renamed ML files
authorblanchet
Thu, 13 Mar 2014 13:18:13 +0100
changeset 56089 99c82a837f8a
parent 56088 db61a0a62b2c
child 56090 34bd10a9a2ad
renamed ML files
src/HOL/Tools/SMT2/smt2_setup_solvers.ML
src/HOL/Tools/SMT2/smt2_systems.ML
src/HOL/Tools/SMT2/smt2_util.ML
src/HOL/Tools/SMT2/smt2_utils.ML
src/HOL/Tools/SMT2/z3_new_proof_literals.ML
src/HOL/Tools/SMT2/z3_new_proof_methods.ML
src/HOL/Tools/SMT2/z3_new_proof_replay.ML
src/HOL/Tools/SMT2/z3_new_proof_rules.ML
src/HOL/Tools/SMT2/z3_new_proof_tools.ML
src/HOL/Tools/SMT2/z3_new_replay.ML
src/HOL/Tools/SMT2/z3_new_replay_literals.ML
src/HOL/Tools/SMT2/z3_new_replay_methods.ML
src/HOL/Tools/SMT2/z3_new_replay_rules.ML
src/HOL/Tools/SMT2/z3_new_replay_util.ML
--- a/src/HOL/Tools/SMT2/smt2_setup_solvers.ML	Thu Mar 13 13:18:13 2014 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,183 +0,0 @@
-(*  Title:      HOL/Tools/SMT2/smt2_setup_solvers.ML
-    Author:     Sascha Boehme, TU Muenchen
-
-Setup SMT solvers.
-*)
-
-signature SMT2_SETUP_SOLVERS =
-sig
-  datatype z3_non_commercial =
-    Z3_Non_Commercial_Unknown |
-    Z3_Non_Commercial_Accepted |
-    Z3_Non_Commercial_Declined
-  val z3_non_commercial: unit -> z3_non_commercial
-  val z3_extensions: bool Config.T
-end
-
-structure SMT2_Setup_Solvers: SMT2_SETUP_SOLVERS =
-struct
-
-(* helper functions *)
-
-fun make_avail name () = getenv (name ^ "_SOLVER") <> ""
-
-fun make_command name () = [getenv (name ^ "_SOLVER")]
-
-fun outcome_of unsat sat unknown solver_name line =
-  if String.isPrefix unsat line then SMT2_Solver.Unsat
-  else if String.isPrefix sat line then SMT2_Solver.Sat
-  else if String.isPrefix unknown line then SMT2_Solver.Unknown
-  else raise SMT2_Failure.SMT (SMT2_Failure.Other_Failure ("Solver " ^
-    quote solver_name ^ " failed. Enable SMT tracing by setting the " ^
-    "configuration option " ^ quote (Config.name_of SMT2_Config.trace) ^ " and " ^
-    "see the trace for details."))
-
-fun on_first_line test_outcome solver_name lines =
-  let
-    val empty_line = (fn "" => true | _ => false)
-    val split_first = (fn [] => ("", []) | l :: ls => (l, ls))
-    val (l, ls) = split_first (snd (take_prefix empty_line lines))
-  in (test_outcome solver_name l, ls) end
-
-
-(* CVC3 *)
-
-local
-  fun cvc3_options ctxt = [
-    "-seed", string_of_int (Config.get ctxt SMT2_Config.random_seed),
-    "-lang", "smtlib", "-output-lang", "presentation",
-    "-timeout", string_of_int (Real.ceil (Config.get ctxt SMT2_Config.timeout))]
-in
-
-val cvc3: SMT2_Solver.solver_config = {
-  name = "cvc3_new",
-  class = K SMTLIB2_Interface.smtlib2C,
-  avail = make_avail "CVC3_NEW",
-  command = make_command "CVC3_NEW",
-  options = cvc3_options,
-  default_max_relevant = 400 (* FUDGE *),
-  supports_filter = false,
-  outcome =
-    on_first_line (outcome_of "Unsatisfiable." "Satisfiable." "Unknown."),
-  cex_parser = NONE,
-  replay = NONE }
-
-end
-
-
-(* Yices *)
-
-val yices: SMT2_Solver.solver_config = {
-  name = "yices_new",
-  class = K SMTLIB2_Interface.smtlib2C,
-  avail = make_avail "YICES_NEW",
-  command = make_command "YICES_NEW",
-  options = (fn ctxt => [
-    "--rand-seed=" ^ string_of_int (Config.get ctxt SMT2_Config.random_seed),
-    "--timeout=" ^
-      string_of_int (Real.ceil (Config.get ctxt SMT2_Config.timeout)),
-    "--smtlib"]),
-  default_max_relevant = 350 (* FUDGE *),
-  supports_filter = false,
-  outcome = on_first_line (outcome_of "unsat" "sat" "unknown"),
-  cex_parser = NONE,
-  replay = NONE }
-
-
-(* Z3 *)
-
-datatype z3_non_commercial =
-  Z3_Non_Commercial_Unknown |
-  Z3_Non_Commercial_Accepted |
-  Z3_Non_Commercial_Declined
-
-local
-  val accepted = member (op =) ["yes", "Yes", "YES"]
-  val declined = member (op =) ["no", "No", "NO"]
-in
-
-fun z3_non_commercial () =
-  let
-    val flag1 = Options.default_string @{option z3_non_commercial}
-    val flag2 = getenv "Z3_NON_COMMERCIAL"
-  in
-    if accepted flag1 then Z3_Non_Commercial_Accepted
-    else if declined flag1 then Z3_Non_Commercial_Declined
-    else if accepted flag2 then Z3_Non_Commercial_Accepted
-    else if declined flag2 then Z3_Non_Commercial_Declined
-    else Z3_Non_Commercial_Unknown
-  end
-
-fun if_z3_non_commercial f =
-  (case z3_non_commercial () of
-    Z3_Non_Commercial_Accepted => f ()
-  | Z3_Non_Commercial_Declined =>
-      error (Pretty.string_of (Pretty.para
-        "The SMT solver Z3 may only be used for non-commercial applications."))
-  | Z3_Non_Commercial_Unknown =>
-      error (Pretty.string_of (Pretty.para
-        ("The SMT solver Z3 is not activated. To activate it, set the Isabelle \
-         \system option \"z3_non_commercial\" to \"yes\" (e.g. via \
-         \the Isabelle/jEdit menu Plugin Options / Isabelle / General)."))))
-
-end
-
-val z3_extensions = Attrib.setup_config_bool @{binding z3_new_extensions} (K false)
-
-local
-  fun z3_make_command name () = if_z3_non_commercial (make_command name)
-
-  fun z3_options ctxt =
-    ["REFINE_INJ_AXIOM=false" (* not supported by replay *),
-     "-rs:" ^ string_of_int (Config.get ctxt SMT2_Config.random_seed),
-     "-T:" ^ string_of_int (Real.ceil (Config.get ctxt SMT2_Config.timeout)),
-     "-smt2"]
-
-  fun z3_on_first_or_last_line solver_name lines =
-    let
-      fun junk l =
-        if String.isPrefix "WARNING: Out of allocated virtual memory" l
-        then raise SMT2_Failure.SMT SMT2_Failure.Out_Of_Memory
-        else
-          String.isPrefix "WARNING" l orelse
-          String.isPrefix "ERROR" l orelse
-          forall Symbol.is_ascii_blank (Symbol.explode l)
-      val lines = filter_out junk lines
-      fun outcome split =
-        the_default ("", []) (try split lines)
-        |>> outcome_of "unsat" "sat" "unknown" solver_name
-    in
-      (* Starting with version 4.0, Z3 puts the outcome on the first line of the
-         output rather than on the last line. *)
-      outcome (fn lines => (hd lines, tl lines))
-      handle SMT2_Failure.SMT _ => outcome (swap o split_last)
-    end
-
-  fun select_class ctxt =
-    if Config.get ctxt z3_extensions then Z3_New_Interface.smtlib2_z3C
-    else SMTLIB2_Interface.smtlib2C
-in
-
-val z3: SMT2_Solver.solver_config = {
-  name = "z3_new",
-  class = select_class,
-  avail = make_avail "Z3_NEW",
-  command = z3_make_command "Z3_NEW",
-  options = z3_options,
-  default_max_relevant = 350 (* FUDGE *),
-  supports_filter = true,
-  outcome = z3_on_first_or_last_line,
-  cex_parser = SOME Z3_New_Model.parse_counterex,
-  replay = SOME Z3_New_Proof_Replay.replay }
-
-end
-
-
-(* overall setup *)
-
-val _ = Theory.setup (
-  SMT2_Solver.add_solver cvc3 #>
-  SMT2_Solver.add_solver yices #>
-  SMT2_Solver.add_solver z3)
-
-end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/SMT2/smt2_systems.ML	Thu Mar 13 13:18:13 2014 +0100
@@ -0,0 +1,183 @@
+(*  Title:      HOL/Tools/SMT2/smt2_setup_solvers.ML
+    Author:     Sascha Boehme, TU Muenchen
+
+Setup SMT solvers.
+*)
+
+signature SMT2_SETUP_SOLVERS =
+sig
+  datatype z3_non_commercial =
+    Z3_Non_Commercial_Unknown |
+    Z3_Non_Commercial_Accepted |
+    Z3_Non_Commercial_Declined
+  val z3_non_commercial: unit -> z3_non_commercial
+  val z3_extensions: bool Config.T
+end
+
+structure SMT2_Setup_Solvers: SMT2_SETUP_SOLVERS =
+struct
+
+(* helper functions *)
+
+fun make_avail name () = getenv (name ^ "_SOLVER") <> ""
+
+fun make_command name () = [getenv (name ^ "_SOLVER")]
+
+fun outcome_of unsat sat unknown solver_name line =
+  if String.isPrefix unsat line then SMT2_Solver.Unsat
+  else if String.isPrefix sat line then SMT2_Solver.Sat
+  else if String.isPrefix unknown line then SMT2_Solver.Unknown
+  else raise SMT2_Failure.SMT (SMT2_Failure.Other_Failure ("Solver " ^
+    quote solver_name ^ " failed. Enable SMT tracing by setting the " ^
+    "configuration option " ^ quote (Config.name_of SMT2_Config.trace) ^ " and " ^
+    "see the trace for details."))
+
+fun on_first_line test_outcome solver_name lines =
+  let
+    val empty_line = (fn "" => true | _ => false)
+    val split_first = (fn [] => ("", []) | l :: ls => (l, ls))
+    val (l, ls) = split_first (snd (take_prefix empty_line lines))
+  in (test_outcome solver_name l, ls) end
+
+
+(* CVC3 *)
+
+local
+  fun cvc3_options ctxt = [
+    "-seed", string_of_int (Config.get ctxt SMT2_Config.random_seed),
+    "-lang", "smtlib", "-output-lang", "presentation",
+    "-timeout", string_of_int (Real.ceil (Config.get ctxt SMT2_Config.timeout))]
+in
+
+val cvc3: SMT2_Solver.solver_config = {
+  name = "cvc3_new",
+  class = K SMTLIB2_Interface.smtlib2C,
+  avail = make_avail "CVC3_NEW",
+  command = make_command "CVC3_NEW",
+  options = cvc3_options,
+  default_max_relevant = 400 (* FUDGE *),
+  supports_filter = false,
+  outcome =
+    on_first_line (outcome_of "Unsatisfiable." "Satisfiable." "Unknown."),
+  cex_parser = NONE,
+  replay = NONE }
+
+end
+
+
+(* Yices *)
+
+val yices: SMT2_Solver.solver_config = {
+  name = "yices_new",
+  class = K SMTLIB2_Interface.smtlib2C,
+  avail = make_avail "YICES_NEW",
+  command = make_command "YICES_NEW",
+  options = (fn ctxt => [
+    "--rand-seed=" ^ string_of_int (Config.get ctxt SMT2_Config.random_seed),
+    "--timeout=" ^
+      string_of_int (Real.ceil (Config.get ctxt SMT2_Config.timeout)),
+    "--smtlib"]),
+  default_max_relevant = 350 (* FUDGE *),
+  supports_filter = false,
+  outcome = on_first_line (outcome_of "unsat" "sat" "unknown"),
+  cex_parser = NONE,
+  replay = NONE }
+
+
+(* Z3 *)
+
+datatype z3_non_commercial =
+  Z3_Non_Commercial_Unknown |
+  Z3_Non_Commercial_Accepted |
+  Z3_Non_Commercial_Declined
+
+local
+  val accepted = member (op =) ["yes", "Yes", "YES"]
+  val declined = member (op =) ["no", "No", "NO"]
+in
+
+fun z3_non_commercial () =
+  let
+    val flag1 = Options.default_string @{option z3_non_commercial}
+    val flag2 = getenv "Z3_NON_COMMERCIAL"
+  in
+    if accepted flag1 then Z3_Non_Commercial_Accepted
+    else if declined flag1 then Z3_Non_Commercial_Declined
+    else if accepted flag2 then Z3_Non_Commercial_Accepted
+    else if declined flag2 then Z3_Non_Commercial_Declined
+    else Z3_Non_Commercial_Unknown
+  end
+
+fun if_z3_non_commercial f =
+  (case z3_non_commercial () of
+    Z3_Non_Commercial_Accepted => f ()
+  | Z3_Non_Commercial_Declined =>
+      error (Pretty.string_of (Pretty.para
+        "The SMT solver Z3 may only be used for non-commercial applications."))
+  | Z3_Non_Commercial_Unknown =>
+      error (Pretty.string_of (Pretty.para
+        ("The SMT solver Z3 is not activated. To activate it, set the Isabelle \
+         \system option \"z3_non_commercial\" to \"yes\" (e.g. via \
+         \the Isabelle/jEdit menu Plugin Options / Isabelle / General)."))))
+
+end
+
+val z3_extensions = Attrib.setup_config_bool @{binding z3_new_extensions} (K false)
+
+local
+  fun z3_make_command name () = if_z3_non_commercial (make_command name)
+
+  fun z3_options ctxt =
+    ["REFINE_INJ_AXIOM=false" (* not supported by replay *),
+     "-rs:" ^ string_of_int (Config.get ctxt SMT2_Config.random_seed),
+     "-T:" ^ string_of_int (Real.ceil (Config.get ctxt SMT2_Config.timeout)),
+     "-smt2"]
+
+  fun z3_on_first_or_last_line solver_name lines =
+    let
+      fun junk l =
+        if String.isPrefix "WARNING: Out of allocated virtual memory" l
+        then raise SMT2_Failure.SMT SMT2_Failure.Out_Of_Memory
+        else
+          String.isPrefix "WARNING" l orelse
+          String.isPrefix "ERROR" l orelse
+          forall Symbol.is_ascii_blank (Symbol.explode l)
+      val lines = filter_out junk lines
+      fun outcome split =
+        the_default ("", []) (try split lines)
+        |>> outcome_of "unsat" "sat" "unknown" solver_name
+    in
+      (* Starting with version 4.0, Z3 puts the outcome on the first line of the
+         output rather than on the last line. *)
+      outcome (fn lines => (hd lines, tl lines))
+      handle SMT2_Failure.SMT _ => outcome (swap o split_last)
+    end
+
+  fun select_class ctxt =
+    if Config.get ctxt z3_extensions then Z3_New_Interface.smtlib2_z3C
+    else SMTLIB2_Interface.smtlib2C
+in
+
+val z3: SMT2_Solver.solver_config = {
+  name = "z3_new",
+  class = select_class,
+  avail = make_avail "Z3_NEW",
+  command = z3_make_command "Z3_NEW",
+  options = z3_options,
+  default_max_relevant = 350 (* FUDGE *),
+  supports_filter = true,
+  outcome = z3_on_first_or_last_line,
+  cex_parser = SOME Z3_New_Model.parse_counterex,
+  replay = SOME Z3_New_Proof_Replay.replay }
+
+end
+
+
+(* overall setup *)
+
+val _ = Theory.setup (
+  SMT2_Solver.add_solver cvc3 #>
+  SMT2_Solver.add_solver yices #>
+  SMT2_Solver.add_solver z3)
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/SMT2/smt2_util.ML	Thu Mar 13 13:18:13 2014 +0100
@@ -0,0 +1,224 @@
+(*  Title:      HOL/Tools/SMT2/smt2_utils.ML
+    Author:     Sascha Boehme, TU Muenchen
+
+General utility functions.
