-resolution @x617 @x1011 $x388) $x612) $x936)))
+(let ((@x1001 (hypothesis $x936)))
+(let ((@x1004 ((_ th-lemma arith assign-bounds 1 1 1 1 1 2) (or $x363 (not $x936) (not $x619) $x438 (not $x611) (not $x933) $x413))))
+(let ((@x1006 (unit-resolution @x623 (unit-resolution @x1004 @x844 @x799 @x853 @x763 @x1001 @x1000 $x363) $x620)))
+(let ((@x764 (hypothesis $x657)))
+(let ((@x1008 ((_ th-lemma arith farkas 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1) @x835 @x1001 @x853 @x844 @x731 @x730 @x720 @x716 @x715 @x764 @x687 @x941 @x869 @x763 (unit-resolution @x865 @x1006 $x840) false)))
+(let ((@x1015 (unit-resolution (lemma @x1008 (or $x413 (not $x936) $x733 $x734 $x766 (not $x681) $x438)) @x1014 @x731 @x716 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x658 $x657)) @x711 $x657) @x994 @x763 $x413)))
+(let ((@x1018 (unit-resolution @x960 (unit-resolution @x794 (unit-resolution @x607 @x1015 $x604) $x775) @x853 @x763 @x1014 @x799 $x363)))
+(let ((@x1021 ((_ th-lemma arith farkas -1/2 1/2 -1/2 1/2 -1/2 1/2 1/2 -1/2 1/2 1/2 -1/2 -1/2 -1/2 1) @x832 @x966 (unit-resolution @x865 (unit-resolution @x623 @x1018 $x620) $x840) @x835 @x1014 @x853 @x731 @x730 @x720 @x716 @x715 @x711 @x994 @x972 false)))
+(let ((@x1025 (unit-resolution (lemma @x1021 (or $x438 $x733 $x734 $x658)) @x716 @x731 @x711 $x438)))
+(let ((@x1035 (unit-resolution @x884 (unit-resolution @x693 (unit-resolution @x599 @x1025 $x596) $x678) @x731 @x716 @x711 @x994 $x872)))
+(let ((@x1037 (unit-resolution @x617 (unit-resolution @x893 @x1035 $x847) $x388)))
+(let (($x1024 (>= ?x931 0)))
+(let ((@x1040 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x605) $x1024)) (unit-resolution (def-axiom (or $x413 $x605)) @x844 $x605) $x1024)))
+(let ((@x1043 (unit-resolution @x865 (unit-resolution @x623 (unit-resolution @x1032 @x844 @x1037 $x363) $x620) $x840)))
+(let ((@x1046 ((_ th-lemma arith farkas -1 1 -1 1 1 -1 1 1 -1 -1 -1 1 -1 1 1) (unit-resolution @x950 (unit-resolution @x615 @x1037 $x612) $x936) @x853 @x1043 @x835 @x731 @x730 @x720 @x716 @x715 @x711 @x994 @x1040 @x812 @x972 @x1037 false)))
+(let ((@x1051 (unit-resolution (lemma @x1046 (or $x413 $x733 $x734 $x658)) @x716 @x731 @x711 $x413)))
+(let ((@x897 (unit-resolution @x725 (unit-resolution @x591 (hypothesis $x463) $x588) $x681)))
+(let ((@x901 ((_ th-lemma arith farkas -1/2 1/2 1 -1 -1/2 1/2 -1/2 1/2 -1/2 1/2 1/2 -1/2 -1/2 -1/2 1/2 1) @x832 @x900 (hypothesis $x776) @x812 (hypothesis $x779) @x835 @x897 @x731 @x730 @x720 @x716 @x715 @x711 @x698 @x699 (hypothesis $x463) false)))
+(let ((@x1054 (unit-resolution (lemma @x901 (or $x902 $x903 $x817 $x733 $x734 $x658 $x706 $x464)) (unit-resolution @x791 (unit-resolution @x607 @x1051 $x604) $x776) @x972 @x731 @x716 @x711 (unit-resolution @x828 (unit-resolution @x599 @x1025 $x596) $x669) (unit-resolution @x808 (unit-resolution @x615 @x1037 $x612) $x673) $x902)))
+(let ((@x1057 (unit-resolution @x623 (unit-resolution @x625 (unit-resolution @x909 @x1054 $x823) $x363) $x620)))
+(let ((@x1059 ((_ th-lemma arith farkas 1 -1 1/2 -1/2 1 1/2 -1/2 -1/2 1/2 1/2 -1/2 1/2 1/2 -1/2 -1/2 -1/2 1) (unit-resolution @x791 (unit-resolution @x607 @x1051 $x604) $x776) @x812 (unit-resolution @x828 (unit-resolution @x599 @x1025 $x596) $x669) @x832 (unit-resolution @x625 (unit-resolution @x909 @x1054 $x823) $x363) (unit-resolution @x808 (unit-resolution @x615 @x1037 $x612) $x673) @x698 (unit-resolution @x865 @x1057 $x840) @x835 @x731 @x730 @x720 @x716 @x715 @x711 @x994 @x972 false)))
+(let ((@x1167 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1164 $x664)) (hypothesis $x644) (hypothesis $x734) false)))
+(let ((@x1168 (lemma @x1167 (or $x1164 $x664))))
+(let ((@x1170 (unit-resolution @x1168 (unit-resolution (lemma @x1059 (or $x734 $x733 $x658)) @x711 @x1147 $x734) $x1164)))
+(let ((@x647 (def-axiom (or $x314 $x644))))
+(let ((@x1171 (unit-resolution @x647 @x1170 $x314)))
+(let ((@x1193 ((_ th-lemma arith assign-bounds 1 1 1 1) (or $x338 $x313 (not $x660) (not $x643) $x289))))
+(let ((@x1218 (unit-resolution @x631 (unit-resolution @x1193 @x1171 @x1138 @x1078 @x1152 $x338) $x628)))
+(let ((@x1129 ((_ th-lemma arith triangle-eq) (or (not $x628) $x663))))
+(let ((@x1219 (unit-resolution @x1129 @x1218 $x663)))
+(let (($x784 (not $x678)))
+(let (($x745 (not $x675)))
+(let ((@x845 (hypothesis $x389)))
+(let ((@x803 ((_ th-lemma arith assign-bounds 1 1 1 1 1) (or $x388 (not $x775) (not $x603) $x463 $x784 (not $x611)))))
+(let ((@x1070 (unit-resolution @x803 @x845 @x799 (unit-resolution ((_ th-lemma arith assign-bounds 1 2) (or $x775 (not $x933) $x413)) @x1000 @x844 $x775) @x688 @x687 $x784)))
+(let ((@x1073 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1) (or $x438 (not $x933) $x413 (not $x611) $x388)) @x845 @x799 @x844 @x1000 $x438)))
+(let ((@x1077 (lemma (unit-resolution @x693 (unit-resolution @x599 @x1073 $x596) @x1070 false) (or $x388 $x463 $x413))))
+(let ((@x1083 (unit-resolution ((_ th-lemma arith assign-bounds -1 1 -1 1 -1) (or $x745 (not $x603) $x463 (not $x1024) (not $x610) $x389)) (unit-resolution @x1077 @x688 @x844 $x388) @x812 @x687 @x688 @x1040 $x745)))
+(let ((@x1085 (unit-resolution @x808 (unit-resolution @x615 (unit-resolution @x1077 @x688 @x844 $x388) $x612) $x673)))
+(let ((@x1090 (unit-resolution @x950 (unit-resolution @x615 (unit-resolution @x1077 @x688 @x844 $x388) $x612) $x936)))
+(let ((@x683 (hypothesis $x670)))
+(let ((@x694 (unit-resolution @x693 (unit-resolution @x599 (hypothesis $x438) $x596) $x678)))
+(let ((@x689 (hypothesis $x438)))
+(let ((@x704 (hypothesis $x338)))
+(let ((@x709 (lemma ((_ th-lemma arith farkas 1 -1 1 -1 1 -1 -1 1 1) @x704 @x703 @x699 @x698 @x689 @x694 @x688 @x687 @x683 false) (or $x463 (not $x338) $x706 $x439 $x707))))
+(let ((@x1096 (unit-resolution @x709 (unit-resolution @x1094 @x1090 @x835 @x844 @x853 @x1089 $x338) @x1088 @x688 @x1085 $x439)))
+(let ((@x1098 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x597) $x675)) (unit-resolution @x601 @x1096 $x597) @x1083 false)))
+(let ((@x1132 (unit-resolution @x591 (unit-resolution (lemma @x1098 (or $x463 $x413)) @x844 $x463) $x588)))
+(let ((@x1133 (unit-resolution @x725 @x1132 $x681)))
+(let (($x1105 (>= ?x1103 0)))
+(let ((@x1160 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1121 $x1105)) (hypothesis $x645) (hypothesis (not $x1105)) false)))
+(let ((@x1161 (lemma @x1160 (or $x1121 $x1105))))
+(let ((@x1173 (unit-resolution @x1161 (unit-resolution (def-axiom (or $x313 $x645)) @x1171 $x645) $x1105)))
+(let ((@x850 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x847 $x780)) (unit-resolution @x617 @x845 $x613) $x780)))
+(let ((@x1112 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x936 $x673)) (unit-resolution ((_ th-lemma arith assign-bounds 1 2) (or $x706 (not $x780) $x388)) @x850 @x845 $x706) $x936)))
+(let ((@x1114 (unit-resolution @x631 (unit-resolution @x1094 @x1112 @x835 @x853 @x844 @x1089 $x338) $x628)))
+(let ((@x859 ((_ th-lemma arith farkas 1 1 1 1 1 1 1 1 1) @x858 @x857 @x853 @x845 @x731 @x730 @x850 @x844 (hypothesis $x313) false)))
+(let ((@x1119 (unit-resolution (lemma @x859 (or $x413 $x860 $x388 $x733 $x314)) (unit-resolution @x1117 @x1114 $x667) @x844 @x731 @x845 $x314)))
+(let ((@x649 (def-axiom (or $x313 $x645))))
+(let ((@x1124 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1121 $x1105)) (unit-resolution @x649 @x1119 $x645) $x1105)))
+(let (($x635 (>= ?x357 0)))
+(let ((@x1127 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x358) $x635)) @x561 $x635)))
+(let ((@x1135 (unit-resolution @x893 (unit-resolution @x617 @x845 $x613) $x839)))
+(let ((@x1139 (hypothesis $x660)))
+(let ((@x1140 ((_ th-lemma arith farkas 1 -1 1 -1 -1 1 -1 -1 1 -1 1 -1 -2 2 1) @x835 @x1139 @x1138 @x1089 @x698 @x1135 @x715 @x711 @x720 (unit-resolution @x693 (unit-resolution @x599 @x1073 $x596) $x678) @x687 @x1133 (unit-resolution @x1129 @x1114 $x663) @x1127 @x1124 false)))
+(let ((@x1174 (unit-resolution (lemma @x1140 (or $x388 (not $x660) $x658 $x413 $x733)) @x844 @x711 @x1152 @x1147 $x388)))
+(let ((@x1154 ((_ th-lemma arith farkas -1/2 1/2 1/2 -1/2 1/2 -1/2 1/2 -1/2 -1/2 1/2 -1/2 1/2 -1/2 1) @x703 @x683 @x699 @x698 (hypothesis $x1105) @x1152 @x1138 @x715 @x711 @x720 @x868 @x687 @x869 @x1078 false)))
+(let ((@x1177 (unit-resolution (lemma @x1154 (or (not $x1105) $x707 $x706 $x658 $x784 (not $x681) $x289)) (unit-resolution @x808 (unit-resolution @x615 @x1174 $x612) $x673) @x1173 @x711 @x1133 @x1088 @x1078 $x784)))
+(let ((@x1179 (unit-resolution @x1094 @x1089 @x835 @x844 (unit-resolution @x950 (unit-resolution @x615 @x1174 $x612) $x936) @x853 $x338)))
+(let ((@x1182 (unit-resolution @x1104 (unit-resolution @x1117 (unit-resolution @x631 @x1179 $x628) $x667) @x844 @x1078 $x438)))
+(let ((@x1186 (lemma (unit-resolution @x693 (unit-resolution @x599 @x1182 $x596) @x1177 false) (or $x413 $x289 $x658))))
+(let ((@x1222 (unit-resolution @x791 (unit-resolution @x607 (unit-resolution @x1186 @x711 @x1078 $x413) $x604) $x776)))
+(let ((@x1189 (unit-resolution @x794 (unit-resolution @x607 (hypothesis $x413) $x604) $x775)))
+(let ((@x1195 (unit-resolution @x631 (unit-resolution @x1193 (hypothesis $x314) @x1138 @x1078 @x1152 $x338) $x628)))
+(let ((@x1190 (hypothesis $x314)))
+(let ((@x1201 ((_ th-lemma arith assign-bounds 1 1 1 1 1) (or $x363 $x313 (not $x663) (not $x635) (not $x660) (not $x643)))))
+(let ((@x1202 (unit-resolution @x1201 (unit-resolution @x1129 @x1195 $x663) @x1138 @x1190 @x1152 @x1127 $x363)))
+(let ((@x1187 (hypothesis $x413)))
+(let ((@x1205 ((_ th-lemma arith farkas -1 1 -1 -1 -1 1 1 -1 1) @x1187 @x703 (unit-resolution @x926 (unit-resolution @x623 @x1202 $x620) $x670) @x1078 (unit-resolution @x1117 @x1195 $x667) @x857 @x763 @x799 @x1189 false)))
+(let ((@x1207 (lemma @x1205 (or $x438 $x414 $x289 $x313))))
+(let ((@x1223 (unit-resolution @x1207 (unit-resolution @x1186 @x711 @x1078 $x413) @x1078 @x1171 $x438)))
+(let (($x818 (not $x610)))
+(let (($x1199 (not $x635)))
+(let (($x1198 (not $x663)))
+(let (($x1191 (not $x643)))
+(let (($x1141 (not $x660)))
+(let (($x743 (not $x618)))
+(let ((@x1226 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1 -1 1 1 -1 1 1 -1) (or $x706 $x743 $x313 $x1141 $x1191 $x817 $x1198 $x1199 $x439 $x818)) @x1171 @x698 @x1127 @x1138 @x812 @x1152 @x1223 @x1222 @x1219 $x706)))
+(let ((@x1227 (unit-resolution @x794 (unit-resolution @x607 (unit-resolution @x1186 @x711 @x1078 $x413) $x604) $x775)))
+(let ((@x1231 (unit-resolution @x623 (unit-resolution @x1201 @x1219 @x1138 @x1171 @x1152 @x1127 $x363) $x620)))
+(let ((@x1208 (hypothesis $x840)))
+(let ((@x1211 (unit-resolution @x591 (unit-resolution @x803 @x845 @x799 (hypothesis $x775) @x868 @x687 $x463) $x588)))
+(let ((@x1213 (hypothesis $x663)))
+(let ((@x1214 ((_ th-lemma arith farkas -1 -2 2 -1 1 1 -1 -1 1 -1 1 -1 -1 1 1) @x698 @x1213 @x1127 @x1139 @x1138 (hypothesis $x1105) @x715 @x711 @x720 (unit-resolution @x725 @x1211 $x681) @x835 @x1208 @x868 @x687 @x1135 false)))
+(let ((@x1216 (lemma @x1214 (or $x388 $x1198 $x1141 (not $x1105) $x658 (not $x840) $x784 (not $x775)))))
+(let ((@x1233 (unit-resolution @x1216 @x1219 @x1152 @x1173 @x711 (unit-resolution @x865 @x1231 $x840) (unit-resolution @x693 (unit-resolution @x599 @x1223 $x596) $x678) @x1227 $x388)))
+(let ((@x1237 (lemma (unit-resolution @x808 (unit-resolution @x615 @x1233 $x612) @x1226 false) (or $x658 $x289))))
+(let (($x582 (not $x91)))
+(let ((@x1267 (unit-resolution @x631 (unit-resolution @x1094 @x1112 @x835 @x844 @x1089 @x853 $x338) $x628)))
+(let (($x672 (>= ?x680 0)))
+(let ((@x1270 ((_ th-lemma arith triangle-eq) (or (not $x588) $x672))))
+(let ((@x1271 (unit-resolution @x1270 @x1132 $x672)))
+(let ((@x1272 (unit-resolution (lemma @x859 (or $x413 $x860 $x388 $x733 $x314)) (unit-resolution @x1117 @x1267 $x667) @x844 @x731 @x845 $x314)))
+(let ((@x1276 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1121 $x1249)) (unit-resolution @x649 @x1272 $x645) $x1249)))
+(let ((@x1250 (hypothesis $x780)))
+(let ((@x1251 (hypothesis $x672)))
+(let (($x594 (<= ?x482 0)))
+(let ((@x1254 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x483) $x594)) @x556 $x594)))
+(let ((@x1255 (hypothesis $x766)))
+(let (($x651 (>= ?x332 0)))
+(let ((@x1258 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x333) $x651)) @x563 $x651)))
+(let ((@x1260 ((_ th-lemma arith farkas 1/2 -1 -1/2 -1/2 1/2 1/2 -1/2 1/2 -1/2 1/2 -1/2 1/2 -1/2 1/2 1) @x683 @x857 @x703 (hypothesis $x1249) @x1258 @x1255 @x1254 @x1251 @x832 @x731 @x730 @x900 @x1250 @x853 @x858 false)))
+(let ((@x1264 (lemma @x1260 (or $x657 $x707 $x1261 (not $x672) $x733 $x903 (not $x780) $x860))))
+(let ((@x1277 (unit-resolution @x1264 @x1276 @x1088 @x1271 @x731 @x900 @x850 (unit-resolution @x1117 @x1267 $x667) $x657)))
+(let ((@x1279 ((_ th-lemma arith triangle-eq) (or $x92 $x766 $x710))))
+(let (($x570 (or $x582 $x583)))
+(let ((@x578 (monotonicity (rewrite (= $x93 (not $x570))) (= (not $x93) (not (not $x570))))))
+(let ((@x568 (trans @x578 (rewrite (= (not (not $x570)) $x570)) (= (not $x93) $x570))))
+(let ((@x569 (mp (not-or-elim (mp (asserted $x95) @x552 $x548) (not $x93)) @x568 $x570)))
+(let ((@x1281 (unit-resolution @x569 (unit-resolution @x1279 @x1277 (hypothesis $x658) $x92) $x582)))
+(let (($x654 (>= ?x652 0)))
+(let (($x587 (>= ?x507 0)))
+(let ((@x555 (and-elim @x554 $x508)))
+(let ((@x1286 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x508) $x587)) @x555 $x587)))
+(let ((?x1144 (+ x2$ ?x506)))
+(let (($x1238 (<= ?x1144 0)))
+(let (($x584 (= x2$ ?x495)))
+(let ((@x1288 ((_ th-lemma arith assign-bounds 1 1 1 1 1) (or $x488 (not $x595) $x413 $x784 (not $x603) (not $x681)))))
+(let ((@x573 (def-axiom (or (not $x488) $x584))))
+(let ((@x1290 (unit-resolution @x573 (unit-resolution @x1288 @x868 @x687 @x844 @x1133 @x720 $x488) $x584)))
+(let ((@x1293 ((_ th-lemma arith triangle-eq) (or (not $x584) $x1238))))
+(let ((@x1295 ((_ th-lemma arith assign-bounds 1 -3/2 3/2 -1 1/2 -1/2 1/2 -1/2 -1 1 1/2 -1/2 -1/2 1/2 1/2 -1/2 1/2) (unit-resolution @x1293 @x1290 $x1238) @x720 @x1133 @x1286 @x1089 @x731 @x730 @x835 @x1040 @x812 @x850 @x853 (unit-resolution @x1161 (unit-resolution @x649 @x1272 $x645) $x1105) @x715 @x1277 @x687 @x868 $x654)))
+(let (($x586 (<= ?x507 0)))
+(let ((@x1298 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x508) $x586)) @x555 $x586)))
+(let (($x1239 (>= ?x1144 0)))
+(let ((@x1300 ((_ th-lemma arith triangle-eq) (or (not $x584) $x1239))))
+(let ((@x1302 ((_ th-lemma arith assign-bounds 1 -3/2 3/2 -1 1/2 -1/2 1/2 -1/2 -1 1 1/2 -1/2 -1/2 1/2 1/2 -1/2 1/2) (unit-resolution @x1300 @x1290 $x1239) @x1254 @x1271 @x1298 @x1088 @x1139 @x1138 @x703 @x1000 @x799 @x1135 @x698 @x1276 @x1258 (hypothesis $x658) @x832 @x900 $x653)))
+(let ((@x1306 ((_ th-lemma arith triangle-eq) (or $x91 (not $x653) (not $x654)))))
+(let ((@x1309 (lemma (unit-resolution @x1306 @x1302 @x1295 @x1281 false) (or $x388 $x1141 $x710 $x903 $x733 $x784 $x413))))
+(let ((@x1331 (unit-resolution @x1309 (unit-resolution @x828 @x1327 $x669) (unit-resolution @x1237 @x1078 $x658) @x1152 @x1147 (unit-resolution @x693 @x1327 $x678) @x844 $x388)))
+(let (($x1304 (not $x654)))
+(let ((@x1333 (unit-resolution @x950 (unit-resolution @x615 @x1331 $x612) $x936)))
+(let ((@x1338 (unit-resolution @x631 (unit-resolution @x1094 @x1333 @x835 @x844 @x1089 @x853 $x338) $x628)))
+(let ((@x1339 (unit-resolution @x1117 @x1338 $x667)))
+(let ((@x1315 (unit-resolution @x631 (unit-resolution @x1094 @x1029 @x835 @x844 @x1089 @x853 $x338) $x628)))
+(let ((@x1317 ((_ th-lemma arith farkas -1 -1 -1 1 -1 1 -1 1 1) @x1026 (hypothesis $x313) @x731 @x730 @x853 @x844 (unit-resolution @x1117 @x1315 $x667) @x857 @x1029 false)))
+(let ((@x1340 (unit-resolution (lemma @x1317 (or $x314 $x389 $x733 $x413)) @x1331 @x1147 @x844 $x314)))
+(let ((@x1311 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1121 $x1249)) (hypothesis $x645) (hypothesis $x1261) false)))
+(let ((@x1312 (lemma @x1311 (or $x1121 $x1249))))
+(let ((@x1343 (unit-resolution @x1264 (unit-resolution @x1312 (unit-resolution @x649 @x1340 $x645) $x1249) @x1339 @x1271 @x1147 (unit-resolution @x828 @x1327 $x669) (unit-resolution ((_ th-lemma arith assign-bounds 2 -1) (or $x780 $x389 (not $x936))) @x1333 @x1331 $x780) @x1088 $x657)))
+(let ((@x1345 (unit-resolution @x569 (unit-resolution @x1279 @x1343 (unit-resolution @x1237 @x1078 $x658) $x92) $x582)))
