1.1 --- a/src/HOL/Library/Efficient_Nat.thy Tue Sep 30 12:49:17 2008 +0200
1.2 +++ b/src/HOL/Library/Efficient_Nat.thy Tue Sep 30 12:49:18 2008 +0200
1.3 @@ -219,17 +219,20 @@
1.4 then remove_suc_clause thy ths else ths
1.5 end;
1.6
1.7 -fun lift f thy thms1 =
1.8 +fun lift f thy eqns1 =
1.9 let
1.10 - val thms2 = Drule.zero_var_indexes_list thms1;
1.11 - val thms3 = try (map (fn thm => thm RS @{thm meta_eq_to_obj_eq})
1.12 + val eqns2 = ((map o apfst) (AxClass.overload thy)
1.13 + o burrow_fst Drule.zero_var_indexes_list) eqns1;
1.14 + val thms3 = try (map fst
1.15 + #> map (fn thm => thm RS @{thm meta_eq_to_obj_eq})
1.16 #> f thy
1.17 #> map (fn thm => thm RS @{thm eq_reflection})
1.18 - #> map (Conv.fconv_rule Drule.beta_eta_conversion)) thms2;
1.19 + #> map (Conv.fconv_rule Drule.beta_eta_conversion)) eqns2;
1.20 val thms4 = Option.map Drule.zero_var_indexes_list thms3;
1.21 in case thms4
1.22 of NONE => NONE
1.23 - | SOME thms4 => if Thm.eq_thms (thms2, thms4) then NONE else SOME thms4
1.24 + | SOME thms4 => if Thm.eq_thms (map fst eqns2, thms4)
1.25 + then NONE else SOME (map (Code_Unit.mk_eqn thy) thms4)
1.26 end
1.27
1.28 in
2.1 --- a/src/HOL/Tools/datatype_codegen.ML Tue Sep 30 12:49:17 2008 +0200
2.2 +++ b/src/HOL/Tools/datatype_codegen.ML Tue Sep 30 12:49:18 2008 +0200
2.3 @@ -449,9 +449,10 @@
2.4 fun tac thms = Class.intro_classes_tac []
2.5 THEN ALLGOALS (ProofContext.fact_tac thms);
2.6 fun get_eq' thy dtco = get_eq thy dtco
2.7 - |> map (Code_Unit.constrain_thm [HOLogic.class_eq])
2.8 + |> map (Code_Unit.constrain_thm thy [HOLogic.class_eq])
2.9 |> map Simpdata.mk_eq
2.10 - |> map (MetaSimplifier.rewrite_rule [Thm.transfer thy @{thm equals_eq}]);
2.11 + |> map (MetaSimplifier.rewrite_rule [Thm.transfer thy @{thm equals_eq}])
2.12 + |> map (AxClass.unoverload thy);
2.13 fun add_eq_thms dtco thy =
2.14 let
2.15 val ty = Type (dtco, map TFree vs');
2.16 @@ -460,7 +461,8 @@
2.17 val eq_refl = @{thm HOL.eq_refl}
2.18 |> Thm.instantiate
2.19 ([pairself (Thm.ctyp_of thy) (TVar (("'a", 0), @{sort eq}), Logic.varifyT ty)], [])
2.20 - |> Simpdata.mk_eq;
2.21 + |> Simpdata.mk_eq
2.22 + |> AxClass.unoverload thy;
2.23 fun get_thms () = (eq_refl, false)
2.24 :: rev (map (rpair true) (get_eq' (Theory.deref thy_ref) dtco));
2.25 in
3.1 --- a/src/HOL/Tools/typecopy_package.ML Tue Sep 30 12:49:17 2008 +0200
3.2 +++ b/src/HOL/Tools/typecopy_package.ML Tue Sep 30 12:49:18 2008 +0200
3.3 @@ -122,9 +122,10 @@
3.4
3.5 fun add_typecopy_spec tyco thy =
3.6 let
3.7 - val SOME { constr, proj_def, inject, vs, ... } = get_info thy tyco;
3.8 - val vs' = (map o apsnd) (curry (Sorts.inter_sort (Sign.classes_of thy)) [HOLogic.class_eq]) vs;
3.9 - val ty = Type (tyco, map TFree vs');
3.10 + val SOME { constr, proj_def, inject, vs = raw_vs, ... } = get_info thy tyco;
3.11 + val vs = (map o apsnd)
3.12 + (curry (Sorts.inter_sort (Sign.classes_of thy)) [HOLogic.class_eq]) raw_vs;
3.13 + val ty = Type (tyco, map TFree vs);
3.14 val ty_constr = Logic.unvarifyT (Sign.the_const_type thy constr);
3.15 fun add_def tyco lthy =
3.16 let
3.17 @@ -143,12 +144,14 @@
3.18 fun add_eq_thms thy =
3.19 let
3.20 val eq = inject
3.21 - |> Code_Unit.constrain_thm [HOLogic.class_eq]
3.22 + |> Code_Unit.constrain_thm thy [HOLogic.class_eq]
3.23 |> Simpdata.mk_eq
3.24 - |> MetaSimplifier.rewrite_rule [Thm.transfer thy @{thm equals_eq}];
3.25 + |> MetaSimplifier.rewrite_rule [Thm.transfer thy @{thm equals_eq}]
3.26 + |> AxClass.unoverload thy;
3.27 val eq_refl = @{thm HOL.eq_refl}
3.28 |> Thm.instantiate
3.29 - ([pairself (Thm.ctyp_of thy) (TVar (("'a", 0), @{sort eq}), Logic.varifyT ty)], []);
3.30 + ([pairself (Thm.ctyp_of thy) (TVar (("'a", 0), @{sort eq}), Logic.varifyT ty)], [])
3.31 + |> AxClass.unoverload thy;
3.32 in
3.33 thy
3.34 |> Code.add_eqn eq
3.35 @@ -158,7 +161,7 @@
3.36 thy
3.37 |> Code.add_datatype [(constr, ty_constr)]
3.38 |> Code.add_eqn proj_def
3.39 - |> TheoryTarget.instantiation ([tyco], vs', [HOLogic.class_eq])
3.40 + |> TheoryTarget.instantiation ([tyco], vs, [HOLogic.class_eq])
3.41 |> add_def tyco
3.42 |-> (fn thm => Class.prove_instantiation_instance (K (tac [thm]))
3.43 #> LocalTheory.exit_global
4.1 --- a/src/Pure/Isar/code.ML Tue Sep 30 12:49:17 2008 +0200
4.2 +++ b/src/Pure/Isar/code.ML Tue Sep 30 12:49:18 2008 +0200
4.3 @@ -22,7 +22,7 @@
4.4 val del_inline: thm -> theory -> theory
4.5 val add_post: thm -> theory -> theory
4.6 val del_post: thm -> theory -> theory
4.7 - val add_functrans: string * (theory -> thm list -> thm list option) -> theory -> theory
4.8 + val add_functrans: string * (theory -> (thm * bool) list -> (thm * bool) list option) -> theory -> theory
4.9 val del_functrans: string -> theory -> theory
4.10 val add_datatype: (string * typ) list -> theory -> theory
4.11 val add_datatype_cmd: string list -> theory -> theory
4.12 @@ -40,11 +40,11 @@
4.13 val get_datatype_of_constr: theory -> string -> string option
4.14 val get_case_data: theory -> string -> (int * string list) option