+*)
+
+signature SMT2_UTILS =
+sig
+  (*basic combinators*)
+  val repeat: ('a -> 'a option) -> 'a -> 'a
+  val repeat_yield: ('a -> 'b -> ('a * 'b) option) -> 'a -> 'b -> 'a * 'b
+
+  (*class dictionaries*)
+  type class = string list
+  val basicC: class
+  val string_of_class: class -> string
+  type 'a dict = (class * 'a) Ord_List.T
+  val dict_map_default: class * 'a -> ('a -> 'a) -> 'a dict -> 'a dict
+  val dict_update: class * 'a -> 'a dict -> 'a dict
+  val dict_merge: ('a * 'a -> 'a) -> 'a dict * 'a dict -> 'a dict
+  val dict_lookup: 'a dict -> class -> 'a list
+  val dict_get: 'a dict -> class -> 'a option
+
+  (*types*)
+  val dest_funT: int -> typ -> typ list * typ
+
+  (*terms*)
+  val dest_conj: term -> term * term
+  val dest_disj: term -> term * term
+  val under_quant: (term -> 'a) -> term -> 'a
+  val is_number: term -> bool
+
+  (*patterns and instantiations*)
+  val mk_const_pat: theory -> string -> (ctyp -> 'a) -> 'a * cterm
+  val destT1: ctyp -> ctyp
+  val destT2: ctyp -> ctyp
+  val instTs: ctyp list -> ctyp list * cterm -> cterm
+  val instT: ctyp -> ctyp * cterm -> cterm
+  val instT': cterm -> ctyp * cterm -> cterm
+
+  (*certified terms*)
+  val certify: Proof.context -> term -> cterm
+  val typ_of: cterm -> typ
+  val dest_cabs: cterm -> Proof.context -> cterm * Proof.context
+  val dest_all_cabs: cterm -> Proof.context -> cterm * Proof.context
+  val dest_cbinder: cterm -> Proof.context -> cterm * Proof.context
+  val dest_all_cbinders: cterm -> Proof.context -> cterm * Proof.context
+  val mk_cprop: cterm -> cterm
+  val dest_cprop: cterm -> cterm
+  val mk_cequals: cterm -> cterm -> cterm
+  val term_of: cterm -> term
+  val prop_of: thm -> term
+
+  (*conversions*)
+  val if_conv: (term -> bool) -> conv -> conv -> conv
+  val if_true_conv: (term -> bool) -> conv -> conv
+  val if_exists_conv: (term -> bool) -> conv -> conv
+  val binders_conv: (Proof.context -> conv) -> Proof.context -> conv
+  val under_quant_conv: (Proof.context * cterm list -> conv) ->
+    Proof.context -> conv
+  val prop_conv: conv -> conv
+end
+
+structure SMT2_Utils: SMT2_UTILS =
+struct
+
+(* basic combinators *)
+
+fun repeat f =
+  let fun rep x = (case f x of SOME y => rep y | NONE => x)
+  in rep end
+
+fun repeat_yield f =
+  let fun rep x y = (case f x y of SOME (x', y') => rep x' y' | NONE => (x, y))
+  in rep end
+
+
+(* class dictionaries *)
+
+type class = string list
+
+val basicC = []
+
+fun string_of_class [] = "basic"
+  | string_of_class cs = "basic." ^ space_implode "." cs
+
+type 'a dict = (class * 'a) Ord_List.T
+
+fun class_ord ((cs1, _), (cs2, _)) =
+  rev_order (list_ord fast_string_ord (cs1, cs2))
+
+fun dict_insert (cs, x) d =
+  if AList.defined (op =) d cs then d
+  else Ord_List.insert class_ord (cs, x) d
+
+fun dict_map_default (cs, x) f =
+  dict_insert (cs, x) #> AList.map_entry (op =) cs f
+
+fun dict_update (e as (_, x)) = dict_map_default e (K x)
+
+fun dict_merge val_merge = sort class_ord o AList.join (op =) (K val_merge)
+
+fun dict_lookup d cs =
+  let fun match (cs', x) = if is_prefix (op =) cs' cs then SOME x else NONE
+  in map_filter match d end
+
+fun dict_get d cs =
+  (case AList.lookup (op =) d cs of
+    NONE => (case cs of [] => NONE | _ => dict_get d (take (length cs - 1) cs))
+  | SOME x => SOME x)
+
+
+(* types *)
+
+val dest_funT =
+  let
+    fun dest Ts 0 T = (rev Ts, T)
+      | dest Ts i (Type ("fun", [T, U])) = dest (T::Ts) (i-1) U
+      | dest _ _ T = raise TYPE ("not a function type", [T], [])
+  in dest [] end
+
+
+(* terms *)
+
+fun dest_conj (@{const HOL.conj} $ t $ u) = (t, u)
+  | dest_conj t = raise TERM ("not a conjunction", [t])
+
+fun dest_disj (@{const HOL.disj} $ t $ u) = (t, u)
+  | dest_disj t = raise TERM ("not a disjunction", [t])
+
+fun under_quant f t =
+  (case t of
+    Const (@{const_name All}, _) $ Abs (_, _, u) => under_quant f u
+  | Const (@{const_name Ex}, _) $ Abs (_, _, u) => under_quant f u
+  | _ => f t)
+
+val is_number =
+  let
+    fun is_num env (Const (@{const_name Let}, _) $ t $ Abs (_, _, u)) = is_num (t :: env) u
+      | is_num env (Bound i) = i < length env andalso is_num env (nth env i)
+      | is_num _ t = can HOLogic.dest_number t
+  in is_num [] end
+
+
+(* patterns and instantiations *)
+
+fun mk_const_pat thy name destT =
+  let val cpat = Thm.cterm_of thy (Const (name, Sign.the_const_type thy name))
+  in (destT (Thm.ctyp_of_term cpat), cpat) end
+
+val destT1 = hd o Thm.dest_ctyp
+val destT2 = hd o tl o Thm.dest_ctyp
+
+fun instTs cUs (cTs, ct) = Thm.instantiate_cterm (cTs ~~ cUs, []) ct
+fun instT cU (cT, ct) = instTs [cU] ([cT], ct)
+fun instT' ct = instT (Thm.ctyp_of_term ct)
+
+
+(* certified terms *)
+
+fun certify ctxt = Thm.cterm_of (Proof_Context.theory_of ctxt)
+
+fun typ_of ct = #T (Thm.rep_cterm ct) 
+
+fun dest_cabs ct ctxt =
+  (case Thm.term_of ct of
+    Abs _ =>
+      let val (n, ctxt') = yield_singleton Variable.variant_fixes Name.uu ctxt
+      in (snd (Thm.dest_abs (SOME n) ct), ctxt') end
+  | _ => raise CTERM ("no abstraction", [ct]))
+
+val dest_all_cabs = repeat_yield (try o dest_cabs) 
+
+fun dest_cbinder ct ctxt =
+  (case Thm.term_of ct of
+    Const _ $ Abs _ => dest_cabs (Thm.dest_arg ct) ctxt
+  | _ => raise CTERM ("not a binder", [ct]))
+
+val dest_all_cbinders = repeat_yield (try o dest_cbinder)
+
+val mk_cprop = Thm.apply (Thm.cterm_of @{theory} @{const Trueprop})
+
+fun dest_cprop ct =
+  (case Thm.term_of ct of
+    @{const Trueprop} $ _ => Thm.dest_arg ct
+  | _ => raise CTERM ("not a property", [ct]))
+
+val equals = mk_const_pat @{theory} @{const_name "=="} destT1
+fun mk_cequals ct cu = Thm.mk_binop (instT' ct equals) ct cu
+
+val dest_prop = (fn @{const Trueprop} $ t => t | t => t)
+fun term_of ct = dest_prop (Thm.term_of ct)
+fun prop_of thm = dest_prop (Thm.prop_of thm)
+
+
+(* conversions *)
+
+fun if_conv pred cv1 cv2 ct = if pred (Thm.term_of ct) then cv1 ct else cv2 ct
+
+fun if_true_conv pred cv = if_conv pred cv Conv.all_conv
+
+fun if_exists_conv pred = if_true_conv (Term.exists_subterm pred)
+
+fun binders_conv cv ctxt =
+  Conv.binder_conv (binders_conv cv o snd) ctxt else_conv cv ctxt
+
+fun under_quant_conv cv ctxt =
+  let
+    fun quant_conv inside ctxt cvs ct =
+      (case Thm.term_of ct of
+        Const (@{const_name All}, _) $ Abs _ =>
+          Conv.binder_conv (under_conv cvs) ctxt
+      | Const (@{const_name Ex}, _) $ Abs _ =>
+          Conv.binder_conv (under_conv cvs) ctxt
+      | _ => if inside then cv (ctxt, cvs) else Conv.all_conv) ct
+    and under_conv cvs (cv, ctxt) = quant_conv true ctxt (cv :: cvs)
+  in quant_conv false ctxt [] end
+
+fun prop_conv cv ct =
+  (case Thm.term_of ct of
+    @{const Trueprop} $ _ => Conv.arg_conv cv ct
+  | _ => raise CTERM ("not a property", [ct]))
+
+end
--- a/src/HOL/Tools/SMT2/smt2_utils.ML	Thu Mar 13 13:18:13 2014 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,224 +0,0 @@
-(*  Title:      HOL/Tools/SMT2/smt2_utils.ML
-    Author:     Sascha Boehme, TU Muenchen
-
-General utility functions.
-*)
-
-signature SMT2_UTILS =
-sig
-  (*basic combinators*)
-  val repeat: ('a -> 'a option) -> 'a -> 'a
-  val repeat_yield: ('a -> 'b -> ('a * 'b) option) -> 'a -> 'b -> 'a * 'b
-
-  (*class dictionaries*)
-  type class = string list
-  val basicC: class
-  val string_of_class: class -> string
-  type 'a dict = (class * 'a) Ord_List.T
-  val dict_map_default: class * 'a -> ('a -> 'a) -> 'a dict -> 'a dict
-  val dict_update: class * 'a -> 'a dict -> 'a dict
-  val dict_merge: ('a * 'a -> 'a) -> 'a dict * 'a dict -> 'a dict
-  val dict_lookup: 'a dict -> class -> 'a list
-  val dict_get: 'a dict -> class -> 'a option
-
-  (*types*)
-  val dest_funT: int -> typ -> typ list * typ
-
-  (*terms*)
-  val dest_conj: term -> term * term
-  val dest_disj: term -> term * term
-  val under_quant: (term -> 'a) -> term -> 'a
-  val is_number: term -> bool
-
-  (*patterns and instantiations*)
-  val mk_const_pat: theory -> string -> (ctyp -> 'a) -> 'a * cterm
-  val destT1: ctyp -> ctyp
-  val destT2: ctyp -> ctyp
-  val instTs: ctyp list -> ctyp list * cterm -> cterm
-  val instT: ctyp -> ctyp * cterm -> cterm
-  val instT': cterm -> ctyp * cterm -> cterm
-
-  (*certified terms*)
-  val certify: Proof.context -> term -> cterm
-  val typ_of: cterm -> typ
-  val dest_cabs: cterm -> Proof.context -> cterm * Proof.context
-  val dest_all_cabs: cterm -> Proof.context -> cterm * Proof.context
-  val dest_cbinder: cterm -> Proof.context -> cterm * Proof.context
-  val dest_all_cbinders: cterm -> Proof.context -> cterm * Proof.context
-  val mk_cprop: cterm -> cterm
-  val dest_cprop: cterm -> cterm
-  val mk_cequals: cterm -> cterm -> cterm
-  val term_of: cterm -> term
-  val prop_of: thm -> term
-
-  (*conversions*)
-  val if_conv: (term -> bool) -> conv -> conv -> conv
-  val if_true_conv: (term -> bool) -> conv -> conv
-  val if_exists_conv: (term -> bool) -> conv -> conv
-  val binders_conv: (Proof.context -> conv) -> Proof.context -> conv
-  val under_quant_conv: (Proof.context * cterm list -> conv) ->
-    Proof.context -> conv
-  val prop_conv: conv -> conv
-end
-
-structure SMT2_Utils: SMT2_UTILS =
-struct
-
-(* basic combinators *)
-
-fun repeat f =
-  let fun rep x = (case f x of SOME y => rep y | NONE => x)
-  in rep end
-
-fun repeat_yield f =
-  let fun rep x y = (case f x y of SOME (x', y') => rep x' y' | NONE => (x, y))
-  in rep end
-
-
-(* class dictionaries *)
-
-type class = string list
-
-val basicC = []
-
-fun string_of_class [] = "basic"
-  | string_of_class cs = "basic." ^ space_implode "." cs
-
-type 'a dict = (class * 'a) Ord_List.T
-
-fun class_ord ((cs1, _), (cs2, _)) =
-  rev_order (list_ord fast_string_ord (cs1, cs2))
-
-fun dict_insert (cs, x) d =
-  if AList.defined (op =) d cs then d
-  else Ord_List.insert class_ord (cs, x) d
-
-fun dict_map_default (cs, x) f =
-  dict_insert (cs, x) #> AList.map_entry (op =) cs f
-
-fun dict_update (e as (_, x)) = dict_map_default e (K x)
-
-fun dict_merge val_merge = sort class_ord o AList.join (op =) (K val_merge)
-
-fun dict_lookup d cs =
-  let fun match (cs', x) = if is_prefix (op =) cs' cs then SOME x else NONE
-  in map_filter match d end
-
-fun dict_get d cs =
-  (case AList.lookup (op =) d cs of
-    NONE => (case cs of [] => NONE | _ => dict_get d (take (length cs - 1) cs))
-  | SOME x => SOME x)
-
-
-(* types *)
-
-val dest_funT =
-  let
-    fun dest Ts 0 T = (rev Ts, T)
-      | dest Ts i (Type ("fun", [T, U])) = dest (T::Ts) (i-1) U
-      | dest _ _ T = raise TYPE ("not a function type", [T], [])
-  in dest [] end
-
-
-(* terms *)
-
-fun dest_conj (@{const HOL.conj} $ t $ u) = (t, u)
-  | dest_conj t = raise TERM ("not a conjunction", [t])
-
-fun dest_disj (@{const HOL.disj} $ t $ u) = (t, u)
-  | dest_disj t = raise TERM ("not a disjunction", [t])
-
-fun under_quant f t =
-  (case t of
-    Const (@{const_name All}, _) $ Abs (_, _, u) => under_quant f u
-  | Const (@{const_name Ex}, _) $ Abs (_, _, u) => under_quant f u
-  | _ => f t)
-
-val is_number =
-  let
-    fun is_num env (Const (@{const_name Let}, _) $ t $ Abs (_, _, u)) = is_num (t :: env) u
-      | is_num env (Bound i) = i < length env andalso is_num env (nth env i)
-      | is_num _ t = can HOLogic.dest_number t
-  in is_num [] end
-
-
-(* patterns and instantiations *)
-
-fun mk_const_pat thy name destT =
-  let val cpat = Thm.cterm_of thy (Const (name, Sign.the_const_type thy name))
-  in (destT (Thm.ctyp_of_term cpat), cpat) end
-
-val destT1 = hd o Thm.dest_ctyp
-val destT2 = hd o tl o Thm.dest_ctyp
-
-fun instTs cUs (cTs, ct) = Thm.instantiate_cterm (cTs ~~ cUs, []) ct
-fun instT cU (cT, ct) = instTs [cU] ([cT], ct)
-fun instT' ct = instT (Thm.ctyp_of_term ct)
-
-
-(* certified terms *)
-
-fun certify ctxt = Thm.cterm_of (Proof_Context.theory_of ctxt)
-
-fun typ_of ct = #T (Thm.rep_cterm ct) 
-
-fun dest_cabs ct ctxt =
-  (case Thm.term_of ct of
-    Abs _ =>
-      let val (n, ctxt') = yield_singleton Variable.variant_fixes Name.uu ctxt
-      in (snd (Thm.dest_abs (SOME n) ct), ctxt') end
-  | _ => raise CTERM ("no abstraction", [ct]))
-
-val dest_all_cabs = repeat_yield (try o dest_cabs) 
-
-fun dest_cbinder ct ctxt =
-  (case Thm.term_of ct of
-    Const _ $ Abs _ => dest_cabs (Thm.dest_arg ct) ctxt
-  | _ => raise CTERM ("not a binder", [ct]))
-
-val dest_all_cbinders = repeat_yield (try o dest_cbinder)
-
-val mk_cprop = Thm.apply (Thm.cterm_of @{theory} @{const Trueprop})
-
-fun dest_cprop ct =
-  (case Thm.term_of ct of
-    @{const Trueprop} $ _ => Thm.dest_arg ct
-  | _ => raise CTERM ("not a property", [ct]))
-
-val equals = mk_const_pat @{theory} @{const_name "=="} destT1
-fun mk_cequals ct cu = Thm.mk_binop (instT' ct equals) ct cu
-
-val dest_prop = (fn @{const Trueprop} $ t => t | t => t)
-fun term_of ct = dest_prop (Thm.term_of ct)
-fun prop_of thm = dest_prop (Thm.prop_of thm)
-
-
-(* conversions *)
-
-fun if_conv pred cv1 cv2 ct = if pred (Thm.term_of ct) then cv1 ct else cv2 ct
-
-fun if_true_conv pred cv = if_conv pred cv Conv.all_conv
-
-fun if_exists_conv pred = if_true_conv (Term.exists_subterm pred)
-
-fun binders_conv cv ctxt =
-  Conv.binder_conv (binders_conv cv o snd) ctxt else_conv cv ctxt
-
-fun under_quant_conv cv ctxt =
-  let
-    fun quant_conv inside ctxt cvs ct =
-      (case Thm.term_of ct of
-        Const (@{const_name All}, _) $ Abs _ =>
-          Conv.binder_conv (under_conv cvs) ctxt
-      | Const (@{const_name Ex}, _) $ Abs _ =>
-          Conv.binder_conv (under_conv cvs) ctxt
-      | _ => if inside then cv (ctxt, cvs) else Conv.all_conv) ct
-    and under_conv cvs (cv, ctxt) = quant_conv true ctxt (cv :: cvs)
-  in quant_conv false ctxt [] end
-
-fun prop_conv cv ct =
-  (case Thm.term_of ct of
-    @{const Trueprop} $ _ => Conv.arg_conv cv ct
-  | _ => raise CTERM ("not a property", [ct]))
-
-end
--- a/src/HOL/Tools/SMT2/z3_new_proof_literals.ML	Thu Mar 13 13:18:13 2014 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,357 +0,0 @@
-(*  Title:      HOL/Tools/SMT2/z3_new_proof_literals.ML
-    Author:     Sascha Boehme, TU Muenchen
-
-Proof tools related to conjunctions and disjunctions.