+(let ((@x1346 (unit-resolution @x1288 (unit-resolution @x693 @x1327 $x678) @x687 @x844 @x1133 @x720 $x488)))
+(let ((@x1320 (hypothesis (not $x653))))
+(let ((@x1322 ((_ th-lemma arith farkas 1 -1 1/2 -1/2 1/2 -1/2 1/2 -1/2 1/2 -1/2 1/2 -1/2 1/2 -1/2 1/2 1) @x683 @x703 @x858 @x857 @x699 @x1152 @x1138 @x698 (hypothesis $x1239) @x1254 @x1251 @x1298 @x1320 (hypothesis $x933) @x799 @x1078 false)))
+(let ((@x1325 (lemma @x1322 (or $x653 $x707 $x860 $x706 (not $x1239) (not $x672) (not $x933) $x289))))
+(let ((@x1350 (unit-resolution @x1325 @x1088 @x1339 (unit-resolution @x808 (unit-resolution @x615 @x1331 $x612) $x673) (unit-resolution @x1300 (unit-resolution @x573 @x1346 $x584) $x1239) @x1271 @x1000 @x1078 $x653)))
+(let ((@x1353 ((_ th-lemma arith farkas -1/2 1/2 -1/2 1/2 1/2 -1/2 -1/2 1/2 -1/2 1/2 -1/2 1/2 -1/2 1) @x1333 @x1147 @x730 @x853 @x1339 @x857 (unit-resolution @x1293 (unit-resolution @x573 @x1346 $x584) $x1238) @x720 @x1133 @x1286 (unit-resolution @x1306 @x1350 @x1345 $x1304) @x1040 @x812 @x1331 false)))
+(let ((@x641 (def-axiom (or $x288 $x637))))
+(let ((@x1399 (unit-resolution @x641 (unit-resolution (lemma @x1353 (or $x413 $x289)) @x844 $x289) $x637)))
+(let ((@x1405 ((_ th-lemma arith triangle-eq) (or (not $x637) $x1369))))
+(let ((@x1406 (unit-resolution @x1405 @x1399 $x1369)))
+(let ((@x1370 (hypothesis $x289)))
+(let ((@x1373 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1 1) (or $x1198 (not $x840) $x1199 $x288 (not $x627) $x388)) @x845 @x1127 @x1370 @x866 @x835 $x1198)))
+(let ((@x1376 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1) (or $x338 $x364 (not $x840) (not $x627) $x388)) @x845 @x835 @x841 @x866 $x338)))
+(let ((@x1380 (lemma (unit-resolution @x1129 (unit-resolution @x631 @x1376 $x628) @x1373 false) (or $x388 $x364 $x288))))
+(let ((@x1390 (unit-resolution @x1380 (unit-resolution (lemma @x1064 (or $x363 $x413)) @x844 $x363) (unit-resolution (lemma @x1353 (or $x413 $x289)) @x844 $x289) $x388)))
+(let ((@x1392 (unit-resolution @x950 (unit-resolution @x615 @x1390 $x612) $x936)))
+(let ((@x1395 (unit-resolution (unit-resolution @x1094 @x835 @x853 (or $x338 (not $x840) (not $x936) $x413)) @x1392 @x844 @x1089 $x338)))
+(let ((@x1397 (unit-resolution @x1117 (unit-resolution @x631 @x1395 $x628) $x667)))
+(let ((@x1398 (unit-resolution @x808 (unit-resolution @x615 @x1390 $x612) $x673)))
+(let (($x1360 (<= ?x1356 0)))
+(let ((@x1402 ((_ th-lemma arith triangle-eq) (or (not $x637) $x1360))))
+(let ((@x1403 (unit-resolution @x1402 @x1399 $x1360)))
+(let ((@x1407 (unit-resolution @x1129 (unit-resolution @x631 @x1395 $x628) $x663)))
+(let ((@x1411 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1 1 2) (or $x488 (not $x595) $x413 (not $x603) $x745 (not $x681) $x438)) @x687 @x720 (or $x488 $x413 $x745 (not $x681) $x438))))
+(let ((@x1413 (unit-resolution @x573 (unit-resolution @x1411 @x941 @x1133 @x844 @x763 $x488) $x584)))
+(let (($x958 (not $x619)))
+(let (($x957 (not $x936)))
+(let (($x1091 (not $x627)))
+(let (($x1092 (not $x840)))
+(let (($x814 (not $x642)))
+(let (($x1386 (not $x1369)))
+(let (($x1080 (not $x1024)))
+(let (($x871 (not $x681)))
+(let (($x1416 (not $x587)))
+(let (($x815 (not $x595)))
+(let (($x1415 (not $x1238)))
+(let (($x1417 (or $x654 $x1415 $x815 $x1416 $x871 $x1080 $x818 $x1386 $x814 $x1092 $x1091 $x957 $x958 $x1198 $x1199)))
+(let ((@x1419 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 -1 1 -1 1 -1 1 2 -2 1 -1 1 -1) $x1417) (unit-resolution @x1293 @x1413 $x1238) @x812 @x853 @x835 @x1127 @x730 @x1286 @x1133 @x1392 @x1089 @x1040 @x1407 @x1406 @x720 $x654)))
+(let (($x1424 (not $x634)))
+(let (($x742 (not $x626)))
+(let (($x1423 (not $x1360)))
+(let (($x801 (not $x611)))
+(let (($x1002 (not $x933)))
+(let (($x1262 (not $x672)))
+(let (($x1422 (not $x586)))
+(let (($x1421 (not $x594)))
+(let (($x1323 (not $x1239)))
+(let (($x1425 (or $x653 $x1323 $x1421 $x1422 $x1262 $x1002 $x801 $x1423 $x1191 $x707 $x742 $x706 $x743 $x860 $x1424)))
+(let ((@x1426 ((_ th-lemma arith assign-bounds 1 -1 -1 1 -1 1 -1 1 2 -2 1 -1 1 -1) $x1425)))
+(let ((@x1427 (unit-resolution @x1426 (unit-resolution @x1300 @x1413 $x1239) @x799 @x698 @x703 @x857 @x1138 @x1298 @x1398 @x1088 @x1397 @x1271 @x1000 @x1254 @x1403 $x653)))
+(let ((@x1431 ((_ th-lemma arith assign-bounds 1 1 2 2 1 1 1 1 1 1 1) (or $x313 $x1423 $x1191 $x707 $x742 $x706 $x743 $x1002 $x801 $x438 $x860 $x1424))))
+(let ((@x1432 (unit-resolution @x1431 @x763 @x698 @x703 @x857 @x1138 @x799 @x1398 @x1088 @x1397 @x1000 @x1403 $x313)))
+(let ((@x1382 (hypothesis $x675)))
+(let ((@x1385 ((_ th-lemma arith farkas -1 1 1 -1 1 -1 -2 2 -1 1 3 -3 1 -1 2 -2 1) @x716 @x715 @x711 @x720 @x869 @x687 (hypothesis $x1024) @x812 (hypothesis $x1369) @x730 @x1208 @x835 @x1001 @x853 @x1213 @x1127 @x1382 false)))
+(let ((@x1435 (unit-resolution (lemma @x1385 (or $x658 $x734 $x871 $x1080 $x1386 $x1092 $x957 $x1198 $x745)) (unit-resolution @x1168 (unit-resolution @x647 @x1432 $x644) $x664) @x1133 @x1040 @x1406 @x1089 @x1392 @x1407 @x941 $x658)))
+(let ((@x1436 (unit-resolution @x1279 @x1435 (unit-resolution @x569 (unit-resolution @x1306 @x1427 @x1419 $x91) $x583) $x766)))
+(let ((@x1438 ((_ th-lemma arith triangle-eq) (or $x1164 $x1381))))
+(let ((@x1440 ((_ th-lemma arith farkas -1 1 1 -1 1 -1 -2 2 -1 1 3 -3 1 -1 2 -2 1) (unit-resolution @x1438 (unit-resolution @x647 @x1432 $x644) $x1381) @x1258 @x1436 @x1254 @x1271 @x832 @x1000 @x799 @x1403 @x1138 @x1088 @x703 @x1398 @x698 @x1397 @x857 @x966 false)))
+(let ((@x1453 (unit-resolution @x599 (unit-resolution (lemma @x1440 (or $x438 $x413)) @x844 $x438) $x596)))
+(let ((@x1455 (unit-resolution @x693 @x1453 $x678)))
+(let ((@x1458 (unit-resolution (unit-resolution @x1288 @x687 @x720 (or $x488 $x413 $x784 $x871)) @x1455 @x844 @x1133 $x488)))
+(let ((@x1461 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 -1 1 -1 1 -1 1 2 -2 1 -1 1 -1) $x1417) (unit-resolution @x1293 (unit-resolution @x573 @x1458 $x584) $x1238) @x812 @x853 @x835 @x1127 @x730 @x720 @x1133 @x1392 @x1089 @x1040 @x1407 @x1406 @x1286 $x654)))
+(let ((@x1463 (unit-resolution @x1426 (unit-resolution @x1300 (unit-resolution @x573 @x1458 $x584) $x1239) @x799 @x698 @x703 @x857 @x1138 @x1254 @x1398 @x1088 @x1397 @x1271 @x1000 @x1298 @x1403 $x653)))
+(let ((@x1468 (unit-resolution ((_ th-lemma arith assign-bounds 2 -1) (or $x675 $x439 $x784)) @x1455 (unit-resolution (lemma @x1440 (or $x438 $x413)) @x844 $x438) $x675)))
+(let ((@x1443 (unit-resolution (lemma @x1385 (or $x658 $x734 $x871 $x1080 $x1386 $x1092 $x957 $x1198 $x745)) @x711 @x869 (hypothesis $x1024) (hypothesis $x1369) @x1208 @x1001 @x1213 @x1382 $x734)))
+(let ((@x1446 (unit-resolution @x649 (unit-resolution @x647 (unit-resolution @x1168 @x1443 $x1164) $x314) $x645)))
+(let ((@x1449 ((_ th-lemma arith farkas -1 -1 -1 1 1 -1 1 -1 -1 1 1 -1 1) @x715 @x711 @x868 @x687 @x720 @x869 @x683 @x703 (hypothesis $x1360) @x1138 @x699 @x698 (unit-resolution @x1161 @x1446 $x1105) false)))
+(let ((@x1451 (lemma @x1449 (or $x658 $x784 $x871 $x707 $x1423 $x706 $x1080 $x1386 $x1092 $x957 $x1198 $x745))))
+(let ((@x1469 (unit-resolution @x1451 @x1455 @x1133 @x1088 @x1403 @x1398 @x1040 @x1406 @x1089 @x1392 @x1407 @x1468 $x658)))
+(let ((@x1470 (unit-resolution @x1279 @x1469 (unit-resolution @x569 (unit-resolution @x1306 @x1463 @x1461 $x91) $x583) $x766)))
+(let (($x1472 (not $x602)))
+(let (($x1471 (not $x651)))
+(let (($x1473 (or $x1261 $x1471 $x657 $x903 $x1472 $x1421 $x1262 $x1092 $x1091 $x1386 $x814 $x957 $x958)))
+(let ((@x1475 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1 -1 1 1 -1 1 -1 -1 1 1 -1) $x1473) @x1470 @x853 @x835 @x730 @x1258 @x832 (unit-resolution @x828 @x1453 $x669) @x1271 @x1392 @x1089 @x1254 @x1406 $x1261)))
+(let ((@x1478 (unit-resolution @x647 (unit-resolution @x649 (unit-resolution @x1312 @x1475 $x1121) $x313) $x644)))
+(let ((@x1480 ((_ th-lemma arith farkas -1 -1 -2 -1 1 1 -1 1 -1 -1 1 1 -1 1) @x1258 @x1470 (unit-resolution @x649 (unit-resolution @x1312 @x1475 $x1121) $x313) (unit-resolution @x828 @x1453 $x669) @x832 @x1254 @x1271 @x1089 @x835 @x1406 @x730 @x1392 @x853 (unit-resolution @x1438 @x1478 $x1381) false)))
+(let ((@x1481 (lemma @x1480 $x413)))
+(let ((@x1538 (unit-resolution @x791 (unit-resolution @x607 @x1481 $x604) $x776)))
+(let ((?x666 (+ ?x201 ?x356)))
+(let (($x1699 (>= ?x666 0)))
+(let (($x629 (= ?x201 ?x345)))
+(let (($x339 (not $x338)))
+(let ((@x1701 (hypothesis $x339)))
+(let ((@x633 (def-axiom (or $x338 $x629))))
+(let ((@x1712 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x629) $x1699)) (unit-resolution @x633 @x1701 $x629) $x1699)))
+(let (($x875 (<= ?x666 0)))
+(let ((@x1635 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x629) $x875)) (hypothesis $x629) (hypothesis (not $x875)) false)))
+(let ((@x1636 (lemma @x1635 (or (not $x629) $x875))))
+(let ((@x1703 (unit-resolution @x1636 (unit-resolution @x633 @x1701 $x629) $x875)))
+(let (($x1632 (not $x629)))
+(let (($x1629 (not $x875)))
+(let ((@x1517 (unit-resolution @x794 (unit-resolution @x607 @x1481 $x604) $x775)))
+(let ((@x1359 (lemma ((_ th-lemma arith farkas 1 1 1 1 1) @x1187 @x799 @x763 @x845 @x1189 false) (or $x438 $x414 $x388))))
+(let ((@x1520 (unit-resolution @x693 (unit-resolution @x599 (unit-resolution @x1359 @x845 @x1481 $x438) $x596) $x678)))
+(let ((@x1523 (unit-resolution (unit-resolution @x803 @x799 @x687 (or $x388 (not $x775) $x463 $x784)) @x1520 @x1517 @x845 $x463)))
+(let ((@x1525 (unit-resolution @x1270 (unit-resolution @x591 @x1523 $x588) $x672)))
+(let ((@x1526 (unit-resolution @x828 (unit-resolution @x599 (unit-resolution @x1359 @x845 @x1481 $x438) $x596) $x669)))
+(let ((@x1365 (unit-resolution ((_ th-lemma arith assign-bounds 2 -1) (or $x779 $x364 $x1092)) (unit-resolution @x625 (unit-resolution @x909 @x906 $x823) $x363) @x906 $x1092)))
+(let ((@x1366 (unit-resolution @x623 (unit-resolution @x625 (unit-resolution @x909 @x906 $x823) $x363) $x620)))
+(let ((@x1368 (lemma (unit-resolution @x865 @x1366 @x1365 false) $x779)))
+(let ((@x1486 (unit-resolution ((_ th-lemma arith assign-bounds -1 1 -1 1 -1) (or $x902 $x1091 $x338 $x872 $x743 $x414)) @x835 @x1368 @x698 (or $x338 $x872 $x414))))
+(let ((@x1489 (unit-resolution @x1129 (unit-resolution @x631 (unit-resolution @x1486 @x1135 @x1481 $x338) $x628) $x663)))
+(let ((@x1491 ((_ th-lemma arith assign-bounds 1 2 2 2 2 2) (or $x872 $x957 $x1198 $x1092 $x1199 $x288 $x1091))))
+(let ((@x1495 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x840 $x670)) (unit-resolution @x1491 @x1370 @x1127 @x835 @x1135 @x1112 @x1489 $x1092) $x670)))
+(let ((@x1500 (unit-resolution (unit-resolution ((_ th-lemma arith assign-bounds 2 1) (or $x707 $x363 $x902)) @x1368 (or $x707 $x363)) @x1495 (unit-resolution @x1380 @x1370 @x845 $x364) false)))
+(let ((@x1509 (unit-resolution @x639 (unit-resolution (lemma @x1500 (or $x288 $x388)) @x845 $x288) $x636)))
+(let ((@x1510 (unit-resolution @x1151 @x1509 $x660)))
+(let ((@x1508 (unit-resolution @x1237 (unit-resolution (lemma @x1500 (or $x288 $x388)) @x845 $x288) $x658)))
+(let (($x585 (= ?x98 ?x495)))
+(let (($x1546 (not $x585)))
+(let ((?x1504 (+ ?x98 ?x506)))
+(let (($x1506 (>= ?x1504 0)))
+(let (($x1558 (not $x1506)))
+(let ((@x1572 (unit-resolution @x1129 (unit-resolution @x631 (unit-resolution @x1486 @x867 @x1481 $x338) $x628) $x663)))
+(let (($x800 (not $x775)))
+(let (($x744 (not $x603)))
+(let (($x1559 (or $x653 $x1558 $x784 $x744 $x815 $x871 $x1422 $x800 $x801 $x1141 $x1191 $x743 $x1198 $x1199 $x872)))
+(let ((@x1573 (unit-resolution ((_ th-lemma arith assign-bounds 1 -2 2 1 -1 -1 -1 1 -1 1 -1 -1 1 1) $x1559) @x1320 @x687 @x799 @x698 @x1127 @x1138 @x720 @x1139 @x868 @x1517 @x869 @x867 @x1572 @x1298 $x1558)))
+(let ((@x1568 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1546 $x1506)) (hypothesis $x585) (hypothesis $x1558) false)))
+(let ((@x1569 (lemma @x1568 (or $x1546 $x1506))))
+(let ((@x575 (def-axiom (or $x488 $x585))))
+(let ((@x1576 (unit-resolution @x573 (unit-resolution @x575 (unit-resolution @x1569 @x1573 $x1546) $x488) $x584)))
+(let ((@x1578 ((_ th-lemma arith farkas -1/2 1/2 -1/2 1/2 -1/2 1/2 1/2 -1/2 1/2 -1/2 1/2 -1/2 1/2 1) @x698 @x867 @x1139 @x1138 @x1572 @x1127 (unit-resolution @x1300 @x1576 $x1239) @x1298 @x1320 @x1517 @x799 @x1254 @x1251 @x1481 false)))
+(let ((@x1580 (lemma @x1578 (or $x653 $x872 $x1141 $x1262 $x784 $x871))))
+(let ((@x1593 (unit-resolution @x1580 @x1135 @x1510 @x1525 @x1520 (unit-resolution @x725 (unit-resolution @x591 @x1523 $x588) $x681) $x653)))
+(let ((@x1537 (unit-resolution @x1117 (unit-resolution @x631 (unit-resolution @x1486 @x1135 @x1481 $x338) $x628) $x667)))
+(let ((@x1539 (unit-resolution @x1146 @x1509 $x661)))
+(let (($x1505 (<= ?x1504 0)))
+(let (($x1550 (not $x1505)))
+(let (($x1106 (not $x780)))
+(let (($x1551 (or $x654 $x1550 $x903 $x1472 $x1421 $x1262 $x1416 $x817 $x818 $x733 $x814 $x958 $x860 $x1424 $x1106)))
+(let ((@x1585 (unit-resolution ((_ th-lemma arith assign-bounds 1 -2 2 1 -1 -1 -1 1 -1 1 -1 -1 1 1) $x1551) (hypothesis $x1304) @x832 @x812 @x853 @x857 @x730 @x1254 @x731 @x1538 @x858 @x1250 @x900 @x1251 @x1286 $x1550)))
+(let ((@x1582 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1546 $x1505)) (hypothesis $x585) (hypothesis $x1550) false)))
+(let ((@x1583 (lemma @x1582 (or $x1546 $x1505))))
+(let ((@x1588 (unit-resolution @x573 (unit-resolution @x575 (unit-resolution @x1583 @x1585 $x1546) $x488) $x584)))
+(let ((@x1590 ((_ th-lemma arith farkas 1/2 -1/2 1 -1 -1/2 1/2 1/2 -1/2 1/2 -1/2 -1/2 1/2 -1/2 1/2 -1/2 1) @x853 @x1250 @x900 @x832 @x1254 @x1251 @x731 @x730 @x858 @x857 (unit-resolution @x1293 @x1588 $x1238) @x1286 (hypothesis $x1304) @x1538 @x812 (unit-resolution @x575 (unit-resolution @x1583 @x1585 $x1546) $x488) false)))
+(let ((@x1592 (lemma @x1590 (or $x654 $x1106 $x903 $x1262 $x733 $x860))))
+(let ((@x1595 (unit-resolution @x1306 (unit-resolution @x1592 @x850 @x1526 @x1525 @x1539 @x1537 $x654) @x1593 $x91)))
+(let ((@x1513 (unit-resolution (unit-resolution @x1201 @x1138 @x1127 (or $x363 $x313 $x1198 $x1141)) @x1027 @x1489 @x1510 $x313)))
+(let (($x1503 (>= ?x778 0)))
+(let ((@x1530 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x823 $x1503)) (unit-resolution @x625 @x1027 $x621) $x1503)))
+(let (($x1532 (not $x1381)))
+(let (($x1531 (not $x1503)))
+(let (($x1533 (or $x657 $x1531 $x1532 $x1471 $x742 $x903 $x1472 $x1421 $x1262 $x1141 $x1191 $x958 $x1106)))
+(let ((@x1534 ((_ th-lemma arith assign-bounds 1 -1 1 -1 1 -1 -1 1 -1 1 1 -1) $x1533)))
+(let ((@x1535 (unit-resolution @x1534 @x1530 @x853 @x703 @x1138 @x1258 @x1254 @x1510 @x850 @x1526 @x1525 @x832 (unit-resolution @x1438 (unit-resolution @x647 @x1513 $x644) $x1381) $x657)))
+(let (($x489 (not $x488)))
+(let ((@x1543 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1 1 1 1 1) (or $x489 $x1262 $x1421 $x1472 $x903 $x363 $x958 $x388 $x1106)) @x832 @x853 @x1254 (or $x489 $x1262 $x903 $x363 $x388 $x1106))))
+(let ((@x1545 (unit-resolution @x575 (unit-resolution @x1543 @x1027 @x845 @x850 @x1526 @x1525 $x489) $x585)))
+(let ((@x1553 (unit-resolution ((_ th-lemma arith assign-bounds 1 -2 2 1 -1 -1 -1 1 -1 1 -1 -1 1 1) $x1551) (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1546 $x1505)) @x1545 $x1505) @x832 @x812 @x853 @x857 @x730 @x1286 @x1539 @x1538 @x1537 @x850 @x1526 @x1525 @x1254 $x654)))
+(let ((@x1561 (unit-resolution ((_ th-lemma arith assign-bounds 1 -2 2 1 -1 -1 -1 1 -1 1 -1 -1 1 1) $x1559) (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1546 $x1506)) @x1545 $x1506) @x687 @x799 @x698 @x1127 @x1138 @x1298 @x1510 @x1520 @x1517 (unit-resolution @x725 (unit-resolution @x591 @x1523 $x588) $x681) @x1135 @x1489 @x720 $x653)))
+(let ((@x1563 (unit-resolution @x569 (unit-resolution @x1306 @x1561 @x1553 $x91) (unit-resolution @x1279 @x1535 @x1508 $x92) false)))
+(let ((@x1599 (unit-resolution @x623 (unit-resolution (lemma @x1563 (or $x363 $x388)) @x845 $x363) $x620)))
+(let ((@x1601 (unit-resolution @x1264 (unit-resolution @x1279 (unit-resolution @x569 @x1595 $x583) @x1508 $x766) @x1537 @x1525 @x1539 @x1526 @x850 (unit-resolution @x926 @x1599 $x670) $x1261)))
+(let ((@x1604 (unit-resolution @x647 (unit-resolution @x649 (unit-resolution @x1312 @x1601 $x1121) $x313) $x644)))
+(let ((@x1608 (unit-resolution ((_ th-lemma arith assign-bounds -2 2 -2 2 -1 -2) (or $x1503 $x733 $x814 $x860 $x1424 $x707 $x314)) (unit-resolution @x649 (unit-resolution @x1312 @x1601 $x1121) $x313) @x730 @x1539 (unit-resolution @x926 @x1599 $x670) @x1537 @x857 $x1503)))