4.15 val is_undefined: theory -> string -> bool
4.16 - val default_typ: theory -> string -> (string * sort) list * typ
4.17 + val default_typscheme: theory -> string -> (string * sort) list * typ
4.18
4.19 - val preprocess_conv: cterm -> thm
4.20 + val preprocess_conv: theory -> cterm -> thm
4.21 val preprocess_term: theory -> term -> term
4.22 - val postprocess_conv: cterm -> thm
4.23 + val postprocess_conv: theory -> cterm -> thm
4.24 val postprocess_term: theory -> term -> term
4.25
4.26 val add_attribute: string * (Args.T list -> attribute * Args.T list) -> theory -> theory
4.27 @@ -124,14 +124,13 @@
4.28
4.29 fun certificate thy f r =
4.30 case Susp.peek r
4.31 - of SOME thms => (Susp.value o burrow_fst (f thy)) thms
4.32 + of SOME thms => (Susp.value o f thy) thms
4.33 | NONE => let
4.34 val thy_ref = Theory.check_thy thy;
4.35 - in Susp.delay (fn () => (burrow_fst (f (Theory.deref thy_ref)) o Susp.force) r) end;
4.36 + in Susp.delay (fn () => (f (Theory.deref thy_ref) o Susp.force) r) end;
4.37
4.38 -fun add_drop_redundant (thm, linear) thms =
4.39 +fun add_drop_redundant thy (thm, linear) thms =
4.40 let
4.41 - val thy = Thm.theory_of_thm thm;
4.42 val args_of = snd o strip_comb o fst o Logic.dest_equals o Thm.plain_prop_of;
4.43 val args = args_of thm;
4.44 val incr_idx = Logic.incr_indexes ([], Thm.maxidx_of thm + 1);
4.45 @@ -143,9 +142,9 @@
4.46 else false;
4.47 in (thm, linear) :: filter_out drop thms end;
4.48
4.49 -fun add_thm _ thm (false, thms) = (false, Susp.map_force (add_drop_redundant thm) thms)
4.50 - | add_thm true thm (true, thms) = (true, Susp.map_force (fn thms => thms @ [thm]) thms)
4.51 - | add_thm false thm (true, thms) = (false, Susp.value [thm]);
4.52 +fun add_thm thy _ thm (false, thms) = (false, Susp.map_force (add_drop_redundant thy thm) thms)
4.53 + | add_thm thy true thm (true, thms) = (true, Susp.map_force (fn thms => thms @ [thm]) thms)
4.54 + | add_thm thy false thm (true, thms) = (false, Susp.value [thm]);
4.55
4.56 fun add_lthms lthms _ = (false, lthms);
4.57
4.58 @@ -197,7 +196,7 @@
4.59 datatype thmproc = Thmproc of {
4.60 pre: MetaSimplifier.simpset,
4.61 post: MetaSimplifier.simpset,
4.62 - functrans: (string * (serial * (theory -> thm list -> thm list option))) list
4.63 + functrans: (string * (serial * (theory -> (thm * bool) list -> (thm * bool) list option))) list
4.64 };
4.65
4.66 fun mk_thmproc ((pre, post), functrans) =
4.67 @@ -419,25 +418,19 @@
4.68 end;
4.69
4.70
4.71 -
4.72 (** theorem transformation and certification **)
4.73
4.74 -fun const_of thy = dest_Const o fst o strip_comb o fst o Logic.dest_equals o Thm.plain_prop_of;
4.75 -
4.76 -fun const_of_eqn thy = AxClass.unoverload_const thy o const_of thy;
4.77 -
4.78 -fun common_typ_eqns [] = []
4.79 - | common_typ_eqns [thm] = [thm]
4.80 - | common_typ_eqns (thms as thm :: _) = (*FIXME is too general*)
4.81 +fun common_typ_eqns thy [] = []
4.82 + | common_typ_eqns thy [thm] = [thm]
4.83 + | common_typ_eqns thy (thms as thm :: _) = (*FIXME is too general*)
4.84 let
4.85 - val thy = Thm.theory_of_thm thm;
4.86 fun incr_thm thm max =
4.87 let
4.88 val thm' = incr_indexes max thm;
4.89 val max' = Thm.maxidx_of thm' + 1;
4.90 in (thm', max') end;
4.91 val (thms', maxidx) = fold_map incr_thm thms 0;
4.92 - val ty1 :: tys = map (snd o const_of thy) thms';
4.93 + val ty1 :: tys = map (snd o Code_Unit.const_typ_eqn) thms';
4.94 fun unify ty env = Sign.typ_unify thy (ty1, ty) env
4.95 handle Type.TUNIFY =>
4.96 error ("Type unificaton failed, while unifying defining equations\n"
4.97 @@ -449,90 +442,45 @@
4.98 cons (Thm.ctyp_of thy (TVar (x_i, sort)), Thm.ctyp_of thy ty)) env [];
4.99 in map (Thm.instantiate (instT, [])) thms' end;
4.100
4.101 -fun certify_const thy const thms =
4.102 +fun certify_const thy c eqns =
4.103 let
4.104 - fun cert thm = if const = const_of_eqn thy thm
4.105 - then thm else error ("Wrong head of defining equation,\nexpected constant "
4.106 - ^ Code_Unit.string_of_const thy const ^ "\n" ^ Display.string_of_thm thm)
4.107 - in map cert thms end;
4.108 + fun cert (eqn as (thm, _)) = if c = Code_Unit.const_eqn thm
4.109 + then eqn else error ("Wrong head of defining equation,\nexpected constant "
4.110 + ^ Code_Unit.string_of_const thy c ^ "\n" ^ Display.string_of_thm thm)
4.111 + in map cert eqns end;
4.112
4.113 +fun check_linear (eqn as (thm, linear)) =
4.114 + if linear then eqn else Code_Unit.bad_thm
4.115 + ("Duplicate variables on left hand side of defining equation:\n"
4.116 + ^ Display.string_of_thm thm);
4.117 +
4.118 +fun mk_eqn thy linear =
4.119 + Code_Unit.error_thm ((if linear then check_linear else I) o Code_Unit.mk_eqn thy);
4.120 +fun mk_liberal_eqn thy = Code_Unit.warning_thm (check_linear o Code_Unit.mk_eqn thy);
4.121 +fun mk_syntactic_eqn thy = Code_Unit.warning_thm (Code_Unit.mk_eqn thy);
4.122 +fun mk_default_eqn thy = Code_Unit.try_thm (check_linear o Code_Unit.mk_eqn thy);
4.123
4.124
4.125 (** operational sort algebra and class discipline **)