-*)
-
-signature Z3_NEW_PROOF_LITERALS =
-sig
-  (*literal table*)
-  type littab = thm Termtab.table
-  val make_littab: thm list -> littab
-  val insert_lit: thm -> littab -> littab
-  val delete_lit: thm -> littab -> littab
-  val lookup_lit: littab -> term -> thm option
-  val get_first_lit: (term -> bool) -> littab -> thm option
-
-  (*rules*)
-  val true_thm: thm
-  val rewrite_true: thm
-
-  (*properties*)
-  val is_conj: term -> bool
-  val is_disj: term -> bool
-  val exists_lit: bool -> (term -> bool) -> term -> bool
-  val negate: cterm -> cterm
-
-  (*proof tools*)
-  val explode: bool -> bool -> bool -> term list -> thm -> thm list
-  val join: bool -> littab -> term -> thm
-  val prove_conj_disj_eq: cterm -> thm
-end
-
-structure Z3_New_Proof_Literals: Z3_NEW_PROOF_LITERALS =
-struct
-
-
-
-(* literal table *)
-
-type littab = thm Termtab.table
-
-fun make_littab thms =
-  fold (Termtab.update o `SMT2_Utils.prop_of) thms Termtab.empty
-
-fun insert_lit thm = Termtab.update (`SMT2_Utils.prop_of thm)
-fun delete_lit thm = Termtab.delete (SMT2_Utils.prop_of thm)
-fun lookup_lit lits = Termtab.lookup lits
-fun get_first_lit f =
-  Termtab.get_first (fn (t, thm) => if f t then SOME thm else NONE)
-
-
-
-(* rules *)
-
-val true_thm = @{lemma "~False" by simp}
-val rewrite_true = @{lemma "True == ~ False" by simp}
-
-
-
-(* properties and term operations *)
-
-val is_neg = (fn @{const Not} $ _ => true | _ => false)
-fun is_neg' f = (fn @{const Not} $ t => f t | _ => false)
-val is_dneg = is_neg' is_neg
-val is_conj = (fn @{const HOL.conj} $ _ $ _ => true | _ => false)
-val is_disj = (fn @{const HOL.disj} $ _ $ _ => true | _ => false)
-
-fun dest_disj_term' f = (fn
-    @{const Not} $ (@{const HOL.disj} $ t $ u) => SOME (f t, f u)
-  | _ => NONE)
-
-val dest_conj_term = (fn @{const HOL.conj} $ t $ u => SOME (t, u) | _ => NONE)
-val dest_disj_term =
-  dest_disj_term' (fn @{const Not} $ t => t | t => @{const Not} $ t)
-
-fun exists_lit is_conj P =
-  let
-    val dest = if is_conj then dest_conj_term else dest_disj_term
-    fun exists t = P t orelse
-      (case dest t of
-        SOME (t1, t2) => exists t1 orelse exists t2
-      | NONE => false)
-  in exists end
-
-val negate = Thm.apply (Thm.cterm_of @{theory} @{const Not})
-
-
-
-(* proof tools *)
-
-(** explosion of conjunctions and disjunctions **)
-
-local
-  val precomp = Z3_New_Proof_Tools.precompose2
-
-  fun destc ct = Thm.dest_binop (Thm.dest_arg ct)
-  val dest_conj1 = precomp destc @{thm conjunct1}
-  val dest_conj2 = precomp destc @{thm conjunct2}
-  fun dest_conj_rules t =
-    dest_conj_term t |> Option.map (K (dest_conj1, dest_conj2))
-    
-  fun destd f ct = f (Thm.dest_binop (Thm.dest_arg (Thm.dest_arg ct)))
-  val dn1 = apfst Thm.dest_arg and dn2 = apsnd Thm.dest_arg
-  val dest_disj1 = precomp (destd I) @{lemma "~(P | Q) ==> ~P" by fast}
-  val dest_disj2 = precomp (destd dn1) @{lemma "~(~P | Q) ==> P" by fast}
-  val dest_disj3 = precomp (destd I) @{lemma "~(P | Q) ==> ~Q" by fast}
-  val dest_disj4 = precomp (destd dn2) @{lemma "~(P | ~Q) ==> Q" by fast}
-
-  fun dest_disj_rules t =
-    (case dest_disj_term' is_neg t of
-      SOME (true, true) => SOME (dest_disj2, dest_disj4)
-    | SOME (true, false) => SOME (dest_disj2, dest_disj3)
-    | SOME (false, true) => SOME (dest_disj1, dest_disj4)
-    | SOME (false, false) => SOME (dest_disj1, dest_disj3)
-    | NONE => NONE)
-
-  fun destn ct = [Thm.dest_arg (Thm.dest_arg (Thm.dest_arg ct))]
-  val dneg_rule = Z3_New_Proof_Tools.precompose destn @{thm notnotD}
-in
-
-(*
-  explode a term into literals and collect all rules to be able to deduce
-  particular literals afterwards
-*)
-fun explode_term is_conj =
-  let
-    val dest = if is_conj then dest_conj_term else dest_disj_term
-    val dest_rules = if is_conj then dest_conj_rules else dest_disj_rules
-
-    fun add (t, rs) = Termtab.map_default (t, rs)
-      (fn rs' => if length rs' < length rs then rs' else rs)
-
-    fun explode1 rules t =
-      (case dest t of
-        SOME (t1, t2) =>
-          let val (rule1, rule2) = the (dest_rules t)
-          in
-            explode1 (rule1 :: rules) t1 #>
-            explode1 (rule2 :: rules) t2 #>
-            add (t, rev rules)
-          end
-      | NONE => add (t, rev rules))
-
-    fun explode0 (@{const Not} $ (@{const Not} $ t)) =
-          Termtab.make [(t, [dneg_rule])]
-      | explode0 t = explode1 [] t Termtab.empty
-
-  in explode0 end
-
-(*
-  extract a literal by applying previously collected rules
-*)
-fun extract_lit thm rules = fold Z3_New_Proof_Tools.compose rules thm
-
-
-(*
-  explode a theorem into its literals
-*)
-fun explode is_conj full keep_intermediate stop_lits =
-  let
-    val dest_rules = if is_conj then dest_conj_rules else dest_disj_rules
-    val tab = fold (Termtab.update o rpair ()) stop_lits Termtab.empty
-
-    fun explode1 thm =
-      if Termtab.defined tab (SMT2_Utils.prop_of thm) then cons thm
-      else
-        (case dest_rules (SMT2_Utils.prop_of thm) of
-          SOME (rule1, rule2) =>
-            explode2 rule1 thm #>
-            explode2 rule2 thm #>
-            keep_intermediate ? cons thm
-        | NONE => cons thm)
-
-    and explode2 dest_rule thm =
-      if full orelse
-        exists_lit is_conj (Termtab.defined tab) (SMT2_Utils.prop_of thm)
-      then explode1 (Z3_New_Proof_Tools.compose dest_rule thm)
-      else cons (Z3_New_Proof_Tools.compose dest_rule thm)
-
-    fun explode0 thm =
-      if not is_conj andalso is_dneg (SMT2_Utils.prop_of thm)
-      then [Z3_New_Proof_Tools.compose dneg_rule thm]
-      else explode1 thm []
-
-  in explode0 end
-
-end
-
-
-(** joining of literals to conjunctions or disjunctions **)
-
-local
-  fun on_cprem i f thm = f (Thm.cprem_of thm i)
-  fun on_cprop f thm = f (Thm.cprop_of thm)
-  fun precomp2 f g thm = (on_cprem 1 f thm, on_cprem 2 g thm, f, g, thm)
-  fun comp2 (cv1, cv2, f, g, rule) thm1 thm2 =
-    Thm.instantiate ([], [(cv1, on_cprop f thm1), (cv2, on_cprop g thm2)]) rule
-    |> Z3_New_Proof_Tools.discharge thm1 |> Z3_New_Proof_Tools.discharge thm2
-
-  fun d1 ct = Thm.dest_arg ct and d2 ct = Thm.dest_arg (Thm.dest_arg ct)
-
-  val conj_rule = precomp2 d1 d1 @{thm conjI}
-  fun comp_conj ((_, thm1), (_, thm2)) = comp2 conj_rule thm1 thm2
-
-  val disj1 = precomp2 d2 d2 @{lemma "~P ==> ~Q ==> ~(P | Q)" by fast}
-  val disj2 = precomp2 d2 d1 @{lemma "~P ==> Q ==> ~(P | ~Q)" by fast}
-  val disj3 = precomp2 d1 d2 @{lemma "P ==> ~Q ==> ~(~P | Q)" by fast}
-  val disj4 = precomp2 d1 d1 @{lemma "P ==> Q ==> ~(~P | ~Q)" by fast}
-
-  fun comp_disj ((false, thm1), (false, thm2)) = comp2 disj1 thm1 thm2
-    | comp_disj ((false, thm1), (true, thm2)) = comp2 disj2 thm1 thm2
-    | comp_disj ((true, thm1), (false, thm2)) = comp2 disj3 thm1 thm2
-    | comp_disj ((true, thm1), (true, thm2)) = comp2 disj4 thm1 thm2
-
-  fun dest_conj (@{const HOL.conj} $ t $ u) = ((false, t), (false, u))
-    | dest_conj t = raise TERM ("dest_conj", [t])
-
-  val neg = (fn @{const Not} $ t => (true, t) | t => (false, @{const Not} $ t))
-  fun dest_disj (@{const Not} $ (@{const HOL.disj} $ t $ u)) = (neg t, neg u)
-    | dest_disj t = raise TERM ("dest_disj", [t])
-
-  val precomp = Z3_New_Proof_Tools.precompose
-  val dnegE = precomp (single o d2 o d1) @{thm notnotD}
-  val dnegI = precomp (single o d1) @{lemma "P ==> ~~P" by fast}
-  fun as_dneg f t = f (@{const Not} $ (@{const Not} $ t))
-
-  val precomp2 = Z3_New_Proof_Tools.precompose2
-  fun dni f = apsnd f o Thm.dest_binop o f o d1
-  val negIffE = precomp2 (dni d1) @{lemma "~(P = (~Q)) ==> Q = P" by fast}
-  val negIffI = precomp2 (dni I) @{lemma "P = Q ==> ~(Q = (~P))" by fast}
-  val iff_const = @{const HOL.eq (bool)}
-  fun as_negIff f (@{const HOL.eq (bool)} $ t $ u) =
-        f (@{const Not} $ (iff_const $ u $ (@{const Not} $ t)))
-    | as_negIff _ _ = NONE
-in
-
-fun join is_conj littab t =
-  let
-    val comp = if is_conj then comp_conj else comp_disj
-    val dest = if is_conj then dest_conj else dest_disj
-
-    val lookup = lookup_lit littab
-
-    fun lookup_rule t =
-      (case t of
-        @{const Not} $ (@{const Not} $ t) =>
-          (Z3_New_Proof_Tools.compose dnegI, lookup t)
-      | @{const Not} $ (@{const HOL.eq (bool)} $ t $ (@{const Not} $ u)) =>
-          (Z3_New_Proof_Tools.compose negIffI, lookup (iff_const $ u $ t))
-      | @{const Not} $ ((eq as Const (@{const_name HOL.eq}, _)) $ t $ u) =>
-          let fun rewr lit = lit COMP @{thm not_sym}
-          in (rewr, lookup (@{const Not} $ (eq $ u $ t))) end
-      | _ =>
-          (case as_dneg lookup t of
-            NONE => (Z3_New_Proof_Tools.compose negIffE, as_negIff lookup t)
-          | x => (Z3_New_Proof_Tools.compose dnegE, x)))
-
-    fun join1 (s, t) =
-      (case lookup t of
-        SOME lit => (s, lit)
-      | NONE => 
-          (case lookup_rule t of
-            (rewrite, SOME lit) => (s, rewrite lit)
-          | (_, NONE) => (s, comp (pairself join1 (dest t)))))
-
-  in snd (join1 (if is_conj then (false, t) else (true, t))) end
-
-end
-
-
-(** proving equality of conjunctions or disjunctions **)
-
-fun iff_intro thm1 thm2 = thm2 COMP (thm1 COMP @{thm iffI})
-
-local
-  val cp1 = @{lemma "(~P) = (~Q) ==> P = Q" by simp}
-  val cp2 = @{lemma "(~P) = Q ==> P = (~Q)" by fastforce}
-  val cp3 = @{lemma "P = (~Q) ==> (~P) = Q" by simp}
-in
-fun contrapos1 prove (ct, cu) = prove (negate ct, negate cu) COMP cp1
-fun contrapos2 prove (ct, cu) = prove (negate ct, Thm.dest_arg cu) COMP cp2
-fun contrapos3 prove (ct, cu) = prove (Thm.dest_arg ct, negate cu) COMP cp3
-end
-
-local
-  val contra_rule = @{lemma "P ==> ~P ==> False" by (rule notE)}
-  fun contra_left conj thm =
-    let
-      val rules = explode_term conj (SMT2_Utils.prop_of thm)
-      fun contra_lits (t, rs) =
-        (case t of
-          @{const Not} $ u => Termtab.lookup rules u |> Option.map (pair rs)
-        | _ => NONE)
-    in
-      (case Termtab.lookup rules @{const False} of
-        SOME rs => extract_lit thm rs
-      | NONE =>
-          the (Termtab.get_first contra_lits rules)
-          |> pairself (extract_lit thm)
-          |> (fn (nlit, plit) => nlit COMP (plit COMP contra_rule)))
-    end
-
-  val falseE_v = Thm.dest_arg (Thm.dest_arg (Thm.cprop_of @{thm FalseE}))
-  fun contra_right ct = Thm.instantiate ([], [(falseE_v, ct)]) @{thm FalseE}
-in
-fun contradict conj ct =
-  iff_intro (Z3_New_Proof_Tools.under_assumption (contra_left conj) ct)
-    (contra_right ct)
-end
-
-local
-  fun prove_eq l r (cl, cr) =
-    let
-      fun explode' is_conj = explode is_conj true (l <> r) []
-      fun make_tab is_conj thm = make_littab (true_thm :: explode' is_conj thm)
-      fun prove is_conj ct tab = join is_conj tab (Thm.term_of ct)
-
-      val thm1 = Z3_New_Proof_Tools.under_assumption (prove r cr o make_tab l) cl
-      val thm2 = Z3_New_Proof_Tools.under_assumption (prove l cl o make_tab r) cr
-    in iff_intro thm1 thm2 end
-
-  datatype conj_disj = CONJ | DISJ | NCON | NDIS
-  fun kind_of t =
-    if is_conj t then SOME CONJ
-    else if is_disj t then SOME DISJ
-    else if is_neg' is_conj t then SOME NCON
-    else if is_neg' is_disj t then SOME NDIS
-    else NONE
-in
-
-fun prove_conj_disj_eq ct =
-  let val cp as (cl, cr) = Thm.dest_binop (Thm.dest_arg ct)
-  in
-    (case (kind_of (Thm.term_of cl), Thm.term_of cr) of
-      (SOME CONJ, @{const False}) => contradict true cl
-    | (SOME DISJ, @{const Not} $ @{const False}) =>
-        contrapos2 (contradict false o fst) cp
-    | (kl, _) =>
-        (case (kl, kind_of (Thm.term_of cr)) of
-          (SOME CONJ, SOME CONJ) => prove_eq true true cp
-        | (SOME CONJ, SOME NDIS) => prove_eq true false cp
-        | (SOME CONJ, _) => prove_eq true true cp
-        | (SOME DISJ, SOME DISJ) => contrapos1 (prove_eq false false) cp
-        | (SOME DISJ, SOME NCON) => contrapos2 (prove_eq false true) cp
-        | (SOME DISJ, _) => contrapos1 (prove_eq false false) cp
-        | (SOME NCON, SOME NCON) => contrapos1 (prove_eq true true) cp
-        | (SOME NCON, SOME DISJ) => contrapos3 (prove_eq true false) cp
-        | (SOME NCON, NONE) => contrapos3 (prove_eq true false) cp
-        | (SOME NDIS, SOME NDIS) => prove_eq false false cp
-        | (SOME NDIS, SOME CONJ) => prove_eq false true cp
-        | (SOME NDIS, NONE) => prove_eq false true cp
-        | _ => raise CTERM ("prove_conj_disj_eq", [ct])))
-  end
-
-end
-
-end
--- a/src/HOL/Tools/SMT2/z3_new_proof_methods.ML	Thu Mar 13 13:18:13 2014 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,667 +0,0 @@
-(*  Title:      HOL/Tools/SMT2/z3_new_proof.ML
-    Author:     Sascha Boehme, TU Muenchen
-    Author:     Jasmin Blanchette, TU Muenchen
-
-Proof methods for replaying Z3 proofs.
-*)
-
-signature Z3_NEW_PROOF_METHODS =
-sig
-  (*abstraction*)
-  type abs_context = int * term Termtab.table
-  type 'a abstracter = term -> abs_context -> 'a * abs_context
-  val add_arith_abstracter: (term abstracter -> term option abstracter) ->
-    Context.generic -> Context.generic
-
-  (*theory lemma methods*)
-  type th_lemma_method = Proof.context -> thm list -> term -> thm
-  val add_th_lemma_method: string * th_lemma_method -> Context.generic ->
-    Context.generic
-
-  (*methods for Z3 proof rules*)
-  type z3_method = Proof.context -> thm list -> term -> thm
-  val true_axiom: z3_method
-  val mp: z3_method
-  val refl: z3_method
-  val symm: z3_method
-  val trans: z3_method
-  val cong: z3_method
-  val quant_intro: z3_method
-  val distrib: z3_method
-  val and_elim: z3_method
-  val not_or_elim: z3_method
-  val rewrite: z3_method
-  val rewrite_star: z3_method
-  val pull_quant: z3_method
-  val push_quant: z3_method
-  val elim_unused: z3_method
-  val dest_eq_res: z3_method
-  val quant_inst: z3_method
-  val lemma: z3_method
-  val unit_res: z3_method
-  val iff_true: z3_method
-  val iff_false: z3_method
-  val comm: z3_method
-  val def_axiom: z3_method
-  val apply_def: z3_method
-  val iff_oeq: z3_method
-  val nnf_pos: z3_method
-  val nnf_neg: z3_method
-  val mp_oeq: z3_method
-  val th_lemma: string -> z3_method
-  val is_assumption: Z3_New_Proof.z3_rule -> bool
-  val method_for: Z3_New_Proof.z3_rule -> z3_method
-end
-
-structure Z3_New_Proof_Methods: Z3_NEW_PROOF_METHODS =
-struct
-
-type z3_method = Proof.context -> thm list -> term -> thm
-
-
-
-(* utility functions *)
-
-val trace = SMT2_Config.trace_msg
-
-fun pretty_thm ctxt thm = Syntax.pretty_term ctxt (Thm.concl_of thm)
-
-fun pretty_goal ctxt msg rule thms t =
-  let
-    val full_msg = msg ^ ": " ^ quote (Z3_New_Proof.string_of_rule rule)
-    val assms =
-      if null thms then []
-      else [Pretty.big_list "assumptions:" (map (pretty_thm ctxt) thms)]
-    val concl = Pretty.big_list "proposition:" [Syntax.pretty_term ctxt t]
-  in Pretty.big_list full_msg (assms @ [concl]) end
-
-fun replay_error ctxt msg rule thms t = error (Pretty.string_of (pretty_goal ctxt msg rule thms t))
-
-fun replay_rule_error ctxt = replay_error ctxt "Failed to replay Z3 proof step"
-
-fun trace_goal ctxt rule thms t =
-  trace ctxt (fn () => Pretty.string_of (pretty_goal ctxt "Goal" rule thms t))
-
-fun as_prop (t as Const (@{const_name Trueprop}, _) $ _) = t
-  | as_prop t = HOLogic.mk_Trueprop t
-
-fun dest_prop (Const (@{const_name Trueprop}, _) $ t) = t
-  | dest_prop t = t
-
-fun dest_thm thm = dest_prop (Thm.concl_of thm)
-
-fun certify_prop ctxt t = SMT2_Utils.certify ctxt (as_prop t)
-
-fun try_provers ctxt rule [] thms t = replay_rule_error ctxt rule thms t
-  | try_provers ctxt rule ((name, prover) :: named_provers) thms t =
-      (case (trace ctxt (K ("Trying prover " ^ quote name)); try prover t) of
-        SOME thm => thm
-      | NONE => try_provers ctxt rule named_provers thms t)
-
-fun match ctxt pat t =
-  (Vartab.empty, Vartab.empty)
-  |> Pattern.first_order_match (Proof_Context.theory_of ctxt) (pat, t)
-
-fun gen_certify_inst sel mk cert ctxt thm t =
-  let
-    val inst = match ctxt (dest_thm thm) (dest_prop t)
-    fun cert_inst (ix, (a, b)) = (cert (mk (ix, a)), cert b)
-  in Vartab.fold (cons o cert_inst) (sel inst) [] end
-
-fun match_instantiateT ctxt t thm =
-  if Term.exists_type (Term.exists_subtype Term.is_TVar) (dest_thm thm) then
-    let val certT = Thm.ctyp_of (Proof_Context.theory_of ctxt)
-    in Thm.instantiate (gen_certify_inst fst TVar certT ctxt thm t, []) thm end
-  else thm
-
-fun match_instantiate ctxt t thm =
-  let
-    val cert = SMT2_Utils.certify ctxt
-    val thm' = match_instantiateT ctxt t thm
-  in Thm.instantiate ([], gen_certify_inst snd Var cert ctxt thm' t) thm' end
-
-fun apply_rule ctxt t =
-  (case Z3_New_Proof_Rules.apply ctxt (certify_prop ctxt t) of
-    SOME thm => thm
-  | NONE => raise Fail "apply_rule")
-
-fun discharge _ [] thm = thm
-  | discharge i (rule :: rules) thm = discharge (i + Thm.nprems_of rule) rules (rule RSN (i, thm))
-
-fun by_tac ctxt thms ns ts t tac =
-  Goal.prove ctxt [] (map as_prop ts) (as_prop t)
-    (fn {context, prems} => HEADGOAL (tac context prems))
-  |> Drule.generalize ([], ns)
-  |> discharge 1 thms
-
-fun prove ctxt t tac = by_tac ctxt [] [] [] t (K o tac)
-
-fun prop_tac ctxt prems =
-  Method.insert_tac prems THEN' (Classical.fast_tac ctxt ORELSE' Clasimp.force_tac ctxt)
-
-fun quant_tac ctxt = Blast.blast_tac ctxt
-
-
-
-(* plug-ins *)
-
-type abs_context = int * term Termtab.table
-