+(let ((@x1609 (unit-resolution @x1534 @x1608 (unit-resolution @x1438 @x1604 $x1381) @x853 @x703 @x1138 @x1258 (unit-resolution @x1279 (unit-resolution @x569 @x1595 $x583) @x1508 $x766) @x1510 @x850 @x1526 @x1525 @x832 @x1254 false)))
+(let ((@x1610 (lemma @x1609 $x388)))
+(let ((@x1637 ((_ th-lemma arith assign-bounds -1 -1 1 1 -1) (or $x1629 $x1199 $x1531 $x742 $x288 $x389))))
+(let ((@x1639 (unit-resolution @x1636 (unit-resolution @x1637 @x1530 @x1127 @x1370 @x1610 @x703 $x1629) $x1632)))
+(let ((@x1642 (unit-resolution @x1129 (unit-resolution @x631 (unit-resolution @x633 @x1639 $x338) $x628) $x663)))
+(let ((@x1643 ((_ th-lemma arith farkas 1 1 1 1 1) @x1370 @x1642 @x1127 @x1027 (unit-resolution @x633 @x1639 $x338) false)))
+(let ((@x1645 (lemma @x1643 (or $x363 $x288))))
+(let ((@x889 (unit-resolution @x926 (unit-resolution @x623 (unit-resolution @x1645 @x1370 $x363) $x620) $x670)))
+(let ((@x890 (unit-resolution @x865 (unit-resolution @x623 (unit-resolution @x1645 @x1370 $x363) $x620) $x840)))
+(let ((@x1650 (unit-resolution @x623 (unit-resolution @x1645 (unit-resolution @x1237 @x711 $x289) $x363) $x620)))
+(let ((@x1672 (unit-resolution @x950 (unit-resolution @x615 @x1610 $x612) $x936)))
+(let ((@x1648 (unit-resolution @x1237 @x711 $x289)))
+(let ((@x1647 (hypothesis $x875)))
+(let ((@x1617 (unit-resolution @x808 (unit-resolution @x615 @x1610 $x612) $x673)))
+(let ((@x1651 (unit-resolution @x926 @x1650 $x670)))
+(let ((@x1656 ((_ th-lemma arith assign-bounds 1 1 1 1 1 1 1 1) (or $x313 $x1191 $x1423 $x288 $x707 $x706 $x414 $x743 $x742))))
+(let ((@x1657 (unit-resolution @x1656 @x1648 @x703 @x698 @x1138 @x1481 @x1617 @x1651 (unit-resolution @x1402 (unit-resolution @x641 @x1648 $x637) $x1360) $x313)))
+(let ((@x1660 ((_ th-lemma arith assign-bounds -1 1 1 -1 -1 1 -1 -1 -3 3 1 1 2 -2 -2 2) (unit-resolution @x1168 (unit-resolution @x647 @x1657 $x644) $x664) @x715 @x711 @x687 @x720 @x730 (unit-resolution @x1405 (unit-resolution @x641 @x1648 $x637) $x1369) @x1651 @x1617 @x698 @x703 @x1382 @x1647 @x1127 @x1538 @x812 $x871)))
+(let ((@x1662 ((_ th-lemma arith assign-bounds 1 1 1 2 2 1 1 1 1 1 1) (or $x463 $x744 $x745 $x707 $x706 $x743 $x742 $x1629 $x1199 $x288 $x817 $x818))))
+(let ((@x1663 (unit-resolution @x1662 @x1647 @x812 @x698 @x703 @x1127 @x1648 @x1617 @x1651 @x1382 @x1538 @x687 $x463)))
+(let ((@x1667 (lemma (unit-resolution @x725 (unit-resolution @x591 @x1663 $x588) @x1660 false) (or $x1629 $x658 $x745))))
+(let ((@x1669 (unit-resolution @x633 (unit-resolution @x1636 (unit-resolution @x1667 @x941 @x711 $x1629) $x1632) $x338)))
+(let ((@x1675 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1 1 1 1 1) (or $x463 $x707 $x339 $x742 $x706 $x743 $x744 $x745 $x438)) @x687 @x698 @x703 (or $x463 $x707 $x339 $x706 $x745 $x438))))
+(let ((@x1677 (unit-resolution @x591 (unit-resolution @x1675 @x1669 @x1651 @x941 @x1617 @x763 $x463) $x588)))
+(let ((@x1681 (unit-resolution ((_ th-lemma arith assign-bounds -1 -2 -2 -2 2 2) (or $x1024 $x817 $x339 $x707 $x706 $x743 $x742)) @x1669 @x703 @x1617 @x1651 @x1538 @x698 $x1024)))
+(let ((@x1682 (unit-resolution @x1451 @x1681 (unit-resolution @x725 @x1677 $x681) @x711 (unit-resolution @x1402 (unit-resolution @x641 @x1648 $x637) $x1360) @x1651 @x1617 @x941 (unit-resolution @x1405 (unit-resolution @x641 @x1648 $x637) $x1369) (unit-resolution @x865 @x1650 $x840) @x1672 (unit-resolution @x1129 (unit-resolution @x631 @x1669 $x628) $x663) @x944 false)))
+(let ((@x1688 (unit-resolution ((_ th-lemma arith assign-bounds -1 -2 2 -2 -2 2) (or $x1503 $x707 $x706 $x743 $x439 $x817 $x818)) @x1651 @x698 @x1617 @x812 @x1538 (unit-resolution (lemma @x1682 (or $x438 $x658)) @x711 $x438) $x1503)))
+(let ((@x1690 (unit-resolution @x1636 (unit-resolution @x1637 @x1688 @x1127 @x1648 @x1610 @x703 $x1629) $x1632)))
+(let ((@x1693 (unit-resolution @x1129 (unit-resolution @x631 (unit-resolution @x633 @x1690 $x338) $x628) $x663)))
+(let ((@x1696 (unit-resolution ((_ th-lemma arith assign-bounds -3 -2 -2 2 2 -2 -2 2) (or $x839 $x706 $x339 $x707 $x742 $x743 $x439 $x817 $x818)) (unit-resolution @x633 @x1690 $x338) @x698 @x703 @x812 @x1617 @x1651 @x1538 (unit-resolution (lemma @x1682 (or $x438 $x658)) @x711 $x438) $x839)))
+(let ((@x1697 (unit-resolution @x1491 @x1696 @x1693 @x1127 @x835 @x1648 @x1672 (unit-resolution @x865 @x1650 $x840) false)))
+(let ((@x1698 (lemma @x1697 $x658)))
+(let ((@x1612 (unit-resolution @x1402 (unit-resolution @x641 @x1370 $x637) $x1360)))
+(let ((@x1741 (unit-resolution (unit-resolution @x960 @x853 @x799 (or $x363 $x957 $x438 $x800)) @x763 @x1672 @x1517 $x363)))
+(let ((@x1743 (unit-resolution @x926 (unit-resolution @x623 @x1741 $x620) $x670)))
+(let ((@x1700 (hypothesis $x932)))
+(let ((@x1704 (unit-resolution @x1662 @x1703 @x812 @x698 @x703 @x1127 @x1370 @x1617 @x683 @x1382 @x1538 @x687 $x463)))
+(let ((@x1708 (unit-resolution @x647 (unit-resolution @x1656 @x1612 @x703 @x698 @x1138 @x1481 @x1617 @x683 @x1370 $x313) $x644)))
+(let ((@x1709 (unit-resolution @x1438 @x1708 $x1381)))
+(let ((@x1713 ((_ th-lemma arith assign-bounds 1 -1 -3/2 3/2 -1 1 -1/2 1/2 -1/2 -1/2 1/2 1/2 -1/2 -1/2 1/2 1/2) @x1712 @x857 @x1672 @x853 @x1517 @x799 @x1709 @x1258 @x832 @x1254 (unit-resolution @x1270 (unit-resolution @x591 @x1704 $x588) $x672) @x1138 @x1612 @x1208 @x835 @x1700 $x657)))
+(let ((@x1718 (unit-resolution ((_ th-lemma arith assign-bounds 2 1 1 1 1 1 1) (or $x488 $x288 $x1532 $x1471 $x710 $x1191 $x1423 $x338)) @x1701 @x1370 @x1138 @x1258 @x1698 @x1612 @x1709 $x488)))
+(let (($x1723 (not $x932)))
+(let (($x1724 (or $x654 $x1415 $x1416 $x1532 $x1471 $x710 $x1472 $x1723 $x1092 $x957 $x958 $x1091 $x815 $x871 $x814 $x1386)))
+(let ((@x1726 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 1/2 -1/2 -1/2 1/2 -1/2 1/2 1/2 -1/2 -1/2 -1/2 1/2 1/2 -1/2) $x1724) (unit-resolution @x725 (unit-resolution @x591 @x1704 $x588) $x681) @x832 @x853 @x835 @x730 @x1258 @x1286 @x1698 @x720 @x1672 @x1700 @x1208 (unit-resolution @x1405 (unit-resolution @x641 @x1370 $x637) $x1369) (unit-resolution @x1293 (unit-resolution @x573 @x1718 $x584) $x1238) @x1709 $x654)))
+(let (($x816 (not $x650)))
+(let (($x1729 (or $x653 $x1323 $x1422 $x734 $x816 $x766 $x744 $x745 $x707 $x706 $x743 $x742 $x1421 $x1262 $x1191 $x1423)))
+(let ((@x1731 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 1/2 -1/2 -1/2 1/2 -1/2 1/2 1/2 -1/2 -1/2 -1/2 1/2 1/2 -1/2) $x1729) @x1713 @x687 @x698 @x703 @x1138 @x715 @x1298 @x1254 (unit-resolution @x1168 @x1708 $x664) @x1617 @x683 @x1382 (unit-resolution @x1270 (unit-resolution @x591 @x1704 $x588) $x672) (unit-resolution @x1300 (unit-resolution @x573 @x1718 $x584) $x1239) @x1612 $x653)))
+(let ((@x1732 (unit-resolution @x1306 @x1731 @x1726 (unit-resolution @x569 (unit-resolution @x1279 @x1713 @x1698 $x92) $x582) false)))
+(let ((@x1734 (lemma @x1732 (or $x338 $x707 $x745 $x1723 $x1092 $x288))))
+(let ((@x1745 (unit-resolution @x1734 @x1370 @x941 @x966 (unit-resolution @x865 (unit-resolution @x623 @x1741 $x620) $x840) @x1743 $x338)))
+(let ((@x1747 (unit-resolution @x591 (unit-resolution @x1675 @x1745 @x763 @x941 @x1617 @x1743 $x463) $x588)))
+(let ((@x1750 (unit-resolution @x647 (unit-resolution @x1656 @x1612 @x703 @x698 @x1138 @x1481 @x1617 @x1743 @x1370 $x313) $x644)))
+(let ((@x1751 (unit-resolution @x1438 @x1750 $x1381)))
+(let ((@x1735 (hypothesis $x1381)))
+(let ((@x1736 ((_ th-lemma arith farkas 3/4 1/4 -1/4 -3/4 1/2 -1/2 -1/2 1/2 -1/4 1/4 1/4 -1/4 -1/4 1/4 1/4 -1/4 1/4 1) @x683 @x1617 @x698 @x703 @x858 @x857 @x1517 @x799 @x1735 @x1258 @x1255 @x832 @x1254 @x1251 @x1138 (hypothesis $x1360) @x1700 @x1481 false)))
+(let ((@x1754 (unit-resolution (lemma @x1736 (or $x657 $x707 $x860 $x1532 $x1262 $x1423 $x1723)) (unit-resolution @x1117 (unit-resolution @x631 @x1745 $x628) $x667) @x1743 @x1751 (unit-resolution @x1270 @x1747 $x672) @x1612 @x966 $x657)))
+(let ((@x1759 ((_ th-lemma arith assign-bounds 2 3/4 3/4 3/4 3/4 3/4 1/2 1/2 3/4 3/4 1/2 1/2 1/4 1/4 1/4 1/4 1/4 1/4) @x1370 @x1751 @x1258 @x1698 @x1138 @x1612 (unit-resolution @x1129 (unit-resolution @x631 @x1745 $x628) $x663) @x1127 @x1617 @x698 @x1538 @x812 @x687 @x720 (unit-resolution @x725 @x1747 $x681) @x1743 @x703 @x941 $x488)))
+(let ((@x1762 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 1/2 -1/2 -1/2 1/2 -1/2 1/2 1/2 -1/2 -1/2 -1/2 1/2 1/2 -1/2) $x1724) (unit-resolution @x1293 (unit-resolution @x573 @x1759 $x584) $x1238) @x832 @x853 @x835 @x730 @x1258 @x1286 @x1698 @x720 @x1672 @x966 (unit-resolution @x865 (unit-resolution @x623 @x1741 $x620) $x840) (unit-resolution @x1405 (unit-resolution @x641 @x1370 $x637) $x1369) (unit-resolution @x725 @x1747 $x681) @x1751 $x654)))
+(let ((@x1767 (unit-resolution @x1426 (unit-resolution @x1300 (unit-resolution @x573 @x1759 $x584) $x1239) @x799 @x698 @x703 @x857 @x1138 @x1617 @x1612 @x1743 (unit-resolution @x1117 (unit-resolution @x631 @x1745 $x628) $x667) (unit-resolution @x1270 @x1747 $x672) (unit-resolution ((_ th-lemma arith assign-bounds 2 -1) (or $x933 $x414 $x800)) @x1517 @x1481 $x933) @x1254 @x1298 $x653)))
+(let ((@x1768 (unit-resolution @x1306 @x1767 @x1762 (unit-resolution @x569 (unit-resolution @x1279 @x1754 @x1698 $x92) $x582) false)))
+(let ((@x1770 (lemma @x1768 (or $x288 $x438))))
+(let ((@x891 (unit-resolution @x1770 @x1370 $x438)))
+(let ((@x783 (unit-resolution ((_ th-lemma arith assign-bounds -2 2 -2 -2 2 -1) (or $x932 $x817 $x818 $x706 $x364 $x743 $x903)) @x698 @x812 (or $x932 $x817 $x706 $x364 $x903))))
+(let ((@x795 (unit-resolution (unit-resolution @x783 @x1538 @x1617 (or $x932 $x364 $x903)) (unit-resolution @x828 (unit-resolution @x599 @x891 $x596) $x669) (unit-resolution @x1645 @x1370 $x363) $x932)))
+(let ((@x809 (unit-resolution (unit-resolution @x709 @x1617 (or $x463 $x339 $x439 $x707)) @x889 @x688 @x891 $x339)))
+(let ((@x821 (unit-resolution ((_ th-lemma arith assign-bounds 2 -1) (or $x675 $x439 $x784)) (unit-resolution @x693 (unit-resolution @x599 @x891 $x596) $x678) @x891 $x675)))
+(let ((@x836 (lemma (unit-resolution @x1734 @x821 @x809 @x1370 @x795 @x890 @x889 false) (or $x288 $x463))))
+(let ((@x918 (unit-resolution @x836 @x688 $x288)))
+(let ((@x722 (unit-resolution @x1151 (unit-resolution @x639 @x918 $x636) $x660)))
+(let ((@x1807 (unit-resolution (unit-resolution @x1193 @x1138 (or $x338 $x313 $x1141 $x289)) @x1701 @x918 @x722 $x313)))
+(let ((@x838 (unit-resolution (unit-resolution @x960 @x853 @x799 (or $x363 $x957 $x438 $x800)) @x1672 @x1517 (or $x363 $x438))))
+(let ((@x910 (unit-resolution @x623 (unit-resolution @x838 @x763 $x363) $x620)))
+(let ((@x920 (unit-resolution @x1146 (unit-resolution @x639 @x918 $x636) $x661)))
+(let ((@x916 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1) (or $x488 $x463 $x813 $x815 $x438)) @x720 (or $x488 $x463 $x813 $x438))))
+(let ((@x923 (unit-resolution @x1293 (unit-resolution @x573 (unit-resolution @x916 @x763 @x688 @x762 $x488) $x584) $x1238)))
+(let ((@x924 ((_ th-lemma arith assign-bounds 1 -1 1 -1 1 -1 1 3 -3 1 -1 -1 2 -2 2 -2) @x923 @x1286 @x762 @x720 @x730 (hypothesis $x1699) @x857 @x1672 @x853 @x1517 @x799 @x920 @x832 @x966 (unit-resolution @x865 @x910 $x840) @x835 $x654)))
+(let (($x886 (>= ?x676 0)))
+(let ((@x735 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x589) $x886)) @x758 $x886)))
+(let ((@x736 (unit-resolution @x1300 (unit-resolution @x573 (unit-resolution @x916 @x763 @x688 @x762 $x488) $x584) $x1239)))
+(let ((@x682 ((_ th-lemma arith assign-bounds 1 -1 1 -1 1 -1 1 3 -3 1 -1 -1 2 -2 2 -2) @x736 @x1298 @x735 @x1254 @x1138 @x1647 @x1127 @x1617 @x698 @x1538 @x812 @x722 @x687 @x941 (unit-resolution @x926 @x910 $x670) @x703 $x653)))
+(let (($x741 (not $x886)))
+(let (($x748 (or $x657 $x741 $x1532 $x1471 $x1421 $x1191 $x706 $x743 $x744 $x745 $x707 $x742 $x1141)))
+(let ((@x750 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 1 -1 1 1 -1 1 -1 1 -1 -1) $x748) (unit-resolution @x926 @x910 $x670) @x698 @x703 @x1138 @x1258 @x1254 @x722 @x1617 @x687 @x941 @x1735 @x735 $x657)))
+(let ((@x755 (unit-resolution @x1279 @x1698 (or $x92 $x766))))
+(let ((@x917 (unit-resolution @x569 (unit-resolution @x755 @x750 $x92) (unit-resolution @x1306 @x682 @x924 $x91) false)))
+(let ((@x1810 (unit-resolution (lemma @x917 (or $x438 $x1532 $x1629 (not $x1699) $x463)) (unit-resolution @x1438 (unit-resolution @x647 @x1807 $x644) $x1381) @x1703 @x1712 @x688 $x438)))
+(let ((@x1780 (hypothesis $x886)))
+(let (($x1782 (or $x657 $x1531 $x741 $x1532 $x1471 $x1421 $x1191 $x957 $x958 $x744 $x742 $x1141 $x784 $x800 $x801)))
+(let ((@x1784 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 -1 1 -1 1 -1 1 1 -1 -1 -1 -2 2) $x1782) (hypothesis $x1503) @x799 @x853 @x703 @x1138 @x1258 @x1254 @x1139 @x868 @x1517 @x1672 @x687 @x1735 @x1780 $x657)))
+(let ((@x1789 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1 1 1) (or $x488 $x338 $x1532 $x1471 $x710 $x1191 $x1141)) @x1701 @x1138 @x1258 @x1698 @x1139 @x1735 $x488)))
+(let (($x927 (not $x1699)))
+(let (($x1792 (or $x654 $x1415 $x1416 $x741 $x1421 $x1191 $x927 $x1424 $x957 $x958 $x800 $x801 $x1141 $x1532 $x1471 $x710)))
+(let ((@x1794 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 -1 1 -1 -1 1 1 -1 1 -1 1 2 -2 -2) $x1792) (unit-resolution @x1293 (unit-resolution @x573 @x1789 $x584) $x1238) @x799 @x853 @x857 @x1138 @x1258 @x1286 @x1698 @x1139 @x1517 @x1672 @x1254 @x1735 @x1780 @x1712 $x654)))
+(let (($x1796 (or $x653 $x1323 $x1422 $x813 $x815 $x814 $x1629 $x1199 $x706 $x743 $x817 $x818 $x733 $x734 $x816 $x766)))
+(let ((@x1798 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 -1 1 -1 -1 1 1 -1 1 -1 1 2 -2 -2) $x1796) @x1784 @x812 @x698 @x1127 @x730 @x715 @x1298 @x720 @x731 @x716 @x1617 @x934 @x1538 @x1703 (unit-resolution @x1300 (unit-resolution @x573 @x1789 $x584) $x1239) $x653)))
+(let ((@x1799 (unit-resolution @x1306 @x1798 @x1794 (unit-resolution @x569 (unit-resolution @x755 @x1784 $x92) $x582) false)))
+(let ((@x1814 (unit-resolution (lemma @x1799 (or $x1531 $x733 $x734 $x813 $x1141 $x1532 $x741 $x784 $x338)) (unit-resolution @x1168 (unit-resolution @x647 @x1807 $x644) $x664) @x920 @x762 @x722 (unit-resolution @x1438 (unit-resolution @x647 @x1807 $x644) $x1381) @x735 (unit-resolution @x693 (unit-resolution @x599 @x1810 $x596) $x678) @x1701 $x1531)))
+(let ((@x1816 (unit-resolution ((_ th-lemma arith assign-bounds -1 -2 2 -2 -2 2) (or $x1503 $x707 $x706 $x743 $x439 $x817 $x818)) @x698 @x1617 @x812 @x1538 (or $x1503 $x707 $x439))))
+(let ((@x1803 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x823 $x1503)) (hypothesis $x621) (hypothesis $x1531) false)))
+(let ((@x1804 (lemma @x1803 (or $x823 $x1503))))
+(let ((@x1820 (unit-resolution @x623 (unit-resolution @x625 (unit-resolution @x1804 @x1814 $x823) $x363) $x620)))
+(let ((@x1821 (unit-resolution @x926 @x1820 (unit-resolution @x1816 @x1814 @x1810 $x707) false)))
+(let ((@x1861 (unit-resolution (lemma @x1821 (or $x338 $x463)) @x688 $x338)))
+(let ((@x1827 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 -1 -1 -1 1 1 -1) (or $x860 $x707 $x414 $x742 $x1424 $x800 $x801 $x289 $x438)) @x799 @x703 @x857 @x1481 @x1517 (or $x860 $x707 $x289 $x438))))
+(let ((@x1829 (unit-resolution @x926 @x910 (unit-resolution @x1827 @x763 @x1078 @x858 $x707) false)))
+(let ((@x1831 (lemma @x1829 (or $x438 $x289 $x860))))
+(let ((@x1864 (unit-resolution @x1831 @x918 (unit-resolution @x1117 (unit-resolution @x631 @x1861 $x628) $x667) $x438)))
+(let ((@x1865 (unit-resolution (unit-resolution @x709 @x1617 (or $x463 $x339 $x439 $x707)) @x1864 @x688 @x1861 $x707)))
+(let ((@x1868 (unit-resolution @x1129 (unit-resolution @x631 @x1861 $x628) $x663)))
+(let ((@x1619 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1 -1 1 1 -1 1 1 -1) (or $x706 $x743 $x313 $x1141 $x1191 $x817 $x1198 $x1199 $x439 $x818)) @x698 @x1127 @x1138 @x812 (or $x706 $x313 $x1141 $x817 $x1198 $x439))))
+(let ((@x1871 (unit-resolution (unit-resolution @x1619 @x1538 @x1617 (or $x313 $x1141 $x1198 $x439)) @x1864 @x722 @x1868 $x313)))
+(let ((@x1836 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 -1 1 -1 -1 1 1 -1 1 -1 1 2 -2 -2) $x1796) @x1320 @x812 @x698 @x1127 @x730 @x715 @x1298 @x720 @x731 @x716 @x1617 @x934 @x1538 @x1647 @x764 $x1323)))
+(let ((@x1833 ((_ th-lemma arith farkas 1 -1 -1 1 -1 1 1 1 -1 1 -1 -1 1) @x1138 @x1139 @x1298 @x1320 @x934 @x720 @x1127 @x1617 @x698 @x1538 @x812 @x1213 (hypothesis $x1506) false)))