4.126
4.127 local
4.128
4.129 -fun aggr_neutr f y [] = y
4.130 - | aggr_neutr f y (x::xs) = aggr_neutr f (f y x) xs;
4.131 -
4.132 -fun aggregate f [] = NONE
4.133 - | aggregate f (x::xs) = SOME (aggr_neutr f x xs);
4.134 -
4.135 -fun inter_sorts algebra =
4.136 - aggregate (map2 (curry (Sorts.inter_sort algebra)));
4.137 -
4.138 -fun specific_constraints thy (class, tyco) =
4.139 +fun arity_constraints thy algebra (class, tyco) =
4.140 let
4.141 - val vs = Name.invents Name.context "" (Sign.arity_number thy tyco);
4.142 - val classparams = (map fst o these o try (#params o AxClass.get_info thy)) class;
4.143 - val eqns = classparams
4.144 + val base_constraints = Sorts.mg_domain algebra tyco [class];
4.145 + val classparam_constraints = Sorts.complete_sort algebra [class]
4.146 + |> maps (map fst o these o try (#params o AxClass.get_info thy))
4.147 |> map_filter (fn c => try (AxClass.param_of_inst thy) (c, tyco))
4.148 |> map (Symtab.lookup ((the_eqns o the_exec) thy))
4.149 |> (map o Option.map) (map fst o Susp.force o snd)
4.150 |> maps these
4.151 - |> map (Thm.transfer thy);
4.152 - fun sorts_of [Type (_, tys)] = map (snd o dest_TVar) tys
4.153 - | sorts_of tys = map (snd o dest_TVar) tys;
4.154 - val sorts = map (sorts_of o Sign.const_typargs thy o const_of thy) eqns;
4.155 - in sorts end;
4.156 -
4.157 -fun weakest_constraints thy algebra (class, tyco) =
4.158 - let
4.159 - val all_superclasses = Sorts.complete_sort algebra [class];
4.160 - in case inter_sorts algebra (maps (fn class => specific_constraints thy (class, tyco)) all_superclasses)
4.161 - of SOME sorts => sorts
4.162 - | NONE => Sorts.mg_domain algebra tyco [class]
4.163 - end;
4.164 -
4.165 -fun strongest_constraints thy algebra (class, tyco) =
4.166 - let
4.167 - val all_subclasses = class :: Graph.all_preds ((#classes o Sorts.rep_algebra) algebra) [class];
4.168 - val inst_subclasses = filter (can (Sorts.mg_domain algebra tyco) o single) all_subclasses;
4.169 - in case inter_sorts algebra (maps (fn class => specific_constraints thy (class, tyco)) inst_subclasses)
4.170 - of SOME sorts => sorts
4.171 - | NONE => replicate
4.172 - (Sign.arity_number thy tyco) (Sorts.minimize_sort algebra (Sorts.all_classes algebra))
4.173 - end;
4.174 -
4.175 -fun get_algebra thy (class, tyco) =
4.176 - let
4.177 - val base_algebra = Sign.classes_of thy;
4.178 - in if can (Sorts.mg_domain base_algebra tyco) [class]
4.179 - then base_algebra
4.180 - else let
4.181 - val superclasses = Sorts.super_classes base_algebra class;
4.182 - val sorts = inter_sorts base_algebra
4.183 - (map_filter (fn class => try (Sorts.mg_domain base_algebra tyco) [class]) superclasses)
4.184 - |> the_default (replicate (Sign.arity_number thy tyco) [])
4.185 - in
4.186 - base_algebra
4.187 - |> Sorts.add_arities (Syntax.pp_global thy) (tyco, [(class, sorts)])
4.188 - end
4.189 - end;
4.190 -
4.191 -fun gen_classparam_typ constr thy class (c, tyco) =
4.192 - let
4.193 - val algebra = get_algebra thy (class, tyco);
4.194 - val cs = these (try (#params o AxClass.get_info thy) class);
4.195 - val SOME ty = AList.lookup (op =) cs c;
4.196 - val sort_args = Name.names (Name.declare Name.aT Name.context) Name.aT
4.197 - (constr thy algebra (class, tyco));
4.198 - val ty_inst = Type (tyco, map TFree sort_args);
4.199 - in Logic.varifyT (map_type_tfree (K ty_inst) ty) end;
4.200 + |> map (map (snd o dest_TVar) o Sign.const_typargs thy o Code_Unit.const_typ_eqn);
4.201 + val inter_sorts = map2 (curry (Sorts.inter_sort algebra));
4.202 + in fold inter_sorts classparam_constraints base_constraints end;
4.203
4.204 fun retrieve_algebra thy operational =
4.205 Sorts.subalgebra (Syntax.pp_global thy) operational
4.206 - (weakest_constraints thy (Sign.classes_of thy))
4.207 + (arity_constraints thy (Sign.classes_of thy))
4.208 (Sign.classes_of thy);
4.209
4.210 in
4.211 @@ -545,76 +493,6 @@
4.212 val operational_classes = fold add_iff_operational (Sign.all_classes thy) []
4.213 in retrieve_algebra thy (member (op =) operational_classes) end;
4.214
4.215 -val classparam_weakest_typ = gen_classparam_typ weakest_constraints;
4.216 -val classparam_strongest_typ = gen_classparam_typ strongest_constraints;
4.217 -
4.218 -fun assert_eqn_linear (eqn as (thm, linear)) =
4.219 - if linear then eqn else Code_Unit.bad_thm
4.220 - ("Duplicate variables on left hand side of defining equation:\n"
4.221 - ^ Display.string_of_thm thm);
4.222 -
4.223 -fun assert_eqn_typ (thm, linear) =
4.224 - let
4.225 - val thy = Thm.theory_of_thm thm;
4.226 - fun check_typ_classparam tyco (c, thm) =
4.227 - let
4.228 - val SOME class = AxClass.class_of_param thy c;
4.229 - val (_, ty) = const_of thy thm;
4.230 - val ty_decl = classparam_weakest_typ thy class (c, tyco);
4.231 - val ty_strongest = classparam_strongest_typ thy class (c, tyco);
4.232 - fun constrain thm =
4.233 - let
4.234 - val max = Thm.maxidx_of thm + 1;
4.235 - val ty_decl' = Logic.incr_tvar max ty_decl;
