More occurrences of 'includes' gone.
--- a/src/FOL/ex/LocaleTest.thy Thu Oct 16 17:07:20 2008 +0200
+++ b/src/FOL/ex/LocaleTest.thy Thu Oct 16 17:19:47 2008 +0200
@@ -682,13 +682,6 @@
"(x ++ y) ++ z = x ++ (y ++ z)"
by (simp add: r_def assoc)
-lemma (in Rpair_semi)
- includes Rsemi_rev prodP (infixl "***" 65) rprodP (infixl "+++" 65)
- constrains prod :: "['a, 'a] => 'a"
- and rprodP :: "[('a, 'a) pair, ('a, 'a) pair] => ('a, 'a) pair"
- shows "(x +++ y) +++ z = x +++ (y +++ z)"
- apply (rule r_assoc) done
-
subsection {* Import of Locales with Predicates as Interpretation *}
--- a/src/HOL/Statespace/StateSpaceEx.thy Thu Oct 16 17:07:20 2008 +0200
+++ b/src/HOL/Statespace/StateSpaceEx.thy Thu Oct 16 17:19:47 2008 +0200
@@ -201,10 +201,12 @@
implemented correctly in future Isabelle versions. *}
lemma
- includes foo
- shows True
+ assumes "foo f a b c p1 i1 p2 i2 p3 i3 p4 i4"
+ shows True
+proof
+ interpret foo [f a b c p1 i1 p2 i2 p3 i3 p4 i4] by fact
term "s<a := i>\<cdot>a = i"
- by simp
+qed
(*
lemma
--- a/src/HOLCF/Algebraic.thy Thu Oct 16 17:07:20 2008 +0200
+++ b/src/HOLCF/Algebraic.thy Thu Oct 16 17:19:47 2008 +0200
@@ -157,10 +157,11 @@
end
lemma pre_deflation_d_f:
- includes finite_deflation d
+ assumes "finite_deflation d"
assumes f: "\<And>x. f\<cdot>x \<sqsubseteq> x"
shows "pre_deflation (d oo f)"
proof
+ interpret d: finite_deflation [d] by fact
fix x
show "\<And>x. (d oo f)\<cdot>x \<sqsubseteq> x"
by (simp, rule trans_less [OF d.less f])
@@ -169,10 +170,11 @@
qed
lemma eventual_iterate_oo_fixed_iff:
- includes finite_deflation d
+ assumes "finite_deflation d"
assumes f: "\<And>x. f\<cdot>x \<sqsubseteq> x"
shows "eventual (\<lambda>n. iterate n\<cdot>(d oo f))\<cdot>x = x \<longleftrightarrow> d\<cdot>x = x \<and> f\<cdot>x = x"
proof -
+ interpret d: finite_deflation [d] by fact
let ?e = "d oo f"
interpret e: pre_deflation ["d oo f"]
using `finite_deflation d` f
@@ -480,10 +482,11 @@
is an algebraic deflation. *}
lemma
- includes ep_pair e p
+ assumes "ep_pair e p"
constrains e :: "'a::profinite \<rightarrow> 'b::profinite"
shows "\<exists>d. cast\<cdot>d = e oo p"
proof
+ interpret ep_pair [e p] by fact
let ?a = "\<lambda>i. e oo approx i oo p"
have a: "\<And>i. finite_deflation (?a i)"
apply (rule finite_deflation_e_d_p)
@@ -507,13 +510,14 @@
an algebraic deflation, then the cpo is bifinite. *}
lemma
- includes ep_pair e p
+ assumes "ep_pair e p"
constrains e :: "'a::cpo \<rightarrow> 'b::profinite"
assumes d: "\<And>x. cast\<cdot>d\<cdot>x = e\<cdot>(p\<cdot>x)"
obtains a :: "nat \<Rightarrow> 'a \<rightarrow> 'a" where
"\<And>i. finite_deflation (a i)"
"(\<Squnion>i. a i) = ID"
proof
+ interpret ep_pair [e p] by fact
let ?a = "\<lambda>i. p oo cast\<cdot>(approx i\<cdot>d) oo e"
show "\<And>i. finite_deflation (?a i)"
apply (rule finite_deflation_p_d_e)
--- a/src/HOLCF/CompactBasis.thy Thu Oct 16 17:07:20 2008 +0200
+++ b/src/HOLCF/CompactBasis.thy Thu Oct 16 17:19:47 2008 +0200
@@ -237,14 +237,17 @@
where "fold_pd g f t = fold1 f (g ` Rep_pd_basis t)"
lemma fold_pd_PDUnit:
- includes ab_semigroup_idem_mult f
+ assumes "ab_semigroup_idem_mult f"
shows "fold_pd g f (PDUnit x) = g x"
unfolding fold_pd_def Rep_PDUnit by simp
lemma fold_pd_PDPlus:
- includes ab_semigroup_idem_mult f
+ assumes "ab_semigroup_idem_mult f"
shows "fold_pd g f (PDPlus t u) = f (fold_pd g f t) (fold_pd g f u)"
-unfolding fold_pd_def Rep_PDPlus by (simp add: image_Un fold1_Un2)
+proof -
+ interpret ab_semigroup_idem_mult [f] by fact
+ show ?thesis unfolding fold_pd_def Rep_PDPlus by (simp add: image_Un fold1_Un2)
+qed
text {* Take function for powerdomain basis *}