+(let ((@x1837 (unit-resolution (lemma @x1833 (or $x1558 $x1141 $x653 $x813 $x1198)) @x1320 @x1139 @x934 @x1213 $x1558)))
+(let ((@x1840 (unit-resolution @x573 (unit-resolution @x575 (unit-resolution @x1569 @x1837 $x1546) $x488) $x584)))
+(let ((@x1843 (lemma (unit-resolution @x1300 @x1840 @x1836 false) (or $x653 $x1141 $x813 $x1198 $x733 $x734 $x1629 $x766))))
+(let ((@x1847 (unit-resolution @x1306 (unit-resolution @x1843 @x764 @x934 @x1213 @x731 @x716 @x1647 @x1139 $x653) (unit-resolution @x569 (unit-resolution @x755 @x764 $x92) $x582) $x1304)))
+(let (($x1848 (or $x1550 $x814 $x733 $x1416 $x654 $x741 $x1421 $x1424 $x957 $x958 $x800 $x801 $x860)))
+(let ((@x1850 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 -1 1 -1 1 1 1 -1 1 -1 -1) $x1848) @x1847 @x799 @x853 @x857 @x730 @x1254 @x731 @x1517 @x858 @x1672 @x1286 @x1780 $x1550)))
+(let ((@x1853 (unit-resolution @x573 (unit-resolution @x575 (unit-resolution @x1583 @x1850 $x1546) $x488) $x584)))
+(let ((@x1857 (unit-resolution ((_ th-lemma arith assign-bounds -1 -2 -2 2 2 2 -2) (or $x1699 $x860 $x489 $x734 $x816 $x766 $x814 $x733)) @x764 @x715 @x730 @x731 @x716 @x858 (unit-resolution @x575 (unit-resolution @x1583 @x1850 $x1546) $x488) $x1699)))
+(let ((@x1858 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 -1 1 -1 -1 1 1 -1 1 -1 1 2 -2 -2) $x1792) @x1857 (unit-resolution @x1293 @x1853 $x1238) @x799 @x853 @x857 @x1138 @x1258 @x1735 @x1698 @x1139 @x1517 @x1672 @x1847 @x1254 @x1780 @x1286 false)))
+(let ((@x1878 (unit-resolution (lemma @x1858 (or $x766 $x1532 $x1141 $x741 $x733 $x734 $x860 $x813 $x1198 $x1629)) (unit-resolution @x1438 (unit-resolution @x647 @x1871 $x644) $x1381) @x722 @x735 @x920 (unit-resolution @x1168 (unit-resolution @x647 @x1871 $x644) $x664) (unit-resolution @x1117 (unit-resolution @x631 @x1861 $x628) $x667) @x762 @x1868 (unit-resolution ((_ th-lemma arith assign-bounds 1 -2) (or $x875 $x1198 $x339)) @x1861 @x1868 $x875) $x766)))
+(let ((@x1879 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 -1 1 -1 1 -1 1 1 -1 -1 -1 -2 2) $x1782) @x1878 @x799 @x853 @x703 @x1138 @x1258 (unit-resolution @x1438 (unit-resolution @x647 @x1871 $x644) $x1381) @x722 (unit-resolution @x693 (unit-resolution @x599 @x1864 $x596) $x678) @x1517 @x1672 @x687 @x1254 @x735 $x1531)))
+(let ((@x1882 (unit-resolution @x623 (unit-resolution @x625 (unit-resolution @x1804 @x1879 $x823) $x363) $x620)))
+(let ((@x1884 (lemma (unit-resolution @x926 @x1882 @x1865 false) $x463)))
+(let ((@x1943 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 1 -1 1) (or $x678 $x389 $x1472 $x817 $x818 $x464)) @x832 @x812 @x1610 @x1884 @x1538 $x678)))
+(let ((@x1906 (unit-resolution @x1770 @x763 $x288)))
+(let ((@x1910 (unit-resolution (unit-resolution @x1207 @x1481 (or $x438 $x289 $x313)) @x763 @x1906 $x313)))
+(let ((@x1915 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x663 $x667)) (unit-resolution @x1831 @x1906 @x763 $x860) $x663)))
+(let ((@x1886 (unit-resolution @x1270 (unit-resolution @x591 @x1884 $x588) $x672)))
+(let ((@x1887 ((_ th-lemma arith farkas -1 1 -1 1 -3/2 3/2 -1/2 1/2 1/2 -1/2 1/2 -1/2 1/2 1/2 -1/2 -1/2 1/2 1) @x857 @x1078 @x1517 @x799 @x1672 @x853 @x1735 @x1258 @x1255 @x1254 @x1700 @x832 @x1886 @x1138 @x1152 @x1208 @x835 (hypothesis $x1699) false)))
+(let ((@x1890 (unit-resolution (lemma @x1887 (or $x657 $x289 $x1532 $x1723 $x1092 $x927)) @x1712 @x1735 @x1700 @x1208 @x1078 $x657)))
+(let ((@x1772 (hypothesis $x871)))
+(let ((@x1774 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x589) $x679)) @x758 (unit-resolution ((_ th-lemma arith assign-bounds 1 2) (or $x681 $x813 $x463)) @x688 @x1772 $x813) false)))
+(let ((@x1777 (unit-resolution @x591 (unit-resolution (lemma @x1774 (or $x463 $x681)) @x1772 $x463) $x588)))
+(let ((@x1779 (lemma (unit-resolution @x725 @x1777 @x1772 false) $x681)))
+(let ((@x1897 (unit-resolution (unit-resolution ((_ th-lemma arith assign-bounds 2 -1) (or $x679 $x464 $x871)) @x1779 (or $x679 $x464)) @x1884 $x679)))
+(let ((@x1899 (unit-resolution @x1306 (unit-resolution @x1843 @x1890 @x1897 @x1213 @x1147 @x716 @x1703 @x1152 $x653) (unit-resolution @x569 (unit-resolution @x755 @x1890 $x92) $x582) $x1304)))
+(let ((@x1900 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1 1 1) (or $x488 $x338 $x1532 $x1471 $x710 $x1191 $x1141)) @x1701 @x1138 @x1258 @x1698 @x1152 @x1735 $x488)))
+(let ((@x1903 ((_ th-lemma arith farkas -1 -1 1 -2 2 -1 1 1 1 -1 -1 1 -1 1 -1 1) @x857 @x1517 @x799 @x1672 @x853 @x1735 @x1258 @x1698 @x1700 @x832 @x1208 @x835 (unit-resolution @x1293 (unit-resolution @x573 @x1900 $x584) $x1238) @x1286 @x1899 @x1712 false)))
+(let ((@x1917 (unit-resolution (lemma @x1903 (or $x338 $x1532 $x1723 $x1092 $x1198 $x734 $x289)) (unit-resolution @x1438 (unit-resolution @x647 @x1910 $x644) $x1381) @x966 (unit-resolution @x865 @x910 $x840) @x1915 (unit-resolution @x1168 (unit-resolution @x647 @x1910 $x644) $x664) @x1906 $x338)))
+(let ((@x1919 (unit-resolution @x1117 (unit-resolution @x631 @x1917 $x628) (unit-resolution @x1831 @x1906 @x763 $x860) false)))
+(let ((@x1920 (lemma @x1919 $x438)))
+(let ((@x1922 (unit-resolution @x828 (unit-resolution @x599 @x1920 $x596) $x669)))
+(let ((@x1925 (unit-resolution ((_ th-lemma arith assign-bounds -1 -2 2 -2 -2 2) (or $x839 $x706 $x817 $x818 $x464 $x903 $x1472)) @x832 @x812 @x1617 @x1538 @x1884 @x1922 $x839)))
+(let ((@x1929 (unit-resolution @x631 (unit-resolution (unit-resolution @x1486 @x1481 (or $x338 $x872)) @x1925 $x338) $x628)))
+(let ((@x1930 (unit-resolution @x1129 @x1929 $x663)))
+(let ((@x1933 (unit-resolution (unit-resolution @x1491 @x1127 @x835 @x1672 (or $x872 $x1198 $x1092 $x288)) @x1370 @x1925 @x1930 $x1092)))
+(let ((@x1934 (unit-resolution ((_ th-lemma arith assign-bounds 1 -2) (or $x875 $x1198 $x339)) @x1930 (unit-resolution (unit-resolution @x1486 @x1481 (or $x338 $x872)) @x1925 $x338) $x875)))
+(let ((@x1937 (unit-resolution (unit-resolution @x1637 @x1127 @x1610 @x703 (or $x1629 $x1531 $x288)) @x1370 @x1934 $x1531)))
+(let ((@x1939 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x840 $x670)) (unit-resolution @x1816 @x1937 @x1920 $x707) @x1933 false)))
+(let ((@x1945 (unit-resolution @x1151 (unit-resolution @x639 (lemma @x1939 $x288) $x636) $x660)))
+(let ((@x1948 (unit-resolution (unit-resolution @x1580 @x1779 (or $x653 $x872 $x1141 $x1262 $x784)) @x1945 @x1886 @x1925 @x1943 $x653)))
+(let ((@x1950 (unit-resolution @x1146 (unit-resolution @x639 (lemma @x1939 $x288) $x636) $x661)))
+(let ((@x1951 (unit-resolution ((_ th-lemma arith assign-bounds 2 -1) (or $x780 $x389 $x957)) @x1672 @x1610 $x780)))
+(let ((@x1954 (unit-resolution (unit-resolution @x1592 @x1951 (or $x654 $x903 $x1262 $x733 $x860)) @x1950 @x1886 @x1922 (unit-resolution @x1117 @x1929 $x667) $x654)))
+(let ((@x1957 (unit-resolution @x755 (unit-resolution @x569 (unit-resolution @x1306 @x1954 @x1948 $x91) $x583) $x766)))
+(let ((@x1958 (unit-resolution (unit-resolution @x1619 @x1538 @x1617 (or $x313 $x1141 $x1198 $x439)) @x1945 @x1920 @x1930 $x313)))
+(let ((@x1963 (unit-resolution ((_ th-lemma arith assign-bounds 2 -1) (or $x1249 $x314 $x1532)) (unit-resolution @x1438 (unit-resolution @x647 @x1958 $x644) $x1381) @x1958 $x1249)))
+(let ((@x1966 (unit-resolution (unit-resolution @x1264 @x1951 (or $x657 $x707 $x1261 $x1262 $x733 $x903 $x860)) @x1963 @x1886 (unit-resolution @x1117 @x1929 $x667) @x1950 @x1922 @x1957 $x707)))
+(let ((@x1968 (unit-resolution @x1534 @x853 @x703 @x1138 @x1258 @x1951 @x832 @x1254 (or $x657 $x1531 $x1532 $x903 $x1262 $x1141))))
+(let ((@x1969 (unit-resolution @x1968 (unit-resolution @x1438 (unit-resolution @x647 @x1958 $x644) $x1381) @x1886 @x1922 @x1945 @x1957 $x1531)))
+(let ((@x1972 (unit-resolution @x623 (unit-resolution @x625 (unit-resolution @x1804 @x1969 $x823) $x363) $x620)))
+(unit-resolution @x926 @x1972 @x1966 false))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
+
+504214aed097fba8e46b5c49f98f792e49e4d9da 113 0
+unsat
+((set-logic <null>)
+(proof
+(let ((?x228 (mod x$ 2)))
+(let ((?x262 (* (- 1) ?x228)))
+(let ((?x31 (modulo$ x$ 2)))
+(let ((?x263 (+ ?x31 ?x262)))
+(let (($x280 (>= ?x263 0)))
+(let (($x264 (= ?x263 0)))
+(let (($x205 (forall ((?v0 Int) (?v1 Int) )(! (let ((?x136 (mod ?v0 ?v1)))
+(let ((?x93 (* (- 1) ?v1)))
+(let ((?x90 (* (- 1) ?v0)))
+(let ((?x144 (mod ?x90 ?x93)))
+(let ((?x150 (* (- 1) ?x144)))
+(let (($x111 (<= ?v1 0)))
+(let ((?x170 (ite $x111 ?x150 ?x136)))
+(let (($x78 (= ?v1 0)))
+(let ((?x175 (ite $x78 ?v0 ?x170)))
+(let ((?x135 (modulo$ ?v0 ?v1)))
+(= ?x135 ?x175))))))))))) :pattern ( (modulo$ ?v0 ?v1) ) :qid k!9))
+))
+(let (($x181 (forall ((?v0 Int) (?v1 Int) )(! (let ((?x136 (mod ?v0 ?v1)))
+(let ((?x93 (* (- 1) ?v1)))
+(let ((?x90 (* (- 1) ?v0)))
+(let ((?x144 (mod ?x90 ?x93)))
+(let ((?x150 (* (- 1) ?x144)))
+(let (($x111 (<= ?v1 0)))
+(let ((?x170 (ite $x111 ?x150 ?x136)))
+(let (($x78 (= ?v1 0)))
+(let ((?x175 (ite $x78 ?v0 ?x170)))
+(let ((?x135 (modulo$ ?v0 ?v1)))
+(= ?x135 ?x175))))))))))) :qid k!9))
+))
+(let ((?x136 (mod ?1 ?0)))
+(let ((?x93 (* (- 1) ?0)))
+(let ((?x90 (* (- 1) ?1)))
+(let ((?x144 (mod ?x90 ?x93)))
+(let ((?x150 (* (- 1) ?x144)))
+(let (($x111 (<= ?0 0)))
+(let ((?x170 (ite $x111 ?x150 ?x136)))
+(let (($x78 (= ?0 0)))
+(let ((?x175 (ite $x78 ?1 ?x170)))
+(let ((?x135 (modulo$ ?1 ?0)))
+(let (($x178 (= ?x135 ?x175)))
+(let (($x142 (forall ((?v0 Int) (?v1 Int) )(! (let (($x78 (= ?v1 0)))
+(let ((?x140 (ite $x78 ?v0 (ite (< 0 ?v1) (mod ?v0 ?v1) (- (mod (- ?v0) (- ?v1)))))))
+(let ((?x135 (modulo$ ?v0 ?v1)))
+(= ?x135 ?x140)))) :qid k!9))
+))
+(let (($x164 (forall ((?v0 Int) (?v1 Int) )(! (let ((?x93 (* (- 1) ?v1)))
+(let ((?x90 (* (- 1) ?v0)))
+(let ((?x144 (mod ?x90 ?x93)))
+(let ((?x150 (* (- 1) ?x144)))
+(let ((?x136 (mod ?v0 ?v1)))
+(let (($x79 (< 0 ?v1)))
+(let ((?x155 (ite $x79 ?x136 ?x150)))
+(let (($x78 (= ?v1 0)))
+(let ((?x158 (ite $x78 ?v0 ?x155)))
+(let ((?x135 (modulo$ ?v0 ?v1)))
+(= ?x135 ?x158))))))))))) :qid k!9))
+))
+(let ((@x169 (monotonicity (rewrite (= (< 0 ?0) (not $x111))) (= (ite (< 0 ?0) ?x136 ?x150) (ite (not $x111) ?x136 ?x150)))))
+(let ((@x174 (trans @x169 (rewrite (= (ite (not $x111) ?x136 ?x150) ?x170)) (= (ite (< 0 ?0) ?x136 ?x150) ?x170))))
+(let ((@x177 (monotonicity @x174 (= (ite $x78 ?1 (ite (< 0 ?0) ?x136 ?x150)) ?x175))))
+(let ((@x180 (monotonicity @x177 (= (= ?x135 (ite $x78 ?1 (ite (< 0 ?0) ?x136 ?x150))) $x178))))
+(let (($x79 (< 0 ?0)))
+(let ((?x155 (ite $x79 ?x136 ?x150)))
+(let ((?x158 (ite $x78 ?1 ?x155)))
+(let (($x161 (= ?x135 ?x158)))
+(let (($x162 (= (= ?x135 (ite $x78 ?1 (ite $x79 ?x136 (- (mod (- ?1) (- ?0)))))) $x161)))
+(let ((@x146 (monotonicity (rewrite (= (- ?1) ?x90)) (rewrite (= (- ?0) ?x93)) (= (mod (- ?1) (- ?0)) ?x144))))
+(let ((@x154 (trans (monotonicity @x146 (= (- (mod (- ?1) (- ?0))) (- ?x144))) (rewrite (= (- ?x144) ?x150)) (= (- (mod (- ?1) (- ?0))) ?x150))))
+(let ((@x157 (monotonicity @x154 (= (ite $x79 ?x136 (- (mod (- ?1) (- ?0)))) ?x155))))
+(let ((@x160 (monotonicity @x157 (= (ite $x78 ?1 (ite $x79 ?x136 (- (mod (- ?1) (- ?0))))) ?x158))))
+(let ((@x185 (trans (quant-intro (monotonicity @x160 $x162) (= $x142 $x164)) (quant-intro @x180 (= $x164 $x181)) (= $x142 $x181))))
+(let ((@x196 (mp~ (mp (asserted $x142) @x185 $x181) (nnf-pos (refl (~ $x178 $x178)) (~ $x181 $x181)) $x181)))
+(let ((@x210 (mp @x196 (quant-intro (refl (= $x178 $x178)) (= $x181 $x205)) $x205)))
+(let (($x270 (or (not $x205) $x264)))
+(let ((?x225 (* (- 1) 2)))
+(let ((?x224 (* (- 1) x$)))
+(let ((?x226 (mod ?x224 ?x225)))
+(let ((?x227 (* (- 1) ?x226)))
+(let (($x223 (<= 2 0)))
+(let ((?x229 (ite $x223 ?x227 ?x228)))
+(let (($x222 (= 2 0)))
+(let ((?x230 (ite $x222 x$ ?x229)))
+(let (($x231 (= ?x31 ?x230)))
+(let ((@x244 (monotonicity (monotonicity (rewrite (= ?x225 (- 2))) (= ?x226 (mod ?x224 (- 2)))) (= ?x227 (* (- 1) (mod ?x224 (- 2)))))))
+(let ((@x247 (monotonicity (rewrite (= $x223 false)) @x244 (= ?x229 (ite false (* (- 1) (mod ?x224 (- 2))) ?x228)))))
+(let ((@x251 (trans @x247 (rewrite (= (ite false (* (- 1) (mod ?x224 (- 2))) ?x228) ?x228)) (= ?x229 ?x228))))
+(let ((@x254 (monotonicity (rewrite (= $x222 false)) @x251 (= ?x230 (ite false x$ ?x228)))))
+(let ((@x261 (monotonicity (trans @x254 (rewrite (= (ite false x$ ?x228) ?x228)) (= ?x230 ?x228)) (= $x231 (= ?x31 ?x228)))))
+(let ((@x274 (monotonicity (trans @x261 (rewrite (= (= ?x31 ?x228) $x264)) (= $x231 $x264)) (= (or (not $x205) $x231) $x270))))
+(let ((@x277 (trans @x274 (rewrite (= $x270 $x270)) (= (or (not $x205) $x231) $x270))))
+(let ((@x278 (mp ((_ quant-inst x$ 2) (or (not $x205) $x231)) @x277 $x270)))
+(let ((@x332 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x264) $x280)) (unit-resolution @x278 @x210 $x264) $x280)))
+(let (($x305 (>= ?x228 0)))
+(let (($x64 (>= ?x31 0)))
+(let (($x67 (not $x64)))
+(let (($x36 (not (<= (+ x$ 1) (+ x$ (+ (* 2 ?x31) 1))))))
+(let ((@x69 (monotonicity (rewrite (= (>= (* 2 ?x31) 0) $x64)) (= (not (>= (* 2 ?x31) 0)) $x67))))
+(let ((?x32 (* 2 ?x31)))
+(let ((?x47 (+ 1 x$ ?x32)))
+(let (($x52 (<= (+ 1 x$) ?x47)))
+(let (($x55 (not $x52)))
+(let ((@x63 (monotonicity (rewrite (= $x52 (>= ?x32 0))) (= $x55 (not (>= ?x32 0))))))
+(let ((@x46 (monotonicity (rewrite (= (+ ?x32 1) (+ 1 ?x32))) (= (+ x$ (+ ?x32 1)) (+ x$ (+ 1 ?x32))))))
+(let ((@x51 (trans @x46 (rewrite (= (+ x$ (+ 1 ?x32)) ?x47)) (= (+ x$ (+ ?x32 1)) ?x47))))
+(let ((@x54 (monotonicity (rewrite (= (+ x$ 1) (+ 1 x$))) @x51 (= (<= (+ x$ 1) (+ x$ (+ ?x32 1))) $x52))))
+(let ((@x73 (trans (monotonicity @x54 (= $x36 $x55)) (trans @x63 @x69 (= $x55 $x67)) (= $x36 $x67))))
+(let ((@x74 (mp (asserted $x36) @x73 $x67)))
+((_ th-lemma arith farkas -1 1 1) @x74 (unit-resolution ((_ th-lemma arith) (or false $x305)) (true-axiom true) $x305) @x332 false))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
+
+39e19cd0e196322692e5b34ecb957ba2c2639785 112 0
+unsat
+((set-logic <null>)
+(proof
+(let ((?x224 (mod x$ 2)))
+(let (($x318 (>= ?x224 2)))
+(let (($x319 (not $x318)))
+(let ((?x258 (* (- 1) ?x224)))
+(let ((?x29 (modulo$ x$ 2)))
+(let ((?x259 (+ ?x29 ?x258)))
+(let (($x275 (<= ?x259 0)))
+(let (($x260 (= ?x259 0)))
+(let (($x201 (forall ((?v0 Int) (?v1 Int) )(! (let ((?x132 (mod ?v0 ?v1)))
+(let ((?x89 (* (- 1) ?v1)))
+(let ((?x86 (* (- 1) ?v0)))
+(let ((?x140 (mod ?x86 ?x89)))
+(let ((?x146 (* (- 1) ?x140)))
+(let (($x107 (<= ?v1 0)))
+(let ((?x166 (ite $x107 ?x146 ?x132)))
+(let (($x74 (= ?v1 0)))
+(let ((?x171 (ite $x74 ?v0 ?x166)))
+(let ((?x131 (modulo$ ?v0 ?v1)))
+(= ?x131 ?x171))))))))))) :pattern ( (modulo$ ?v0 ?v1) ) :qid k!9))
+))
+(let (($x177 (forall ((?v0 Int) (?v1 Int) )(! (let ((?x132 (mod ?v0 ?v1)))
+(let ((?x89 (* (- 1) ?v1)))
+(let ((?x86 (* (- 1) ?v0)))
+(let ((?x140 (mod ?x86 ?x89)))
+(let ((?x146 (* (- 1) ?x140)))
+(let (($x107 (<= ?v1 0)))
+(let ((?x166 (ite $x107 ?x146 ?x132)))
+(let (($x74 (= ?v1 0)))
+(let ((?x171 (ite $x74 ?v0 ?x166)))
+(let ((?x131 (modulo$ ?v0 ?v1)))
+(= ?x131 ?x171))))))))))) :qid k!9))
+))
+(let ((?x132 (mod ?1 ?0)))
+(let ((?x89 (* (- 1) ?0)))
+(let ((?x86 (* (- 1) ?1)))
+(let ((?x140 (mod ?x86 ?x89)))
+(let ((?x146 (* (- 1) ?x140)))
+(let (($x107 (<= ?0 0)))
+(let ((?x166 (ite $x107 ?x146 ?x132)))
+(let (($x74 (= ?0 0)))
+(let ((?x171 (ite $x74 ?1 ?x166)))
+(let ((?x131 (modulo$ ?1 ?0)))
+(let (($x174 (= ?x131 ?x171)))
+(let (($x138 (forall ((?v0 Int) (?v1 Int) )(! (let (($x74 (= ?v1 0)))
+(let ((?x136 (ite $x74 ?v0 (ite (< 0 ?v1) (mod ?v0 ?v1) (- (mod (- ?v0) (- ?v1)))))))
+(let ((?x131 (modulo$ ?v0 ?v1)))
+(= ?x131 ?x136)))) :qid k!9))
+))
+(let (($x160 (forall ((?v0 Int) (?v1 Int) )(! (let ((?x89 (* (- 1) ?v1)))
+(let ((?x86 (* (- 1) ?v0)))
+(let ((?x140 (mod ?x86 ?x89)))
+(let ((?x146 (* (- 1) ?x140)))
+(let ((?x132 (mod ?v0 ?v1)))
+(let (($x75 (< 0 ?v1)))
+(let ((?x151 (ite $x75 ?x132 ?x146)))
+(let (($x74 (= ?v1 0)))
+(let ((?x154 (ite $x74 ?v0 ?x151)))
+(let ((?x131 (modulo$ ?v0 ?v1)))
+(= ?x131 ?x154))))))))))) :qid k!9))
+))
+(let ((@x165 (monotonicity (rewrite (= (< 0 ?0) (not $x107))) (= (ite (< 0 ?0) ?x132 ?x146) (ite (not $x107) ?x132 ?x146)))))
+(let ((@x170 (trans @x165 (rewrite (= (ite (not $x107) ?x132 ?x146) ?x166)) (= (ite (< 0 ?0) ?x132 ?x146) ?x166))))
+(let ((@x173 (monotonicity @x170 (= (ite $x74 ?1 (ite (< 0 ?0) ?x132 ?x146)) ?x171))))