-type 'a abstracter = term -> abs_context -> 'a * abs_context
-
-type th_lemma_method = Proof.context -> thm list -> term -> thm
-
-fun id_ord ((id1, _), (id2, _)) = int_ord (id1, id2)
-
-structure Plugins = Generic_Data
-(
-  type T =
-    (int * (term abstracter -> term option abstracter)) list *
-    th_lemma_method Symtab.table
-  val empty = ([], Symtab.empty)
-  val extend = I
-  fun merge ((abss1, ths1), (abss2, ths2)) = (
-    Ord_List.merge id_ord (abss1, abss2),
-    Symtab.merge (K true) (ths1, ths2))
-)
-
-fun add_arith_abstracter abs = Plugins.map (apfst (Ord_List.insert id_ord (serial (), abs)))
-fun get_arith_abstracters ctxt = map snd (fst (Plugins.get (Context.Proof ctxt)))
-
-fun add_th_lemma_method method = Plugins.map (apsnd (Symtab.update_new method))
-fun get_th_lemma_method ctxt = snd (Plugins.get (Context.Proof ctxt))
-
-
-
-(* abstraction *)
-
-fun prove_abstract ctxt thms t tac f =
-  let
-    val ((prems, concl), (_, ts)) = f (1, Termtab.empty)
-    val ns = Termtab.fold (fn (_, v) => cons (fst (Term.dest_Free v))) ts []
-  in
-    by_tac ctxt [] ns prems concl tac
-    |> match_instantiate ctxt t
-    |> discharge 1 thms
-  end
-
-fun prove_abstract' ctxt t tac f =
-  prove_abstract ctxt [] t tac (f #>> pair [])
-
-fun lookup_term (_, terms) t = Termtab.lookup terms t
-
-fun abstract_sub t f cx =
-  (case lookup_term cx t of
-    SOME v => (v, cx)
-  | NONE => f cx)
-
-fun mk_fresh_free t (i, terms) =
-  let val v = Free ("t" ^ string_of_int i, fastype_of t)
-  in (v, (i + 1, Termtab.update (t, v) terms)) end
-
-fun apply_abstracters _ [] _ cx = (NONE, cx)
-  | apply_abstracters abs (abstracter :: abstracters) t cx =
-      (case abstracter abs t cx of
-        (NONE, _) => apply_abstracters abs abstracters t cx
-      | x as (SOME _, _) => x)
-
-fun abstract_term (t as _ $ _) = abstract_sub t (mk_fresh_free t)
-  | abstract_term (t as Abs _) = abstract_sub t (mk_fresh_free t)
-  | abstract_term t = pair t
-
-fun abstract_bin abs f t t1 t2 = abstract_sub t (abs t1 ##>> abs t2 #>> f)
-
-fun abstract_ter abs f t t1 t2 t3 =
-  abstract_sub t (abs t1 ##>> abs t2 ##>> abs t3 #>> (Parse.triple1 #> f))
-
-fun abstract_lit (@{const HOL.Not} $ t) = abstract_term t #>> HOLogic.mk_not
-  | abstract_lit t = abstract_term t
-
-fun abstract_not abs (t as @{const HOL.Not} $ t1) =
-      abstract_sub t (abs t1 #>> HOLogic.mk_not)
-  | abstract_not _ t = abstract_lit t
-
-fun abstract_conj (t as @{const HOL.conj} $ t1 $ t2) =
-      abstract_bin abstract_conj HOLogic.mk_conj t t1 t2
-  | abstract_conj t = abstract_lit t
-
-fun abstract_disj (t as @{const HOL.disj} $ t1 $ t2) =
-      abstract_bin abstract_disj HOLogic.mk_disj t t1 t2
-  | abstract_disj t = abstract_lit t
-
-fun abstract_prop (t as (c as @{const If (bool)}) $ t1 $ t2 $ t3) =
-      abstract_ter abstract_prop (fn (t1, t2, t3) => c $ t1 $ t2 $ t3) t t1 t2 t3
-  | abstract_prop (t as @{const HOL.disj} $ t1 $ t2) =
-      abstract_bin abstract_prop HOLogic.mk_disj t t1 t2
-  | abstract_prop (t as @{const HOL.conj} $ t1 $ t2) =
-      abstract_bin abstract_prop HOLogic.mk_conj t t1 t2
-  | abstract_prop (t as @{const HOL.implies} $ t1 $ t2) =
-      abstract_bin abstract_prop HOLogic.mk_imp t t1 t2
-  | abstract_prop (t as @{term "HOL.eq :: bool => _"} $ t1 $ t2) =
-      abstract_bin abstract_prop HOLogic.mk_eq t t1 t2
-  | abstract_prop t = abstract_not abstract_prop t
-
-fun abstract_arith ctxt u =
-  let
-    fun abs (t as (c as Const _) $ Abs (s, T, t')) =
-          abstract_sub t (abs t' #>> (fn u' => c $ Abs (s, T, u')))
-      | abs (t as (c as Const (@{const_name If}, _)) $ t1 $ t2 $ t3) =
-          abstract_ter abs (fn (t1, t2, t3) => c $ t1 $ t2 $ t3) t t1 t2 t3
-      | abs (t as @{const HOL.Not} $ t1) = abstract_sub t (abs t1 #>> HOLogic.mk_not)
-      | abs (t as @{const HOL.disj} $ t1 $ t2) =
-          abstract_sub t (abs t1 ##>> abs t2 #>> HOLogic.mk_disj)
-      | abs (t as (c as Const (@{const_name uminus_class.uminus}, _)) $ t1) =
-          abstract_sub t (abs t1 #>> (fn u => c $ u))
-      | abs (t as (c as Const (@{const_name plus_class.plus}, _)) $ t1 $ t2) =
-          abstract_sub t (abs t1 ##>> abs t2 #>> (fn (u1, u2) => c $ u1 $ u2))
-      | abs (t as (c as Const (@{const_name minus_class.minus}, _)) $ t1 $ t2) =
-          abstract_sub t (abs t1 ##>> abs t2 #>> (fn (u1, u2) => c $ u1 $ u2))
-      | abs (t as (c as Const (@{const_name times_class.times}, _)) $ t1 $ t2) =
-          abstract_sub t (abs t1 ##>> abs t2 #>> (fn (u1, u2) => c $ u1 $ u2))
-      | abs (t as (c as Const (@{const_name z3div}, _)) $ t1 $ t2) =
-          abstract_sub t (abs t1 ##>> abs t2 #>> (fn (u1, u2) => c $ u1 $ u2))
-      | abs (t as (c as Const (@{const_name z3mod}, _)) $ t1 $ t2) =
-          abstract_sub t (abs t1 ##>> abs t2 #>> (fn (u1, u2) => c $ u1 $ u2))
-      | abs (t as (c as Const (@{const_name HOL.eq}, _)) $ t1 $ t2) =
-          abstract_sub t (abs t1 ##>> abs t2 #>> (fn (u1, u2) => c $ u1 $ u2))
-      | abs (t as (c as Const (@{const_name ord_class.less}, _)) $ t1 $ t2) =
-          abstract_sub t (abs t1 ##>> abs t2 #>> (fn (u1, u2) => c $ u1 $ u2))
-      | abs (t as (c as Const (@{const_name ord_class.less_eq}, _)) $ t1 $ t2) =
-          abstract_sub t (abs t1 ##>> abs t2 #>> (fn (u1, u2) => c $ u1 $ u2))
-      | abs t = abstract_sub t (fn cx =>
-          if can HOLogic.dest_number t then (t, cx)
-          else
-            (case apply_abstracters abs (get_arith_abstracters ctxt) t cx of
-              (SOME u, cx') => (u, cx')
-            | (NONE, _) => abstract_term t cx))
-  in abs u end
-
-
-
-(* truth axiom *)
-
-fun true_axiom _ _ _ = @{thm TrueI}
-
-
-
-(* modus ponens *)
-
-fun mp _ [p, p_eq_q] _ = discharge 1 [p_eq_q, p] iffD1
-  | mp ctxt thms t = replay_rule_error ctxt Z3_New_Proof.Modus_Ponens thms t
-
-val mp_oeq = mp
-
-
-
-(* reflexivity *)
-
-fun refl ctxt _ t = match_instantiate ctxt t @{thm refl}
-
-
-
-(* symmetry *)
-
-fun symm _ [thm] _ = thm RS @{thm sym}
-  | symm ctxt thms t = replay_rule_error ctxt Z3_New_Proof.Reflexivity thms t
-
-
-
-(* transitivity *)
-
-fun trans _ [thm1, thm2] _ = thm1 RSN (1, thm2 RSN (2, @{thm trans}))
-  | trans ctxt thms t = replay_rule_error ctxt Z3_New_Proof.Transitivity thms t
-
-
-
-(* congruence *)
-
-fun ctac prems i st = st |> (
-  resolve_tac (@{thm refl} :: prems) i
-  ORELSE (cong_tac i THEN ctac prems (i + 1) THEN ctac prems i))
-
-fun cong_basic ctxt thms t =
-  let val st = Thm.trivial (certify_prop ctxt t)
-  in
-    (case Seq.pull (ctac thms 1 st) of
-      SOME (thm, _) => thm
-    | NONE => raise THM ("cong", 0, thms @ [st]))
-  end
-
-val cong_dest_rules = @{lemma
-  "(~ P | Q) & (P | ~ Q) ==> P = Q"
-  "(P | ~ Q) & (~ P | Q) ==> P = Q"
-  by fast+}
-
-fun cong_full ctxt thms t = prove ctxt t (fn ctxt' =>
-  Method.insert_tac thms
-  THEN' (Classical.fast_tac ctxt'
-    ORELSE' dresolve_tac cong_dest_rules
-    THEN' Classical.fast_tac ctxt'))
-
-fun cong ctxt thms = try_provers ctxt Z3_New_Proof.Monotonicity [
-  ("basic", cong_basic ctxt thms),
-  ("full", cong_full ctxt thms)] thms
-
-
-
-(* quantifier introduction *)
-
-val quant_intro_rules = @{lemma
-  "(!!x. P x = Q x) ==> (ALL x. P x) = (ALL x. Q x)"
-  "(!!x. P x = Q x) ==> (EX x. P x) = (EX x. Q x)"
-  "(!!x. (~ P x) = Q x) ==> (~ (EX x. P x)) = (ALL x. Q x)"
-  "(!!x. (~ P x) = Q x) ==> (~ (ALL x. P x)) = (EX x. Q x)"
-  by fast+}
-
-fun quant_intro ctxt [thm] t =
-    prove ctxt t (K (REPEAT_ALL_NEW (resolve_tac (thm :: quant_intro_rules))))
-  | quant_intro ctxt thms t = replay_rule_error ctxt Z3_New_Proof.Quant_Intro thms t
-
-
-
-(* distributivity of conjunctions and disjunctions *)
-
-(* TODO: there are no tests with this proof rule *)
-fun distrib ctxt _ t =
-  prove_abstract' ctxt t prop_tac (abstract_prop (dest_prop t))
-
-
-
-(* elimination of conjunctions *)
-
-fun and_elim ctxt [thm] t =
-      prove_abstract ctxt [thm] t prop_tac (
-        abstract_lit (dest_prop t) ##>>
-        abstract_conj (dest_thm thm) #>>
-        apfst single o swap)
-  | and_elim ctxt thms t = replay_rule_error ctxt Z3_New_Proof.And_Elim thms t
-
-
-
-(* elimination of negated disjunctions *)
-
-fun not_or_elim ctxt [thm] t =
-      prove_abstract ctxt [thm] t prop_tac (
-        abstract_lit (dest_prop t) ##>>
-        abstract_not abstract_disj (dest_thm thm) #>>
-        apfst single o swap)
-  | not_or_elim ctxt thms t =
-      replay_rule_error ctxt Z3_New_Proof.Not_Or_Elim thms t
-
-
-
-(* rewriting *)
-
-fun abstract_eq f1 f2 (Const (@{const_name HOL.eq}, _) $ t1 $ t2) =
-      f1 t1 ##>> f2 t2 #>> HOLogic.mk_eq
-  | abstract_eq _ _ t = abstract_term t
-
-fun prove_prop_rewrite ctxt t =
-  prove_abstract' ctxt t prop_tac (
-    abstract_eq abstract_prop abstract_prop (dest_prop t))
-
-fun arith_rewrite_tac ctxt _ =
-  TRY o Simplifier.simp_tac ctxt
-  THEN_ALL_NEW (Arith_Data.arith_tac ctxt ORELSE' Clasimp.force_tac ctxt)
-
-fun prove_arith_rewrite ctxt t =
-  prove_abstract' ctxt t arith_rewrite_tac (
-    abstract_eq (abstract_arith ctxt) (abstract_arith ctxt) (dest_prop t))
-
-fun rewrite ctxt _ = try_provers ctxt Z3_New_Proof.Rewrite [
-  ("rules", apply_rule ctxt),
-  ("prop_rewrite", prove_prop_rewrite ctxt),
-  ("arith_rewrite", prove_arith_rewrite ctxt)] []
-
-fun rewrite_star ctxt = rewrite ctxt
-
-
-
-(* pulling quantifiers *)
-
-fun pull_quant ctxt _ t = prove ctxt t quant_tac
-
-
-
-(* pushing quantifiers *)
-
-fun push_quant _ _ _ = raise Fail "unsupported" (* FIXME *)
-
-
-
-(* elimination of unused bound variables *)
-
-val elim_all = @{lemma "P = Q ==> (ALL x. P) = Q" by fast}
-val elim_ex = @{lemma "P = Q ==> (EX x. P) = Q" by fast}
-
-fun elim_unused_tac i st = (
-  match_tac [@{thm refl}]
-  ORELSE' (match_tac [elim_all, elim_ex] THEN' elim_unused_tac)
-  ORELSE' (
-    match_tac [@{thm iff_allI}, @{thm iff_exI}]
-    THEN' elim_unused_tac)) i st
-
-fun elim_unused ctxt _ t = prove ctxt t (fn _ => elim_unused_tac)
-
-
-
-(* destructive equality resolution *)
-
-fun dest_eq_res _ _ _ = raise Fail "dest_eq_res" (* FIXME *)
-
-
-
-(* quantifier instantiation *)
-
-val quant_inst_rule = @{lemma "~P x | Q ==> ~(ALL x. P x) | Q" by fast}
-
-fun quant_inst ctxt _ t = prove ctxt t (fn _ => 
-  REPEAT_ALL_NEW (rtac quant_inst_rule)
-  THEN' rtac @{thm excluded_middle})
-
-
-
-(* propositional lemma *)
-
-exception LEMMA of unit
-
-val intro_hyp_rule1 = @{lemma "(~P ==> Q) ==> P | Q" by fast}
-val intro_hyp_rule2 = @{lemma "(P ==> Q) ==> ~P | Q" by fast}
-
-fun norm_lemma thm =
-  (thm COMP_INCR intro_hyp_rule1)
-  handle THM _ => thm COMP_INCR intro_hyp_rule2
-
-fun negated_prop (@{const HOL.Not} $ t) = HOLogic.mk_Trueprop t
-  | negated_prop t = HOLogic.mk_Trueprop (HOLogic.mk_not t)
-
-fun intro_hyps tab (t as @{const HOL.disj} $ t1 $ t2) cx =
-      lookup_intro_hyps tab t (fold (intro_hyps tab) [t1, t2]) cx
-  | intro_hyps tab t cx =
-      lookup_intro_hyps tab t (fn _ => raise LEMMA ()) cx
-
-and lookup_intro_hyps tab t f (cx as (thm, terms)) =
-  (case Termtab.lookup tab (negated_prop t) of
-    NONE => f cx
-  | SOME hyp => (norm_lemma (Thm.implies_intr hyp thm), t :: terms))
-
-fun lemma ctxt (thms as [thm]) t =
-    (let
-       val tab = Termtab.make (map (`Thm.term_of) (#hyps (Thm.crep_thm thm)))
-       val (thm', terms) = intro_hyps tab (dest_prop t) (thm, [])
-     in
-       prove_abstract ctxt [thm'] t prop_tac (
-         fold (snd oo abstract_lit) terms #>
-         abstract_disj (dest_thm thm') #>> single ##>>
-         abstract_disj (dest_prop t))
-     end
-     handle LEMMA () => replay_error ctxt "Bad proof state" Z3_New_Proof.Lemma thms t)
-  | lemma ctxt thms t = replay_rule_error ctxt Z3_New_Proof.Lemma thms t
-
-
-
-(* unit resolution *)
-
-fun abstract_unit (t as (@{const HOL.Not} $ (@{const HOL.disj} $ t1 $ t2))) =
-      abstract_sub t (abstract_unit t1 ##>> abstract_unit t2 #>>
-        HOLogic.mk_not o HOLogic.mk_disj)
-  | abstract_unit (t as (@{const HOL.disj} $ t1 $ t2)) =
-      abstract_sub t (abstract_unit t1 ##>> abstract_unit t2 #>>
-        HOLogic.mk_disj)
-  | abstract_unit t = abstract_lit t
-
-fun unit_res ctxt thms t =
-  prove_abstract ctxt thms t prop_tac (
-    fold_map (abstract_unit o dest_thm) thms ##>>
-    abstract_unit (dest_prop t) #>>
-    (fn (prems, concl) => (prems, concl)))
-
-
-
-(* iff-true *)
-
-val iff_true_rule = @{lemma "P ==> P = True" by fast}
-
-fun iff_true _ [thm] _ = thm RS iff_true_rule
-  | iff_true ctxt thms t = replay_rule_error ctxt Z3_New_Proof.Iff_True thms t
-
-
-
-(* iff-false *)
-
-val iff_false_rule = @{lemma "~P ==> P = False" by fast}
-
-fun iff_false _ [thm] _ = thm RS iff_false_rule
-  | iff_false ctxt thms t = replay_rule_error ctxt Z3_New_Proof.Iff_False thms t
-
-
-
-(* commutativity *)
-
-fun comm ctxt _ t = match_instantiate ctxt t @{thm eq_commute}
-
-
-
-(* definitional axioms *)
-
-fun def_axiom_disj ctxt t =
-  (case dest_prop t of
-    @{const HOL.disj} $ u1 $ u2 =>
-      prove_abstract' ctxt t prop_tac (
-        abstract_prop u2 ##>> abstract_prop u1 #>> HOLogic.mk_disj o swap)
-  | u => prove_abstract' ctxt t prop_tac (abstract_prop u))
-
-fun def_axiom ctxt _ = try_provers ctxt Z3_New_Proof.Def_Axiom [
-  ("rules", apply_rule ctxt),
-  ("disj", def_axiom_disj ctxt)] []
-
-
-
-(* application of definitions *)
-
-fun apply_def _ [thm] _ = thm (* TODO: cover also the missing cases *)
-  | apply_def ctxt thms t = replay_rule_error ctxt Z3_New_Proof.Apply_Def thms t
-
-
-
-(* iff-oeq *)
-
-fun iff_oeq _ _ _ = raise Fail "iff_oeq" (* FIXME *)
-
-
-
-(* negation normal form *)
-
-fun nnf_prop ctxt thms t =
-  prove_abstract ctxt thms t prop_tac (
-    fold_map (abstract_prop o dest_thm) thms ##>>
-    abstract_prop (dest_prop t))
-
-fun nnf ctxt rule thms = try_provers ctxt rule [
-  ("prop", nnf_prop ctxt thms),
-  ("quant", quant_intro ctxt [hd thms])] thms
-
-fun nnf_pos ctxt = nnf ctxt Z3_New_Proof.Nnf_Pos
-fun nnf_neg ctxt = nnf ctxt Z3_New_Proof.Nnf_Neg
-
-
-
-(* theory lemmas *)
-
-fun arith_th_lemma_tac ctxt prems =
-  Method.insert_tac prems
-  THEN' SELECT_GOAL (Local_Defs.unfold_tac ctxt @{thms z3div_def z3mod_def})
-  THEN' Arith_Data.arith_tac ctxt
-
-fun arith_th_lemma ctxt thms t =
-  prove_abstract ctxt thms t arith_th_lemma_tac (
-    fold_map (abstract_arith ctxt o dest_thm) thms ##>>
-    abstract_arith ctxt (dest_prop t))
-
-val _ = Theory.setup (Context.theory_map (add_th_lemma_method ("arith", arith_th_lemma)))
-
-fun th_lemma name ctxt thms =
-  (case Symtab.lookup (get_th_lemma_method ctxt) name of
-    SOME method => method ctxt thms
-  | NONE => replay_error ctxt "Bad theory" (Z3_New_Proof.Th_Lemma name) thms)
-
-
-
-(* mapping of rules to methods *)
-
-fun is_assumption Z3_New_Proof.Asserted = true
-  | is_assumption Z3_New_Proof.Goal = true
-  | is_assumption Z3_New_Proof.Hypothesis = true
-  | is_assumption Z3_New_Proof.Intro_Def = true
-  | is_assumption Z3_New_Proof.Skolemize = true
-  | is_assumption _ = false
-
-fun unsupported rule ctxt = replay_error ctxt "Unsupported" rule
-fun assumed rule ctxt = replay_error ctxt "Assumed" rule
-
-fun choose Z3_New_Proof.True_Axiom = true_axiom
-  | choose (r as Z3_New_Proof.Asserted) = assumed r
-  | choose (r as Z3_New_Proof.Goal) = assumed r
-  | choose Z3_New_Proof.Modus_Ponens = mp
-  | choose Z3_New_Proof.Reflexivity = refl
-  | choose Z3_New_Proof.Symmetry = symm
-  | choose Z3_New_Proof.Transitivity = trans
-  | choose (r as Z3_New_Proof.Transitivity_Star) = unsupported r
-  | choose Z3_New_Proof.Monotonicity = cong
-  | choose Z3_New_Proof.Quant_Intro = quant_intro
-  | choose Z3_New_Proof.Distributivity = distrib
-  | choose Z3_New_Proof.And_Elim = and_elim
-  | choose Z3_New_Proof.Not_Or_Elim = not_or_elim
-  | choose Z3_New_Proof.Rewrite = rewrite
-  | choose Z3_New_Proof.Rewrite_Star = rewrite_star
-  | choose Z3_New_Proof.Pull_Quant = pull_quant
-  | choose (r as Z3_New_Proof.Pull_Quant_Star) = unsupported r
-  | choose Z3_New_Proof.Push_Quant = push_quant
-  | choose Z3_New_Proof.Elim_Unused_Vars = elim_unused
-  | choose Z3_New_Proof.Dest_Eq_Res = dest_eq_res
-  | choose Z3_New_Proof.Quant_Inst = quant_inst
-  | choose (r as Z3_New_Proof.Hypothesis) = assumed r
-  | choose Z3_New_Proof.Lemma = lemma
-  | choose Z3_New_Proof.Unit_Resolution = unit_res
-  | choose Z3_New_Proof.Iff_True = iff_true
-  | choose Z3_New_Proof.Iff_False = iff_false
-  | choose Z3_New_Proof.Commutativity = comm
-  | choose Z3_New_Proof.Def_Axiom = def_axiom
-  | choose (r as Z3_New_Proof.Intro_Def) = assumed r
-  | choose Z3_New_Proof.Apply_Def = apply_def
-  | choose Z3_New_Proof.Iff_Oeq = iff_oeq
-  | choose Z3_New_Proof.Nnf_Pos = nnf_pos
-  | choose Z3_New_Proof.Nnf_Neg = nnf_neg
-  | choose (r as Z3_New_Proof.Nnf_Star) = unsupported r
-  | choose (r as Z3_New_Proof.Cnf_Star) = unsupported r
-  | choose (r as Z3_New_Proof.Skolemize) = assumed r
-  | choose Z3_New_Proof.Modus_Ponens_Oeq = mp_oeq
-  | choose (Z3_New_Proof.Th_Lemma name) = th_lemma name
-
-fun with_tracing rule method ctxt thms t =
-  let val _ = trace_goal ctxt rule thms t
-  in method ctxt thms t end
-
-fun method_for rule = with_tracing rule (choose rule)
-
-end
--- a/src/HOL/Tools/SMT2/z3_new_proof_replay.ML	Thu Mar 13 13:18:13 2014 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,193 +0,0 @@
-(*  Title:      HOL/Tools/SMT2/z3_new_proof_replay.ML
-    Author:     Sascha Boehme, TU Muenchen
-    Author:     Jasmin Blanchette, TU Muenchen
-
-Z3 proof replay.
