Adapted to changes in Finite_Set theory.
--- a/src/HOL/Isar_examples/MutilatedCheckerboard.thy Wed Feb 07 17:45:03 2007 +0100
+++ b/src/HOL/Isar_examples/MutilatedCheckerboard.thy Wed Feb 07 17:46:03 2007 +0100
@@ -186,8 +186,8 @@
using d
proof induct
fix i j :: nat
- show "finite {(i, j), (i, j + 1)}" by (intro Finites.intros)
- show "finite {(i, j), (i + 1, j)}" by (intro Finites.intros)
+ show "finite {(i, j), (i, j + 1)}" by (intro finite.intros)
+ show "finite {(i, j), (i + 1, j)}" by (intro finite.intros)
qed
@@ -198,7 +198,7 @@
shows "finite t" (is "?F t")
using t
proof induct
- show "?F {}" by (rule Finites.emptyI)
+ show "?F {}" by (rule finite.emptyI)
fix a t assume "?F t"
assume "a : domino" then have "?F a" by (rule domino_finite)
then show "?F (a Un t)" by (rule finite_UnI)