+(let ((@x176 (monotonicity @x173 (= (= ?x131 (ite $x74 ?1 (ite (< 0 ?0) ?x132 ?x146))) $x174))))
+(let (($x75 (< 0 ?0)))
+(let ((?x151 (ite $x75 ?x132 ?x146)))
+(let ((?x154 (ite $x74 ?1 ?x151)))
+(let (($x157 (= ?x131 ?x154)))
+(let (($x158 (= (= ?x131 (ite $x74 ?1 (ite $x75 ?x132 (- (mod (- ?1) (- ?0)))))) $x157)))
+(let ((@x142 (monotonicity (rewrite (= (- ?1) ?x86)) (rewrite (= (- ?0) ?x89)) (= (mod (- ?1) (- ?0)) ?x140))))
+(let ((@x150 (trans (monotonicity @x142 (= (- (mod (- ?1) (- ?0))) (- ?x140))) (rewrite (= (- ?x140) ?x146)) (= (- (mod (- ?1) (- ?0))) ?x146))))
+(let ((@x153 (monotonicity @x150 (= (ite $x75 ?x132 (- (mod (- ?1) (- ?0)))) ?x151))))
+(let ((@x156 (monotonicity @x153 (= (ite $x74 ?1 (ite $x75 ?x132 (- (mod (- ?1) (- ?0))))) ?x154))))
+(let ((@x181 (trans (quant-intro (monotonicity @x156 $x158) (= $x138 $x160)) (quant-intro @x176 (= $x160 $x177)) (= $x138 $x177))))
+(let ((@x192 (mp~ (mp (asserted $x138) @x181 $x177) (nnf-pos (refl (~ $x174 $x174)) (~ $x177 $x177)) $x177)))
+(let ((@x206 (mp @x192 (quant-intro (refl (= $x174 $x174)) (= $x177 $x201)) $x201)))
+(let (($x266 (or (not $x201) $x260)))
+(let ((?x221 (* (- 1) 2)))
+(let ((?x220 (* (- 1) x$)))
+(let ((?x222 (mod ?x220 ?x221)))
+(let ((?x223 (* (- 1) ?x222)))
+(let (($x219 (<= 2 0)))
+(let ((?x225 (ite $x219 ?x223 ?x224)))
+(let (($x218 (= 2 0)))
+(let ((?x226 (ite $x218 x$ ?x225)))
+(let (($x227 (= ?x29 ?x226)))
+(let ((@x240 (monotonicity (monotonicity (rewrite (= ?x221 (- 2))) (= ?x222 (mod ?x220 (- 2)))) (= ?x223 (* (- 1) (mod ?x220 (- 2)))))))
+(let ((@x243 (monotonicity (rewrite (= $x219 false)) @x240 (= ?x225 (ite false (* (- 1) (mod ?x220 (- 2))) ?x224)))))
+(let ((@x247 (trans @x243 (rewrite (= (ite false (* (- 1) (mod ?x220 (- 2))) ?x224) ?x224)) (= ?x225 ?x224))))
+(let ((@x250 (monotonicity (rewrite (= $x218 false)) @x247 (= ?x226 (ite false x$ ?x224)))))
+(let ((@x257 (monotonicity (trans @x250 (rewrite (= (ite false x$ ?x224) ?x224)) (= ?x226 ?x224)) (= $x227 (= ?x29 ?x224)))))
+(let ((@x270 (monotonicity (trans @x257 (rewrite (= (= ?x29 ?x224) $x260)) (= $x227 $x260)) (= (or (not $x201) $x227) $x266))))
+(let ((@x273 (trans @x270 (rewrite (= $x266 $x266)) (= (or (not $x201) $x227) $x266))))
+(let ((@x274 (mp ((_ quant-inst x$ 2) (or (not $x201) $x227)) @x273 $x266)))
+(let ((@x331 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x260) $x275)) (unit-resolution @x274 @x206 $x260) $x275)))
+(let (($x63 (>= ?x29 2)))
+(let ((?x37 (* 2 ?x29)))
+(let (($x56 (>= ?x37 3)))
+(let (($x46 (< (+ x$ ?x37) (+ 3 x$))))
+(let (($x49 (not $x46)))
+(let ((@x58 (monotonicity (rewrite (= $x46 (not $x56))) (= $x49 (not (not $x56))))))
+(let ((@x67 (trans (trans @x58 (rewrite (= (not (not $x56)) $x56)) (= $x49 $x56)) (rewrite (= $x56 $x63)) (= $x49 $x63))))
+(let ((@x42 (monotonicity (rewrite (= (+ ?x29 ?x29) ?x37)) (= (+ x$ (+ ?x29 ?x29)) (+ x$ ?x37)))))
+(let ((@x48 (monotonicity @x42 (rewrite (= (+ x$ 3) (+ 3 x$))) (= (< (+ x$ (+ ?x29 ?x29)) (+ x$ 3)) $x46))))
+(let ((@x51 (monotonicity @x48 (= (not (< (+ x$ (+ ?x29 ?x29)) (+ x$ 3))) $x49))))
+(let ((@x69 (trans @x51 @x67 (= (not (< (+ x$ (+ ?x29 ?x29)) (+ x$ 3))) $x63))))
+(let ((@x70 (mp (asserted (not (< (+ x$ (+ ?x29 ?x29)) (+ x$ 3)))) @x69 $x63)))
+((_ th-lemma arith farkas -1 1 1) @x70 @x331 (unit-resolution ((_ th-lemma arith) (or false $x319)) (true-axiom true) $x319) false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
+
+de96fa1082a7149e62c54905aee3da41c59c5479 32 0
+unsat
+((set-logic <null>)
+(proof
+(let (($x28 (= x$ 0.0)))
+(let (($x29 (not $x28)))
+(let ((@x30 (asserted $x29)))
+(let (($x101 (<= x$ 0.0)))
+(let ((?x47 (* 2.0 x$)))
+(let (($x99 (<= ?x47 0.0)))
+(let (($x95 (= ?x47 0.0)))
+(let (($x36 (< 1.0 (ite (< x$ 0.0) (- x$) x$))))
+(let (($x38 (or $x36 (not $x36))))
+(let ((?x41 (ite $x38 4.0 2.0)))
+(let (($x45 (not (not (= (+ x$ x$) (* ?x41 x$))))))
+(let ((@x90 (rewrite (= (not (not (= ?x47 (* 4.0 x$)))) (= ?x47 (* 4.0 x$))))))
+(let (($x84 (= (not (= (+ x$ x$) (* ?x41 x$))) (not (= ?x47 (* 4.0 x$))))))
+(let (($x57 (< 1.0 (ite (< x$ 0.0) (* (- 1.0) x$) x$))))
+(let (($x55 (= (ite (< x$ 0.0) (- x$) x$) (ite (< x$ 0.0) (* (- 1.0) x$) x$))))
+(let ((@x59 (monotonicity (monotonicity (rewrite (= (- x$) (* (- 1.0) x$))) $x55) (= $x36 $x57))))
+(let ((@x65 (monotonicity @x59 (monotonicity @x59 (= (not $x36) (not $x57))) (= $x38 (or $x57 (not $x57))))))
+(let ((@x69 (trans @x65 (rewrite (= (or $x57 (not $x57)) true)) (= $x38 true))))
+(let ((@x76 (trans (monotonicity @x69 (= ?x41 (ite true 4.0 2.0))) (rewrite (= (ite true 4.0 2.0) 4.0)) (= ?x41 4.0))))
+(let ((@x82 (monotonicity (rewrite (= (+ x$ x$) ?x47)) (monotonicity @x76 (= (* ?x41 x$) (* 4.0 x$))) (= (= (+ x$ x$) (* ?x41 x$)) (= ?x47 (* 4.0 x$))))))
+(let ((@x88 (monotonicity (monotonicity @x82 $x84) (= $x45 (not (not (= ?x47 (* 4.0 x$))))))))
+(let ((@x97 (trans (trans @x88 @x90 (= $x45 (= ?x47 (* 4.0 x$)))) (rewrite (= (= ?x47 (* 4.0 x$)) $x95)) (= $x45 $x95))))
+(let ((@x98 (mp (asserted $x45) @x97 $x95)))
+(let ((@x110 (unit-resolution ((_ th-lemma arith assign-bounds 1) (or $x101 (not $x99))) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x95) $x99)) @x98 $x99) $x101)))
+(let (($x102 (>= x$ 0.0)))
+(let (($x100 (>= ?x47 0.0)))
+(let ((@x117 (unit-resolution ((_ th-lemma arith assign-bounds 1) (or $x102 (not $x100))) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x95) $x100)) @x98 $x100) $x102)))
+(unit-resolution ((_ th-lemma arith triangle-eq) (or $x28 (not $x101) (not $x102))) @x117 @x110 @x30 false))))))))))))))))))))))))))))))
+
+19fdabe4ecba83d920b61b6176c852edbe5b4e52 12 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x28 (exists ((?v0 Int) )(! false :qid k!4))
+))
+(let (($x27 (not $x28)))
+(let (($x29 (not $x27)))
+(let ((@x35 (monotonicity (elim-unused (= $x28 false)) (= $x27 (not false)))))
+(let ((@x42 (monotonicity (trans @x35 (rewrite (= (not false) true)) (= $x27 true)) (= $x29 (not true)))))
+(let ((@x46 (trans @x42 (rewrite (= (not true) false)) (= $x29 false))))
+(mp (asserted $x29) @x46 false)))))))))
+
+f637cb0c23ca92610342419cb3bf8dde26b30396 12 0
+unsat
+((set-logic AUFLIRA)
+(proof
+(let (($x27 (exists ((?v0 Real) )(! false :qid k!4))
+))
+(let (($x28 (not $x27)))
+(let (($x29 (not $x28)))
+(let ((@x35 (monotonicity (elim-unused (= $x27 false)) (= $x28 (not false)))))
+(let ((@x42 (monotonicity (trans @x35 (rewrite (= (not false) true)) (= $x28 true)) (= $x29 (not true)))))
+(let ((@x46 (trans @x42 (rewrite (= (not true) false)) (= $x29 false))))
+(mp (asserted $x29) @x46 false)))))))))
+
+d29a5d1704622986b68c2f57db285b698846058a 22 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x52 (forall ((?v0 Int) )(! (<= ?v0 0) :qid k!4))
+))
+(let (($x46 (forall ((?v0 Int) )(! (let (($x34 (<= ?v0 0)))
+(let (($x35 (not $x34)))
+(not $x35))) :qid k!4))
+))
+(let ((@x54 (quant-intro (rewrite (= (not (not (<= ?0 0))) (<= ?0 0))) (= $x46 $x52))))
+(let (($x38 (exists ((?v0 Int) )(! (let (($x34 (<= ?v0 0)))
+(not $x34)) :qid k!4))
+))
+(let (($x41 (not $x38)))
+(let ((@x48 (nnf-neg (refl (~ (not (not (<= ?0 0))) (not (not (<= ?0 0))))) (~ $x41 $x46))))
+(let (($x29 (exists ((?v0 Int) )(! (< 0 ?v0) :qid k!4))
+))
+(let (($x30 (not $x29)))
+(let ((@x40 (quant-intro (rewrite (= (< 0 ?0) (not (<= ?0 0)))) (= $x29 $x38))))
+(let ((@x49 (mp~ (mp (asserted $x30) (monotonicity @x40 (= $x30 $x41)) $x41) @x48 $x46)))
+(mp (mp @x49 @x54 $x52) (rewrite (= $x52 false)) false)))))))))))))
+
+50834eb84d2f2eeb597ca8bfd0cbd46e1a977307 22 0
+unsat
+((set-logic AUFLIRA)
+(proof
+(let (($x51 (forall ((?v0 Real) )(! (<= ?v0 0.0) :qid k!4))
+))
+(let (($x45 (forall ((?v0 Real) )(! (let (($x33 (<= ?v0 0.0)))
+(let (($x34 (not $x33)))
+(not $x34))) :qid k!4))
+))
+(let ((@x53 (quant-intro (rewrite (= (not (not (<= ?0 0.0))) (<= ?0 0.0))) (= $x45 $x51))))
+(let (($x37 (exists ((?v0 Real) )(! (let (($x33 (<= ?v0 0.0)))
+(not $x33)) :qid k!4))
+))
+(let (($x40 (not $x37)))
+(let ((@x47 (nnf-neg (refl (~ (not (not (<= ?0 0.0))) (not (not (<= ?0 0.0))))) (~ $x40 $x45))))
+(let (($x28 (exists ((?v0 Real) )(! (< 0.0 ?v0) :qid k!4))
+))
+(let (($x29 (not $x28)))
+(let ((@x39 (quant-intro (rewrite (= (< 0.0 ?0) (not (<= ?0 0.0)))) (= $x28 $x37))))
+(let ((@x48 (mp~ (mp (asserted $x29) (monotonicity @x39 (= $x29 $x40)) $x40) @x47 $x45)))
+(mp (mp @x48 @x53 $x51) (rewrite (= $x51 false)) false)))))))))))))
+
+5680cf7f1f7eeede61b8763480c833540efc6501 31 0
+unsat
+((set-logic AUFLIA)
+(declare-fun ?v0!0 () Int)
+(proof
+(let (($x71 (forall ((?v1 Int) )(! (<= (+ ?v1 (* (- 1) ?v0!0)) 0) :qid k!4))
+))
+(let (($x63 (forall ((?v1 Int) )(! (not (not (<= (+ ?v1 (* (- 1) ?v0!0)) 0))) :qid k!4))
+))
+(let (($x54 (<= (+ ?0 (* (- 1) ?v0!0)) 0)))
+(let (($x60 (not (not $x54))))
+(let (($x46 (forall ((?v0 Int) )(! (exists ((?v1 Int) )(! (not (<= (+ ?v1 (* (- 1) ?v0)) 0)) :qid k!4))
+ :qid k!4))
+))
+(let (($x49 (not $x46)))
+(let (($x56 (exists ((?v1 Int) )(! (let (($x54 (<= (+ ?v1 (* (- 1) ?v0!0)) 0)))
+(not $x54)) :qid k!4))
+))
+(let ((@x67 (trans (sk (~ $x49 (not $x56))) (nnf-neg (refl (~ $x60 $x60)) (~ (not $x56) $x63)) (~ $x49 $x63))))
+(let (($x31 (forall ((?v0 Int) )(! (exists ((?v1 Int) )(! (< ?v0 ?v1) :qid k!4))
+ :qid k!4))
+))
+(let (($x32 (not $x31)))
+(let (($x43 (exists ((?v1 Int) )(! (not (<= (+ ?v1 (* (- 1) ?0)) 0)) :qid k!4))
+))
+(let (($x30 (exists ((?v1 Int) )(! (< ?0 ?v1) :qid k!4))
+))
+(let ((@x42 (rewrite (= (< ?1 ?0) (not (<= (+ ?0 (* (- 1) ?1)) 0))))))
+(let ((@x51 (monotonicity (quant-intro (quant-intro @x42 (= $x30 $x43)) (= $x31 $x46)) (= $x32 $x49))))
+(let ((@x74 (mp (mp~ (mp (asserted $x32) @x51 $x49) @x67 $x63) (quant-intro (rewrite (= $x60 $x54)) (= $x63 $x71)) $x71)))
+(mp @x74 (rewrite (= $x71 false)) false))))))))))))))))))
+
+3c28d4739f1b1a92e69b6d9cc30eb0a41a881398 22 0
+unsat
+((set-logic AUFLIA)
+(declare-fun ?v1!0 () Int)
+(declare-fun ?v0!1 () Int)
+(proof
+(let (($x53 (= ?v1!0 1)))
+(let (($x59 (not (or (not (and (= ?v0!1 0) $x53)) (not (= ?v0!1 ?v1!0))))))
+(let (($x43 (forall ((?v0 Int) (?v1 Int) )(! (or (not (and (= ?v0 0) (= ?v1 1))) (not (= ?v0 ?v1))) :qid k!4))
+))
+(let (($x46 (not $x43)))
+(let (($x36 (forall ((?v0 Int) (?v1 Int) )(! (=> (and (= ?v0 0) (= ?v1 1)) (not (= ?v0 ?v1))) :qid k!4))
+))
+(let (($x37 (not $x36)))
+(let (($x41 (= (=> (and (= ?1 0) (= ?0 1)) (not (= ?1 ?0))) (or (not (and (= ?1 0) (= ?0 1))) (not (= ?1 ?0))))))
+(let ((@x48 (monotonicity (quant-intro (rewrite $x41) (= $x36 $x43)) (= $x37 $x46))))
+(let ((@x65 (not-or-elim (mp~ (mp (asserted $x37) @x48 $x46) (sk (~ $x46 $x59)) $x59) (and (= ?v0!1 0) $x53))))
+(let ((@x67 (and-elim @x65 $x53)))
+(let (($x56 (= ?v0!1 ?v1!0)))
+(let ((@x68 (not-or-elim (mp~ (mp (asserted $x37) @x48 $x46) (sk (~ $x46 $x59)) $x59) $x56)))
+(let ((@x70 (trans (symm (and-elim @x65 (= ?v0!1 0)) (= 0 ?v0!1)) @x68 (= 0 ?v1!0))))
+(mp (trans @x70 @x67 (= 0 1)) (rewrite (= (= 0 1) false)) false))))))))))))))))
+
+67d24fd230a14f7ae0f516e21c1c266eaa6a1dee 55 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x35 (exists ((?v0 Int) )(! (forall ((?v1 Int) )(! (let (($x31 (<= 0 ?v1)))
+(let (($x30 (< ?v1 0)))
+(let (($x32 (or $x30 $x31)))
+(let (($x29 (< ?v0 ?v1)))
+(=> $x29 $x32))))) :qid k!4))
+ :qid k!4))
+))
+(let (($x36 (not $x35)))
+(let (($x45 (exists ((?v0 Int) )(! (forall ((?v1 Int) )(! (let (($x31 (<= 0 ?v1)))
+(let (($x30 (< ?v1 0)))
+(let (($x32 (or $x30 $x31)))
+(let (($x29 (< ?v0 ?v1)))
+(let (($x38 (not $x29)))
+(or $x38 $x32)))))) :qid k!4))
+ :qid k!4))
+))
+(let (($x48 (not $x45)))
+(let (($x88 (exists ((?v0 Int) )(! true :qid k!4))
+))
+(let (($x42 (forall ((?v1 Int) )(! (let (($x31 (<= 0 ?v1)))
+(let (($x30 (< ?v1 0)))
+(let (($x32 (or $x30 $x31)))
+(let (($x29 (< ?0 ?v1)))
+(let (($x38 (not $x29)))
+(or $x38 $x32)))))) :qid k!4))
+))
+(let (($x81 (forall ((?v1 Int) )(! true :qid k!4))
+))
+(let (($x31 (<= 0 ?0)))
+(let (($x30 (< ?0 0)))
+(let (($x32 (or $x30 $x31)))
+(let (($x29 (< ?1 ?0)))
+(let (($x38 (not $x29)))
+(let (($x39 (or $x38 $x32)))
+(let (($x60 (<= (+ ?0 (* (- 1) ?1)) 0)))
+(let ((@x78 (rewrite (= (or $x60 (or (not (>= ?0 0)) (>= ?0 0))) true))))
+(let ((@x73 (monotonicity (rewrite (= $x30 (not (>= ?0 0)))) (rewrite (= $x31 (>= ?0 0))) (= $x32 (or (not (>= ?0 0)) (>= ?0 0))))))
+(let ((@x66 (monotonicity (rewrite (= $x29 (not $x60))) (= $x38 (not (not $x60))))))
+(let ((@x76 (monotonicity (trans @x66 (rewrite (= (not (not $x60)) $x60)) (= $x38 $x60)) @x73 (= $x39 (or $x60 (or (not (>= ?0 0)) (>= ?0 0)))))))
+(let ((@x87 (trans (quant-intro (trans @x76 @x78 (= $x39 true)) (= $x42 $x81)) (elim-unused (= $x81 true)) (= $x42 true))))
+(let ((@x94 (trans (quant-intro @x87 (= $x45 $x88)) (elim-unused (= $x88 true)) (= $x45 true))))
+(let ((@x101 (trans (monotonicity @x94 (= $x48 (not true))) (rewrite (= (not true) false)) (= $x48 false))))
+(let (($x34 (forall ((?v1 Int) )(! (let (($x31 (<= 0 ?v1)))
+(let (($x30 (< ?v1 0)))
+(let (($x32 (or $x30 $x31)))
+(let (($x29 (< ?0 ?v1)))
+(=> $x29 $x32))))) :qid k!4))
+))
+(let ((@x47 (quant-intro (quant-intro (rewrite (= (=> $x29 $x32) $x39)) (= $x34 $x42)) (= $x35 $x45))))
+(let ((@x50 (monotonicity @x47 (= $x36 $x48))))
+(mp (asserted $x36) (trans @x50 @x101 (= $x36 false)) false)))))))))))))))))))))))))))
+
+9b33558f7e3d33274980f3cf1408c789ce3fe411 42 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x37 (forall ((?v0 Int) (?v1 Int) )(! (let ((?x34 (* 2 ?v1)))
+(let ((?x31 (* 2 ?v0)))
+(let ((?x33 (+ ?x31 1)))
+(let (($x35 (< ?x33 ?x34)))
+(let (($x29 (< ?v0 ?v1)))
+(=> $x29 $x35)))))) :qid k!4))
+))
+(let (($x38 (not $x37)))
+(let (($x55 (forall ((?v0 Int) (?v1 Int) )(! (let ((?x34 (* 2 ?v1)))
+(let ((?x31 (* 2 ?v0)))
+(let ((?x40 (+ 1 ?x31)))
+(let (($x43 (< ?x40 ?x34)))
+(let (($x29 (< ?v0 ?v1)))
+(let (($x49 (not $x29)))
+(or $x49 $x43))))))) :qid k!4))
+))
+(let (($x58 (not $x55)))
+(let (($x84 (forall ((?v0 Int) (?v1 Int) )(! true :qid k!4))
+))
+(let ((?x34 (* 2 ?0)))
+(let ((?x31 (* 2 ?1)))
+(let ((?x40 (+ 1 ?x31)))
+(let (($x43 (< ?x40 ?x34)))
+(let (($x29 (< ?1 ?0)))
+(let (($x49 (not $x29)))
+(let (($x50 (or $x49 $x43)))
+(let (($x63 (>= (+ ?1 (* (- 1) ?0)) 0)))
+(let (($x62 (not $x63)))
+(let ((@x74 (trans (monotonicity (rewrite (= $x29 $x62)) (= $x49 (not $x62))) (rewrite (= (not $x62) $x63)) (= $x49 $x63))))
+(let ((@x79 (monotonicity @x74 (rewrite (= $x43 $x62)) (= $x50 (or $x63 $x62)))))
+(let ((@x86 (quant-intro (trans @x79 (rewrite (= (or $x63 $x62) true)) (= $x50 true)) (= $x55 $x84))))
+(let ((@x93 (monotonicity (trans @x86 (elim-unused (= $x84 true)) (= $x55 true)) (= $x58 (not true)))))
+(let ((@x97 (trans @x93 (rewrite (= (not true) false)) (= $x58 false))))
+(let ((@x45 (monotonicity (rewrite (= (+ ?x31 1) ?x40)) (= (< (+ ?x31 1) ?x34) $x43))))
+(let ((@x48 (monotonicity @x45 (= (=> $x29 (< (+ ?x31 1) ?x34)) (=> $x29 $x43)))))
+(let ((@x54 (trans @x48 (rewrite (= (=> $x29 $x43) $x50)) (= (=> $x29 (< (+ ?x31 1) ?x34)) $x50))))
+(let ((@x60 (monotonicity (quant-intro @x54 (= $x37 $x55)) (= $x38 $x58))))
+(mp (asserted $x38) (trans @x60 @x97 (= $x38 false)) false))))))))))))))))))))))))))
+
+c91b2faa74b6f14adc03f118d0ebf326186d3e82 32 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x36 (forall ((?v0 Int) (?v1 Int) )(! (let ((?x33 (* 2 ?v1)))
+(let ((?x30 (* 2 ?v0)))
+(let ((?x32 (+ ?x30 1)))
+(let (($x34 (= ?x32 ?x33)))
+(not $x34))))) :qid k!4))
+))
+(let (($x37 (not $x36)))
+(let (($x48 (forall ((?v0 Int) (?v1 Int) )(! (let ((?x33 (* 2 ?v1)))
+(let ((?x30 (* 2 ?v0)))
+(let ((?x39 (+ 1 ?x30)))
+(let (($x42 (= ?x39 ?x33)))
+(not $x42))))) :qid k!4))
+))
+(let (($x51 (not $x48)))
+(let (($x63 (forall ((?v0 Int) (?v1 Int) )(! true :qid k!4))
+))
+(let ((?x33 (* 2 ?0)))
+(let ((?x30 (* 2 ?1)))
+(let ((?x39 (+ 1 ?x30)))
+(let (($x42 (= ?x39 ?x33)))
+(let (($x45 (not $x42)))
+(let ((@x62 (trans (monotonicity (rewrite (= $x42 false)) (= $x45 (not false))) (rewrite (= (not false) true)) (= $x45 true))))
+(let ((@x69 (trans (quant-intro @x62 (= $x48 $x63)) (elim-unused (= $x63 true)) (= $x48 true))))
+(let ((@x76 (trans (monotonicity @x69 (= $x51 (not true))) (rewrite (= (not true) false)) (= $x51 false))))
+(let ((@x44 (monotonicity (rewrite (= (+ ?x30 1) ?x39)) (= (= (+ ?x30 1) ?x33) $x42))))
+(let ((@x50 (quant-intro (monotonicity @x44 (= (not (= (+ ?x30 1) ?x33)) $x45)) (= $x36 $x48))))
+(let ((@x53 (monotonicity @x50 (= $x37 $x51))))