-*)
-
-signature Z3_NEW_PROOF_REPLAY =
-sig
-  val replay: Proof.context -> SMT2_Translate.replay_data -> string list ->
-    (int list * Z3_New_Proof.z3_step list) * thm
-end
-
-structure Z3_New_Proof_Replay: Z3_NEW_PROOF_REPLAY =
-struct
-
-fun params_of t = Term.strip_qnt_vars @{const_name all} t
-
-fun varify ctxt thm =
-  let
-    val maxidx = Thm.maxidx_of thm + 1
-    val vs = params_of (Thm.prop_of thm)
-    val vars = map_index (fn (i, (n, T)) => Var ((n, i + maxidx), T)) vs
-  in Drule.forall_elim_list (map (SMT2_Utils.certify ctxt) vars) thm end
-
-fun add_paramTs names t =
-  fold2 (fn n => fn (_, T) => AList.update (op =) (n, T)) names (params_of t)
-
-fun new_fixes ctxt nTs =
-  let
-    val (ns, ctxt') = Variable.variant_fixes (replicate (length nTs) "") ctxt
-    fun mk (n, T) n' = (n, SMT2_Utils.certify ctxt' (Free (n', T)))
-  in (ctxt', Symtab.make (map2 mk nTs ns)) end
-
-fun forall_elim_term ct (Const (@{const_name all}, _) $ (a as Abs _)) =
-      Term.betapply (a, Thm.term_of ct)
-  | forall_elim_term _ qt = raise TERM ("forall_elim'", [qt])
-
-fun apply_fixes elim env = fold (elim o the o Symtab.lookup env)
-
-val apply_fixes_prem = uncurry o apply_fixes Thm.forall_elim
-val apply_fixes_concl = apply_fixes forall_elim_term
-
-fun export_fixes env names = Drule.forall_intr_list (map (the o Symtab.lookup env) names)
-
-fun under_fixes f ctxt (prems, nthms) names concl =
-  let
-    val thms1 = map (varify ctxt) prems
-    val (ctxt', env) =
-      add_paramTs names concl []
-      |> fold (uncurry add_paramTs o apsnd Thm.prop_of) nthms
-      |> new_fixes ctxt
-    val thms2 = map (apply_fixes_prem env) nthms
-    val t = apply_fixes_concl env names concl
-  in export_fixes env names (f ctxt' (thms1 @ thms2) t) end
-
-fun replay_thm ctxt assumed nthms
-    (Z3_New_Proof.Z3_Step {id, rule, concl, fixes, is_fix_step, ...}) =
-  if Z3_New_Proof_Methods.is_assumption rule then
-    (case Inttab.lookup assumed id of
-      SOME (_, thm) => thm
-    | NONE => Thm.assume (SMT2_Utils.certify ctxt concl))
-  else
-    under_fixes (Z3_New_Proof_Methods.method_for rule) ctxt
-      (if is_fix_step then (map snd nthms, []) else ([], nthms)) fixes concl
-
-fun replay_step ctxt assumed (step as Z3_New_Proof.Z3_Step {id, prems, fixes, ...}) proofs =
-  let val nthms = map (the o Inttab.lookup proofs) prems
-  in Inttab.update (id, (fixes, replay_thm ctxt assumed nthms step)) proofs end
-
-local
-  val remove_trigger = mk_meta_eq @{thm SMT2.trigger_def}
-  val remove_weight = mk_meta_eq @{thm SMT2.weight_def}
-  val remove_fun_app = mk_meta_eq @{thm SMT2.fun_app_def}
-
-  fun rewrite_conv _ [] = Conv.all_conv
-    | rewrite_conv ctxt eqs = Simplifier.full_rewrite (empty_simpset ctxt addsimps eqs)
-
-  val prep_rules = [@{thm Let_def}, remove_trigger, remove_weight,
-    remove_fun_app, Z3_New_Proof_Literals.rewrite_true]
-
-  fun rewrite _ [] = I
-    | rewrite ctxt eqs = Conv.fconv_rule (rewrite_conv ctxt eqs)
-
-  fun lookup_assm assms_net ct =
-    Z3_New_Proof_Tools.net_instances assms_net ct
-    |> map (fn ithm as (_, thm) => (ithm, Thm.cprop_of thm aconvc ct))
-in
-
-fun add_asserted outer_ctxt rewrite_rules assms steps ctxt =
-  let
-    val eqs = map (rewrite ctxt [Z3_New_Proof_Literals.rewrite_true]) rewrite_rules
-    val eqs' = union Thm.eq_thm eqs prep_rules
-
-    val assms_net =
-      assms
-      |> map (apsnd (rewrite ctxt eqs'))
-      |> map (apsnd (Conv.fconv_rule Thm.eta_conversion))
-      |> Z3_New_Proof_Tools.thm_net_of snd 
-
-    fun revert_conv ctxt = rewrite_conv ctxt eqs' then_conv Thm.eta_conversion
-
-    fun assume thm ctxt =
-      let
-        val ct = Thm.cprem_of thm 1
-        val (thm', ctxt') = yield_singleton Assumption.add_assumes ct ctxt
-      in (thm' RS thm, ctxt') end
-
-    fun add1 id fixes thm1 ((i, th), exact) ((is, thms), (ctxt, ptab)) =
-      let
-        val (thm, ctxt') = if exact then (Thm.implies_elim thm1 th, ctxt) else assume thm1 ctxt
-        val thms' = if exact then thms else th :: thms
-      in 
-        ((insert (op =) i is, thms'),
-          (ctxt', Inttab.update (id, (fixes, thm)) ptab))
-      end
-
-    fun add (Z3_New_Proof.Z3_Step {id, rule, concl, fixes, ...})
-        (cx as ((is, thms), (ctxt, ptab))) =
-      if Z3_New_Proof_Methods.is_assumption rule andalso rule <> Z3_New_Proof.Hypothesis then
-        let
-          val ct = SMT2_Utils.certify ctxt concl
-          val thm1 =
-            Thm.trivial ct
-            |> Conv.fconv_rule (Conv.arg1_conv (revert_conv outer_ctxt))
-          val thm2 = singleton (Variable.export ctxt outer_ctxt) thm1
-        in
-          (case lookup_assm assms_net (Thm.cprem_of thm2 1) of
-            [] =>
-              let val (thm, ctxt') = assume thm1 ctxt
-              in ((is, thms), (ctxt', Inttab.update (id, (fixes, thm)) ptab)) end
-          | ithms => fold (add1 id fixes thm1) ithms cx)
-        end
-      else
-        cx
-  in fold add steps (([], []), (ctxt, Inttab.empty)) end
-
-end
-
-(* |- (EX x. P x) = P c     |- ~ (ALL x. P x) = ~ P c *)
-local
-  val sk_rules = @{lemma
-    "c = (SOME x. P x) ==> (EX x. P x) = P c"
-    "c = (SOME x. ~ P x) ==> (~ (ALL x. P x)) = (~ P c)"
-    by (metis someI_ex)+}
-in
-
-fun discharge_sk_tac i st =
-  (rtac @{thm trans} i
-   THEN resolve_tac sk_rules i
-   THEN (rtac @{thm refl} ORELSE' discharge_sk_tac) (i+1)
-   THEN rtac @{thm refl} i) st
-
-end
-
-fun make_discharge_rules rules = rules @ [@{thm allI}, @{thm refl},
-  @{thm reflexive}, Z3_New_Proof_Literals.true_thm]
-
-val intro_def_rules = @{lemma
-  "(~ P | P) & (P | ~ P)"
-  "(P | ~ P) & (~ P | P)"
-  by fast+}
-
-fun discharge_assms_tac rules =
-  REPEAT (HEADGOAL (resolve_tac (intro_def_rules @ rules) ORELSE' SOLVED' discharge_sk_tac))
-  
-fun discharge_assms ctxt rules thm =
-  (if Thm.nprems_of thm = 0 then
-     thm
-   else
-     (case Seq.pull (discharge_assms_tac rules thm) of
-       SOME (thm', _) => thm'
-     | NONE => raise THM ("failed to discharge premise", 1, [thm])))
-  |> Goal.norm_result ctxt
-
-fun discharge rules outer_ctxt inner_ctxt =
-  singleton (Proof_Context.export inner_ctxt outer_ctxt)
-  #> discharge_assms outer_ctxt (make_discharge_rules rules)
-
-fun replay outer_ctxt
-    ({context=ctxt, typs, terms, rewrite_rules, assms} : SMT2_Translate.replay_data) output =
-  let
-    val (steps, ctxt1) = Z3_New_Proof.parse typs terms output ctxt
-    val ctxt2 = put_simpset (Z3_New_Proof_Tools.make_simpset ctxt1 []) ctxt1
-    val ((is, rules), (ctxt3, assumed)) = add_asserted outer_ctxt rewrite_rules assms steps ctxt2
-    val proofs = fold (replay_step ctxt3 assumed) steps assumed
-    val (_, Z3_New_Proof.Z3_Step {id, ...}) = split_last steps
-  in
-    if Config.get ctxt3 SMT2_Config.filter_only_facts then ((is, steps), TrueI)
-    else (([], steps), Inttab.lookup proofs id |> the |> snd |> discharge rules outer_ctxt ctxt3)
-  end
-
-end
--- a/src/HOL/Tools/SMT2/z3_new_proof_rules.ML	Thu Mar 13 13:18:13 2014 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,56 +0,0 @@
-(*  Title:      HOL/Tools/SMT2/z3_new_proof_rules.ML
-    Author:     Sascha Boehme, TU Muenchen
-
-Custom rules for Z3 proof replay.
-*)
-
-signature Z3_NEW_PROOF_RULES =
-sig
-  val apply: Proof.context -> cterm -> thm option
-end
-
-structure Z3_New_Proof_Rules: Z3_NEW_PROOF_RULES =
-struct
-
-val eq = Thm.eq_thm
-
-structure Data = Generic_Data
-(
-  type T = thm Net.net
-  val empty = Net.empty
-  val extend = I
-  val merge = Net.merge eq
-)
-
-fun maybe_instantiate ct thm =
-  try Thm.first_order_match (Thm.cprop_of thm, ct)
-  |> Option.map (fn inst => Thm.instantiate inst thm)
-
-fun apply ctxt ct =
-  let
-    val net = Data.get (Context.Proof ctxt)
-    val xthms = Net.match_term net (Thm.term_of ct)
-
-    fun select ct = map_filter (maybe_instantiate ct) xthms 
-    fun select' ct =
-      let val thm = Thm.trivial ct
-      in map_filter (try (fn rule => rule COMP thm)) xthms end
-
-  in try hd (case select ct of [] => select' ct | xthms' => xthms') end
-
-val prep = `Thm.prop_of
-
-fun ins thm net = Net.insert_term eq (prep thm) net handle Net.INSERT => net
-fun del thm net = Net.delete_term eq (prep thm) net handle Net.DELETE => net
-
-val add = Thm.declaration_attribute (Data.map o ins)
-val del = Thm.declaration_attribute (Data.map o del)
-
-val name = Binding.name "z3_new_rule"
-
-val description = "declaration of Z3 proof rules"
-
-val _ = Theory.setup (Attrib.setup name (Attrib.add_del add del) description #>
-  Global_Theory.add_thms_dynamic (name, Net.content o Data.get))
-
-end
--- a/src/HOL/Tools/SMT2/z3_new_proof_tools.ML	Thu Mar 13 13:18:13 2014 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,156 +0,0 @@
-(*  Title:      HOL/Tools/SMT2/z3_new_proof_tools.ML
-    Author:     Sascha Boehme, TU Muenchen
-
-Helper functions required for Z3 proof replay.
-*)
-
-signature Z3_NEW_PROOF_TOOLS =
-sig
-  (*theorem nets*)
-  val thm_net_of: ('a -> thm) -> 'a list -> 'a Net.net
-  val net_instances: (int * thm) Net.net -> cterm -> (int * thm) list
-
-  (*proof combinators*)
-  val under_assumption: (thm -> thm) -> cterm -> thm
-  val discharge: thm -> thm -> thm
-
-  (*a faster COMP*)
-  type compose_data
-  val precompose: (cterm -> cterm list) -> thm -> compose_data
-  val precompose2: (cterm -> cterm * cterm) -> thm -> compose_data
-  val compose: compose_data -> thm -> thm
-
-  (*simpset*)
-  val add_simproc: Simplifier.simproc -> Context.generic -> Context.generic
-  val make_simpset: Proof.context -> thm list -> simpset
-end
-
-structure Z3_New_Proof_Tools: Z3_NEW_PROOF_TOOLS =
-struct
-
-
-
-(* theorem nets *)
-
-fun thm_net_of f xthms =
-  let fun insert xthm = Net.insert_term (K false) (Thm.prop_of (f xthm), xthm)
-  in fold insert xthms Net.empty end
-
-fun maybe_instantiate ct thm =
-  try Thm.first_order_match (Thm.cprop_of thm, ct)
-  |> Option.map (fn inst => Thm.instantiate inst thm)
-
-local
-  fun instances_from_net match f net ct =
-    let
-      val lookup = if match then Net.match_term else Net.unify_term
-      val xthms = lookup net (Thm.term_of ct)
-      fun select ct = map_filter (f (maybe_instantiate ct)) xthms 
-      fun select' ct =
-        let val thm = Thm.trivial ct
-        in map_filter (f (try (fn rule => rule COMP thm))) xthms end
-    in (case select ct of [] => select' ct | xthms' => xthms') end
-in
-
-fun net_instances net =
-  instances_from_net false (fn f => fn (i, thm) => Option.map (pair i) (f thm))
-    net
-
-end
-
-
-
-(* proof combinators *)
-
-fun under_assumption f ct =
-  let val ct' = SMT2_Utils.mk_cprop ct
-  in Thm.implies_intr ct' (f (Thm.assume ct')) end
-
-fun discharge p pq = Thm.implies_elim pq p
-
-
-
-(* a faster COMP *)
-
-type compose_data = cterm list * (cterm -> cterm list) * thm
-
-fun list2 (x, y) = [x, y]
-
-fun precompose f rule = (f (Thm.cprem_of rule 1), f, rule)
-fun precompose2 f rule = precompose (list2 o f) rule
-
-fun compose (cvs, f, rule) thm =
-  discharge thm (Thm.instantiate ([], cvs ~~ f (Thm.cprop_of thm)) rule)
-
-
-
-(* simpset *)
-
-local
-  val antisym_le1 = mk_meta_eq @{thm order_class.antisym_conv}
-  val antisym_le2 = mk_meta_eq @{thm linorder_class.antisym_conv2}
-  val antisym_less1 = mk_meta_eq @{thm linorder_class.antisym_conv1}
-  val antisym_less2 = mk_meta_eq @{thm linorder_class.antisym_conv3}
-
-  fun eq_prop t thm = HOLogic.mk_Trueprop t aconv Thm.prop_of thm
-  fun dest_binop ((c as Const _) $ t $ u) = (c, t, u)
-    | dest_binop t = raise TERM ("dest_binop", [t])
-
-  fun prove_antisym_le ctxt t =
-    let
-      val (le, r, s) = dest_binop t
-      val less = Const (@{const_name less}, Term.fastype_of le)
-      val prems = Simplifier.prems_of ctxt
-    in
-      (case find_first (eq_prop (le $ s $ r)) prems of
-        NONE =>
-          find_first (eq_prop (HOLogic.mk_not (less $ r $ s))) prems
-          |> Option.map (fn thm => thm RS antisym_less1)
-      | SOME thm => SOME (thm RS antisym_le1))
-    end
-    handle THM _ => NONE
-
-  fun prove_antisym_less ctxt t =
-    let
-      val (less, r, s) = dest_binop (HOLogic.dest_not t)
-      val le = Const (@{const_name less_eq}, Term.fastype_of less)
-      val prems = Simplifier.prems_of ctxt
-    in
-      (case find_first (eq_prop (le $ r $ s)) prems of
-        NONE =>
-          find_first (eq_prop (HOLogic.mk_not (less $ s $ r))) prems
-          |> Option.map (fn thm => thm RS antisym_less2)
-      | SOME thm => SOME (thm RS antisym_le2))
-  end
-  handle THM _ => NONE
-
-  val basic_simpset =
-    simpset_of (put_simpset HOL_ss @{context}
-      addsimps @{thms field_simps times_divide_eq_right times_divide_eq_left arith_special
-        arith_simps rel_simps array_rules z3div_def z3mod_def}
-      addsimprocs [@{simproc binary_int_div}, @{simproc binary_int_mod},
-        Simplifier.simproc_global @{theory} "fast_int_arith" [
-          "(m::int) < n", "(m::int) <= n", "(m::int) = n"] Lin_Arith.simproc,
-        Simplifier.simproc_global @{theory} "antisym_le" ["(x::'a::order) <= y"] prove_antisym_le,
-        Simplifier.simproc_global @{theory} "antisym_less" ["~ (x::'a::linorder) < y"]
-          prove_antisym_less])
-
-  structure Simpset = Generic_Data
-  (
-    type T = simpset
-    val empty = basic_simpset
-    val extend = I
-    val merge = Simplifier.merge_ss
-  )
-in
-
-fun add_simproc simproc context =
-  Simpset.map (simpset_map (Context.proof_of context)
-    (fn ctxt => ctxt addsimprocs [simproc])) context
-
-fun make_simpset ctxt rules =
-  simpset_of (put_simpset (Simpset.get (Context.Proof ctxt)) ctxt addsimps rules)
-
-end
-
-end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/SMT2/z3_new_replay.ML	Thu Mar 13 13:18:13 2014 +0100
@@ -0,0 +1,193 @@
+(*  Title:      HOL/Tools/SMT2/z3_new_proof_replay.ML
+    Author:     Sascha Boehme, TU Muenchen
+    Author:     Jasmin Blanchette, TU Muenchen
+
+Z3 proof replay.