4.236 - val (_, ty') = const_of thy thm;
4.237 - val (env, _) = Sign.typ_unify thy (ty_decl', ty') (Vartab.empty, max);
4.238 - val instT = Vartab.fold (fn (x_i, (sort, ty)) =>
4.239 - cons (Thm.ctyp_of thy (TVar (x_i, sort)), Thm.ctyp_of thy ty)) env [];
4.240 - in Thm.instantiate (instT, []) thm end;
4.241 - in if Sign.typ_instance thy (ty_strongest, ty)
4.242 - then if Sign.typ_instance thy (ty, ty_decl)
4.243 - then thm
4.244 - else (warning ("Constraining type\n" ^ Code_Unit.string_of_typ thy ty
4.245 - ^ "\nof defining equation\n"
4.246 - ^ Display.string_of_thm thm
4.247 - ^ "\nto permitted most general type\n"
4.248 - ^ Code_Unit.string_of_typ thy ty_decl);
4.249 - constrain thm)
4.250 - else Code_Unit.bad_thm ("Type\n" ^ Code_Unit.string_of_typ thy ty
4.251 - ^ "\nof defining equation\n"
4.252 - ^ Display.string_of_thm thm
4.253 - ^ "\nis incompatible with permitted least general type\n"
4.254 - ^ Code_Unit.string_of_typ thy ty_strongest)
4.255 - end;
4.256 - fun check_typ_fun (c, thm) =
4.257 - let
4.258 - val (_, ty) = const_of thy thm;
4.259 - val ty_decl = Sign.the_const_type thy c;
4.260 - in if Sign.typ_equiv thy (Type.strip_sorts ty_decl, Type.strip_sorts ty)
4.261 - then thm
4.262 - else Code_Unit.bad_thm ("Type\n" ^ Code_Unit.string_of_typ thy ty
4.263 - ^ "\nof defining equation\n"
4.264 - ^ Display.string_of_thm thm
4.265 - ^ "\nis incompatible with declared function type\n"
4.266 - ^ Code_Unit.string_of_typ thy ty_decl)
4.267 - end;
4.268 - fun check_typ (c, thm) =
4.269 - case AxClass.inst_of_param thy c
4.270 - of SOME (c, tyco) => check_typ_classparam tyco (c, thm)
4.271 - | NONE => check_typ_fun (c, thm);
4.272 - val c = const_of_eqn thy thm;
4.273 - val thm' = check_typ (c, thm);
4.274 - in (thm', linear) end;
4.275 -
4.276 -fun mk_eqn linear = Code_Unit.error_thm
4.277 - (assert_eqn_typ o (if linear then assert_eqn_linear else I) o Code_Unit.mk_eqn);
4.278 -val mk_liberal_eqn = Code_Unit.warning_thm
4.279 - (assert_eqn_typ o assert_eqn_linear o Code_Unit.mk_eqn);
4.280 -val mk_syntactic_eqn = Code_Unit.warning_thm
4.281 - (assert_eqn_typ o Code_Unit.mk_eqn);
4.282 -val mk_default_eqn = Code_Unit.try_thm
4.283 - (assert_eqn_typ o assert_eqn_linear o Code_Unit.mk_eqn);
4.284 -
4.285 end; (*local*)
4.286
4.287
4.288 @@ -653,10 +531,10 @@
4.289 val is_undefined = Symtab.defined o snd o the_cases o the_exec;
4.290
4.291 fun gen_add_eqn linear strict default thm thy =
4.292 - case (if strict then SOME o mk_eqn linear else mk_liberal_eqn) thm
4.293 + case (if strict then SOME o mk_eqn thy linear else mk_liberal_eqn thy) thm
4.294 of SOME (thm, _) =>
4.295 let
4.296 - val c = const_of_eqn thy thm;
4.297 + val c = Code_Unit.const_eqn thm;
4.298 val _ = if strict andalso (is_some o AxClass.class_of_param thy) c
4.299 then error ("Rejected polymorphic equation for overloaded constant:\n"
4.300 ^ Display.string_of_thm thm)
4.301 @@ -667,7 +545,7 @@
4.302 else ();
4.303 in
4.304 (map_exec_purge (SOME [c]) o map_eqns) (Symtab.map_default
4.305 - (c, (true, Susp.value [])) (add_thm default (thm, linear))) thy
4.306 + (c, (true, Susp.value [])) (add_thm thy default (thm, linear))) thy
4.307 end
4.308 | NONE => thy;
4.309
4.310 @@ -676,12 +554,9 @@
4.311 val add_default_eqn = gen_add_eqn true false true;
4.312 val add_nonlinear_eqn = gen_add_eqn false true false;
4.313
4.314 -fun del_eqn thm thy = case mk_syntactic_eqn thm
4.315 - of SOME (thm, _) => let
4.316 - val c = const_of_eqn thy thm;
4.317 - in map_exec_purge (SOME [c]) (map_eqns
4.318 - (Symtab.map_entry c (del_thm thm))) thy
4.319 - end
4.320 +fun del_eqn thm thy = case mk_syntactic_eqn thy thm
4.321 + of SOME (thm, _) => let val c = Code_Unit.const_eqn thm
4.322 + in map_exec_purge (SOME [c]) (map_eqns (Symtab.map_entry c (del_thm thm))) thy end
4.323 | NONE => thy;
4.324
4.325 fun del_eqns c = map_exec_purge (SOME [c])
4.326 @@ -689,9 +564,8 @@
4.327
4.328 fun add_eqnl (c, lthms) thy =
4.329 let
4.330 - val lthms' = certificate thy (fn thy => certify_const thy c) lthms;
4.331 - (*FIXME must check compatibility with sort algebra;
4.332 - alas, naive checking results in non-termination!*)
4.333 + val lthms' = certificate thy
4.334 + (fn thy => map (Code_Unit.assert_linear) o certify_const thy c) lthms;
4.335 in
4.336 map_exec_purge (SOME [c])
4.337 (map_eqns (Symtab.map_default (c, (true, Susp.value []))
4.338 @@ -739,21 +613,12 @@
4.339 val map_pre = map_exec_purge NONE o map_thmproc o apfst o apfst;
4.340 val map_post = map_exec_purge NONE o map_thmproc o apfst o apsnd;
4.341
4.342 -fun add_inline thm thy = (map_pre o MetaSimplifier.add_simp)
4.343 - (Code_Unit.error_thm Code_Unit.mk_rew thm) thy;
4.344 - (*fully applied in order to get right context for mk_rew!*)
4.345 -
4.346 -fun del_inline thm thy = (map_pre o MetaSimplifier.del_simp)
4.347 - (Code_Unit.error_thm Code_Unit.mk_rew thm) thy;
4.348 - (*fully applied in order to get right context for mk_rew!*)
4.349 +fun gen_add_del_pre_post f thm thy = f thm thy;
4.350