+(mp (asserted $x37) (trans @x53 @x76 (= $x37 false)) false)))))))))))))))))))
+
+5e6af334bdbf0a7d43561ad8b7c602bb6c3adb5b 43 0
+unsat
+((set-logic AUFLIA)
+(declare-fun ?v0!1 () Int)
+(declare-fun ?v1!0 () Int)
+(proof
+(let ((?x78 (+ ?v1!0 ?v0!1)))
+(let (($x90 (>= ?x78 2)))
+(let (($x93 (not $x90)))
+(let (($x87 (= ?x78 2)))
+(let (($x81 (<= ?x78 2)))
+(let (($x84 (not $x81)))
+(let (($x73 (or (not (<= (+ ?v0!1 ?v1!0) 2)) (= (+ ?v0!1 ?v1!0) 2) (not (>= (+ ?v0!1 ?v1!0) 2)))))
+(let (($x74 (not $x73)))
+(let ((@x80 (rewrite (= (+ ?v0!1 ?v1!0) ?x78))))
+(let ((@x95 (monotonicity (monotonicity @x80 (= (>= (+ ?v0!1 ?v1!0) 2) $x90)) (= (not (>= (+ ?v0!1 ?v1!0) 2)) $x93))))
+(let ((@x86 (monotonicity (monotonicity @x80 (= (<= (+ ?v0!1 ?v1!0) 2) $x81)) (= (not (<= (+ ?v0!1 ?v1!0) 2)) $x84))))
+(let ((@x98 (monotonicity @x86 (monotonicity @x80 (= (= (+ ?v0!1 ?v1!0) 2) $x87)) @x95 (= $x73 (or $x84 $x87 $x93)))))
+(let (($x60 (forall ((?v0 Int) (?v1 Int) )(! (let (($x41 (not (>= (+ ?v0 ?v1) 2))))
+(let ((?x30 (+ ?v0 ?v1)))
+(let (($x32 (= ?x30 2)))
+(let (($x46 (not (<= ?x30 2))))
+(or $x46 $x32 $x41))))) :qid k!4))
+))
+(let (($x63 (not $x60)))
+(let (($x36 (forall ((?v0 Int) (?v1 Int) )(! (or (< 2 (+ ?v0 ?v1)) (or (= (+ ?v0 ?v1) 2) (< (+ ?v0 ?v1) 2))) :qid k!4))
+))
+(let (($x37 (not $x36)))
+(let (($x41 (not (>= (+ ?1 ?0) 2))))
+(let ((?x30 (+ ?1 ?0)))
+(let (($x32 (= ?x30 2)))
+(let (($x46 (not (<= ?x30 2))))
+(let (($x55 (or $x46 $x32 $x41)))
+(let (($x35 (or (< 2 ?x30) (or $x32 (< ?x30 2)))))
+(let ((@x51 (monotonicity (rewrite (= (< ?x30 2) $x41)) (= (or $x32 (< ?x30 2)) (or $x32 $x41)))))
+(let ((@x54 (monotonicity (rewrite (= (< 2 ?x30) $x46)) @x51 (= $x35 (or $x46 (or $x32 $x41))))))
+(let ((@x59 (trans @x54 (rewrite (= (or $x46 (or $x32 $x41)) $x55)) (= $x35 $x55))))
+(let ((@x66 (mp (asserted $x37) (monotonicity (quant-intro @x59 (= $x36 $x60)) (= $x37 $x63)) $x63)))
+(let ((@x102 (mp (mp~ @x66 (sk (~ $x63 $x74)) $x74) (monotonicity @x98 (= $x74 (not (or $x84 $x87 $x93)))) (not (or $x84 $x87 $x93)))))
+(let ((@x105 (not-or-elim @x102 (not $x87))))
+(let ((@x106 (not-or-elim @x102 $x90)))
+(let ((@x103 (not-or-elim @x102 $x81)))
+(unit-resolution (unit-resolution ((_ th-lemma arith triangle-eq) (or $x87 $x84 $x93)) @x103 (or $x87 $x93)) @x106 @x105 false)))))))))))))))))))))))))))))))))
+
+225395f9fe2308e0df959c87e4b0367c509ed3da 46 0
+unsat
+((set-logic AUFLIA)
+(declare-fun ?v0!0 () Int)
+(proof
+(let (($x86 (<= ?v0!0 (- 1))))
+(let (($x87 (not $x86)))
+(let (($x84 (>= ?v0!0 1)))
+(let (($x83 (<= ?v0!0 0)))
+(let (($x93 (not $x83)))
+(let (($x85 (not $x84)))
+(let (($x88 (ite $x83 $x85 $x87)))
+(let (($x89 (not $x88)))
+(let (($x73 (forall ((?v0 Int) )(! (let (($x58 (not (<= ?v0 (- 1)))))
+(let (($x61 (not (>= ?v0 1))))
+(ite (<= ?v0 0) $x61 $x58))) :qid k!4))
+))
+(let (($x76 (not $x73)))
+(let (($x34 (forall ((?v0 Int) )(! (let (($x32 (< ?v0 1)))
+(let (($x28 (< 0 ?v0)))
+(ite $x28 (< 0 (+ ?v0 1)) $x32))) :qid k!4))
+))
+(let (($x35 (not $x34)))
+(let (($x46 (forall ((?v0 Int) )(! (let (($x32 (< ?v0 1)))
+(let (($x40 (< 0 (+ 1 ?v0))))
+(let (($x28 (< 0 ?v0)))
+(ite $x28 $x40 $x32)))) :qid k!4))
+))
+(let (($x58 (not (<= ?0 (- 1)))))
+(let (($x61 (not (>= ?0 1))))
+(let (($x68 (ite (<= ?0 0) $x61 $x58)))
+(let (($x32 (< ?0 1)))
+(let (($x40 (< 0 (+ 1 ?0))))
+(let (($x28 (< 0 ?0)))
+(let (($x43 (ite $x28 $x40 $x32)))
+(let ((@x67 (monotonicity (rewrite (= $x28 (not (<= ?0 0)))) (rewrite (= $x40 $x58)) (rewrite (= $x32 $x61)) (= $x43 (ite (not (<= ?0 0)) $x58 $x61)))))
+(let ((@x72 (trans @x67 (rewrite (= (ite (not (<= ?0 0)) $x58 $x61) $x68)) (= $x43 $x68))))
+(let ((@x78 (monotonicity (quant-intro @x72 (= $x46 $x73)) (= (not $x46) $x76))))
+(let ((@x42 (monotonicity (rewrite (= (+ ?0 1) (+ 1 ?0))) (= (< 0 (+ ?0 1)) $x40))))
+(let ((@x45 (monotonicity @x42 (= (ite $x28 (< 0 (+ ?0 1)) $x32) $x43))))
+(let ((@x51 (monotonicity (quant-intro @x45 (= $x34 $x46)) (= $x35 (not $x46)))))
+(let ((@x92 (mp~ (mp (asserted $x35) (trans @x51 @x78 (= $x35 $x76)) $x76) (sk (~ $x76 $x89)) $x89)))
+(let ((@x105 (unit-resolution (unit-resolution (def-axiom (or $x88 $x93 $x84)) @x92 (or $x93 $x84)) (hypothesis $x85) $x93)))
+(let ((@x108 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x83 $x84)) @x105 (hypothesis $x85) false)))
+(let ((@x109 (lemma @x108 $x84)))
+(unit-resolution (unit-resolution (def-axiom (or $x88 $x83 $x86)) @x92 (or $x83 $x86)) (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x93 $x85)) @x109 $x93) (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x87 $x85)) @x109 $x87) false)))))))))))))))))))))))))))))))))
+
+588d2c3e5f2a3b0948546d186f05535d11e37c8d 31 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x56 (forall ((?v0 Int) )(! (let (($x50 (not (<= ?v0 0))))
+(let (($x45 (not (>= ?v0 0))))
+(or $x45 $x50))) :qid k!4))
+))
+(let (($x458 (not $x56)))
+(let (($x153 (<= 0 0)))
+(let (($x68 (not $x153)))
+(let (($x158 (>= 0 0)))
+(let (($x143 (not $x158)))
+(let (($x154 (or $x143 $x68)))
+(let (($x119 (or $x458 $x154)))
+(let ((@x137 (trans (monotonicity (rewrite (= $x153 true)) (= $x68 (not true))) (rewrite (= (not true) false)) (= $x68 false))))
+(let ((@x261 (trans (monotonicity (rewrite (= $x158 true)) (= $x143 (not true))) (rewrite (= (not true) false)) (= $x143 false))))
+(let ((@x116 (trans (monotonicity @x261 @x137 (= $x154 (or false false))) (rewrite (= (or false false) false)) (= $x154 false))))
+(let ((@x463 (trans (monotonicity @x116 (= $x119 (or $x458 false))) (rewrite (= (or $x458 false) $x458)) (= $x119 $x458))))
+(let ((@x464 (mp ((_ quant-inst 0) $x119) @x463 $x458)))
+(let (($x50 (not (<= ?0 0))))
+(let (($x45 (not (>= ?0 0))))
+(let (($x53 (or $x45 $x50)))
+(let (($x31 (forall ((?v0 Int) )(! (or (< ?v0 0) (< 0 ?v0)) :qid k!4))
+))
+(let (($x33 (not (ite $x31 false true))))
+(let ((@x55 (monotonicity (rewrite (= (< ?0 0) $x45)) (rewrite (= (< 0 ?0) $x50)) (= (or (< ?0 0) (< 0 ?0)) $x53))))
+(let ((@x40 (monotonicity (rewrite (= (ite $x31 false true) (not $x31))) (= $x33 (not (not $x31))))))
+(let ((@x60 (trans (trans @x40 (rewrite (= (not (not $x31)) $x31)) (= $x33 $x31)) (quant-intro @x55 (= $x31 $x56)) (= $x33 $x56))))
+(let ((@x66 (mp~ (mp (asserted $x33) @x60 $x56) (nnf-pos (refl (~ $x53 $x53)) (~ $x56 $x56)) $x56)))
+(unit-resolution @x66 @x464 false)))))))))))))))))))))))))
+
+c3173310bcd1c740d9eae3d871d668c6d70c7e74 62 0
+unsat
+((set-logic AUFLIA)
+(declare-fun ?v0!1 () Int)
+(declare-fun z3name!0 () Bool)
+(proof
+(let ((?x96 (ite z3name!0 (- 1) 3)))
+(let (($x99 (<= ?x96 0)))
+(let (($x62 (forall ((?v0 Int) )(! (let (($x56 (not (<= ?v0 0))))
+(let (($x51 (not (>= ?v0 0))))
+(or $x51 $x56))) :qid k!4))
+))
+(let ((?x65 (ite $x62 (- 1) 3)))
+(let (($x71 (<= ?x65 0)))
+(let ((@x93 (intro-def (and (or (not z3name!0) $x62) (or z3name!0 (not $x62))))))
+(let ((@x101 (monotonicity (monotonicity (apply-def @x93 (~ $x62 z3name!0)) (= ?x65 ?x96)) (= $x71 $x99))))
+(let (($x31 (forall ((?v0 Int) )(! (or (< ?v0 0) (< 0 ?v0)) :qid k!4))
+))
+(let (($x37 (not (< 0 (ite $x31 (- 1) 3)))))
+(let (($x56 (not (<= ?0 0))))
+(let (($x51 (not (>= ?0 0))))
+(let (($x59 (or $x51 $x56)))
+(let ((@x61 (monotonicity (rewrite (= (< ?0 0) $x51)) (rewrite (= (< 0 ?0) $x56)) (= (or (< ?0 0) (< 0 ?0)) $x59))))
+(let ((@x67 (monotonicity (quant-intro @x61 (= $x31 $x62)) (= (ite $x31 (- 1) 3) ?x65))))
+(let ((@x70 (monotonicity @x67 (= (< 0 (ite $x31 (- 1) 3)) (< 0 ?x65)))))
+(let ((@x76 (trans @x70 (rewrite (= (< 0 ?x65) (not $x71))) (= (< 0 (ite $x31 (- 1) 3)) (not $x71)))))
+(let ((@x79 (monotonicity @x76 (= (not (< 0 (ite $x31 (- 1) 3))) (not (not $x71))))))
+(let ((@x83 (trans @x79 (rewrite (= (not (not $x71)) $x71)) (= (not (< 0 (ite $x31 (- 1) 3))) $x71))))
+(let ((?x42 (ite $x31 (- 1) 3)))
+(let (($x45 (< 0 ?x42)))
+(let ((@x44 (monotonicity (rewrite (= (- 1) (- 1))) (= (ite $x31 (- 1) 3) ?x42))))
+(let ((@x50 (monotonicity (monotonicity @x44 (= (< 0 (ite $x31 (- 1) 3)) $x45)) (= $x37 (not $x45)))))
+(let ((@x128 (mp (mp (asserted $x37) (trans @x50 @x83 (= $x37 $x71)) $x71) @x101 $x99)))
+(let ((@x245 (unit-resolution ((_ th-lemma arith farkas 1 1) (or (not (>= ?x96 3)) (not $x99))) @x128 (not (>= ?x96 3)))))
+(let (($x220 (= ?x96 3)))
+(let (($x88 (not z3name!0)))
+(let (($x90 (not $x62)))
+(let (($x323 (<= 0 0)))
+(let (($x533 (not $x323)))
+(let (($x542 (>= 0 0)))
+(let (($x179 (not $x542)))
+(let (($x206 (or $x179 $x533)))
+(let (($x529 (or $x90 $x206)))
+(let ((@x527 (trans (monotonicity (rewrite (= $x323 true)) (= $x533 (not true))) (rewrite (= (not true) false)) (= $x533 false))))
+(let ((@x200 (trans (monotonicity (rewrite (= $x542 true)) (= $x179 (not true))) (rewrite (= (not true) false)) (= $x179 false))))
+(let ((@x528 (trans (monotonicity @x200 @x527 (= $x206 (or false false))) (rewrite (= (or false false) false)) (= $x206 false))))
+(let ((@x237 (trans (monotonicity @x528 (= $x529 (or $x90 false))) (rewrite (= (or $x90 false) $x90)) (= $x529 $x90))))
+(let ((@x238 (mp ((_ quant-inst 0) $x529) @x237 $x90)))
+(let (($x89 (or $x88 $x62)))
+(let (($x115 (<= ?v0!1 0)))
+(let (($x116 (not $x115)))
+(let (($x113 (>= ?v0!1 0)))
+(let (($x114 (not $x113)))
+(let (($x117 (or $x114 $x116)))
+(let (($x118 (not $x117)))
+(let (($x121 (or z3name!0 $x118)))
+(let ((@x123 (monotonicity (refl (~ z3name!0 z3name!0)) (sk (~ $x90 $x118)) (~ (or z3name!0 $x90) $x121))))
+(let ((@x109 (monotonicity (refl (~ $x88 $x88)) (nnf-pos (refl (~ $x59 $x59)) (~ $x62 $x62)) (~ $x89 $x89))))
+(let ((@x126 (monotonicity @x109 @x123 (~ (and $x89 (or z3name!0 $x90)) (and $x89 $x121)))))
+(let ((@x131 (and-elim (mp~ @x93 @x126 (and $x89 $x121)) $x89)))
+(let ((@x515 (unit-resolution (def-axiom (or z3name!0 $x220)) (unit-resolution @x131 @x238 $x88) $x220)))
+(unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x220) (>= ?x96 3))) @x515 @x245 false))))))))))))))))))))))))))))))))))))))))))))))))))))))
+
+774e453e6283d3bbc1a31f77b233e45c4351f009 39 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x38 (exists ((?v0 Int) (?v1 Int) (?v2 Int) )(! (let ((?x33 (- 6)))
+(let ((?x34 (* ?x33 ?v1)))
+(let ((?x31 (* 4 ?v0)))
+(let ((?x35 (+ ?x31 ?x34)))
+(= ?x35 1))))) :qid k!4))
+))
+(let (($x29 (not $x38)))
+(let (($x39 (not $x29)))
+(let (($x61 (exists ((?v0 Int) (?v1 Int) )(! (let ((?x58 (* (- 6) ?v1)))
+(let ((?x57 (* 4 ?v0)))
+(let ((?x59 (+ ?x57 ?x58)))
+(= ?x59 1)))) :qid k!4))
+))
+(let (($x77 (exists ((?v0 Int) (?v1 Int) )(! false :qid k!4))
+))
+(let ((@x81 (quant-intro (rewrite (= (= (+ (* 4 ?1) (* (- 6) ?0)) 1) false)) (= $x61 $x77))))
+(let ((@x85 (trans @x81 (elim-unused (= $x77 false)) (= $x61 false))))
+(let (($x53 (exists ((?v0 Int) (?v1 Int) (?v2 Int) )(! (let ((?x44 (* (- 6) ?v1)))
+(let ((?x31 (* 4 ?v0)))
+(let ((?x47 (+ ?x31 ?x44)))
+(= ?x47 1)))) :qid k!4))
+))
+(let ((?x44 (* (- 6) ?1)))
+(let ((?x31 (* 4 ?2)))
+(let ((?x47 (+ ?x31 ?x44)))
+(let (($x50 (= ?x47 1)))
+(let ((?x33 (- 6)))
+(let ((?x34 (* ?x33 ?1)))
+(let ((?x35 (+ ?x31 ?x34)))
+(let (($x37 (= ?x35 1)))
+(let ((@x49 (monotonicity (monotonicity (rewrite (= ?x33 (- 6))) (= ?x34 ?x44)) (= ?x35 ?x47))))
+(let ((@x65 (trans (quant-intro (monotonicity @x49 (= $x37 $x50)) (= $x38 $x53)) (elim-unused (= $x53 $x61)) (= $x38 $x61))))
+(let ((@x71 (monotonicity (monotonicity @x65 (= $x29 (not $x61))) (= $x39 (not (not $x61))))))
+(let ((@x75 (trans @x71 (rewrite (= (not (not $x61)) $x61)) (= $x39 $x61))))
+(mp (asserted $x39) (trans @x75 @x85 (= $x39 false)) false)))))))))))))))))))))))
+
+6af2141813330b3665fb5ee9c13bc207b1c8e65f 52 0
+unsat
+((set-logic AUFLIA)
+(declare-fun ?v1!1 () Int)
+(declare-fun ?v2!0 () Int)
+(proof
+(let ((?x105 (+ ?v2!0 ?v1!1)))
+(let (($x106 (<= ?x105 0)))
+(let (($x108 (or (not (and (not (<= ?v1!1 0)) (not (<= ?v2!0 0)))) (not $x106))))
+(let (($x88 (forall ((?v1 Int) (?v2 Int) )(! (or (not (and (not (<= ?v1 0)) (not (<= ?v2 0)))) (not (<= (+ ?v2 ?v1) 0))) :qid k!4))
+))
+(let (($x91 (not $x88)))
+(let (($x36 (exists ((?v0 Int) )(! (forall ((?v1 Int) (?v2 Int) )(! (let (($x31 (and (< 0 ?v1) (< 0 ?v2))))
+(=> $x31 (< 0 (+ ?v1 ?v2)))) :qid k!4))
+ :qid k!4))
+))
+(let (($x37 (not $x36)))
+(let (($x54 (forall ((?v1 Int) (?v2 Int) )(! (let ((?x39 (+ ?v2 ?v1)))
+(let (($x42 (< 0 ?x39)))
+(or (not (and (< 0 ?v1) (< 0 ?v2))) $x42))) :qid k!4))
+))
+(let (($x85 (or (not (and (not (<= ?1 0)) (not (<= ?0 0)))) (not (<= (+ ?0 ?1) 0)))))
+(let ((?x39 (+ ?0 ?1)))
+(let (($x42 (< 0 ?x39)))
+(let (($x49 (or (not (and (< 0 ?1) (< 0 ?0))) $x42)))
+(let (($x79 (= (not (and (< 0 ?1) (< 0 ?0))) (not (and (not (<= ?1 0)) (not (<= ?0 0)))))))
+(let (($x31 (and (< 0 ?1) (< 0 ?0))))
+(let ((@x77 (monotonicity (rewrite (= (< 0 ?1) (not (<= ?1 0)))) (rewrite (= (< 0 ?0) (not (<= ?0 0)))) (= $x31 (and (not (<= ?1 0)) (not (<= ?0 0)))))))
+(let ((@x87 (monotonicity (monotonicity @x77 $x79) (rewrite (= $x42 (not (<= ?x39 0)))) (= $x49 $x85))))
+(let ((@x93 (monotonicity (quant-intro @x87 (= $x54 $x88)) (= (not $x54) $x91))))
+(let (($x57 (exists ((?v0 Int) )(! (forall ((?v1 Int) (?v2 Int) )(! (let ((?x39 (+ ?v2 ?v1)))
+(let (($x42 (< 0 ?x39)))
+(or (not (and (< 0 ?v1) (< 0 ?v2))) $x42))) :qid k!4))
+ :qid k!4))
+))
+(let (($x35 (forall ((?v1 Int) (?v2 Int) )(! (let (($x31 (and (< 0 ?v1) (< 0 ?v2))))
+(=> $x31 (< 0 (+ ?v1 ?v2)))) :qid k!4))
+))
+(let ((@x44 (monotonicity (rewrite (= (+ ?1 ?0) ?x39)) (= (< 0 (+ ?1 ?0)) $x42))))
+(let ((@x47 (monotonicity @x44 (= (=> $x31 (< 0 (+ ?1 ?0))) (=> $x31 $x42)))))
+(let ((@x53 (trans @x47 (rewrite (= (=> $x31 $x42) $x49)) (= (=> $x31 (< 0 (+ ?1 ?0))) $x49))))
+(let ((@x63 (trans (quant-intro (quant-intro @x53 (= $x35 $x54)) (= $x36 $x57)) (elim-unused (= $x57 $x54)) (= $x36 $x54))))
+(let ((@x95 (trans (monotonicity @x63 (= $x37 (not $x54))) @x93 (= $x37 $x91))))
+(let ((@x112 (mp~ (mp (asserted $x37) @x95 $x91) (sk (~ $x91 (not $x108))) (not $x108))))
+(let ((@x118 (not-or-elim @x112 $x106)))
+(let (($x99 (<= ?v1!1 0)))
+(let (($x100 (not $x99)))
+(let ((@x116 (and-elim (not-or-elim @x112 (and $x100 (not (<= ?v2!0 0)))) $x100)))
+(let (($x101 (<= ?v2!0 0)))
+(let (($x102 (not $x101)))
+(let ((@x117 (and-elim (not-or-elim @x112 (and $x100 $x102)) $x102)))
+((_ th-lemma arith farkas 1 1 1) @x117 @x116 @x118 false)))))))))))))))))))))))))))))))))))
+
+0d5f058bd16e2d94079694a8780fe58470075f77 45 0
+unsat
+((set-logic AUFLIRA)
+(declare-fun ?v1!1 () Int)
+(declare-fun ?v2!0 () Real)
+(proof
+(let (($x105 (<= ?v1!1 (- 1))))
+(let (($x107 (or (not (and (not (<= ?v1!1 0)) (not (<= ?v2!0 0.0)))) (not $x105))))
+(let (($x88 (forall ((?v1 Int) (?v2 Real) )(! (or (not (and (not (<= ?v1 0)) (not (<= ?v2 0.0)))) (not (<= ?v1 (- 1)))) :qid k!4))
+))
+(let (($x91 (not $x88)))
+(let (($x37 (exists ((?v0 Int) )(! (forall ((?v1 Int) (?v2 Real) )(! (let (($x31 (and (< 0 ?v1) (< 0.0 ?v2))))
+(=> $x31 (< (- 1) ?v1))) :qid k!4))
+ :qid k!4))
+))
+(let (($x27 (not $x37)))
+(let (($x54 (forall ((?v1 Int) (?v2 Real) )(! (let (($x42 (< (- 1) ?v1)))
+(or (not (and (< 0 ?v1) (< 0.0 ?v2))) $x42)) :qid k!4))
+))
+(let (($x85 (or (not (and (not (<= ?1 0)) (not (<= ?0 0.0)))) (not (<= ?1 (- 1))))))
+(let (($x42 (< (- 1) ?1)))
+(let (($x49 (or (not (and (< 0 ?1) (< 0.0 ?0))) $x42)))
+(let (($x79 (= (not (and (< 0 ?1) (< 0.0 ?0))) (not (and (not (<= ?1 0)) (not (<= ?0 0.0)))))))
+(let (($x31 (and (< 0 ?1) (< 0.0 ?0))))
+(let ((@x77 (monotonicity (rewrite (= (< 0 ?1) (not (<= ?1 0)))) (rewrite (= (< 0.0 ?0) (not (<= ?0 0.0)))) (= $x31 (and (not (<= ?1 0)) (not (<= ?0 0.0)))))))
+(let ((@x87 (monotonicity (monotonicity @x77 $x79) (rewrite (= $x42 (not (<= ?1 (- 1))))) (= $x49 $x85))))
+(let ((@x93 (monotonicity (quant-intro @x87 (= $x54 $x88)) (= (not $x54) $x91))))
+(let (($x57 (exists ((?v0 Int) )(! (forall ((?v1 Int) (?v2 Real) )(! (let (($x42 (< (- 1) ?v1)))
+(or (not (and (< 0 ?v1) (< 0.0 ?v2))) $x42)) :qid k!4))
+ :qid k!4))
+))
+(let (($x36 (forall ((?v1 Int) (?v2 Real) )(! (let (($x31 (and (< 0 ?v1) (< 0.0 ?v2))))
+(=> $x31 (< (- 1) ?v1))) :qid k!4))
+))
+(let ((@x44 (monotonicity (rewrite (= (- 1) (- 1))) (= (< (- 1) ?1) $x42))))
+(let ((@x47 (monotonicity @x44 (= (=> $x31 (< (- 1) ?1)) (=> $x31 $x42)))))
+(let ((@x53 (trans @x47 (rewrite (= (=> $x31 $x42) $x49)) (= (=> $x31 (< (- 1) ?1)) $x49))))
+(let ((@x63 (trans (quant-intro (quant-intro @x53 (= $x36 $x54)) (= $x37 $x57)) (elim-unused (= $x57 $x54)) (= $x37 $x54))))
+(let ((@x95 (trans (monotonicity @x63 (= $x27 (not $x54))) @x93 (= $x27 $x91))))