+*)
+
+signature Z3_NEW_PROOF_REPLAY =
+sig
+  val replay: Proof.context -> SMT2_Translate.replay_data -> string list ->
+    (int list * Z3_New_Proof.z3_step list) * thm
+end
+
+structure Z3_New_Proof_Replay: Z3_NEW_PROOF_REPLAY =
+struct
+
+fun params_of t = Term.strip_qnt_vars @{const_name all} t
+
+fun varify ctxt thm =
+  let
+    val maxidx = Thm.maxidx_of thm + 1
+    val vs = params_of (Thm.prop_of thm)
+    val vars = map_index (fn (i, (n, T)) => Var ((n, i + maxidx), T)) vs
+  in Drule.forall_elim_list (map (SMT2_Utils.certify ctxt) vars) thm end
+
+fun add_paramTs names t =
+  fold2 (fn n => fn (_, T) => AList.update (op =) (n, T)) names (params_of t)
+
+fun new_fixes ctxt nTs =
+  let
+    val (ns, ctxt') = Variable.variant_fixes (replicate (length nTs) "") ctxt
+    fun mk (n, T) n' = (n, SMT2_Utils.certify ctxt' (Free (n', T)))
+  in (ctxt', Symtab.make (map2 mk nTs ns)) end
+
+fun forall_elim_term ct (Const (@{const_name all}, _) $ (a as Abs _)) =
+      Term.betapply (a, Thm.term_of ct)
+  | forall_elim_term _ qt = raise TERM ("forall_elim'", [qt])
+
+fun apply_fixes elim env = fold (elim o the o Symtab.lookup env)
+
+val apply_fixes_prem = uncurry o apply_fixes Thm.forall_elim
+val apply_fixes_concl = apply_fixes forall_elim_term
+
+fun export_fixes env names = Drule.forall_intr_list (map (the o Symtab.lookup env) names)
+
+fun under_fixes f ctxt (prems, nthms) names concl =
+  let
+    val thms1 = map (varify ctxt) prems
+    val (ctxt', env) =
+      add_paramTs names concl []
+      |> fold (uncurry add_paramTs o apsnd Thm.prop_of) nthms
+      |> new_fixes ctxt
+    val thms2 = map (apply_fixes_prem env) nthms
+    val t = apply_fixes_concl env names concl
+  in export_fixes env names (f ctxt' (thms1 @ thms2) t) end
+
+fun replay_thm ctxt assumed nthms
+    (Z3_New_Proof.Z3_Step {id, rule, concl, fixes, is_fix_step, ...}) =
+  if Z3_New_Proof_Methods.is_assumption rule then
+    (case Inttab.lookup assumed id of
+      SOME (_, thm) => thm
+    | NONE => Thm.assume (SMT2_Utils.certify ctxt concl))
+  else
+    under_fixes (Z3_New_Proof_Methods.method_for rule) ctxt
+      (if is_fix_step then (map snd nthms, []) else ([], nthms)) fixes concl
+
+fun replay_step ctxt assumed (step as Z3_New_Proof.Z3_Step {id, prems, fixes, ...}) proofs =
+  let val nthms = map (the o Inttab.lookup proofs) prems
+  in Inttab.update (id, (fixes, replay_thm ctxt assumed nthms step)) proofs end
+
+local
+  val remove_trigger = mk_meta_eq @{thm SMT2.trigger_def}
+  val remove_weight = mk_meta_eq @{thm SMT2.weight_def}
+  val remove_fun_app = mk_meta_eq @{thm SMT2.fun_app_def}
+
+  fun rewrite_conv _ [] = Conv.all_conv
+    | rewrite_conv ctxt eqs = Simplifier.full_rewrite (empty_simpset ctxt addsimps eqs)
+
+  val prep_rules = [@{thm Let_def}, remove_trigger, remove_weight,
+    remove_fun_app, Z3_New_Proof_Literals.rewrite_true]
+
+  fun rewrite _ [] = I
+    | rewrite ctxt eqs = Conv.fconv_rule (rewrite_conv ctxt eqs)
+
+  fun lookup_assm assms_net ct =
+    Z3_New_Proof_Tools.net_instances assms_net ct
+    |> map (fn ithm as (_, thm) => (ithm, Thm.cprop_of thm aconvc ct))
+in
+
+fun add_asserted outer_ctxt rewrite_rules assms steps ctxt =
+  let
+    val eqs = map (rewrite ctxt [Z3_New_Proof_Literals.rewrite_true]) rewrite_rules
+    val eqs' = union Thm.eq_thm eqs prep_rules
+
+    val assms_net =
+      assms
+      |> map (apsnd (rewrite ctxt eqs'))
+      |> map (apsnd (Conv.fconv_rule Thm.eta_conversion))
+      |> Z3_New_Proof_Tools.thm_net_of snd 
+
+    fun revert_conv ctxt = rewrite_conv ctxt eqs' then_conv Thm.eta_conversion
+
+    fun assume thm ctxt =
+      let
+        val ct = Thm.cprem_of thm 1
+        val (thm', ctxt') = yield_singleton Assumption.add_assumes ct ctxt
+      in (thm' RS thm, ctxt') end
+
+    fun add1 id fixes thm1 ((i, th), exact) ((is, thms), (ctxt, ptab)) =
+      let
+        val (thm, ctxt') = if exact then (Thm.implies_elim thm1 th, ctxt) else assume thm1 ctxt
+        val thms' = if exact then thms else th :: thms
+      in 
+        ((insert (op =) i is, thms'),
+          (ctxt', Inttab.update (id, (fixes, thm)) ptab))
+      end
+
+    fun add (Z3_New_Proof.Z3_Step {id, rule, concl, fixes, ...})
+        (cx as ((is, thms), (ctxt, ptab))) =
+      if Z3_New_Proof_Methods.is_assumption rule andalso rule <> Z3_New_Proof.Hypothesis then
+        let
+          val ct = SMT2_Utils.certify ctxt concl
+          val thm1 =
+            Thm.trivial ct
+            |> Conv.fconv_rule (Conv.arg1_conv (revert_conv outer_ctxt))
+          val thm2 = singleton (Variable.export ctxt outer_ctxt) thm1
+        in
+          (case lookup_assm assms_net (Thm.cprem_of thm2 1) of
+            [] =>
+              let val (thm, ctxt') = assume thm1 ctxt
+              in ((is, thms), (ctxt', Inttab.update (id, (fixes, thm)) ptab)) end
+          | ithms => fold (add1 id fixes thm1) ithms cx)
+        end
+      else
+        cx
+  in fold add steps (([], []), (ctxt, Inttab.empty)) end
+
+end
+
+(* |- (EX x. P x) = P c     |- ~ (ALL x. P x) = ~ P c *)
+local
+  val sk_rules = @{lemma
+    "c = (SOME x. P x) ==> (EX x. P x) = P c"
+    "c = (SOME x. ~ P x) ==> (~ (ALL x. P x)) = (~ P c)"
+    by (metis someI_ex)+}
+in
+
+fun discharge_sk_tac i st =
+  (rtac @{thm trans} i
+   THEN resolve_tac sk_rules i
+   THEN (rtac @{thm refl} ORELSE' discharge_sk_tac) (i+1)
+   THEN rtac @{thm refl} i) st
+
+end
+
+fun make_discharge_rules rules = rules @ [@{thm allI}, @{thm refl},
+  @{thm reflexive}, Z3_New_Proof_Literals.true_thm]
+
+val intro_def_rules = @{lemma
+  "(~ P | P) & (P | ~ P)"
+  "(P | ~ P) & (~ P | P)"
+  by fast+}
+
+fun discharge_assms_tac rules =
+  REPEAT (HEADGOAL (resolve_tac (intro_def_rules @ rules) ORELSE' SOLVED' discharge_sk_tac))
+  
+fun discharge_assms ctxt rules thm =
+  (if Thm.nprems_of thm = 0 then
+     thm
+   else
+     (case Seq.pull (discharge_assms_tac rules thm) of
+       SOME (thm', _) => thm'
+     | NONE => raise THM ("failed to discharge premise", 1, [thm])))
+  |> Goal.norm_result ctxt
+
+fun discharge rules outer_ctxt inner_ctxt =
+  singleton (Proof_Context.export inner_ctxt outer_ctxt)
+  #> discharge_assms outer_ctxt (make_discharge_rules rules)
+
+fun replay outer_ctxt
+    ({context=ctxt, typs, terms, rewrite_rules, assms} : SMT2_Translate.replay_data) output =
+  let
+    val (steps, ctxt1) = Z3_New_Proof.parse typs terms output ctxt
+    val ctxt2 = put_simpset (Z3_New_Proof_Tools.make_simpset ctxt1 []) ctxt1
+    val ((is, rules), (ctxt3, assumed)) = add_asserted outer_ctxt rewrite_rules assms steps ctxt2
+    val proofs = fold (replay_step ctxt3 assumed) steps assumed
+    val (_, Z3_New_Proof.Z3_Step {id, ...}) = split_last steps
+  in
+    if Config.get ctxt3 SMT2_Config.filter_only_facts then ((is, steps), TrueI)
+    else (([], steps), Inttab.lookup proofs id |> the |> snd |> discharge rules outer_ctxt ctxt3)
+  end
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/SMT2/z3_new_replay_literals.ML	Thu Mar 13 13:18:13 2014 +0100
@@ -0,0 +1,357 @@
+(*  Title:      HOL/Tools/SMT2/z3_new_proof_literals.ML
+    Author:     Sascha Boehme, TU Muenchen
+
+Proof tools related to conjunctions and disjunctions.
+*)
+
+signature Z3_NEW_PROOF_LITERALS =
+sig
+  (*literal table*)
+  type littab = thm Termtab.table
+  val make_littab: thm list -> littab
+  val insert_lit: thm -> littab -> littab
+  val delete_lit: thm -> littab -> littab
+  val lookup_lit: littab -> term -> thm option
+  val get_first_lit: (term -> bool) -> littab -> thm option
+
+  (*rules*)
+  val true_thm: thm
+  val rewrite_true: thm
+
+  (*properties*)
+  val is_conj: term -> bool
+  val is_disj: term -> bool
+  val exists_lit: bool -> (term -> bool) -> term -> bool
+  val negate: cterm -> cterm
+
+  (*proof tools*)
+  val explode: bool -> bool -> bool -> term list -> thm -> thm list
+  val join: bool -> littab -> term -> thm
+  val prove_conj_disj_eq: cterm -> thm
+end
+
+structure Z3_New_Proof_Literals: Z3_NEW_PROOF_LITERALS =
+struct
+
+
+
+(* literal table *)
+
+type littab = thm Termtab.table
+
+fun make_littab thms =
+  fold (Termtab.update o `SMT2_Utils.prop_of) thms Termtab.empty
+
+fun insert_lit thm = Termtab.update (`SMT2_Utils.prop_of thm)
+fun delete_lit thm = Termtab.delete (SMT2_Utils.prop_of thm)
+fun lookup_lit lits = Termtab.lookup lits
+fun get_first_lit f =
+  Termtab.get_first (fn (t, thm) => if f t then SOME thm else NONE)
+
+
+
+(* rules *)
+
+val true_thm = @{lemma "~False" by simp}
+val rewrite_true = @{lemma "True == ~ False" by simp}
+
+
+
+(* properties and term operations *)
+
+val is_neg = (fn @{const Not} $ _ => true | _ => false)
+fun is_neg' f = (fn @{const Not} $ t => f t | _ => false)
+val is_dneg = is_neg' is_neg
+val is_conj = (fn @{const HOL.conj} $ _ $ _ => true | _ => false)
+val is_disj = (fn @{const HOL.disj} $ _ $ _ => true | _ => false)
+
+fun dest_disj_term' f = (fn
+    @{const Not} $ (@{const HOL.disj} $ t $ u) => SOME (f t, f u)
+  | _ => NONE)
+
+val dest_conj_term = (fn @{const HOL.conj} $ t $ u => SOME (t, u) | _ => NONE)
+val dest_disj_term =
+  dest_disj_term' (fn @{const Not} $ t => t | t => @{const Not} $ t)
+
+fun exists_lit is_conj P =
+  let
+    val dest = if is_conj then dest_conj_term else dest_disj_term
+    fun exists t = P t orelse
+      (case dest t of
+        SOME (t1, t2) => exists t1 orelse exists t2
+      | NONE => false)
+  in exists end
+
+val negate = Thm.apply (Thm.cterm_of @{theory} @{const Not})
+
+
+
+(* proof tools *)
+
+(** explosion of conjunctions and disjunctions **)
+
+local
+  val precomp = Z3_New_Proof_Tools.precompose2
+
+  fun destc ct = Thm.dest_binop (Thm.dest_arg ct)
+  val dest_conj1 = precomp destc @{thm conjunct1}
+  val dest_conj2 = precomp destc @{thm conjunct2}
+  fun dest_conj_rules t =
+    dest_conj_term t |> Option.map (K (dest_conj1, dest_conj2))
+    
+  fun destd f ct = f (Thm.dest_binop (Thm.dest_arg (Thm.dest_arg ct)))
+  val dn1 = apfst Thm.dest_arg and dn2 = apsnd Thm.dest_arg
+  val dest_disj1 = precomp (destd I) @{lemma "~(P | Q) ==> ~P" by fast}
+  val dest_disj2 = precomp (destd dn1) @{lemma "~(~P | Q) ==> P" by fast}
+  val dest_disj3 = precomp (destd I) @{lemma "~(P | Q) ==> ~Q" by fast}
+  val dest_disj4 = precomp (destd dn2) @{lemma "~(P | ~Q) ==> Q" by fast}
+
+  fun dest_disj_rules t =
+    (case dest_disj_term' is_neg t of
+      SOME (true, true) => SOME (dest_disj2, dest_disj4)
+    | SOME (true, false) => SOME (dest_disj2, dest_disj3)
+    | SOME (false, true) => SOME (dest_disj1, dest_disj4)
+    | SOME (false, false) => SOME (dest_disj1, dest_disj3)
+    | NONE => NONE)
+
+  fun destn ct = [Thm.dest_arg (Thm.dest_arg (Thm.dest_arg ct))]
+  val dneg_rule = Z3_New_Proof_Tools.precompose destn @{thm notnotD}
+in
+
+(*
+  explode a term into literals and collect all rules to be able to deduce
+  particular literals afterwards
+*)
+fun explode_term is_conj =
+  let
+    val dest = if is_conj then dest_conj_term else dest_disj_term
+    val dest_rules = if is_conj then dest_conj_rules else dest_disj_rules
+
+    fun add (t, rs) = Termtab.map_default (t, rs)
+      (fn rs' => if length rs' < length rs then rs' else rs)
+
+    fun explode1 rules t =
+      (case dest t of
+        SOME (t1, t2) =>
+          let val (rule1, rule2) = the (dest_rules t)
+          in
+            explode1 (rule1 :: rules) t1 #>
+            explode1 (rule2 :: rules) t2 #>
+            add (t, rev rules)
+          end
+      | NONE => add (t, rev rules))
+
+    fun explode0 (@{const Not} $ (@{const Not} $ t)) =
+          Termtab.make [(t, [dneg_rule])]
+      | explode0 t = explode1 [] t Termtab.empty
+
+  in explode0 end
+
+(*
+  extract a literal by applying previously collected rules
+*)
+fun extract_lit thm rules = fold Z3_New_Proof_Tools.compose rules thm
+
+
+(*
+  explode a theorem into its literals
+*)
+fun explode is_conj full keep_intermediate stop_lits =
+  let
+    val dest_rules = if is_conj then dest_conj_rules else dest_disj_rules
+    val tab = fold (Termtab.update o rpair ()) stop_lits Termtab.empty
+
+    fun explode1 thm =
+      if Termtab.defined tab (SMT2_Utils.prop_of thm) then cons thm
+      else
+        (case dest_rules (SMT2_Utils.prop_of thm) of
+          SOME (rule1, rule2) =>
+            explode2 rule1 thm #>
+            explode2 rule2 thm #>
+            keep_intermediate ? cons thm
+        | NONE => cons thm)
+
+    and explode2 dest_rule thm =
+      if full orelse
+        exists_lit is_conj (Termtab.defined tab) (SMT2_Utils.prop_of thm)
+      then explode1 (Z3_New_Proof_Tools.compose dest_rule thm)
+      else cons (Z3_New_Proof_Tools.compose dest_rule thm)
+
+    fun explode0 thm =
+      if not is_conj andalso is_dneg (SMT2_Utils.prop_of thm)
+      then [Z3_New_Proof_Tools.compose dneg_rule thm]
+      else explode1 thm []
+
+  in explode0 end
+
+end
+
+
+(** joining of literals to conjunctions or disjunctions **)
+
+local
+  fun on_cprem i f thm = f (Thm.cprem_of thm i)
+  fun on_cprop f thm = f (Thm.cprop_of thm)
+  fun precomp2 f g thm = (on_cprem 1 f thm, on_cprem 2 g thm, f, g, thm)
+  fun comp2 (cv1, cv2, f, g, rule) thm1 thm2 =
+    Thm.instantiate ([], [(cv1, on_cprop f thm1), (cv2, on_cprop g thm2)]) rule
+    |> Z3_New_Proof_Tools.discharge thm1 |> Z3_New_Proof_Tools.discharge thm2
+
+  fun d1 ct = Thm.dest_arg ct and d2 ct = Thm.dest_arg (Thm.dest_arg ct)
+
+  val conj_rule = precomp2 d1 d1 @{thm conjI}
+  fun comp_conj ((_, thm1), (_, thm2)) = comp2 conj_rule thm1 thm2
+
+  val disj1 = precomp2 d2 d2 @{lemma "~P ==> ~Q ==> ~(P | Q)" by fast}
+  val disj2 = precomp2 d2 d1 @{lemma "~P ==> Q ==> ~(P | ~Q)" by fast}
+  val disj3 = precomp2 d1 d2 @{lemma "P ==> ~Q ==> ~(~P | Q)" by fast}
+  val disj4 = precomp2 d1 d1 @{lemma "P ==> Q ==> ~(~P | ~Q)" by fast}
+
+  fun comp_disj ((false, thm1), (false, thm2)) = comp2 disj1 thm1 thm2
+    | comp_disj ((false, thm1), (true, thm2)) = comp2 disj2 thm1 thm2
+    | comp_disj ((true, thm1), (false, thm2)) = comp2 disj3 thm1 thm2
+    | comp_disj ((true, thm1), (true, thm2)) = comp2 disj4 thm1 thm2
+
+  fun dest_conj (@{const HOL.conj} $ t $ u) = ((false, t), (false, u))
+    | dest_conj t = raise TERM ("dest_conj", [t])
+
+  val neg = (fn @{const Not} $ t => (true, t) | t => (false, @{const Not} $ t))
+  fun dest_disj (@{const Not} $ (@{const HOL.disj} $ t $ u)) = (neg t, neg u)
+    | dest_disj t = raise TERM ("dest_disj", [t])
+
+  val precomp = Z3_New_Proof_Tools.precompose
+  val dnegE = precomp (single o d2 o d1) @{thm notnotD}
+  val dnegI = precomp (single o d1) @{lemma "P ==> ~~P" by fast}
+  fun as_dneg f t = f (@{const Not} $ (@{const Not} $ t))
+
+  val precomp2 = Z3_New_Proof_Tools.precompose2
+  fun dni f = apsnd f o Thm.dest_binop o f o d1
+  val negIffE = precomp2 (dni d1) @{lemma "~(P = (~Q)) ==> Q = P" by fast}
+  val negIffI = precomp2 (dni I) @{lemma "P = Q ==> ~(Q = (~P))" by fast}
+  val iff_const = @{const HOL.eq (bool)}
+  fun as_negIff f (@{const HOL.eq (bool)} $ t $ u) =
+        f (@{const Not} $ (iff_const $ u $ (@{const Not} $ t)))
+    | as_negIff _ _ = NONE
+in
+
+fun join is_conj littab t =
+  let
+    val comp = if is_conj then comp_conj else comp_disj
+    val dest = if is_conj then dest_conj else dest_disj
+
+    val lookup = lookup_lit littab
+
+    fun lookup_rule t =
+      (case t of
+        @{const Not} $ (@{const Not} $ t) =>
+          (Z3_New_Proof_Tools.compose dnegI, lookup t)
+      | @{const Not} $ (@{const HOL.eq (bool)} $ t $ (@{const Not} $ u)) =>
+          (Z3_New_Proof_Tools.compose negIffI, lookup (iff_const $ u $ t))
+      | @{const Not} $ ((eq as Const (@{const_name HOL.eq}, _)) $ t $ u) =>
+          let fun rewr lit = lit COMP @{thm not_sym}
+          in (rewr, lookup (@{const Not} $ (eq $ u $ t))) end
+      | _ =>
+          (case as_dneg lookup t of
+            NONE => (Z3_New_Proof_Tools.compose negIffE, as_negIff lookup t)
+          | x => (Z3_New_Proof_Tools.compose dnegE, x)))
+
+    fun join1 (s, t) =
+      (case lookup t of
+        SOME lit => (s, lit)
+      | NONE => 
+          (case lookup_rule t of
+            (rewrite, SOME lit) => (s, rewrite lit)
+          | (_, NONE) => (s, comp (pairself join1 (dest t)))))
+
+  in snd (join1 (if is_conj then (false, t) else (true, t))) end
+
+end
+
+
+(** proving equality of conjunctions or disjunctions **)
+
+fun iff_intro thm1 thm2 = thm2 COMP (thm1 COMP @{thm iffI})
+
+local
+  val cp1 = @{lemma "(~P) = (~Q) ==> P = Q" by simp}
+  val cp2 = @{lemma "(~P) = Q ==> P = (~Q)" by fastforce}
+  val cp3 = @{lemma "P = (~Q) ==> (~P) = Q" by simp}
+in
+fun contrapos1 prove (ct, cu) = prove (negate ct, negate cu) COMP cp1
+fun contrapos2 prove (ct, cu) = prove (negate ct, Thm.dest_arg cu) COMP cp2
+fun contrapos3 prove (ct, cu) = prove (Thm.dest_arg ct, negate cu) COMP cp3
+end
+
+local
+  val contra_rule = @{lemma "P ==> ~P ==> False" by (rule notE)}
+  fun contra_left conj thm =
+    let
+      val rules = explode_term conj (SMT2_Utils.prop_of thm)
+      fun contra_lits (t, rs) =
+        (case t of
+          @{const Not} $ u => Termtab.lookup rules u |> Option.map (pair rs)
+        | _ => NONE)
+    in
+      (case Termtab.lookup rules @{const False} of
+        SOME rs => extract_lit thm rs
+      | NONE =>
+          the (Termtab.get_first contra_lits rules)
+          |> pairself (extract_lit thm)
+          |> (fn (nlit, plit) => nlit COMP (plit COMP contra_rule)))
+    end
+
+  val falseE_v = Thm.dest_arg (Thm.dest_arg (Thm.cprop_of @{thm FalseE}))
+  fun contra_right ct = Thm.instantiate ([], [(falseE_v, ct)]) @{thm FalseE}
+in
+fun contradict conj ct =
+  iff_intro (Z3_New_Proof_Tools.under_assumption (contra_left conj) ct)
+    (contra_right ct)
+end
+
+local
+  fun prove_eq l r (cl, cr) =
+    let
+      fun explode' is_conj = explode is_conj true (l <> r) []
+      fun make_tab is_conj thm = make_littab (true_thm :: explode' is_conj thm)
+      fun prove is_conj ct tab = join is_conj tab (Thm.term_of ct)
+
+      val thm1 = Z3_New_Proof_Tools.under_assumption (prove r cr o make_tab l) cl
+      val thm2 = Z3_New_Proof_Tools.under_assumption (prove l cl o make_tab r) cr
+    in iff_intro thm1 thm2 end
+
+  datatype conj_disj = CONJ | DISJ | NCON | NDIS
+  fun kind_of t =
+    if is_conj t then SOME CONJ
+    else if is_disj t then SOME DISJ
+    else if is_neg' is_conj t then SOME NCON
+    else if is_neg' is_disj t then SOME NDIS
+    else NONE
+in
+
+fun prove_conj_disj_eq ct =
+  let val cp as (cl, cr) = Thm.dest_binop (Thm.dest_arg ct)
+  in
+    (case (kind_of (Thm.term_of cl), Thm.term_of cr) of
+      (SOME CONJ, @{const False}) => contradict true cl
+    | (SOME DISJ, @{const Not} $ @{const False}) =>
+        contrapos2 (contradict false o fst) cp
+    | (kl, _) =>
+        (case (kl, kind_of (Thm.term_of cr)) of
+          (SOME CONJ, SOME CONJ) => prove_eq true true cp
+        | (SOME CONJ, SOME NDIS) => prove_eq true false cp
+        | (SOME CONJ, _) => prove_eq true true cp
+        | (SOME DISJ, SOME DISJ) => contrapos1 (prove_eq false false) cp
+        | (SOME DISJ, SOME NCON) => contrapos2 (prove_eq false true) cp
+        | (SOME DISJ, _) => contrapos1 (prove_eq false false) cp
+        | (SOME NCON, SOME NCON) => contrapos1 (prove_eq true true) cp
+        | (SOME NCON, SOME DISJ) => contrapos3 (prove_eq true false) cp
+        | (SOME NCON, NONE) => contrapos3 (prove_eq true false) cp
+        | (SOME NDIS, SOME NDIS) => prove_eq false false cp
+        | (SOME NDIS, SOME CONJ) => prove_eq false true cp
+        | (SOME NDIS, NONE) => prove_eq false true cp
+        | _ => raise CTERM ("prove_conj_disj_eq", [ct])))
+  end
+
+end
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/SMT2/z3_new_replay_methods.ML	Thu Mar 13 13:18:13 2014 +0100
@@ -0,0 +1,667 @@
+(*  Title:      HOL/Tools/SMT2/z3_new_proof.ML
+    Author:     Sascha Boehme, TU Muenchen
+    Author:     Jasmin Blanchette, TU Muenchen
+
+Proof methods for replaying Z3 proofs.
