--- a/src/HOL/Isar_examples/ExprCompiler.thy Wed Aug 18 16:04:00 1999 +0200
+++ b/src/HOL/Isar_examples/ExprCompiler.thy Wed Aug 18 16:05:27 1999 +0200
@@ -108,23 +108,23 @@
assume "??P xs";
show "??P (x # xs)" (is "??Q x");
proof (induct ??Q x type: instr);
- fix val; show "??Q (Const val)"; by brute_force;
+ fix val; show "??Q (Const val)"; by force;
next;
- fix adr; show "??Q (Load adr)"; by brute_force;
+ fix adr; show "??Q (Load adr)"; by force;
next;
- fix fun; show "??Q (Apply fun)"; by brute_force;
+ fix fun; show "??Q (Apply fun)"; by force;
qed;
qed;
lemma exec_comp:
"ALL stack. exec (comp e) stack env = eval e env # stack" (is "??P e");
proof (induct ??P e type: expr);
- fix adr; show "??P (Variable adr)"; by brute_force;
+ fix adr; show "??P (Variable adr)"; by force;
next;
- fix val; show "??P (Constant val)"; by brute_force;
+ fix val; show "??P (Constant val)"; by force;
next;
fix fun e1 e2; assume "??P e1" "??P e2"; show "??P (Binop fun e1 e2)";
- by (brute_force simp add: exec_append);
+ by (force simp add: exec_append);
qed;
--- a/src/HOL/Isar_examples/KnasterTarski.thy Wed Aug 18 16:04:00 1999 +0200
+++ b/src/HOL/Isar_examples/KnasterTarski.thy Wed Aug 18 16:05:27 1999 +0200
@@ -9,7 +9,6 @@
theory KnasterTarski = Main:;
text {*
-
According to the book ``Introduction to Lattices and Order'' (by
B. A. Davey and H. A. Priestley, CUP 1990), the Knaster-Tarski
fixpoint theorem is as follows (pages 93--94). Note that we have