+(let ((@x111 (mp~ (mp (asserted $x27) @x95 $x91) (sk (~ $x91 (not $x107))) (not $x107))))
+(let ((@x117 (not-or-elim @x111 $x105)))
+(let (($x99 (<= ?v1!1 0)))
+(let (($x100 (not $x99)))
+(let ((@x115 (and-elim (not-or-elim @x111 (and $x100 (not (<= ?v2!0 0.0)))) $x100)))
+(unit-resolution ((_ th-lemma arith farkas 1 1) (or (not $x105) $x99)) @x115 @x117 false))))))))))))))))))))))))))))))
+
+aca38f846738c1caa428f8dcd62269d0e0e0f1ad 110 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x152 (forall ((?v0 Int) )(! (let (($x68 (<= ?v0 0)))
+(let (($x69 (not $x68)))
+(let (($x143 (not false)))
+(let (($x146 (or $x143 $x69)))
+(not $x146))))) :qid k!4))
+))
+(let (($x174 (forall ((?v0 Int) )(! false :qid k!4))
+))
+(let (($x68 (<= ?0 0)))
+(let (($x69 (not $x68)))
+(let (($x143 (not false)))
+(let (($x146 (or $x143 $x69)))
+(let ((@x166 (trans (monotonicity (rewrite (= $x143 true)) (= $x146 (or true $x69))) (rewrite (= (or true $x69) true)) (= $x146 true))))
+(let ((@x173 (trans (monotonicity @x166 (= (not $x146) (not true))) (rewrite (= (not true) false)) (= (not $x146) false))))
+(let ((@x180 (trans (quant-intro @x173 (= $x152 $x174)) (elim-unused (= $x174 false)) (= $x152 false))))
+(let (($x122 (forall ((?v0 Int) )(! (let (($x68 (<= ?v0 0)))
+(let (($x69 (not $x68)))
+(let (($x75 (forall ((?v1 Int) )(! (let (($x68 (<= ?v1 0)))
+(let (($x69 (not $x68)))
+(or (not (>= (+ ?v1 (* (- 1) ?v0)) 0)) $x69))) :qid k!4))
+))
+(let (($x78 (not $x75)))
+(let (($x81 (or $x78 $x69)))
+(not $x81)))))) :qid k!4))
+))
+(let (($x138 (forall ((?v0 Int) )(! (let (($x68 (<= ?v0 0)))
+(let (($x69 (not $x68)))
+(let (($x126 (forall ((?v1 Int) )(! (let (($x68 (<= ?v1 0)))
+(not $x68)) :qid k!4))
+))
+(not (or (not $x126) $x69))))) :qid k!4))
+))
+(let ((@x156 (trans (rewrite (= $x122 $x138)) (rewrite (= $x138 $x152)) (= $x122 $x152))))
+(let (($x116 (forall ((?v0 Int) )(! (let (($x68 (<= ?v0 0)))
+(let (($x75 (forall ((?v1 Int) )(! (let (($x68 (<= ?v1 0)))
+(let (($x69 (not $x68)))
+(or (not (>= (+ ?v1 (* (- 1) ?v0)) 0)) $x69))) :qid k!4))
+))
+(and $x75 $x68))) :qid k!4))
+))
+(let (($x75 (forall ((?v1 Int) )(! (let (($x68 (<= ?v1 0)))
+(let (($x69 (not $x68)))
+(or (not (>= (+ ?v1 (* (- 1) ?0)) 0)) $x69))) :qid k!4))
+))
+(let (($x78 (not $x75)))
+(let (($x81 (or $x78 $x69)))
+(let (($x104 (not $x81)))
+(let (($x113 (and $x75 $x68)))
+(let (($x107 (forall ((?v0 Int) )(! (let (($x68 (<= ?v0 0)))
+(let (($x69 (not $x68)))
+(let (($x100 (not $x69)))
+(let (($x75 (forall ((?v1 Int) )(! (let (($x68 (<= ?v1 0)))
+(let (($x69 (not $x68)))
+(or (not (>= (+ ?v1 (* (- 1) ?v0)) 0)) $x69))) :qid k!4))
+))
+(and $x75 $x100))))) :qid k!4))
+))
+(let ((@x115 (monotonicity (rewrite (= (not $x69) $x68)) (= (and $x75 (not $x69)) $x113))))
+(let (($x84 (exists ((?v0 Int) )(! (let (($x68 (<= ?v0 0)))
+(let (($x69 (not $x68)))
+(let (($x75 (forall ((?v1 Int) )(! (let (($x68 (<= ?v1 0)))
+(let (($x69 (not $x68)))
+(or (not (>= (+ ?v1 (* (- 1) ?v0)) 0)) $x69))) :qid k!4))
+))
+(let (($x78 (not $x75)))
+(or $x78 $x69))))) :qid k!4))
+))
+(let (($x87 (not $x84)))
+(let (($x72 (or (not (>= (+ ?0 (* (- 1) ?1)) 0)) $x69)))
+(let ((@x99 (nnf-neg (nnf-pos (refl (~ $x72 $x72)) (~ $x75 $x75)) (~ (not $x78) $x75))))
+(let ((@x106 (nnf-neg @x99 (refl (~ (not $x69) (not $x69))) (~ $x104 (and $x75 (not $x69))))))
+(let (($x34 (exists ((?v0 Int) )(! (let (($x30 (< 0 ?v0)))
+(let (($x32 (forall ((?v1 Int) )(! (let (($x30 (< 0 ?v1)))
+(let (($x29 (<= ?v0 ?v1)))
+(=> $x29 $x30))) :qid k!4))
+))
+(=> $x32 $x30))) :qid k!4))
+))
+(let (($x35 (not $x34)))
+(let (($x53 (exists ((?v0 Int) )(! (let (($x30 (< 0 ?v0)))
+(let (($x41 (forall ((?v1 Int) )(! (let (($x30 (< 0 ?v1)))
+(or (not (<= ?v0 ?v1)) $x30)) :qid k!4))
+))
+(or (not $x41) $x30))) :qid k!4))
+))
+(let (($x30 (< 0 ?0)))
+(let (($x41 (forall ((?v1 Int) )(! (let (($x30 (< 0 ?v1)))
+(or (not (<= ?0 ?v1)) $x30)) :qid k!4))
+))
+(let (($x48 (or (not $x41) $x30)))
+(let ((@x67 (monotonicity (rewrite (= (<= ?1 ?0) (>= (+ ?0 (* (- 1) ?1)) 0))) (= (not (<= ?1 ?0)) (not (>= (+ ?0 (* (- 1) ?1)) 0))))))
+(let ((@x74 (monotonicity @x67 (rewrite (= $x30 $x69)) (= (or (not (<= ?1 ?0)) $x30) $x72))))
+(let ((@x80 (monotonicity (quant-intro @x74 (= $x41 $x75)) (= (not $x41) $x78))))
+(let ((@x86 (quant-intro (monotonicity @x80 (rewrite (= $x30 $x69)) (= $x48 $x81)) (= $x53 $x84))))
+(let (($x32 (forall ((?v1 Int) )(! (let (($x30 (< 0 ?v1)))
+(let (($x29 (<= ?0 ?v1)))
+(=> $x29 $x30))) :qid k!4))
+))
+(let (($x33 (=> $x32 $x30)))
+(let ((@x40 (rewrite (= (=> (<= ?1 ?0) $x30) (or (not (<= ?1 ?0)) $x30)))))
+(let ((@x46 (monotonicity (quant-intro @x40 (= $x32 $x41)) (= $x33 (=> $x41 $x30)))))
+(let ((@x55 (quant-intro (trans @x46 (rewrite (= (=> $x41 $x30) $x48)) (= $x33 $x48)) (= $x34 $x53))))
+(let ((@x91 (trans (monotonicity @x55 (= $x35 (not $x53))) (monotonicity @x86 (= (not $x53) $x87)) (= $x35 $x87))))
+(let ((@x110 (mp~ (mp (asserted $x35) @x91 $x87) (nnf-neg @x106 (~ $x87 $x107)) $x107)))
+(let ((@x125 (mp (mp @x110 (quant-intro @x115 (= $x107 $x116)) $x116) (quant-intro (rewrite (= $x113 $x104)) (= $x116 $x122)) $x122)))
+(mp (mp @x125 @x156 $x152) @x180 false))))))))))))))))))))))))))))))))))))))))))))))
+
+245c1030f1ccfb215e92ef15fb3eb734710324df 23 0
+unsat
+((set-logic AUFLIA)
+(declare-fun ?v1!0 () Int)
+(proof
+(let (($x64 (>= ?v1!0 1)))
+(let (($x52 (forall ((?v1 Int) )(! (or (not (<= ?v1 0)) (not (>= ?v1 1))) :qid k!4))
+))
+(let (($x55 (not $x52)))
+(let (($x33 (forall ((?v0 Int) (?v1 Int) )(! (or (< 0 ?v1) (< ?v1 1)) :qid k!4))
+))
+(let (($x27 (not $x33)))
+(let (($x35 (forall ((?v1 Int) )(! (or (< 0 ?v1) (< ?v1 1)) :qid k!4))
+))
+(let (($x32 (or (< 0 ?0) (< ?0 1))))
+(let ((@x51 (monotonicity (rewrite (= (< 0 ?0) (not (<= ?0 0)))) (rewrite (= (< ?0 1) (not (>= ?0 1)))) (= $x32 (or (not (<= ?0 0)) (not (>= ?0 1)))))))
+(let ((@x57 (monotonicity (quant-intro @x51 (= $x35 $x52)) (= (not $x35) $x55))))
+(let ((@x59 (trans (monotonicity (elim-unused (= $x33 $x35)) (= $x27 (not $x35))) @x57 (= $x27 $x55))))
+(let ((@x70 (mp~ (mp (asserted $x27) @x59 $x55) (sk (~ $x55 (not (or (not (<= ?v1!0 0)) (not $x64))))) (not (or (not (<= ?v1!0 0)) (not $x64))))))
+(let ((@x74 (not-or-elim @x70 $x64)))
+(let (($x62 (<= ?v1!0 0)))
+(let ((@x73 (not-or-elim @x70 $x62)))
+(unit-resolution ((_ th-lemma arith farkas 1 1) (or (not $x62) (not $x64))) @x73 @x74 false)))))))))))))))))
+
+1ce41c6c9b94498d7f0910606954c5a3eb9e79cc 26 0
+unsat
+((set-logic <null>)
+(proof
+(let (($x58 (<= b$ 0)))
+(let (($x62 (or (not (and (not (<= a$ 0)) (not (<= (* a$ b$) 0)))) (not $x58))))
+(let (($x65 (not $x62)))
+(let (($x35 (not (=> (and (< 0 a$) (< 0 (* a$ b$))) (< 0 b$)))))
+(let (($x33 (< 0 b$)))
+(let (($x38 (or (not (and (< 0 a$) (< 0 (* a$ b$)))) $x33)))
+(let (($x56 (= (not (and (< 0 a$) (< 0 (* a$ b$)))) (not (and (not (<= a$ 0)) (not (<= (* a$ b$) 0)))))))
+(let ((?x30 (* a$ b$)))
+(let (($x48 (<= ?x30 0)))
+(let (($x49 (not $x48)))
+(let (($x44 (<= a$ 0)))
+(let (($x45 (not $x44)))
+(let (($x52 (and $x45 $x49)))
+(let (($x32 (and (< 0 a$) (< 0 ?x30))))
+(let ((@x54 (monotonicity (rewrite (= (< 0 a$) $x45)) (rewrite (= (< 0 ?x30) $x49)) (= $x32 $x52))))
+(let ((@x64 (monotonicity (monotonicity @x54 $x56) (rewrite (= $x33 (not $x58))) (= $x38 $x62))))
+(let ((@x43 (monotonicity (rewrite (= (=> $x32 $x33) $x38)) (= $x35 (not $x38)))))
+(let ((@x69 (trans @x43 (monotonicity @x64 (= (not $x38) $x65)) (= $x35 $x65))))
+(let ((@x74 (not-or-elim (mp (asserted $x35) @x69 $x65) $x58)))
+(let ((@x72 (and-elim (not-or-elim (mp (asserted $x35) @x69 $x65) $x52) $x45)))
+(let ((@x73 (and-elim (not-or-elim (mp (asserted $x35) @x69 $x65) $x52) $x49)))
+((_ th-lemma arith farkas 1 1 1) @x73 @x72 @x74 false))))))))))))))))))))))))
+
+120e7571f7a3d5bdf7efb7d07b2863a6d193cfc4 26 0
+unsat
+((set-logic <null>)
+(proof
+(let ((?x35 (+ y$ 1)))
+(let ((?x36 (* a$ ?x35)))
+(let ((?x34 (* a$ x$)))
+(let ((?x37 (+ ?x34 ?x36)))
+(let ((?x30 (+ x$ 1)))
+(let ((?x32 (+ ?x30 y$)))
+(let ((?x33 (* a$ ?x32)))
+(let (($x38 (= ?x33 ?x37)))
+(let (($x39 (not $x38)))
+(let (($x82 (= (= (+ a$ ?x34 (* a$ y$)) (+ a$ ?x34 (* a$ y$))) true)))
+(let (($x80 (= $x38 (= (+ a$ ?x34 (* a$ y$)) (+ a$ ?x34 (* a$ y$))))))
+(let ((@x76 (rewrite (= (+ ?x34 (+ a$ (* a$ y$))) (+ a$ ?x34 (* a$ y$))))))
+(let ((@x66 (monotonicity (rewrite (= ?x35 (+ 1 y$))) (= ?x36 (* a$ (+ 1 y$))))))
+(let ((@x71 (trans @x66 (rewrite (= (* a$ (+ 1 y$)) (+ a$ (* a$ y$)))) (= ?x36 (+ a$ (* a$ y$))))))
+(let ((@x78 (trans (monotonicity @x71 (= ?x37 (+ ?x34 (+ a$ (* a$ y$))))) @x76 (= ?x37 (+ a$ ?x34 (* a$ y$))))))
+(let ((@x58 (rewrite (= (* a$ (+ 1 x$ y$)) (+ a$ ?x34 (* a$ y$))))))
+(let ((@x46 (monotonicity (rewrite (= ?x30 (+ 1 x$))) (= ?x32 (+ (+ 1 x$) y$)))))
+(let ((@x51 (trans @x46 (rewrite (= (+ (+ 1 x$) y$) (+ 1 x$ y$))) (= ?x32 (+ 1 x$ y$)))))
+(let ((@x60 (trans (monotonicity @x51 (= ?x33 (* a$ (+ 1 x$ y$)))) @x58 (= ?x33 (+ a$ ?x34 (* a$ y$))))))
+(let ((@x88 (monotonicity (trans (monotonicity @x60 @x78 $x80) (rewrite $x82) (= $x38 true)) (= $x39 (not true)))))
+(let ((@x92 (trans @x88 (rewrite (= (not true) false)) (= $x39 false))))
+(mp (asserted $x39) @x92 false))))))))))))))))))))))))
+
+9643a0be0523c30ccea2649b7d41baba98b9e1c7 23 0
+unsat
+((set-logic <null>)
+(proof
+(let ((?x36 (* 2.0 x$)))
+(let ((?x37 (* ?x36 y$)))
+(let ((?x32 (- 1.0 y$)))
+(let ((?x33 (* x$ ?x32)))
+(let ((?x30 (+ 1.0 y$)))
+(let ((?x31 (* x$ ?x30)))
+(let ((?x34 (- ?x31 ?x33)))
+(let (($x38 (= ?x34 ?x37)))
+(let (($x39 (not $x38)))
+(let ((@x73 (rewrite (= (= (* 2.0 (* x$ y$)) (* 2.0 (* x$ y$))) true))))
+(let ((?x41 (* x$ y$)))
+(let ((?x63 (* 2.0 ?x41)))
+(let ((@x56 (rewrite (= (* x$ (+ 1.0 (* (- 1.0) y$))) (+ x$ (* (- 1.0) ?x41))))))
+(let ((@x52 (monotonicity (rewrite (= ?x32 (+ 1.0 (* (- 1.0) y$)))) (= ?x33 (* x$ (+ 1.0 (* (- 1.0) y$)))))))
+(let ((@x61 (monotonicity (rewrite (= ?x31 (+ x$ ?x41))) (trans @x52 @x56 (= ?x33 (+ x$ (* (- 1.0) ?x41)))) (= ?x34 (- (+ x$ ?x41) (+ x$ (* (- 1.0) ?x41)))))))
+(let ((@x66 (trans @x61 (rewrite (= (- (+ x$ ?x41) (+ x$ (* (- 1.0) ?x41))) ?x63)) (= ?x34 ?x63))))
+(let ((@x75 (trans (monotonicity @x66 (rewrite (= ?x37 ?x63)) (= $x38 (= ?x63 ?x63))) @x73 (= $x38 true))))
+(let ((@x82 (trans (monotonicity @x75 (= $x39 (not true))) (rewrite (= (not true) false)) (= $x39 false))))
+(mp (asserted $x39) @x82 false)))))))))))))))))))))
+
+cf35af4ec81d7dbaa379643034cb419106fa4ff8 51 0
+unsat
+((set-logic <null>)
+(proof
+(let ((?x47 (+ b$ d$)))
+(let ((?x48 (+ ?x47 e$)))
+(let ((?x30 (+ 1 p$)))
+(let ((?x49 (* ?x30 ?x48)))
+(let ((?x44 (* d$ p$)))
+(let ((?x42 (* ?x30 d$)))
+(let ((?x33 (+ b$ e$)))
+(let ((?x40 (* 2 ?x30)))
+(let ((?x41 (* ?x40 ?x33)))
+(let ((?x43 (+ ?x41 ?x42)))
+(let ((?x45 (+ ?x43 ?x44)))
+(let ((?x46 (+ u$ ?x45)))
+(let ((?x50 (- ?x46 ?x49)))
+(let ((?x37 (* p$ d$)))
+(let ((?x34 (* ?x30 ?x33)))
+(let ((?x35 (+ u$ ?x34)))
+(let ((?x38 (+ ?x35 ?x37)))
+(let (($x51 (= ?x38 ?x50)))
+(let (($x52 (not $x51)))
+(let ((?x55 (* p$ e$)))
+(let ((?x54 (* p$ b$)))
+(let ((?x70 (+ u$ b$ e$ ?x37 ?x54 ?x55)))
+(let ((?x127 (+ b$ e$ d$ ?x37 ?x54 ?x55)))
+(let ((?x85 (* 2 ?x55)))
+(let ((?x83 (* 2 ?x54)))
+(let ((?x84 (* 2 e$)))
+(let ((?x82 (* 2 b$)))
+(let ((?x116 (+ u$ ?x82 ?x84 d$ (* 2 ?x37) ?x83 ?x85)))
+(let ((@x126 (monotonicity (rewrite (= ?x48 (+ b$ e$ d$))) (= ?x49 (* ?x30 (+ b$ e$ d$))))))
+(let ((@x131 (trans @x126 (rewrite (= (* ?x30 (+ b$ e$ d$)) ?x127)) (= ?x49 ?x127))))
+(let ((@x118 (rewrite (= (+ u$ (+ ?x82 ?x84 d$ (* 2 ?x37) ?x83 ?x85)) ?x116))))
+(let ((?x108 (+ ?x82 ?x84 d$ (* 2 ?x37) ?x83 ?x85)))
+(let ((?x97 (+ ?x82 ?x84 d$ ?x37 ?x83 ?x85)))
+(let ((@x88 (rewrite (= (* (+ 2 (* 2 p$)) ?x33) (+ ?x82 ?x84 ?x83 ?x85)))))
+(let ((@x81 (monotonicity (rewrite (= ?x40 (+ 2 (* 2 p$)))) (= ?x41 (* (+ 2 (* 2 p$)) ?x33)))))
+(let ((@x96 (monotonicity (trans @x81 @x88 (= ?x41 (+ ?x82 ?x84 ?x83 ?x85))) (rewrite (= ?x42 (+ d$ ?x37))) (= ?x43 (+ (+ ?x82 ?x84 ?x83 ?x85) (+ d$ ?x37))))))
+(let ((@x101 (trans @x96 (rewrite (= (+ (+ ?x82 ?x84 ?x83 ?x85) (+ d$ ?x37)) ?x97)) (= ?x43 ?x97))))
+(let ((@x112 (trans (monotonicity @x101 (rewrite (= ?x44 ?x37)) (= ?x45 (+ ?x97 ?x37))) (rewrite (= (+ ?x97 ?x37) ?x108)) (= ?x45 ?x108))))
+(let ((@x120 (trans (monotonicity @x112 (= ?x46 (+ u$ ?x108))) @x118 (= ?x46 ?x116))))
+(let ((@x139 (trans (monotonicity @x120 @x131 (= ?x50 (- ?x116 ?x127))) (rewrite (= (- ?x116 ?x127) ?x70)) (= ?x50 ?x70))))
+(let ((@x64 (rewrite (= (+ u$ (+ b$ e$ ?x54 ?x55)) (+ u$ b$ e$ ?x54 ?x55)))))
+(let ((@x61 (monotonicity (rewrite (= ?x34 (+ b$ e$ ?x54 ?x55))) (= ?x35 (+ u$ (+ b$ e$ ?x54 ?x55))))))
+(let ((@x69 (monotonicity (trans @x61 @x64 (= ?x35 (+ u$ b$ e$ ?x54 ?x55))) (= ?x38 (+ (+ u$ b$ e$ ?x54 ?x55) ?x37)))))
+(let ((@x74 (trans @x69 (rewrite (= (+ (+ u$ b$ e$ ?x54 ?x55) ?x37) ?x70)) (= ?x38 ?x70))))
+(let ((@x145 (trans (monotonicity @x74 @x139 (= $x51 (= ?x70 ?x70))) (rewrite (= (= ?x70 ?x70) true)) (= $x51 true))))
+(let ((@x152 (trans (monotonicity @x145 (= $x52 (not true))) (rewrite (= (not true) false)) (= $x52 false))))
+(mp (asserted $x52) @x152 false)))))))))))))))))))))))))))))))))))))))))))))))))
+
+1d394bb8e58206d50a13d379fbea25a1cbf1305d 12 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let ((@x39 (rewrite (= (= (* 2 (of_nat$ x$)) 1) false))))
+(let ((?x29 (of_nat$ x$)))
+(let ((?x30 (* 2 ?x29)))
+(let (($x32 (= ?x30 1)))
+(let (($x33 (not $x32)))
+(let (($x34 (not $x33)))
+(let ((@x37 (rewrite (= $x34 $x32))))
+(mp (asserted $x34) (trans @x37 @x39 (= $x34 false)) false))))))))))
+
+7e42c634f1307c931bb3205b7d29a61bf5cbb1dd 23 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let ((?x28 (of_nat$ a$)))
+(let (($x57 (>= ?x28 4)))
+(let (($x47 (>= ?x28 3)))
+(let (($x61 (or $x47 (not $x57))))
+(let (($x64 (not $x61)))
+(let ((@x51 (monotonicity (rewrite (= (< ?x28 3) (not $x47))) (= (not (< ?x28 3)) (not (not $x47))))))
+(let ((@x55 (trans @x51 (rewrite (= (not (not $x47)) $x47)) (= (not (< ?x28 3)) $x47))))
+(let ((@x63 (monotonicity @x55 (rewrite (= (< (* 2 ?x28) 7) (not $x57))) (= (or (not (< ?x28 3)) (< (* 2 ?x28) 7)) $x61))))
+(let ((@x66 (monotonicity @x63 (= (not (or (not (< ?x28 3)) (< (* 2 ?x28) 7))) $x64))))
+(let (($x36 (not (=> (< ?x28 3) (< (* 2 ?x28) 7)))))
+(let (($x34 (< (* 2 ?x28) 7)))
+(let (($x30 (< ?x28 3)))
+(let (($x38 (not $x30)))
+(let (($x39 (or $x38 $x34)))
+(let ((@x44 (monotonicity (rewrite (= (=> $x30 $x34) $x39)) (= $x36 (not $x39)))))
+(let ((@x71 (not-or-elim (mp (asserted $x36) (trans @x44 @x66 (= $x36 $x64)) $x64) $x57)))
+(let (($x45 (not $x47)))
+(let ((@x70 (not-or-elim (mp (asserted $x36) (trans @x44 @x66 (= $x36 $x64)) $x64) $x45)))
+(unit-resolution ((_ th-lemma arith farkas 1 1) $x61) @x70 @x71 false)))))))))))))))))))))
+
+c9b8971d778e9001682f5b3a4e16c461840b29c5 22 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let ((?x29 (of_nat$ y$)))
+(let ((?x30 (+ 1 ?x29)))
+(let ((?x33 (- ?x30 ?x29)))
+(let (($x32 (< ?x30 ?x29)))
+(let ((?x34 (ite $x32 0 ?x33)))
+(let ((?x31 (* 0 ?x30)))
+(let (($x35 (< ?x31 ?x34)))
+(let (($x36 (not $x35)))
+(let ((@x55 (monotonicity (rewrite (= $x32 false)) (= (ite $x32 0 1) (ite false 0 1)))))
+(let ((@x59 (trans @x55 (rewrite (= (ite false 0 1) 1)) (= (ite $x32 0 1) 1))))
+(let ((@x62 (monotonicity @x59 (= (< 0 (ite $x32 0 1)) (< 0 1)))))
+(let ((@x66 (trans @x62 (rewrite (= (< 0 1) true)) (= (< 0 (ite $x32 0 1)) true))))
+(let ((@x69 (monotonicity @x66 (= (not (< 0 (ite $x32 0 1))) (not true)))))
+(let ((@x73 (trans @x69 (rewrite (= (not true) false)) (= (not (< 0 (ite $x32 0 1))) false))))
+(let ((@x44 (monotonicity (rewrite (= ?x33 1)) (= ?x34 (ite $x32 0 1)))))
+(let ((@x47 (monotonicity (rewrite (= ?x31 0)) @x44 (= $x35 (< 0 (ite $x32 0 1))))))
+(let ((@x50 (monotonicity @x47 (= $x36 (not (< 0 (ite $x32 0 1)))))))
+(mp (asserted $x36) (trans @x50 @x73 (= $x36 false)) false))))))))))))))))))))
+
+cbf2808ec09a5b4982758153f97196673f93edba 37 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let ((?x29 (of_nat$ y$)))
+(let (($x91 (>= ?x29 0)))
+(let ((@x126 (mp (asserted (<= 0 ?x29)) (rewrite (= (<= 0 ?x29) $x91)) $x91)))
+(let (($x86 (<= ?x29 (- 1))))
+(let (($x111 (not (or (= (not $x86) (= (ite $x91 ?x29 0) ?x29)) (not $x86)))))
+(let (($x39 (=> (not (ite (< 0 (+ 1 ?x29)) true false)) false)))
+(let (($x36 (= (ite (< (+ 1 ?x29) 1) 0 (- (+ 1 ?x29) 1)) ?x29)))