+*)
+
+signature Z3_NEW_PROOF_METHODS =
+sig
+  (*abstraction*)
+  type abs_context = int * term Termtab.table
+  type 'a abstracter = term -> abs_context -> 'a * abs_context
+  val add_arith_abstracter: (term abstracter -> term option abstracter) ->
+    Context.generic -> Context.generic
+
+  (*theory lemma methods*)
+  type th_lemma_method = Proof.context -> thm list -> term -> thm
+  val add_th_lemma_method: string * th_lemma_method -> Context.generic ->
+    Context.generic
+
+  (*methods for Z3 proof rules*)
+  type z3_method = Proof.context -> thm list -> term -> thm
+  val true_axiom: z3_method
+  val mp: z3_method
+  val refl: z3_method
+  val symm: z3_method
+  val trans: z3_method
+  val cong: z3_method
+  val quant_intro: z3_method
+  val distrib: z3_method
+  val and_elim: z3_method
+  val not_or_elim: z3_method
+  val rewrite: z3_method
+  val rewrite_star: z3_method
+  val pull_quant: z3_method
+  val push_quant: z3_method
+  val elim_unused: z3_method
+  val dest_eq_res: z3_method
+  val quant_inst: z3_method
+  val lemma: z3_method
+  val unit_res: z3_method
+  val iff_true: z3_method
+  val iff_false: z3_method
+  val comm: z3_method
+  val def_axiom: z3_method
+  val apply_def: z3_method
+  val iff_oeq: z3_method
+  val nnf_pos: z3_method
+  val nnf_neg: z3_method
+  val mp_oeq: z3_method
+  val th_lemma: string -> z3_method
+  val is_assumption: Z3_New_Proof.z3_rule -> bool
+  val method_for: Z3_New_Proof.z3_rule -> z3_method
+end
+
+structure Z3_New_Proof_Methods: Z3_NEW_PROOF_METHODS =
+struct
+
+type z3_method = Proof.context -> thm list -> term -> thm
+
+
+
+(* utility functions *)
+
+val trace = SMT2_Config.trace_msg
+
+fun pretty_thm ctxt thm = Syntax.pretty_term ctxt (Thm.concl_of thm)
+
+fun pretty_goal ctxt msg rule thms t =
+  let
+    val full_msg = msg ^ ": " ^ quote (Z3_New_Proof.string_of_rule rule)
+    val assms =
+      if null thms then []
+      else [Pretty.big_list "assumptions:" (map (pretty_thm ctxt) thms)]
+    val concl = Pretty.big_list "proposition:" [Syntax.pretty_term ctxt t]
+  in Pretty.big_list full_msg (assms @ [concl]) end
+
+fun replay_error ctxt msg rule thms t = error (Pretty.string_of (pretty_goal ctxt msg rule thms t))
+
+fun replay_rule_error ctxt = replay_error ctxt "Failed to replay Z3 proof step"
+
+fun trace_goal ctxt rule thms t =
+  trace ctxt (fn () => Pretty.string_of (pretty_goal ctxt "Goal" rule thms t))
+
+fun as_prop (t as Const (@{const_name Trueprop}, _) $ _) = t
+  | as_prop t = HOLogic.mk_Trueprop t
+
+fun dest_prop (Const (@{const_name Trueprop}, _) $ t) = t
+  | dest_prop t = t
+
+fun dest_thm thm = dest_prop (Thm.concl_of thm)
+
+fun certify_prop ctxt t = SMT2_Utils.certify ctxt (as_prop t)
+
+fun try_provers ctxt rule [] thms t = replay_rule_error ctxt rule thms t
+  | try_provers ctxt rule ((name, prover) :: named_provers) thms t =
+      (case (trace ctxt (K ("Trying prover " ^ quote name)); try prover t) of
+        SOME thm => thm
+      | NONE => try_provers ctxt rule named_provers thms t)
+
+fun match ctxt pat t =
+  (Vartab.empty, Vartab.empty)
+  |> Pattern.first_order_match (Proof_Context.theory_of ctxt) (pat, t)
+
+fun gen_certify_inst sel mk cert ctxt thm t =
+  let
+    val inst = match ctxt (dest_thm thm) (dest_prop t)
+    fun cert_inst (ix, (a, b)) = (cert (mk (ix, a)), cert b)
+  in Vartab.fold (cons o cert_inst) (sel inst) [] end
+
+fun match_instantiateT ctxt t thm =
+  if Term.exists_type (Term.exists_subtype Term.is_TVar) (dest_thm thm) then
+    let val certT = Thm.ctyp_of (Proof_Context.theory_of ctxt)
+    in Thm.instantiate (gen_certify_inst fst TVar certT ctxt thm t, []) thm end
+  else thm
+
+fun match_instantiate ctxt t thm =
+  let
+    val cert = SMT2_Utils.certify ctxt
+    val thm' = match_instantiateT ctxt t thm
+  in Thm.instantiate ([], gen_certify_inst snd Var cert ctxt thm' t) thm' end
+
+fun apply_rule ctxt t =
+  (case Z3_New_Proof_Rules.apply ctxt (certify_prop ctxt t) of
+    SOME thm => thm
+  | NONE => raise Fail "apply_rule")
+
+fun discharge _ [] thm = thm
+  | discharge i (rule :: rules) thm = discharge (i + Thm.nprems_of rule) rules (rule RSN (i, thm))
+
+fun by_tac ctxt thms ns ts t tac =
+  Goal.prove ctxt [] (map as_prop ts) (as_prop t)
+    (fn {context, prems} => HEADGOAL (tac context prems))
+  |> Drule.generalize ([], ns)
+  |> discharge 1 thms
+
+fun prove ctxt t tac = by_tac ctxt [] [] [] t (K o tac)
+
+fun prop_tac ctxt prems =
+  Method.insert_tac prems THEN' (Classical.fast_tac ctxt ORELSE' Clasimp.force_tac ctxt)
+
+fun quant_tac ctxt = Blast.blast_tac ctxt
+
+
+
+(* plug-ins *)
+
+type abs_context = int * term Termtab.table
+
+type 'a abstracter = term -> abs_context -> 'a * abs_context
+
+type th_lemma_method = Proof.context -> thm list -> term -> thm
+
+fun id_ord ((id1, _), (id2, _)) = int_ord (id1, id2)
+
+structure Plugins = Generic_Data
+(
+  type T =
+    (int * (term abstracter -> term option abstracter)) list *
+    th_lemma_method Symtab.table
+  val empty = ([], Symtab.empty)
+  val extend = I
+  fun merge ((abss1, ths1), (abss2, ths2)) = (
+    Ord_List.merge id_ord (abss1, abss2),
+    Symtab.merge (K true) (ths1, ths2))
+)
+
+fun add_arith_abstracter abs = Plugins.map (apfst (Ord_List.insert id_ord (serial (), abs)))
+fun get_arith_abstracters ctxt = map snd (fst (Plugins.get (Context.Proof ctxt)))
+
+fun add_th_lemma_method method = Plugins.map (apsnd (Symtab.update_new method))
+fun get_th_lemma_method ctxt = snd (Plugins.get (Context.Proof ctxt))
+
+
+
+(* abstraction *)
+
+fun prove_abstract ctxt thms t tac f =
+  let
+    val ((prems, concl), (_, ts)) = f (1, Termtab.empty)
+    val ns = Termtab.fold (fn (_, v) => cons (fst (Term.dest_Free v))) ts []
+  in
+    by_tac ctxt [] ns prems concl tac
+    |> match_instantiate ctxt t
+    |> discharge 1 thms
+  end
+
+fun prove_abstract' ctxt t tac f =
+  prove_abstract ctxt [] t tac (f #>> pair [])
+
+fun lookup_term (_, terms) t = Termtab.lookup terms t
+
+fun abstract_sub t f cx =
+  (case lookup_term cx t of
+    SOME v => (v, cx)
+  | NONE => f cx)
+
+fun mk_fresh_free t (i, terms) =
+  let val v = Free ("t" ^ string_of_int i, fastype_of t)
+  in (v, (i + 1, Termtab.update (t, v) terms)) end
+
+fun apply_abstracters _ [] _ cx = (NONE, cx)
+  | apply_abstracters abs (abstracter :: abstracters) t cx =
+      (case abstracter abs t cx of
+        (NONE, _) => apply_abstracters abs abstracters t cx
+      | x as (SOME _, _) => x)
+
+fun abstract_term (t as _ $ _) = abstract_sub t (mk_fresh_free t)
+  | abstract_term (t as Abs _) = abstract_sub t (mk_fresh_free t)
+  | abstract_term t = pair t
+
+fun abstract_bin abs f t t1 t2 = abstract_sub t (abs t1 ##>> abs t2 #>> f)
+
+fun abstract_ter abs f t t1 t2 t3 =
+  abstract_sub t (abs t1 ##>> abs t2 ##>> abs t3 #>> (Parse.triple1 #> f))
+
+fun abstract_lit (@{const HOL.Not} $ t) = abstract_term t #>> HOLogic.mk_not
+  | abstract_lit t = abstract_term t
+
+fun abstract_not abs (t as @{const HOL.Not} $ t1) =
+      abstract_sub t (abs t1 #>> HOLogic.mk_not)
+  | abstract_not _ t = abstract_lit t
+
+fun abstract_conj (t as @{const HOL.conj} $ t1 $ t2) =
+      abstract_bin abstract_conj HOLogic.mk_conj t t1 t2
+  | abstract_conj t = abstract_lit t
+
+fun abstract_disj (t as @{const HOL.disj} $ t1 $ t2) =
+      abstract_bin abstract_disj HOLogic.mk_disj t t1 t2
+  | abstract_disj t = abstract_lit t
+
+fun abstract_prop (t as (c as @{const If (bool)}) $ t1 $ t2 $ t3) =
+      abstract_ter abstract_prop (fn (t1, t2, t3) => c $ t1 $ t2 $ t3) t t1 t2 t3
+  | abstract_prop (t as @{const HOL.disj} $ t1 $ t2) =
+      abstract_bin abstract_prop HOLogic.mk_disj t t1 t2
+  | abstract_prop (t as @{const HOL.conj} $ t1 $ t2) =
+      abstract_bin abstract_prop HOLogic.mk_conj t t1 t2
+  | abstract_prop (t as @{const HOL.implies} $ t1 $ t2) =
+      abstract_bin abstract_prop HOLogic.mk_imp t t1 t2
+  | abstract_prop (t as @{term "HOL.eq :: bool => _"} $ t1 $ t2) =
+      abstract_bin abstract_prop HOLogic.mk_eq t t1 t2
+  | abstract_prop t = abstract_not abstract_prop t
+
+fun abstract_arith ctxt u =
+  let
+    fun abs (t as (c as Const _) $ Abs (s, T, t')) =
+          abstract_sub t (abs t' #>> (fn u' => c $ Abs (s, T, u')))
+      | abs (t as (c as Const (@{const_name If}, _)) $ t1 $ t2 $ t3) =
+          abstract_ter abs (fn (t1, t2, t3) => c $ t1 $ t2 $ t3) t t1 t2 t3
+      | abs (t as @{const HOL.Not} $ t1) = abstract_sub t (abs t1 #>> HOLogic.mk_not)
+      | abs (t as @{const HOL.disj} $ t1 $ t2) =
+          abstract_sub t (abs t1 ##>> abs t2 #>> HOLogic.mk_disj)
+      | abs (t as (c as Const (@{const_name uminus_class.uminus}, _)) $ t1) =
+          abstract_sub t (abs t1 #>> (fn u => c $ u))
+      | abs (t as (c as Const (@{const_name plus_class.plus}, _)) $ t1 $ t2) =
+          abstract_sub t (abs t1 ##>> abs t2 #>> (fn (u1, u2) => c $ u1 $ u2))
+      | abs (t as (c as Const (@{const_name minus_class.minus}, _)) $ t1 $ t2) =
+          abstract_sub t (abs t1 ##>> abs t2 #>> (fn (u1, u2) => c $ u1 $ u2))
+      | abs (t as (c as Const (@{const_name times_class.times}, _)) $ t1 $ t2) =
+          abstract_sub t (abs t1 ##>> abs t2 #>> (fn (u1, u2) => c $ u1 $ u2))
+      | abs (t as (c as Const (@{const_name z3div}, _)) $ t1 $ t2) =
+          abstract_sub t (abs t1 ##>> abs t2 #>> (fn (u1, u2) => c $ u1 $ u2))
+      | abs (t as (c as Const (@{const_name z3mod}, _)) $ t1 $ t2) =
+          abstract_sub t (abs t1 ##>> abs t2 #>> (fn (u1, u2) => c $ u1 $ u2))
+      | abs (t as (c as Const (@{const_name HOL.eq}, _)) $ t1 $ t2) =
+          abstract_sub t (abs t1 ##>> abs t2 #>> (fn (u1, u2) => c $ u1 $ u2))
+      | abs (t as (c as Const (@{const_name ord_class.less}, _)) $ t1 $ t2) =
+          abstract_sub t (abs t1 ##>> abs t2 #>> (fn (u1, u2) => c $ u1 $ u2))
+      | abs (t as (c as Const (@{const_name ord_class.less_eq}, _)) $ t1 $ t2) =
+          abstract_sub t (abs t1 ##>> abs t2 #>> (fn (u1, u2) => c $ u1 $ u2))
+      | abs t = abstract_sub t (fn cx =>
+          if can HOLogic.dest_number t then (t, cx)
+          else
+            (case apply_abstracters abs (get_arith_abstracters ctxt) t cx of
+              (SOME u, cx') => (u, cx')
+            | (NONE, _) => abstract_term t cx))
+  in abs u end
+
+
+
+(* truth axiom *)
+
+fun true_axiom _ _ _ = @{thm TrueI}
+
+
+
+(* modus ponens *)
+
+fun mp _ [p, p_eq_q] _ = discharge 1 [p_eq_q, p] iffD1
+  | mp ctxt thms t = replay_rule_error ctxt Z3_New_Proof.Modus_Ponens thms t
+
+val mp_oeq = mp
+
+
+
+(* reflexivity *)
+
+fun refl ctxt _ t = match_instantiate ctxt t @{thm refl}
+
+
+
+(* symmetry *)
+
+fun symm _ [thm] _ = thm RS @{thm sym}
+  | symm ctxt thms t = replay_rule_error ctxt Z3_New_Proof.Reflexivity thms t
+
+
+
+(* transitivity *)
+
+fun trans _ [thm1, thm2] _ = thm1 RSN (1, thm2 RSN (2, @{thm trans}))
+  | trans ctxt thms t = replay_rule_error ctxt Z3_New_Proof.Transitivity thms t
+
+
+
+(* congruence *)
+
+fun ctac prems i st = st |> (
+  resolve_tac (@{thm refl} :: prems) i
+  ORELSE (cong_tac i THEN ctac prems (i + 1) THEN ctac prems i))
+
+fun cong_basic ctxt thms t =
+  let val st = Thm.trivial (certify_prop ctxt t)
+  in
+    (case Seq.pull (ctac thms 1 st) of
+      SOME (thm, _) => thm
+    | NONE => raise THM ("cong", 0, thms @ [st]))
+  end
+
+val cong_dest_rules = @{lemma
+  "(~ P | Q) & (P | ~ Q) ==> P = Q"
+  "(P | ~ Q) & (~ P | Q) ==> P = Q"
+  by fast+}
+
+fun cong_full ctxt thms t = prove ctxt t (fn ctxt' =>
+  Method.insert_tac thms
+  THEN' (Classical.fast_tac ctxt'
+    ORELSE' dresolve_tac cong_dest_rules
+    THEN' Classical.fast_tac ctxt'))
+
+fun cong ctxt thms = try_provers ctxt Z3_New_Proof.Monotonicity [
+  ("basic", cong_basic ctxt thms),
+  ("full", cong_full ctxt thms)] thms
+
+
+
+(* quantifier introduction *)
+
+val quant_intro_rules = @{lemma
+  "(!!x. P x = Q x) ==> (ALL x. P x) = (ALL x. Q x)"
+  "(!!x. P x = Q x) ==> (EX x. P x) = (EX x. Q x)"
+  "(!!x. (~ P x) = Q x) ==> (~ (EX x. P x)) = (ALL x. Q x)"
+  "(!!x. (~ P x) = Q x) ==> (~ (ALL x. P x)) = (EX x. Q x)"
+  by fast+}
+
+fun quant_intro ctxt [thm] t =
+    prove ctxt t (K (REPEAT_ALL_NEW (resolve_tac (thm :: quant_intro_rules))))
+  | quant_intro ctxt thms t = replay_rule_error ctxt Z3_New_Proof.Quant_Intro thms t
+
+
+
+(* distributivity of conjunctions and disjunctions *)
+
+(* TODO: there are no tests with this proof rule *)
+fun distrib ctxt _ t =
+  prove_abstract' ctxt t prop_tac (abstract_prop (dest_prop t))
+
+
+
+(* elimination of conjunctions *)
+
+fun and_elim ctxt [thm] t =
+      prove_abstract ctxt [thm] t prop_tac (
+        abstract_lit (dest_prop t) ##>>
+        abstract_conj (dest_thm thm) #>>
+        apfst single o swap)
+  | and_elim ctxt thms t = replay_rule_error ctxt Z3_New_Proof.And_Elim thms t
+
+
+
+(* elimination of negated disjunctions *)
+
+fun not_or_elim ctxt [thm] t =
+      prove_abstract ctxt [thm] t prop_tac (
+        abstract_lit (dest_prop t) ##>>
+        abstract_not abstract_disj (dest_thm thm) #>>
+        apfst single o swap)
+  | not_or_elim ctxt thms t =
+      replay_rule_error ctxt Z3_New_Proof.Not_Or_Elim thms t
+
+
+
+(* rewriting *)
+
+fun abstract_eq f1 f2 (Const (@{const_name HOL.eq}, _) $ t1 $ t2) =
+      f1 t1 ##>> f2 t2 #>> HOLogic.mk_eq
+  | abstract_eq _ _ t = abstract_term t
+
+fun prove_prop_rewrite ctxt t =
+  prove_abstract' ctxt t prop_tac (
+    abstract_eq abstract_prop abstract_prop (dest_prop t))
+
+fun arith_rewrite_tac ctxt _ =
+  TRY o Simplifier.simp_tac ctxt
+  THEN_ALL_NEW (Arith_Data.arith_tac ctxt ORELSE' Clasimp.force_tac ctxt)
+
+fun prove_arith_rewrite ctxt t =
+  prove_abstract' ctxt t arith_rewrite_tac (
+    abstract_eq (abstract_arith ctxt) (abstract_arith ctxt) (dest_prop t))
+
+fun rewrite ctxt _ = try_provers ctxt Z3_New_Proof.Rewrite [
+  ("rules", apply_rule ctxt),
+  ("prop_rewrite", prove_prop_rewrite ctxt),
+  ("arith_rewrite", prove_arith_rewrite ctxt)] []
+
+fun rewrite_star ctxt = rewrite ctxt
+
+
+
+(* pulling quantifiers *)
+
+fun pull_quant ctxt _ t = prove ctxt t quant_tac
+
+
+
+(* pushing quantifiers *)
+
+fun push_quant _ _ _ = raise Fail "unsupported" (* FIXME *)
+
+
+
+(* elimination of unused bound variables *)
+
+val elim_all = @{lemma "P = Q ==> (ALL x. P) = Q" by fast}