4.351 -fun add_post thm thy = (map_post o MetaSimplifier.add_simp)
4.352 - (Code_Unit.error_thm Code_Unit.mk_rew thm) thy;
4.353 - (*fully applied in order to get right context for mk_rew!*)
4.354 -
4.355 -fun del_post thm thy = (map_post o MetaSimplifier.del_simp)
4.356 - (Code_Unit.error_thm Code_Unit.mk_rew thm) thy;
4.357 - (*fully applied in order to get right context for mk_rew!*)
4.358 +val add_inline = gen_add_del_pre_post (map_pre o MetaSimplifier.add_simp);
4.359 +val del_inline = gen_add_del_pre_post (map_pre o MetaSimplifier.del_simp);
4.360 +val add_post = gen_add_del_pre_post (map_post o MetaSimplifier.add_simp);
4.361 +val del_post = gen_add_del_pre_post (map_post o MetaSimplifier.del_simp);
4.362
4.363 fun add_functrans (name, f) =
4.364 (map_exec_purge NONE o map_thmproc o apsnd)
4.365 @@ -784,20 +649,14 @@
4.366
4.367 local
4.368
4.369 -fun apply_functrans thy [] = []
4.370 - | apply_functrans thy (thms as (thm, _) :: _) =
4.371 - let
4.372 - val const = const_of_eqn thy thm;
4.373 - val functrans = (map (fn (_, (_, f)) => f thy) o #functrans
4.374 - o the_thmproc o the_exec) thy;
4.375 - val thms' = perhaps (perhaps_loop (perhaps_apply functrans)) (map fst thms);
4.376 - val thms'' = certify_const thy const thms';
4.377 - in map Code_Unit.add_linear thms'' end;
4.378 +fun apply_functrans thy c _ [] = []
4.379 + | apply_functrans thy c [] eqns = eqns
4.380 + | apply_functrans thy c functrans eqns = eqns
4.381 + |> perhaps (perhaps_loop (perhaps_apply functrans))
4.382 + |> map (Code_Unit.assert_linear o apfst (Code_Unit.assert_eqn thy))
4.383 + |> certify_const thy c;
4.384
4.385 -fun rhs_conv conv thm =
4.386 - let
4.387 - val thm' = (conv o Thm.rhs_of) thm;
4.388 - in Thm.transitive thm thm' end
4.389 +fun rhs_conv conv thm = Thm.transitive thm ((conv o Thm.rhs_of) thm);
4.390
4.391 fun term_of_conv thy f =
4.392 Thm.cterm_of thy
4.393 @@ -806,24 +665,27 @@
4.394 #> Logic.dest_equals
4.395 #> snd;
4.396
4.397 -in
4.398 -
4.399 -fun preprocess thy thms =
4.400 +fun preprocess thy functrans c eqns =
4.401 let
4.402 val pre = (Simplifier.theory_context thy o #pre o the_thmproc o the_exec) thy;
4.403 in
4.404 - thms
4.405 - |> apply_functrans thy
4.406 + eqns
4.407 + |> apply_functrans thy c functrans
4.408 |> (map o apfst) (Code_Unit.rewrite_eqn pre)
4.409 - (*FIXME - must check here: rewrite rule, defining equation, proper constant *)
4.410 - |> (map o apfst) (AxClass.unoverload thy)
4.411 - |> burrow_fst common_typ_eqns
4.412 + |> map (Code_Unit.assert_linear o apfst (Code_Unit.assert_eqn thy))
4.413 + |> burrow_fst (common_typ_eqns thy)
4.414 end;
4.415
4.416 +fun get_eqns thy c =
4.417 + Symtab.lookup ((the_eqns o the_exec) thy) c
4.418 + |> Option.map (Susp.force o snd)
4.419 + |> these
4.420 + |> (map o apfst) (Thm.transfer thy);
4.421
4.422 -fun preprocess_conv ct =
4.423 +in
4.424 +
4.425 +fun preprocess_conv thy ct =
4.426 let
4.427 - val thy = Thm.theory_of_cterm ct;
4.428 val pre = (Simplifier.theory_context thy o #pre o the_thmproc o the_exec) thy;
4.429 in
4.430 ct
4.431 @@ -831,11 +693,10 @@
4.432 |> rhs_conv (AxClass.unoverload_conv thy)
4.433 end;
4.434
4.435 -fun preprocess_term thy = term_of_conv thy preprocess_conv;
4.436 +fun preprocess_term thy = term_of_conv thy (preprocess_conv thy);
4.437
4.438 -fun postprocess_conv ct =
4.439 +fun postprocess_conv thy ct =
4.440 let
4.441 - val thy = Thm.theory_of_cterm ct;
4.442 val post = (Simplifier.theory_context thy o #post o the_thmproc o the_exec) thy;
4.443 in
4.444 ct
4.445 @@ -843,43 +704,33 @@
4.446 |> rhs_conv (Simplifier.rewrite post)
4.447 end;
4.448
4.449 -fun postprocess_term thy = term_of_conv thy postprocess_conv;
4.450 -
4.451 -end; (*local*)
4.452 -
4.453 -fun default_typ_proto thy c = case AxClass.inst_of_param thy c
4.454 - of SOME (c, tyco) => classparam_weakest_typ thy ((the o AxClass.class_of_param thy) c)
4.455 - (c, tyco) |> SOME
4.456 - | NONE => (case AxClass.class_of_param thy c
4.457 - of SOME class => SOME (Term.map_type_tvar
4.458 - (K (TVar ((Name.aT, 0), [class]))) (Sign.the_const_type thy c))
4.459 - | NONE => get_constr_typ thy c);
4.460 +fun postprocess_term thy = term_of_conv thy (postprocess_conv thy);
4.461
4.462 -local
4.463 -
4.464 -fun get_eqns thy const =
4.465 - Symtab.lookup ((the_eqns o the_exec) thy) const
4.466 - |> Option.map (Susp.force o snd)
4.467 - |> these
4.468 - |> (map o apfst) (Thm.transfer thy);
4.469 -
4.470 -in
4.471 -
4.472 -fun these_eqns thy const =
4.473 +fun these_eqns thy c =
4.474 let
4.475 + val functrans = (map (fn (_, (_, f)) => f thy) o #functrans
4.476 + o the_thmproc o the_exec) thy;
4.477 val drop_refl = filter_out
4.478 (is_equal o Term.fast_term_ord o Logic.dest_equals o Thm.plain_prop_of o fst);
4.479 in
4.480 - get_eqns thy const
4.481 - |> preprocess thy
4.482 + get_eqns thy c
4.483 + |> preprocess thy functrans c
4.484 |> drop_refl
4.485 end;
4.486
4.487 -fun default_typ thy c = case default_typ_proto thy c
4.488 - of SOME ty => Code_Unit.typscheme thy (c, ty)