+(let ((?x30 (+ 1 ?x29)))
+(let (($x31 (< 0 ?x30)))
+(let (($x32 (ite $x31 true false)))
+(let (($x37 (= $x32 $x36)))
+(let (($x41 (or false (or $x37 $x39))))
+(let (($x42 (not $x41)))
+(let (($x112 (= (not (or (= $x31 (= (ite (< ?x30 1) 0 ?x29) ?x29)) $x31)) $x111)))
+(let (($x33 (< ?x30 1)))
+(let ((?x48 (ite $x33 0 ?x29)))
+(let (($x51 (= ?x48 ?x29)))
+(let (($x57 (= $x31 $x51)))
+(let (($x72 (or $x57 $x31)))
+(let (($x109 (= $x72 (or (= (not $x86) (= (ite $x91 ?x29 0) ?x29)) (not $x86)))))
+(let ((@x96 (monotonicity (rewrite (= $x33 (not $x91))) (= ?x48 (ite (not $x91) 0 ?x29)))))
+(let ((@x101 (trans @x96 (rewrite (= (ite (not $x91) 0 ?x29) (ite $x91 ?x29 0))) (= ?x48 (ite $x91 ?x29 0)))))
+(let ((@x107 (monotonicity (rewrite (= $x31 (not $x86))) (monotonicity @x101 (= $x51 (= (ite $x91 ?x29 0) ?x29))) (= $x57 (= (not $x86) (= (ite $x91 ?x29 0) ?x29))))))
+(let ((@x113 (monotonicity (monotonicity @x107 (rewrite (= $x31 (not $x86))) $x109) $x112)))
+(let ((@x67 (monotonicity (monotonicity (rewrite (= $x32 $x31)) (= (not $x32) (not $x31))) (= $x39 (=> (not $x31) false)))))
+(let ((@x71 (trans @x67 (rewrite (= (=> (not $x31) false) $x31)) (= $x39 $x31))))
+(let ((@x50 (monotonicity (rewrite (= (- ?x30 1) ?x29)) (= (ite $x33 0 (- ?x30 1)) ?x48))))
+(let ((@x56 (monotonicity (rewrite (= $x32 $x31)) (monotonicity @x50 (= $x36 $x51)) (= $x37 (= $x31 $x51)))))
+(let ((@x74 (monotonicity (trans @x56 (rewrite (= (= $x31 $x51) $x57)) (= $x37 $x57)) @x71 (= (or $x37 $x39) $x72))))
+(let ((@x81 (trans (monotonicity @x74 (= $x41 (or false $x72))) (rewrite (= (or false $x72) $x72)) (= $x41 $x72))))
+(let ((@x115 (trans (monotonicity @x81 (= $x42 (not $x72))) @x113 (= $x42 $x111))))
+(let ((@x119 (not-or-elim (mp (asserted $x42) @x115 $x111) $x86)))
+(unit-resolution ((_ th-lemma arith farkas 1 1) (or (not $x86) (not $x91))) @x119 @x126 false)))))))))))))))))))))))))))))))))))
+
+b06d43652b73c2768eef10e5038b2c417733fa71 64 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let ((?x58 (* (- 1) x$)))
+(let (($x76 (>= x$ 0)))
+(let ((?x83 (ite $x76 x$ ?x58)))
+(let ((?x536 (* (- 1) ?x83)))
+(let ((?x539 (+ ?x58 ?x536)))
+(let (($x237 (<= ?x539 0)))
+(let (($x229 (= ?x58 ?x83)))
+(let (($x77 (not $x76)))
+(let (($x143 (= x$ ?x83)))
+(let ((@x182 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x143) (<= (+ x$ ?x536) 0))) (unit-resolution (def-axiom (or $x77 $x143)) (hypothesis $x76) $x143) (<= (+ x$ ?x536) 0))))
+(let (($x232 (>= ?x83 0)))
+(let (($x337 (not $x232)))
+(let ((?x88 (nat$ ?x83)))
+(let ((?x91 (of_nat$ ?x88)))
+(let (($x233 (= ?x91 0)))
+(let (($x94 (= ?x91 ?x83)))
+(let (($x234 (ite $x232 $x94 $x233)))
+(let (($x560 (forall ((?v0 Int) )(! (let (($x39 (>= ?v0 0)))
+(ite $x39 (= (of_nat$ (nat$ ?v0)) ?v0) (= (of_nat$ (nat$ ?v0)) 0))) :pattern ( (nat$ ?v0) ) :qid k!8))
+))
+(let (($x139 (forall ((?v0 Int) )(! (let (($x39 (>= ?v0 0)))
+(ite $x39 (= (of_nat$ (nat$ ?v0)) ?v0) (= (of_nat$ (nat$ ?v0)) 0))) :qid k!8))
+))
+(let (($x39 (>= ?0 0)))
+(let (($x136 (ite $x39 (= (of_nat$ (nat$ ?0)) ?0) (= (of_nat$ (nat$ ?0)) 0))))
+(let (($x46 (forall ((?v0 Int) )(! (let ((?x29 (of_nat$ (nat$ ?v0))))
+(= ?x29 (ite (>= ?v0 0) ?v0 0))) :qid k!8))
+))
+(let ((@x141 (quant-intro (rewrite (= (= (of_nat$ (nat$ ?0)) (ite $x39 ?0 0)) $x136)) (= $x46 $x139))))
+(let ((?x29 (of_nat$ (nat$ ?0))))
+(let (($x43 (= ?x29 (ite $x39 ?0 0))))
+(let (($x33 (forall ((?v0 Int) )(! (let ((?x29 (of_nat$ (nat$ ?v0))))
+(= ?x29 (ite (<= 0 ?v0) ?v0 0))) :qid k!8))
+))
+(let ((@x42 (monotonicity (rewrite (= (<= 0 ?0) $x39)) (= (ite (<= 0 ?0) ?0 0) (ite $x39 ?0 0)))))
+(let ((@x45 (monotonicity @x42 (= (= ?x29 (ite (<= 0 ?0) ?0 0)) $x43))))
+(let ((@x122 (mp~ (mp (asserted $x33) (quant-intro @x45 (= $x33 $x46)) $x46) (nnf-pos (refl (~ $x43 $x43)) (~ $x46 $x46)) $x46)))
+(let ((@x565 (mp (mp @x122 @x141 $x139) (quant-intro (refl (= $x136 $x136)) (= $x139 $x560)) $x560)))
+(let (($x551 (or (not $x560) $x234)))
+(let ((@x552 ((_ quant-inst (ite $x76 x$ ?x58)) $x551)))
+(let (($x97 (not $x94)))
+(let (($x36 (< x$ 0)))
+(let ((?x51 (ite $x36 (- x$) x$)))
+(let (($x55 (not (= (of_nat$ (nat$ ?x51)) ?x51))))
+(let (($x98 (= (not (= (of_nat$ (nat$ (ite $x36 ?x58 x$))) (ite $x36 ?x58 x$))) $x97)))
+(let ((?x61 (ite $x36 ?x58 x$)))
+(let ((?x64 (nat$ ?x61)))
+(let ((?x67 (of_nat$ ?x64)))
+(let (($x70 (= ?x67 ?x61)))
+(let ((@x87 (trans (monotonicity (rewrite (= $x36 $x77)) (= ?x61 (ite $x77 ?x58 x$))) (rewrite (= (ite $x77 ?x58 x$) ?x83)) (= ?x61 ?x83))))
+(let ((@x96 (monotonicity (monotonicity (monotonicity @x87 (= ?x64 ?x88)) (= ?x67 ?x91)) @x87 (= $x70 $x94))))
+(let ((@x66 (monotonicity (monotonicity (rewrite (= (- x$) ?x58)) (= ?x51 ?x61)) (= (nat$ ?x51) ?x64))))
+(let ((@x72 (monotonicity (monotonicity @x66 (= (of_nat$ (nat$ ?x51)) ?x67)) (monotonicity (rewrite (= (- x$) ?x58)) (= ?x51 ?x61)) (= (= (of_nat$ (nat$ ?x51)) ?x51) $x70))))
+(let ((@x101 (trans (monotonicity @x72 (= $x55 (not $x70))) (monotonicity @x96 $x98) (= $x55 $x97))))
+(let ((@x102 (mp (asserted $x55) @x101 $x97)))
+(let ((@x545 (unit-resolution (def-axiom (or (not $x234) $x337 $x94)) @x102 (or (not $x234) $x337))))
+(let ((@x532 ((_ th-lemma arith farkas -1 1 1) (hypothesis $x76) (unit-resolution @x545 (unit-resolution @x552 @x565 $x234) $x337) @x182 false)))
+(let ((@x533 (lemma @x532 $x77)))
+(let ((@x526 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x229) $x237)) (unit-resolution (def-axiom (or $x76 $x229)) @x533 $x229) $x237)))
+((_ th-lemma arith farkas 1 1 1) (unit-resolution @x545 (unit-resolution @x552 @x565 $x234) $x337) @x533 @x526 false))))))))))))))))))))))))))))))))))))))))))))))))))))))
+
+678cc460f8a4ff76257174915fd3463bc39fc2f5 264 0
+unsat
+((set-logic AUFLIA)
+(declare-fun ?v1!0 (Nat$) Nat$)
+(proof
+(let ((?x89 (of_nat$ m$)))
+(let ((?x90 (* 4 ?x89)))
+(let ((?x98 (+ 1 ?x90)))
+(let ((?x101 (nat$ ?x98)))
+(let ((?x276 (of_nat$ ?x101)))
+(let ((?x581 (* (- 1) ?x276)))
+(let ((?x582 (+ ?x90 ?x581)))
+(let (($x555 (>= ?x582 (- 1))))
+(let (($x580 (= ?x582 (- 1))))
+(let (($x574 (= ?x276 0)))
+(let (($x622 (>= ?x89 0)))
+(let (($x583 (ite $x622 $x580 $x574)))
+(let (($x737 (forall ((?v0 Int) )(! (let (($x160 (>= ?v0 0)))
+(ite $x160 (= (of_nat$ (nat$ ?v0)) ?v0) (= (of_nat$ (nat$ ?v0)) 0))) :pattern ( (nat$ ?v0) ) :qid k!14))
+))
+(let (($x271 (forall ((?v0 Int) )(! (let (($x160 (>= ?v0 0)))
+(ite $x160 (= (of_nat$ (nat$ ?v0)) ?v0) (= (of_nat$ (nat$ ?v0)) 0))) :qid k!14))
+))
+(let (($x160 (>= ?0 0)))
+(let (($x268 (ite $x160 (= (of_nat$ (nat$ ?0)) ?0) (= (of_nat$ (nat$ ?0)) 0))))
+(let (($x167 (forall ((?v0 Int) )(! (let ((?x149 (nat$ ?v0)))
+(let ((?x150 (of_nat$ ?x149)))
+(= ?x150 (ite (>= ?v0 0) ?v0 0)))) :qid k!14))
+))
+(let ((@x273 (quant-intro (rewrite (= (= (of_nat$ (nat$ ?0)) (ite $x160 ?0 0)) $x268)) (= $x167 $x271))))
+(let ((?x149 (nat$ ?0)))
+(let ((?x150 (of_nat$ ?x149)))
+(let (($x164 (= ?x150 (ite $x160 ?0 0))))
+(let (($x154 (forall ((?v0 Int) )(! (let ((?x149 (nat$ ?v0)))
+(let ((?x150 (of_nat$ ?x149)))
+(= ?x150 (ite (<= 0 ?v0) ?v0 0)))) :qid k!14))
+))
+(let ((@x163 (monotonicity (rewrite (= (<= 0 ?0) $x160)) (= (ite (<= 0 ?0) ?0 0) (ite $x160 ?0 0)))))
+(let ((@x166 (monotonicity @x163 (= (= ?x150 (ite (<= 0 ?0) ?0 0)) $x164))))
+(let ((@x243 (mp~ (mp (asserted $x154) (quant-intro @x166 (= $x154 $x167)) $x167) (nnf-pos (refl (~ $x164 $x164)) (~ $x167 $x167)) $x167)))
+(let ((@x742 (mp (mp @x243 @x273 $x271) (quant-intro (refl (= $x268 $x268)) (= $x271 $x737)) $x737)))
+(let (($x587 (or (not $x737) $x583)))
+(let ((@x585 (monotonicity (rewrite (= (>= ?x98 0) $x622)) (rewrite (= (= ?x276 ?x98) $x580)) (= (ite (>= ?x98 0) (= ?x276 ?x98) $x574) $x583))))
+(let ((@x568 (monotonicity @x585 (= (or (not $x737) (ite (>= ?x98 0) (= ?x276 ?x98) $x574)) $x587))))
+(let ((@x571 (trans @x568 (rewrite (= $x587 $x587)) (= (or (not $x737) (ite (>= ?x98 0) (= ?x276 ?x98) $x574)) $x587))))
+(let ((@x572 (mp ((_ quant-inst (+ 1 ?x90)) (or (not $x737) (ite (>= ?x98 0) (= ?x276 ?x98) $x574))) @x571 $x587)))
+(let (($x723 (forall ((?v0 Nat$) )(! (let ((?x30 (of_nat$ ?v0)))
+(>= ?x30 0)) :pattern ( (of_nat$ ?v0) ) :qid k!12))
+))
+(let (($x142 (forall ((?v0 Nat$) )(! (let ((?x30 (of_nat$ ?v0)))
+(>= ?x30 0)) :qid k!12))
+))
+(let ((@x727 (quant-intro (refl (= (>= (of_nat$ ?0) 0) (>= (of_nat$ ?0) 0))) (= $x142 $x723))))
+(let ((@x232 (nnf-pos (refl (~ (>= (of_nat$ ?0) 0) (>= (of_nat$ ?0) 0))) (~ $x142 $x142))))
+(let (($x135 (forall ((?v0 Nat$) )(! (let ((?x30 (of_nat$ ?v0)))
+(<= 0 ?x30)) :qid k!12))
+))
+(let ((@x144 (quant-intro (rewrite (= (<= 0 (of_nat$ ?0)) (>= (of_nat$ ?0) 0))) (= $x135 $x142))))
+(let ((@x728 (mp (mp~ (mp (asserted $x135) @x144 $x142) @x232 $x142) @x727 $x723)))
+(let (($x593 (or (not $x723) $x622)))
+(let ((@x594 ((_ quant-inst m$) $x593)))
+(let ((@x547 (unit-resolution (def-axiom (or (not $x583) (not $x622) $x580)) (unit-resolution @x594 @x728 $x622) (or (not $x583) $x580))))
+(let ((@x551 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x580) $x555)) (unit-resolution @x547 (unit-resolution @x572 @x742 $x583) $x580) $x555)))
+(let (($x361 (<= ?x276 1)))
+(let (($x668 (not $x361)))
+(let (($x346 (forall ((?v1 Nat$) )(! (let ((?x89 (of_nat$ m$)))
+(let ((?x90 (* 4 ?x89)))
+(let ((?x98 (+ 1 ?x90)))
+(let ((?x101 (nat$ ?x98)))
+(let ((?x276 (of_nat$ ?x101)))
+(let ((?x30 (of_nat$ ?v1)))
+(let (($x363 (= ?x30 ?x276)))
+(let (($x34 (= ?x30 1)))
+(let (($x362 (dvd$ ?v1 ?x101)))
+(let (($x352 (not $x362)))
+(or $x352 $x34 $x363))))))))))) :pattern ( (dvd$ ?v1 (nat$ (+ 1 (* 4 (of_nat$ m$))))) ) :pattern ( (of_nat$ ?v1) ) :qid k!10))
+))
+(let (($x682 (not $x346)))
+(let (($x683 (or $x361 $x682)))
+(let (($x338 (not $x683)))
+(let (($x104 (prime_nat$ ?x101)))
+(let (($x110 (not $x104)))
+(let (($x468 (or $x110 $x338)))
+(let ((?x351 (?v1!0 ?x101)))
+(let ((?x686 (of_nat$ ?x351)))
+(let (($x688 (= ?x686 ?x276)))
+(let (($x687 (= ?x686 1)))
+(let (($x684 (dvd$ ?x351 ?x101)))
+(let (($x685 (not $x684)))
+(let (($x689 (or $x685 $x687 $x688)))
+(let (($x679 (not $x689)))
+(let (($x344 (or $x104 $x361 $x679)))
+(let (($x681 (not $x344)))
+(let (($x678 (not $x468)))
+(let (($x323 (or $x678 $x681)))
+(let (($x665 (not $x323)))
+(let (($x719 (forall ((?v0 Nat$) )(! (let (($x191 (or (not (dvd$ (?v1!0 ?v0) ?v0)) (= (of_nat$ (?v1!0 ?v0)) 1) (= (of_nat$ (?v1!0 ?v0)) (of_nat$ ?v0)))))
+(let (($x192 (not $x191)))
+(let ((?x30 (of_nat$ ?v0)))
+(let (($x65 (<= ?x30 1)))
+(let (($x28 (prime_nat$ ?v0)))
+(let (($x217 (or $x28 $x65 $x192)))
+(let (($x692 (forall ((?v1 Nat$) )(! (let ((?x30 (of_nat$ ?v1)))
+(let (($x34 (= ?x30 1)))
+(or (not (dvd$ ?v1 ?v0)) $x34 (= ?x30 (of_nat$ ?v0))))) :pattern ( (dvd$ ?v1 ?v0) ) :pattern ( (of_nat$ ?v1) ) :qid k!10))
+))
+(let (($x177 (not $x28)))
+(not (or (not (or $x177 (not (or $x65 (not $x692))))) (not $x217))))))))))) :pattern ( (prime_nat$ ?v0) ) :pattern ( (of_nat$ ?v0) ) :qid k!10))
+))
+(let (($x262 (forall ((?v0 Nat$) )(! (let (($x191 (or (not (dvd$ (?v1!0 ?v0) ?v0)) (= (of_nat$ (?v1!0 ?v0)) 1) (= (of_nat$ (?v1!0 ?v0)) (of_nat$ ?v0)))))
+(let (($x192 (not $x191)))
+(let ((?x30 (of_nat$ ?v0)))
+(let (($x65 (<= ?x30 1)))
+(let (($x28 (prime_nat$ ?v0)))
+(let (($x217 (or $x28 $x65 $x192)))
+(let (($x72 (forall ((?v1 Nat$) )(! (let ((?x30 (of_nat$ ?v1)))
+(let (($x34 (= ?x30 1)))
+(or (not (dvd$ ?v1 ?v0)) $x34 (= ?x30 (of_nat$ ?v0))))) :qid k!10))
+))
+(let (($x193 (not $x72)))
+(let (($x245 (not (or $x65 $x193))))
+(let (($x177 (not $x28)))
+(let (($x248 (or $x177 $x245)))
+(not (or (not $x248) (not $x217)))))))))))))) :qid k!10))
+))
+(let (($x191 (or (not (dvd$ (?v1!0 ?0) ?0)) (= (of_nat$ (?v1!0 ?0)) 1) (= (of_nat$ (?v1!0 ?0)) (of_nat$ ?0)))))
+(let (($x192 (not $x191)))
+(let ((?x30 (of_nat$ ?0)))
+(let (($x65 (<= ?x30 1)))
+(let (($x28 (prime_nat$ ?0)))
+(let (($x217 (or $x28 $x65 $x192)))
+(let (($x692 (forall ((?v1 Nat$) )(! (let ((?x30 (of_nat$ ?v1)))
+(let (($x34 (= ?x30 1)))
+(or (not (dvd$ ?v1 ?0)) $x34 (= ?x30 (of_nat$ ?0))))) :pattern ( (dvd$ ?v1 ?0) ) :pattern ( (of_nat$ ?v1) ) :qid k!10))
+))
+(let (($x177 (not $x28)))
+(let (($x72 (forall ((?v1 Nat$) )(! (let ((?x30 (of_nat$ ?v1)))
+(let (($x34 (= ?x30 1)))
+(or (not (dvd$ ?v1 ?0)) $x34 (= ?x30 (of_nat$ ?0))))) :qid k!10))
+))
+(let (($x193 (not $x72)))
+(let (($x245 (not (or $x65 $x193))))
+(let (($x248 (or $x177 $x245)))
+(let (($x257 (not (or (not $x248) (not $x217)))))
+(let (($x716 (= $x257 (not (or (not (or $x177 (not (or $x65 (not $x692))))) (not $x217))))))
+(let (($x713 (= (or (not $x248) (not $x217)) (or (not (or $x177 (not (or $x65 (not $x692))))) (not $x217)))))
+(let (($x34 (= ?x30 1)))
+(let (($x69 (or (not (dvd$ ?0 ?1)) $x34 (= ?x30 (of_nat$ ?1)))))
+(let ((@x699 (monotonicity (quant-intro (refl (= $x69 $x69)) (= $x72 $x692)) (= $x193 (not $x692)))))
+(let ((@x705 (monotonicity (monotonicity @x699 (= (or $x65 $x193) (or $x65 (not $x692)))) (= $x245 (not (or $x65 (not $x692)))))))
+(let ((@x711 (monotonicity (monotonicity @x705 (= $x248 (or $x177 (not (or $x65 (not $x692)))))) (= (not $x248) (not (or $x177 (not (or $x65 (not $x692)))))))))
+(let ((@x721 (quant-intro (monotonicity (monotonicity @x711 $x713) $x716) (= $x262 $x719))))
+(let (($x225 (forall ((?v0 Nat$) )(! (let (($x191 (or (not (dvd$ (?v1!0 ?v0) ?v0)) (= (of_nat$ (?v1!0 ?v0)) 1) (= (of_nat$ (?v1!0 ?v0)) (of_nat$ ?v0)))))
+(let (($x192 (not $x191)))
+(let ((?x30 (of_nat$ ?v0)))
+(let (($x65 (<= ?x30 1)))
+(let (($x28 (prime_nat$ ?v0)))
+(let (($x217 (or $x28 $x65 $x192)))
+(let (($x72 (forall ((?v1 Nat$) )(! (let ((?x30 (of_nat$ ?v1)))
+(let (($x34 (= ?x30 1)))
+(or (not (dvd$ ?v1 ?v0)) $x34 (= ?x30 (of_nat$ ?v0))))) :qid k!10))
+))
+(let (($x66 (not $x65)))
+(let (($x75 (and $x66 $x72)))
+(let (($x177 (not $x28)))
+(let (($x201 (or $x177 $x75)))
+(and $x201 $x217)))))))))))) :qid k!10))
+))
+(let ((@x250 (monotonicity (rewrite (= (and (not $x65) $x72) $x245)) (= (or $x177 (and (not $x65) $x72)) $x248))))
+(let ((@x253 (monotonicity @x250 (= (and (or $x177 (and (not $x65) $x72)) $x217) (and $x248 $x217)))))
+(let ((@x261 (trans @x253 (rewrite (= (and $x248 $x217) $x257)) (= (and (or $x177 (and (not $x65) $x72)) $x217) $x257))))
+(let (($x205 (forall ((?v0 Nat$) )(! (let (($x191 (or (not (dvd$ (?v1!0 ?v0) ?v0)) (= (of_nat$ (?v1!0 ?v0)) 1) (= (of_nat$ (?v1!0 ?v0)) (of_nat$ ?v0)))))
+(let (($x192 (not $x191)))
+(let ((?x30 (of_nat$ ?v0)))
+(let (($x65 (<= ?x30 1)))
+(let (($x66 (not $x65)))
+(let (($x182 (not $x66)))
+(let (($x196 (or $x182 $x192)))
+(let (($x28 (prime_nat$ ?v0)))
+(let (($x200 (or $x28 $x196)))
+(let (($x72 (forall ((?v1 Nat$) )(! (let ((?x30 (of_nat$ ?v1)))
+(let (($x34 (= ?x30 1)))
+(or (not (dvd$ ?v1 ?v0)) $x34 (= ?x30 (of_nat$ ?v0))))) :qid k!10))
+))
+(let (($x75 (and $x66 $x72)))
+(let (($x177 (not $x28)))
+(let (($x201 (or $x177 $x75)))
+(and $x201 $x200)))))))))))))) :qid k!10))
+))
+(let (($x66 (not $x65)))
+(let (($x75 (and $x66 $x72)))
+(let (($x201 (or $x177 $x75)))
+(let (($x222 (and $x201 $x217)))
+(let (($x182 (not $x66)))
+(let (($x196 (or $x182 $x192)))
+(let (($x200 (or $x28 $x196)))
+(let (($x202 (and $x201 $x200)))
+(let ((@x216 (monotonicity (monotonicity (rewrite (= $x182 $x65)) (= $x196 (or $x65 $x192))) (= $x200 (or $x28 (or $x65 $x192))))))
+(let ((@x221 (trans @x216 (rewrite (= (or $x28 (or $x65 $x192)) $x217)) (= $x200 $x217))))
+(let (($x81 (forall ((?v0 Nat$) )(! (let (($x72 (forall ((?v1 Nat$) )(! (let ((?x30 (of_nat$ ?v1)))
+(let (($x34 (= ?x30 1)))
+(or (not (dvd$ ?v1 ?v0)) $x34 (= ?x30 (of_nat$ ?v0))))) :qid k!10))
+))
+(let ((?x30 (of_nat$ ?v0)))
+(let (($x65 (<= ?x30 1)))
+(let (($x66 (not $x65)))
+(let (($x75 (and $x66 $x72)))
+(let (($x28 (prime_nat$ ?v0)))
+(= $x28 $x75))))))) :qid k!10))
+))
+(let ((@x199 (nnf-neg (refl (~ $x182 $x182)) (sk (~ $x193 $x192)) (~ (not $x75) $x196))))
+(let ((@x181 (monotonicity (refl (~ $x66 $x66)) (nnf-pos (refl (~ $x69 $x69)) (~ $x72 $x72)) (~ $x75 $x75))))
+(let ((@x204 (nnf-pos (refl (~ $x28 $x28)) (refl (~ $x177 $x177)) @x181 @x199 (~ (= $x28 $x75) $x202))))
+(let (($x42 (forall ((?v0 Nat$) )(! (let (($x39 (forall ((?v1 Nat$) )(! (let (($x33 (dvd$ ?v1 ?v0)))
+(=> $x33 (or (= (of_nat$ ?v1) 1) (= (of_nat$ ?v1) (of_nat$ ?v0))))) :qid k!10))
+))
+(let ((?x30 (of_nat$ ?v0)))
+(let (($x31 (< 1 ?x30)))
+(let (($x28 (prime_nat$ ?v0)))
+(= $x28 (and $x31 $x39)))))) :qid k!10))
+))