+val elim_ex = @{lemma "P = Q ==> (EX x. P) = Q" by fast}
+
+fun elim_unused_tac i st = (
+  match_tac [@{thm refl}]
+  ORELSE' (match_tac [elim_all, elim_ex] THEN' elim_unused_tac)
+  ORELSE' (
+    match_tac [@{thm iff_allI}, @{thm iff_exI}]
+    THEN' elim_unused_tac)) i st
+
+fun elim_unused ctxt _ t = prove ctxt t (fn _ => elim_unused_tac)
+
+
+
+(* destructive equality resolution *)
+
+fun dest_eq_res _ _ _ = raise Fail "dest_eq_res" (* FIXME *)
+
+
+
+(* quantifier instantiation *)
+
+val quant_inst_rule = @{lemma "~P x | Q ==> ~(ALL x. P x) | Q" by fast}
+
+fun quant_inst ctxt _ t = prove ctxt t (fn _ => 
+  REPEAT_ALL_NEW (rtac quant_inst_rule)
+  THEN' rtac @{thm excluded_middle})
+
+
+
+(* propositional lemma *)
+
+exception LEMMA of unit
+
+val intro_hyp_rule1 = @{lemma "(~P ==> Q) ==> P | Q" by fast}
+val intro_hyp_rule2 = @{lemma "(P ==> Q) ==> ~P | Q" by fast}
+
+fun norm_lemma thm =
+  (thm COMP_INCR intro_hyp_rule1)
+  handle THM _ => thm COMP_INCR intro_hyp_rule2
+
+fun negated_prop (@{const HOL.Not} $ t) = HOLogic.mk_Trueprop t
+  | negated_prop t = HOLogic.mk_Trueprop (HOLogic.mk_not t)
+
+fun intro_hyps tab (t as @{const HOL.disj} $ t1 $ t2) cx =
+      lookup_intro_hyps tab t (fold (intro_hyps tab) [t1, t2]) cx
+  | intro_hyps tab t cx =
+      lookup_intro_hyps tab t (fn _ => raise LEMMA ()) cx
+
+and lookup_intro_hyps tab t f (cx as (thm, terms)) =
+  (case Termtab.lookup tab (negated_prop t) of
+    NONE => f cx
+  | SOME hyp => (norm_lemma (Thm.implies_intr hyp thm), t :: terms))
+
+fun lemma ctxt (thms as [thm]) t =
+    (let
+       val tab = Termtab.make (map (`Thm.term_of) (#hyps (Thm.crep_thm thm)))
+       val (thm', terms) = intro_hyps tab (dest_prop t) (thm, [])
+     in
+       prove_abstract ctxt [thm'] t prop_tac (
+         fold (snd oo abstract_lit) terms #>
+         abstract_disj (dest_thm thm') #>> single ##>>
+         abstract_disj (dest_prop t))
+     end
+     handle LEMMA () => replay_error ctxt "Bad proof state" Z3_New_Proof.Lemma thms t)
+  | lemma ctxt thms t = replay_rule_error ctxt Z3_New_Proof.Lemma thms t
+
+
+
+(* unit resolution *)
+
+fun abstract_unit (t as (@{const HOL.Not} $ (@{const HOL.disj} $ t1 $ t2))) =
+      abstract_sub t (abstract_unit t1 ##>> abstract_unit t2 #>>
+        HOLogic.mk_not o HOLogic.mk_disj)
+  | abstract_unit (t as (@{const HOL.disj} $ t1 $ t2)) =
+      abstract_sub t (abstract_unit t1 ##>> abstract_unit t2 #>>
+        HOLogic.mk_disj)
+  | abstract_unit t = abstract_lit t
+
+fun unit_res ctxt thms t =
+  prove_abstract ctxt thms t prop_tac (
+    fold_map (abstract_unit o dest_thm) thms ##>>
+    abstract_unit (dest_prop t) #>>
+    (fn (prems, concl) => (prems, concl)))
+
+
+
+(* iff-true *)
+
+val iff_true_rule = @{lemma "P ==> P = True" by fast}
+
+fun iff_true _ [thm] _ = thm RS iff_true_rule
+  | iff_true ctxt thms t = replay_rule_error ctxt Z3_New_Proof.Iff_True thms t
+
+
+
+(* iff-false *)
+
+val iff_false_rule = @{lemma "~P ==> P = False" by fast}
+
+fun iff_false _ [thm] _ = thm RS iff_false_rule
+  | iff_false ctxt thms t = replay_rule_error ctxt Z3_New_Proof.Iff_False thms t
+
+
+
+(* commutativity *)
+
+fun comm ctxt _ t = match_instantiate ctxt t @{thm eq_commute}
+
+
+
+(* definitional axioms *)
+
+fun def_axiom_disj ctxt t =
+  (case dest_prop t of
+    @{const HOL.disj} $ u1 $ u2 =>
+      prove_abstract' ctxt t prop_tac (
+        abstract_prop u2 ##>> abstract_prop u1 #>> HOLogic.mk_disj o swap)
+  | u => prove_abstract' ctxt t prop_tac (abstract_prop u))
+
+fun def_axiom ctxt _ = try_provers ctxt Z3_New_Proof.Def_Axiom [
+  ("rules", apply_rule ctxt),
+  ("disj", def_axiom_disj ctxt)] []
+
+
+
+(* application of definitions *)
+
+fun apply_def _ [thm] _ = thm (* TODO: cover also the missing cases *)
+  | apply_def ctxt thms t = replay_rule_error ctxt Z3_New_Proof.Apply_Def thms t
+
+
+
+(* iff-oeq *)
+
+fun iff_oeq _ _ _ = raise Fail "iff_oeq" (* FIXME *)
+
+
+
+(* negation normal form *)
+
+fun nnf_prop ctxt thms t =
+  prove_abstract ctxt thms t prop_tac (
+    fold_map (abstract_prop o dest_thm) thms ##>>
+    abstract_prop (dest_prop t))
+
+fun nnf ctxt rule thms = try_provers ctxt rule [
+  ("prop", nnf_prop ctxt thms),
+  ("quant", quant_intro ctxt [hd thms])] thms
+
+fun nnf_pos ctxt = nnf ctxt Z3_New_Proof.Nnf_Pos
+fun nnf_neg ctxt = nnf ctxt Z3_New_Proof.Nnf_Neg
+
+
+
+(* theory lemmas *)
+
+fun arith_th_lemma_tac ctxt prems =
+  Method.insert_tac prems
+  THEN' SELECT_GOAL (Local_Defs.unfold_tac ctxt @{thms z3div_def z3mod_def})
+  THEN' Arith_Data.arith_tac ctxt
+
+fun arith_th_lemma ctxt thms t =
+  prove_abstract ctxt thms t arith_th_lemma_tac (
+    fold_map (abstract_arith ctxt o dest_thm) thms ##>>
+    abstract_arith ctxt (dest_prop t))
+
+val _ = Theory.setup (Context.theory_map (add_th_lemma_method ("arith", arith_th_lemma)))
+
+fun th_lemma name ctxt thms =
+  (case Symtab.lookup (get_th_lemma_method ctxt) name of
+    SOME method => method ctxt thms
+  | NONE => replay_error ctxt "Bad theory" (Z3_New_Proof.Th_Lemma name) thms)
+
+
+
+(* mapping of rules to methods *)
+
+fun is_assumption Z3_New_Proof.Asserted = true
+  | is_assumption Z3_New_Proof.Goal = true
+  | is_assumption Z3_New_Proof.Hypothesis = true
+  | is_assumption Z3_New_Proof.Intro_Def = true
+  | is_assumption Z3_New_Proof.Skolemize = true
+  | is_assumption _ = false
+
+fun unsupported rule ctxt = replay_error ctxt "Unsupported" rule
+fun assumed rule ctxt = replay_error ctxt "Assumed" rule
+
+fun choose Z3_New_Proof.True_Axiom = true_axiom
+  | choose (r as Z3_New_Proof.Asserted) = assumed r
+  | choose (r as Z3_New_Proof.Goal) = assumed r
+  | choose Z3_New_Proof.Modus_Ponens = mp
+  | choose Z3_New_Proof.Reflexivity = refl
+  | choose Z3_New_Proof.Symmetry = symm
+  | choose Z3_New_Proof.Transitivity = trans
+  | choose (r as Z3_New_Proof.Transitivity_Star) = unsupported r
+  | choose Z3_New_Proof.Monotonicity = cong
+  | choose Z3_New_Proof.Quant_Intro = quant_intro
+  | choose Z3_New_Proof.Distributivity = distrib
+  | choose Z3_New_Proof.And_Elim = and_elim
+  | choose Z3_New_Proof.Not_Or_Elim = not_or_elim
+  | choose Z3_New_Proof.Rewrite = rewrite
+  | choose Z3_New_Proof.Rewrite_Star = rewrite_star
+  | choose Z3_New_Proof.Pull_Quant = pull_quant
+  | choose (r as Z3_New_Proof.Pull_Quant_Star) = unsupported r
+  | choose Z3_New_Proof.Push_Quant = push_quant
+  | choose Z3_New_Proof.Elim_Unused_Vars = elim_unused
+  | choose Z3_New_Proof.Dest_Eq_Res = dest_eq_res
+  | choose Z3_New_Proof.Quant_Inst = quant_inst
+  | choose (r as Z3_New_Proof.Hypothesis) = assumed r
+  | choose Z3_New_Proof.Lemma = lemma
+  | choose Z3_New_Proof.Unit_Resolution = unit_res
+  | choose Z3_New_Proof.Iff_True = iff_true
+  | choose Z3_New_Proof.Iff_False = iff_false
+  | choose Z3_New_Proof.Commutativity = comm
+  | choose Z3_New_Proof.Def_Axiom = def_axiom
+  | choose (r as Z3_New_Proof.Intro_Def) = assumed r
+  | choose Z3_New_Proof.Apply_Def = apply_def
+  | choose Z3_New_Proof.Iff_Oeq = iff_oeq
+  | choose Z3_New_Proof.Nnf_Pos = nnf_pos
+  | choose Z3_New_Proof.Nnf_Neg = nnf_neg
+  | choose (r as Z3_New_Proof.Nnf_Star) = unsupported r
+  | choose (r as Z3_New_Proof.Cnf_Star) = unsupported r
+  | choose (r as Z3_New_Proof.Skolemize) = assumed r
+  | choose Z3_New_Proof.Modus_Ponens_Oeq = mp_oeq
+  | choose (Z3_New_Proof.Th_Lemma name) = th_lemma name
+
+fun with_tracing rule method ctxt thms t =
+  let val _ = trace_goal ctxt rule thms t
+  in method ctxt thms t end
+
+fun method_for rule = with_tracing rule (choose rule)
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/SMT2/z3_new_replay_rules.ML	Thu Mar 13 13:18:13 2014 +0100
@@ -0,0 +1,56 @@
+(*  Title:      HOL/Tools/SMT2/z3_new_proof_rules.ML
+    Author:     Sascha Boehme, TU Muenchen
+
+Custom rules for Z3 proof replay.
+*)
+
+signature Z3_NEW_PROOF_RULES =
+sig
+  val apply: Proof.context -> cterm -> thm option
+end
+
+structure Z3_New_Proof_Rules: Z3_NEW_PROOF_RULES =
+struct
+
+val eq = Thm.eq_thm
+
+structure Data = Generic_Data
+(
+  type T = thm Net.net
+  val empty = Net.empty
+  val extend = I
+  val merge = Net.merge eq
+)
+
+fun maybe_instantiate ct thm =
+  try Thm.first_order_match (Thm.cprop_of thm, ct)
+  |> Option.map (fn inst => Thm.instantiate inst thm)
+
+fun apply ctxt ct =
+  let
+    val net = Data.get (Context.Proof ctxt)
+    val xthms = Net.match_term net (Thm.term_of ct)
+
+    fun select ct = map_filter (maybe_instantiate ct) xthms 
+    fun select' ct =
+      let val thm = Thm.trivial ct
+      in map_filter (try (fn rule => rule COMP thm)) xthms end
+
+  in try hd (case select ct of [] => select' ct | xthms' => xthms') end
+
+val prep = `Thm.prop_of
+
+fun ins thm net = Net.insert_term eq (prep thm) net handle Net.INSERT => net
+fun del thm net = Net.delete_term eq (prep thm) net handle Net.DELETE => net
+
+val add = Thm.declaration_attribute (Data.map o ins)
+val del = Thm.declaration_attribute (Data.map o del)
+
+val name = Binding.name "z3_new_rule"
+
+val description = "declaration of Z3 proof rules"
+
+val _ = Theory.setup (Attrib.setup name (Attrib.add_del add del) description #>
+  Global_Theory.add_thms_dynamic (name, Net.content o Data.get))
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/SMT2/z3_new_replay_util.ML	Thu Mar 13 13:18:13 2014 +0100
@@ -0,0 +1,156 @@
+(*  Title:      HOL/Tools/SMT2/z3_new_proof_tools.ML
+    Author:     Sascha Boehme, TU Muenchen
+
+Helper functions required for Z3 proof replay.
+*)
+
+signature Z3_NEW_PROOF_TOOLS =
+sig
+  (*theorem nets*)
+  val thm_net_of: ('a -> thm) -> 'a list -> 'a Net.net
+  val net_instances: (int * thm) Net.net -> cterm -> (int * thm) list
+
+  (*proof combinators*)
+  val under_assumption: (thm -> thm) -> cterm -> thm
+  val discharge: thm -> thm -> thm
+
+  (*a faster COMP*)
+  type compose_data
+  val precompose: (cterm -> cterm list) -> thm -> compose_data
+  val precompose2: (cterm -> cterm * cterm) -> thm -> compose_data
+  val compose: compose_data -> thm -> thm
+
+  (*simpset*)
+  val add_simproc: Simplifier.simproc -> Context.generic -> Context.generic
+  val make_simpset: Proof.context -> thm list -> simpset
+end
+
+structure Z3_New_Proof_Tools: Z3_NEW_PROOF_TOOLS =
+struct
+
+
+
+(* theorem nets *)
+
+fun thm_net_of f xthms =
+  let fun insert xthm = Net.insert_term (K false) (Thm.prop_of (f xthm), xthm)
+  in fold insert xthms Net.empty end
+
+fun maybe_instantiate ct thm =
+  try Thm.first_order_match (Thm.cprop_of thm, ct)
+  |> Option.map (fn inst => Thm.instantiate inst thm)
+
+local
+  fun instances_from_net match f net ct =
+    let
+      val lookup = if match then Net.match_term else Net.unify_term
+      val xthms = lookup net (Thm.term_of ct)
+      fun select ct = map_filter (f (maybe_instantiate ct)) xthms 
+      fun select' ct =
+        let val thm = Thm.trivial ct
+        in map_filter (f (try (fn rule => rule COMP thm))) xthms end
+    in (case select ct of [] => select' ct | xthms' => xthms') end
+in
+
+fun net_instances net =
+  instances_from_net false (fn f => fn (i, thm) => Option.map (pair i) (f thm))
+    net
+
+end
+
+
+
+(* proof combinators *)
+
+fun under_assumption f ct =
+  let val ct' = SMT2_Utils.mk_cprop ct
+  in Thm.implies_intr ct' (f (Thm.assume ct')) end
+
+fun discharge p pq = Thm.implies_elim pq p
+
+
+
+(* a faster COMP *)
+
+type compose_data = cterm list * (cterm -> cterm list) * thm
+
+fun list2 (x, y) = [x, y]
+
+fun precompose f rule = (f (Thm.cprem_of rule 1), f, rule)
+fun precompose2 f rule = precompose (list2 o f) rule
+
+fun compose (cvs, f, rule) thm =
+  discharge thm (Thm.instantiate ([], cvs ~~ f (Thm.cprop_of thm)) rule)
+
+
+
+(* simpset *)
+
+local
+  val antisym_le1 = mk_meta_eq @{thm order_class.antisym_conv}
+  val antisym_le2 = mk_meta_eq @{thm linorder_class.antisym_conv2}
+  val antisym_less1 = mk_meta_eq @{thm linorder_class.antisym_conv1}
+  val antisym_less2 = mk_meta_eq @{thm linorder_class.antisym_conv3}
+
+  fun eq_prop t thm = HOLogic.mk_Trueprop t aconv Thm.prop_of thm
+  fun dest_binop ((c as Const _) $ t $ u) = (c, t, u)
+    | dest_binop t = raise TERM ("dest_binop", [t])
+
+  fun prove_antisym_le ctxt t =
+    let
+      val (le, r, s) = dest_binop t
+      val less = Const (@{const_name less}, Term.fastype_of le)
+      val prems = Simplifier.prems_of ctxt
+    in
+      (case find_first (eq_prop (le $ s $ r)) prems of
+        NONE =>
+          find_first (eq_prop (HOLogic.mk_not (less $ r $ s))) prems
+          |> Option.map (fn thm => thm RS antisym_less1)
+      | SOME thm => SOME (thm RS antisym_le1))
+    end
+    handle THM _ => NONE
+
+  fun prove_antisym_less ctxt t =
+    let
+      val (less, r, s) = dest_binop (HOLogic.dest_not t)
+      val le = Const (@{const_name less_eq}, Term.fastype_of less)
+      val prems = Simplifier.prems_of ctxt
+    in
+      (case find_first (eq_prop (le $ r $ s)) prems of
+        NONE =>
+          find_first (eq_prop (HOLogic.mk_not (less $ s $ r))) prems
+          |> Option.map (fn thm => thm RS antisym_less2)
+      | SOME thm => SOME (thm RS antisym_le2))
+  end
+  handle THM _ => NONE
+
+  val basic_simpset =
+    simpset_of (put_simpset HOL_ss @{context}
+      addsimps @{thms field_simps times_divide_eq_right times_divide_eq_left arith_special
+        arith_simps rel_simps array_rules z3div_def z3mod_def}
+      addsimprocs [@{simproc binary_int_div}, @{simproc binary_int_mod},
+        Simplifier.simproc_global @{theory} "fast_int_arith" [
+          "(m::int) < n", "(m::int) <= n", "(m::int) = n"] Lin_Arith.simproc,
+        Simplifier.simproc_global @{theory} "antisym_le" ["(x::'a::order) <= y"] prove_antisym_le,
+        Simplifier.simproc_global @{theory} "antisym_less" ["~ (x::'a::linorder) < y"]
+          prove_antisym_less])
+
+  structure Simpset = Generic_Data
+  (
+    type T = simpset
+    val empty = basic_simpset
+    val extend = I
+    val merge = Simplifier.merge_ss
+  )
+in
+
+fun add_simproc simproc context =
+  Simpset.map (simpset_map (Context.proof_of context)
+    (fn ctxt => ctxt addsimprocs [simproc])) context
+
+fun make_simpset ctxt rules =
+  simpset_of (put_simpset (Simpset.get (Context.Proof ctxt)) ctxt addsimps rules)
+
+end
+
+end