4.489 - | NONE => (case get_eqns thy c
4.490 - of (thm, _) :: _ => snd (Code_Unit.head_eqn (AxClass.unoverload thy thm))
4.491 - | [] => Code_Unit.typscheme thy (c, Sign.the_const_type thy c));
4.492 +fun default_typscheme thy c = let
4.493 + val typscheme = curry (Code_Unit.typscheme thy) c
4.494 + val the_const_type = snd o dest_Const o TermSubst.zero_var_indexes
4.495 + o curry Const "" o Sign.the_const_type thy;
4.496 + in case AxClass.class_of_param thy c
4.497 + of SOME class => the_const_type c
4.498 + |> Term.map_type_tvar (K (TVar ((Name.aT, 0), [class])))
4.499 + |> typscheme
4.500 + | NONE => (case get_constr_typ thy c
4.501 + of SOME ty => typscheme ty
4.502 + | NONE => (case get_eqns thy c
4.503 + of (thm, _) :: _ => snd (Code_Unit.head_eqn thy (Drule.zero_var_indexes thm))
4.504 + | [] => typscheme (the_const_type c))) end;
4.505
4.506 end; (*local*)
4.507
5.1 --- a/src/Pure/Isar/code_unit.ML Tue Sep 30 12:49:17 2008 +0200
5.2 +++ b/src/Pure/Isar/code_unit.ML Tue Sep 30 12:49:18 2008 +0200
5.3 @@ -15,8 +15,8 @@
5.4
5.5 (*typ instantiations*)
5.6 val typscheme: theory -> string * typ -> (string * sort) list * typ
5.7 - val inst_thm: sort Vartab.table -> thm -> thm
5.8 - val constrain_thm: sort -> thm -> thm
5.9 + val inst_thm: theory -> sort Vartab.table -> thm -> thm
5.10 + val constrain_thm: theory -> sort -> thm -> thm
5.11
5.12 (*constant aliasses*)
5.13 val add_const_alias: thm -> theory -> theory
5.14 @@ -36,16 +36,17 @@
5.15 -> string * ((string * sort) list * (string * typ list) list)
5.16
5.17 (*defining equations*)
5.18 - val assert_rew: thm -> thm
5.19 - val mk_rew: thm -> thm
5.20 - val add_linear: thm -> thm * bool
5.21 - val mk_eqn: thm -> thm * bool
5.22 - val head_eqn: thm -> string * ((string * sort) list * typ)
5.23 - val expand_eta: int -> thm -> thm
5.24 + val assert_eqn: theory -> thm -> thm
5.25 + val mk_eqn: theory -> thm -> thm * bool
5.26 + val assert_linear: thm * bool -> thm * bool
5.27 + val const_eqn: thm -> string
5.28 + val const_typ_eqn: thm -> string * typ
5.29 + val head_eqn: theory -> thm -> string * ((string * sort) list * typ)
5.30 + val expand_eta: theory -> int -> thm -> thm
5.31 val rewrite_eqn: simpset -> thm -> thm
5.32 val rewrite_head: thm list -> thm -> thm
5.33 - val norm_args: thm list -> thm list
5.34 - val norm_varnames: (string -> string) -> (string -> string) -> thm list -> thm list
5.35 + val norm_args: theory -> thm list -> thm list
5.36 + val norm_varnames: theory -> (string -> string) -> (string -> string) -> thm list -> thm list
5.37
5.38 (*case certificates*)
5.39 val case_cert: thm -> string * (int * string list)
5.40 @@ -81,9 +82,8 @@
5.41 val vs = map dest (Sign.const_typargs thy (c, ty));
5.42 in (vs, ty) end;
5.43
5.44 -fun inst_thm tvars' thm =
5.45 +fun inst_thm thy tvars' thm =
5.46 let
5.47 - val thy = Thm.theory_of_thm thm;
5.48 val tvars = (Term.add_tvars o Thm.prop_of) thm [];
5.49 val inter_sort = Sorts.inter_sort (Sign.classes_of thy);
5.50 fun mk_inst (tvar as (v, sort)) = case Vartab.lookup tvars' v
5.51 @@ -93,9 +93,8 @@
5.52 val insts = map_filter mk_inst tvars;
5.53 in Thm.instantiate (insts, []) thm end;
5.54
5.55 -fun constrain_thm sort thm =
5.56 +fun constrain_thm thy sort thm =
5.57 let
5.58 - val thy = Thm.theory_of_thm thm;
5.59 val constrain = curry (Sorts.inter_sort (Sign.classes_of thy)) sort
5.60 val tvars = (Term.add_tvars o Thm.prop_of) thm [];
5.61 fun mk_inst (tvar as (v, sort)) = pairself (Thm.ctyp_of thy o TVar o pair v)
5.62 @@ -103,9 +102,8 @@
5.63 val insts = map mk_inst tvars;
5.64 in Thm.instantiate (insts, []) thm end;
5.65
5.66 -fun expand_eta k thm =
5.67 +fun expand_eta thy k thm =
5.68 let
5.69 - val thy = Thm.theory_of_thm thm;
5.70 val (lhs, rhs) = (Logic.dest_equals o Thm.plain_prop_of) thm;
5.71 val (head, args) = strip_comb lhs;
5.72 val l = if k = ~1
5.73 @@ -153,19 +151,19 @@
5.74 val rewrite_eqn = Conv.fconv_rule o eqn_conv o Simplifier.rewrite;
5.75 val rewrite_head = Conv.fconv_rule o head_conv o MetaSimplifier.rewrite false;
5.76
5.77 -fun norm_args thms =
5.78 +fun norm_args thy thms =
5.79 let
5.80 val num_args_of = length o snd o strip_comb o fst o Logic.dest_equals;
5.81 val k = fold (curry Int.max o num_args_of o Thm.prop_of) thms 0;
5.82 in
5.83 thms
5.84 - |> map (expand_eta k)
5.85 + |> map (expand_eta thy k)
5.86 |> map (Conv.fconv_rule Drule.beta_eta_conversion)
5.87 end;
5.88
5.89 -fun canonical_tvars purify_tvar thm =
5.90 +fun canonical_tvars thy purify_tvar thm =
5.91 let
5.92 - val ctyp = Thm.ctyp_of (Thm.theory_of_thm thm);
5.93 + val ctyp = Thm.ctyp_of thy;
5.94 fun tvars_subst_for thm = (fold_types o fold_atyps)
5.95 (fn TVar (v_i as (v, _), sort) => let
5.96 val v' = purify_tvar v
5.97 @@ -182,9 +180,9 @@
5.98 val (_, inst) = fold mk_inst (tvars_subst_for thm) (maxidx + 1, []);
5.99 in Thm.instantiate (inst, []) thm end;
5.100
5.101 -fun canonical_vars purify_var thm =
5.102 +fun canonical_vars thy purify_var thm =