--- a/src/HOLCF/Deflation.thy Thu Oct 16 17:07:20 2008 +0200
+++ b/src/HOLCF/Deflation.thy Thu Oct 16 17:19:47 2008 +0200
@@ -78,12 +78,14 @@
*}
lemma deflation_less_comp1:
- includes deflation f
- includes deflation g
+ assumes "deflation f"
+ assumes "deflation g"
shows "f \<sqsubseteq> g \<Longrightarrow> f\<cdot>(g\<cdot>x) = f\<cdot>x"
proof (rule antisym_less)
+ interpret g: deflation [g] by fact
from g.less show "f\<cdot>(g\<cdot>x) \<sqsubseteq> f\<cdot>x" by (rule monofun_cfun_arg)
next
+ interpret f: deflation [f] by fact
assume "f \<sqsubseteq> g" hence "f\<cdot>x \<sqsubseteq> g\<cdot>x" by (rule monofun_cfun_fun)
hence "f\<cdot>(f\<cdot>x) \<sqsubseteq> f\<cdot>(g\<cdot>x)" by (rule monofun_cfun_arg)
also have "f\<cdot>(f\<cdot>x) = f\<cdot>x" by (rule f.idem)
@@ -215,9 +217,10 @@
by (simp add: deflation.intro e_p_less)
lemma deflation_e_d_p:
- includes deflation d
+ assumes "deflation d"
shows "deflation (e oo d oo p)"
proof
+ interpret deflation [d] by fact
fix x :: 'b
show "(e oo d oo p)\<cdot>((e oo d oo p)\<cdot>x) = (e oo d oo p)\<cdot>x"
by (simp add: idem)
@@ -226,9 +229,10 @@
qed
lemma finite_deflation_e_d_p:
- includes finite_deflation d
+ assumes "finite_deflation d"
shows "finite_deflation (e oo d oo p)"
proof
+ interpret finite_deflation [d] by fact
fix x :: 'b
show "(e oo d oo p)\<cdot>((e oo d oo p)\<cdot>x) = (e oo d oo p)\<cdot>x"
by (simp add: idem)
@@ -243,39 +247,47 @@
qed
lemma deflation_p_d_e:
- includes deflation d
+ assumes "deflation d"
assumes d: "\<And>x. d\<cdot>x \<sqsubseteq> e\<cdot>(p\<cdot>x)"
shows "deflation (p oo d oo e)"
- apply (default, simp_all)
- apply (rule antisym_less)
- apply (rule monofun_cfun_arg)
- apply (rule trans_less [OF d])
- apply (simp add: e_p_less)
- apply (rule monofun_cfun_arg)
- apply (rule rev_trans_less)
- apply (rule monofun_cfun_arg)
- apply (rule d)
- apply (simp add: d.idem)
- apply (rule sq_ord_less_eq_trans)
- apply (rule monofun_cfun_arg)
- apply (rule d.less)
- apply (rule e_inverse)
-done
+proof -
+ interpret d: deflation [d] by fact
+ show ?thesis
+ apply (default, simp_all)
+ apply (rule antisym_less)
+ apply (rule monofun_cfun_arg)
+ apply (rule trans_less [OF d])
+ apply (simp add: e_p_less)
+ apply (rule monofun_cfun_arg)
+ apply (rule rev_trans_less)
+ apply (rule monofun_cfun_arg)
+ apply (rule d)
+ apply (simp add: d.idem)
+ apply (rule sq_ord_less_eq_trans)
+ apply (rule monofun_cfun_arg)
+ apply (rule d.less)
+ apply (rule e_inverse)
+ done
+qed
lemma finite_deflation_p_d_e:
- includes finite_deflation d
+ assumes "finite_deflation d"
assumes d: "\<And>x. d\<cdot>x \<sqsubseteq> e\<cdot>(p\<cdot>x)"
shows "finite_deflation (p oo d oo e)"
- apply (rule finite_deflation.intro)
- apply (rule deflation_p_d_e)
- apply (rule `deflation d`)
- apply (rule d)
- apply (rule finite_deflation_axioms.intro)
- apply (rule finite_range_imp_finite_fixes)
- apply (simp add: range_composition [where f="\<lambda>x. p\<cdot>x"])
- apply (simp add: range_composition [where f="\<lambda>x. d\<cdot>x"])
- apply (simp add: d.finite_image)
-done
+proof -
+ interpret d: finite_deflation [d] by fact
+ show ?thesis
+ apply (rule finite_deflation.intro)
+ apply (rule deflation_p_d_e)
+ apply (rule `finite_deflation d` [THEN finite_deflation.axioms(1)])
+ apply (rule d)
+ apply (rule finite_deflation_axioms.intro)
+ apply (rule finite_range_imp_finite_fixes)
+ apply (simp add: range_composition [where f="\<lambda>x. p\<cdot>x"])
+ apply (simp add: range_composition [where f="\<lambda>x. d\<cdot>x"])
+ apply (simp add: d.finite_image)
+ done
+qed
end