5.103 let
5.104 - val cterm = Thm.cterm_of (Thm.theory_of_thm thm);
5.105 + val cterm = Thm.cterm_of thy;
5.106 fun vars_subst_for thm = fold_aterms
5.107 (fn Var (v_i as (v, _), ty) => let
5.108 val v' = purify_var v
5.109 @@ -207,7 +205,7 @@
5.110 val t' = Term.map_abs_vars purify_var t;
5.111 in Thm.rename_boundvars t t' thm end;
5.112
5.113 -fun norm_varnames purify_tvar purify_var thms =
5.114 +fun norm_varnames thy purify_tvar purify_var thms =
5.115 let
5.116 fun burrow_thms f [] = []
5.117 | burrow_thms f thms =
5.118 @@ -217,8 +215,8 @@
5.119 |> Conjunction.elim_balanced (length thms)
5.120 in
5.121 thms
5.122 - |> burrow_thms (canonical_tvars purify_tvar)
5.123 - |> map (canonical_vars purify_var)
5.124 + |> burrow_thms (canonical_tvars thy purify_tvar)
5.125 + |> map (canonical_vars thy purify_var)
5.126 |> map (canonical_absvars purify_var)
5.127 |> map Drule.zero_var_indexes
5.128 end;
5.129 @@ -237,18 +235,16 @@
5.130 Library.merge (op =) (classes1, classes2));
5.131 );
5.132
5.133 -fun add_const_alias thm =
5.134 +fun add_const_alias thm thy =
5.135 let
5.136 - val t = Thm.prop_of thm;
5.137 - val thy = Thm.theory_of_thm thm;
5.138 - val lhs_rhs = case try Logic.dest_equals t
5.139 + val lhs_rhs = case try Logic.dest_equals (Thm.prop_of thm)
5.140 of SOME lhs_rhs => lhs_rhs
5.141 | _ => error ("Not an equation: " ^ Display.string_of_thm thm);
5.142 val c_c' = case try (pairself (AxClass.unoverload_const thy o dest_Const)) lhs_rhs
5.143 of SOME c_c' => c_c'
5.144 | _ => error ("Not an equation with two constants: " ^ Display.string_of_thm thm);
5.145 val some_class = the_list (AxClass.class_of_param thy (snd c_c'));
5.146 - in
5.147 + in thy |>
5.148 ConstAlias.map (fn (alias, classes) =>
5.149 ((c_c', thm) :: alias, fold (insert (op =)) some_class classes))
5.150 end;
5.151 @@ -319,9 +315,9 @@
5.152 in (tyco, (vs, cs''')) end;
5.153
5.154
5.155 -(* rewrite theorems *)
5.156 +(* defining equations *)
5.157
5.158 -fun assert_rew thm =
5.159 +fun assert_eqn thy thm =
5.160 let
5.161 val (lhs, rhs) = (Logic.dest_equals o Thm.plain_prop_of) thm
5.162 handle TERM _ => bad_thm ("Not an equation: " ^ Display.string_of_thm thm)
5.163 @@ -346,34 +342,8 @@
5.164 val _ = if null (subtract (op =) lhs_tvs rhs_tvs)
5.165 then ()
5.166 else bad_thm ("Free type variables on right hand side of rewrite theorem\n"
5.167 - ^ Display.string_of_thm thm)
5.168 - in thm end;
5.169 -
5.170 -fun mk_rew thm =
5.171 - let
5.172 - val thy = Thm.theory_of_thm thm;
5.173 - val ctxt = ProofContext.init thy;
5.174 - in
5.175 - thm
5.176 - |> LocalDefs.meta_rewrite_rule ctxt
5.177 - |> assert_rew
5.178 - end;
5.179 -
5.180 -
5.181 -(* defining equations *)
5.182 -
5.183 -fun add_linear thm =
5.184 - let
5.185 - val (_, args) = (strip_comb o fst o Logic.dest_equals o Thm.plain_prop_of) thm;
5.186 - val linear = not (has_duplicates (op =)
5.187 - ((fold o fold_aterms) (fn Var (v, _) => cons v | _ => I) args []))
5.188 - in (thm, linear) end;
5.189 -
5.190 -fun assert_eqn thm =
5.191 - let
5.192 - val thy = Thm.theory_of_thm thm;
5.193 - val (head, args) = (strip_comb o fst o Logic.dest_equals o Thm.plain_prop_of) thm;
5.194 - val _ = case head of Const _ => () | _ =>
5.195 + ^ Display.string_of_thm thm) val (head, args) = (strip_comb o fst o Logic.dest_equals o Thm.plain_prop_of) thm;
5.196 + val (c, ty) = case head of Const c_ty => c_ty | _ =>
5.197 bad_thm ("Equation not headed by constant\n" ^ Display.string_of_thm thm);
5.198 fun check _ (Abs _) = bad_thm
5.199 ("Abstraction on left hand side of equation\n"
5.200 @@ -389,25 +359,41 @@
5.201 ^ Display.string_of_thm thm)
5.202 else ();
5.203 val _ = map (check 0) args;
5.204 - val linear = not (has_duplicates (op =)
5.205 - ((fold o fold_aterms) (fn Var (v, _) => cons v | _ => I ) args []))
5.206 - in add_linear thm end;
5.207 -
5.208 -val mk_eqn = assert_eqn o mk_rew;
5.209 + val ty_decl = Sign.the_const_type thy c;
5.210 + val _ = if Sign.typ_equiv thy (Type.strip_sorts ty_decl, Type.strip_sorts ty)
5.211 + then () else bad_thm ("Type\n" ^ string_of_typ thy ty
5.212 + ^ "\nof defining equation\n"
5.213 + ^ Display.string_of_thm thm
5.214 + ^ "\nis incompatible with declared function type\n"
5.215 + ^ string_of_typ thy ty_decl)
5.216 + in thm end;
5.217
5.218 -fun head_eqn thm =
5.219 +fun add_linear thm =
5.220 let
5.221 - val thy = Thm.theory_of_thm thm;
5.222 - val Const (c, ty) = (fst o strip_comb o fst o Logic.dest_equals
5.223 - o Thm.plain_prop_of) thm;
5.224 - in (c, typscheme thy (c, ty)) end;
5.225 + val (_, args) = (strip_comb o fst o Logic.dest_equals o Thm.plain_prop_of) thm;
5.226 + val linear = not (has_duplicates (op =)
5.227 + ((fold o fold_aterms) (fn Var (v, _) => cons v | _ => I) args []))
5.228 + in (thm, linear) end;
5.229 +
5.230 +fun assert_linear (thm, false) = (thm, false)
5.231 + | assert_linear (thm, true) = if snd (add_linear thm) then (thm, true)
5.232 + else bad_thm
5.233 + ("Duplicate variables on left hand side of defining equation:\n"
5.234 + ^ Display.string_of_thm thm);
5.235 +
5.236 +
5.237 +fun mk_eqn thy = add_linear o assert_eqn thy o AxClass.unoverload thy
5.238 + o LocalDefs.meta_rewrite_rule (ProofContext.init thy);
5.239 +
5.240 +val const_typ_eqn = dest_Const o fst o strip_comb o fst o Logic.dest_equals o Thm.plain_prop_of;
5.241 +val const_eqn = fst o const_typ_eqn;
5.242 +fun head_eqn thy thm = let val (c, ty) = const_typ_eqn thm in (c, typscheme thy (c, ty)) end;
5.243
5.244
5.245 (* case cerificates *)
5.246
5.247 fun case_certificate thm =
5.248 let
5.249 - val thy = Thm.theory_of_thm thm;
5.250 val ((head, raw_case_expr), cases) = (apfst Logic.dest_equals
5.251 o apsnd Logic.dest_conjunctions o Logic.dest_implies o Thm.prop_of) thm;
5.252 val _ = case head of Free _ => true
6.1 --- a/src/Tools/code/code_funcgr.ML Tue Sep 30 12:49:17 2008 +0200
6.2 +++ b/src/Tools/code/code_funcgr.ML Tue Sep 30 12:49:18 2008 +0200
6.3 @@ -95,7 +95,7 @@
6.4 meets_of thy algebra (Sign.const_typargs thy (c, ty)) (map snd vs)
6.5 | NONE => I;
6.6 val tab = fold meets cs Vartab.empty;
6.7 - in map (Code_Unit.inst_thm tab) thms end;
6.8 + in map (Code_Unit.inst_thm thy tab) thms end;
6.9
6.10 fun resort_eqnss thy algebra funcgr =
6.11 let
6.12 @@ -105,14 +105,14 @@
6.13 | resort_rec typ_of (c, thms as (thm, _) :: _) = if is_some (AxClass.inst_of_param thy c)
6.14 then (true, (c, thms))
6.15 else let
6.16 - val (_, (vs, ty)) = Code_Unit.head_eqn thm;
6.17 + val (_, (vs, ty)) = Code_Unit.head_eqn thy thm;
6.18 val thms' as (thm', _) :: _ = burrow_fst (resort_thms thy algebra typ_of) thms
6.19 - val (_, (vs', ty')) = Code_Unit.head_eqn thm'; (*FIXME simplify check*)
6.20 + val (_, (vs', ty')) = Code_Unit.head_eqn thy thm'; (*FIXME simplify check*)
6.21 in (Sign.typ_equiv thy (ty, ty'), (c, thms')) end;
6.22 fun resort_recs eqnss =
6.23 let
6.24 fun typ_of c = case these (AList.lookup (op =) eqnss c)
6.25 - of (thm, _) :: _ => (SOME o snd o Code_Unit.head_eqn) thm
6.26 + of (thm, _) :: _ => (SOME o snd o Code_Unit.head_eqn thy) thm
6.27 | [] => NONE;
6.28 val (unchangeds, eqnss') = split_list (map (resort_rec typ_of) eqnss);
6.29 val unchanged = fold (fn x => fn y => x andalso y) unchangeds true;
6.30 @@ -158,8 +158,8 @@
6.31 |> pair (SOME const)
6.32 else let
6.33 val thms = Code.these_eqns thy const
6.34 - |> burrow_fst Code_Unit.norm_args
6.35 - |> burrow_fst (Code_Unit.norm_varnames Code_Name.purify_tvar Code_Name.purify_var);
6.36 + |> burrow_fst (Code_Unit.norm_args thy)
6.37 + |> burrow_fst (Code_Unit.norm_varnames thy Code_Name.purify_tvar Code_Name.purify_var);
6.38 val rhs = consts_of (const, thms);
6.39 in
6.40 auxgr
6.41 @@ -181,8 +181,8 @@
6.42 val eqnss = raw_eqnss
6.43 |> resort_eqnss thy algebra funcgr
6.44 |> filter_out (can (Graph.get_node funcgr) o fst);
6.45 - fun typ_eqn c [] = Code.default_typ thy c
6.46 - | typ_eqn c (thms as (thm, _) :: _) = (snd o Code_Unit.head_eqn) thm;
6.47 + fun typ_eqn c [] = Code.default_typscheme thy c
6.48 + | typ_eqn c (thms as (thm, _) :: _) = (snd o Code_Unit.head_eqn thy) thm;
6.49 fun add_eqns (const, thms) =
6.50 Graph.new_node (const, (typ_eqn const thms, thms));
6.51 fun add_deps (eqns as (const, thms)) funcgr =
6.52 @@ -226,7 +226,7 @@
6.53 fun consts_of t = fold_aterms (fn Const c_ty => cons c_ty | _ => I)
6.54 t [];
6.55 val algebra = Code.coregular_algebra thy;
6.56 - val thm = Code.preprocess_conv ct;
6.57 + val thm = Code.preprocess_conv thy ct;
6.58 val ct' = Thm.rhs_of thm;
6.59 val t' = Thm.term_of ct';
6.60 val consts = map fst (consts_of t');
6.61 @@ -242,7 +242,7 @@
6.62 fun evaluator evaluator' thm1 funcgr t =
6.63 let
6.64 val thm2 = evaluator' funcgr t;
6.65 - val thm3 = Code.postprocess_conv (Thm.rhs_of thm2);
6.66 + val thm3 = Code.postprocess_conv thy (Thm.rhs_of thm2);
6.67 in
6.68 Thm.transitive thm1 (Thm.transitive thm2 thm3) handle THM _ =>
6.69 error ("could not construct evaluation proof:\n"
7.1 --- a/src/Tools/code/code_thingol.ML Tue Sep 30 12:49:17 2008 +0200
7.2 +++ b/src/Tools/code/code_thingol.ML Tue Sep 30 12:49:18 2008 +0200
7.3 @@ -485,7 +485,7 @@
7.4 val ty = Logic.unvarifyT raw_ty;
7.5 val thms = if (null o Term.typ_tfrees) ty orelse (null o fst o strip_type) ty
7.6 then raw_thms
7.7 - else (map o apfst) (Code_Unit.expand_eta 1) raw_thms;
7.8 + else (map o apfst) (Code_Unit.expand_eta thy 1) raw_thms;
7.9 in
7.10 trns
7.11 |> fold_map (exprgen_tyvar_sort thy algbr funcgr) vs
8.1 --- a/src/Tools/nbe.ML Tue Sep 30 12:49:17 2008 +0200
8.2 +++ b/src/Tools/nbe.ML Tue Sep 30 12:49:18 2008 +0200
8.3 @@ -385,7 +385,7 @@
8.4 let
8.5 val ts' = take_until is_dict ts;
8.6 val c = (the o Code_Name.const_rev thy o the o Inttab.lookup idx_tab) idx;
8.7 - val (_, T) = Code.default_typ thy c;
8.8 + val (_, T) = Code.default_typscheme thy c;
8.9 val T' = map_type_tvar (fn ((v, i), S) => TypeInfer.param (typidx + i) (v, [])) T;
8.10 val typidx' = typidx + maxidx_of_typ T' + 1;
8.11 in of_apps bounds (Term.Const (c, T'), ts') typidx' end