replaced misleading Fset/fset name -- these do not stand for finite sets
authorhaftmann
Mon, 22 Nov 2010 17:46:51 +0100
changeset 40672 abd4e7358847
parent 40671 5e46057ba8e0
child 40673 3b9b39ac1f24
replaced misleading Fset/fset name -- these do not stand for finite sets
NEWS
src/HOL/IsaMakefile
src/HOL/Library/Cset.thy
src/HOL/Library/Dlist.thy
src/HOL/Library/Executable_Set.thy
src/HOL/Library/Fset.thy
src/HOL/Library/Library.thy
src/HOL/Quotient_Examples/FSet.thy
--- a/NEWS	Mon Nov 22 09:37:39 2010 +0100
+++ b/NEWS	Mon Nov 22 17:46:51 2010 +0100
@@ -89,6 +89,9 @@
 
 *** HOL ***
 
+* Renamed theory Fset to Cset, type Fset.fset to Cset.set, in order to
+avoid confusion with finite sets.  INCOMPATIBILITY.
+
 * Theory Multiset provides stable quicksort implementation of sort_key.
 
 * Quickcheck now has a configurable time limit which is set to 30 seconds
--- a/src/HOL/IsaMakefile	Mon Nov 22 09:37:39 2010 +0100
+++ b/src/HOL/IsaMakefile	Mon Nov 22 17:46:51 2010 +0100
@@ -419,7 +419,7 @@
   Library/Efficient_Nat.thy Library/Enum.thy Library/Eval_Witness.thy	\
   Library/Executable_Set.thy Library/Float.thy				\
   Library/Formal_Power_Series.thy Library/Fraction_Field.thy		\
-  Library/FrechetDeriv.thy Library/Fset.thy Library/FuncSet.thy		\
+  Library/FrechetDeriv.thy Library/Cset.thy Library/FuncSet.thy		\
   Library/Function_Algebras.thy						\
   Library/Fundamental_Theorem_Algebra.thy Library/Glbs.thy		\
   Library/Indicator_Function.thy Library/Infinite_Set.thy		\
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/Cset.thy	Mon Nov 22 17:46:51 2010 +0100
@@ -0,0 +1,357 @@
+
+(* Author: Florian Haftmann, TU Muenchen *)
+
+header {* A dedicated set type which is executable on its finite part *}
+
+theory Cset
+imports More_Set More_List
+begin
+
+subsection {* Lifting *}
+
+typedef (open) 'a set = "UNIV :: 'a set set"
+  morphisms member Set by rule+
+hide_type (open) set
+
+lemma member_Set [simp]:
+  "member (Set A) = A"
+  by (rule Set_inverse) rule
+
+lemma Set_member [simp]:
+  "Set (member A) = A"
+  by (fact member_inverse)
+
+lemma Set_inject [simp]:
+  "Set A = Set B \<longleftrightarrow> A = B"
+  by (simp add: Set_inject)
+
+lemma set_eq_iff:
+  "A = B \<longleftrightarrow> member A = member B"
+  by (simp add: member_inject)
+hide_fact (open) set_eq_iff
+
+lemma set_eqI:
+  "member A = member B \<Longrightarrow> A = B"
+  by (simp add: Cset.set_eq_iff)
+hide_fact (open) set_eqI
+
+declare mem_def [simp]
+
+definition set :: "'a list \<Rightarrow> 'a Cset.set" where
+  "set xs = Set (List.set xs)"
+hide_const (open) set
+
+lemma member_set [simp]:
+  "member (Cset.set xs) = set xs"
+  by (simp add: set_def)
+hide_fact (open) member_set
+
+definition coset :: "'a list \<Rightarrow> 'a Cset.set" where
+  "coset xs = Set (- set xs)"
+hide_const (open) coset
+
+lemma member_coset [simp]:
+  "member (Cset.coset xs) = - set xs"
+  by (simp add: coset_def)
+hide_fact (open) member_coset
+
+code_datatype Cset.set Cset.coset
+
+lemma member_code [code]:
+  "member (Cset.set xs) = List.member xs"
+  "member (Cset.coset xs) = Not \<circ> List.member xs"
+  by (simp_all add: fun_eq_iff member_def fun_Compl_def bool_Compl_def)
+
+lemma member_image_UNIV [simp]:
+  "member ` UNIV = UNIV"
+proof -
+  have "\<And>A \<Colon> 'a set. \<exists>B \<Colon> 'a Cset.set. A = member B"
+  proof
+    fix A :: "'a set"
+    show "A = member (Set A)" by simp
+  qed
+  then show ?thesis by (simp add: image_def)
+qed
+
+definition (in term_syntax)
+  setify :: "'a\<Colon>typerep list \<times> (unit \<Rightarrow> Code_Evaluation.term)
+    \<Rightarrow> 'a Cset.set \<times> (unit \<Rightarrow> Code_Evaluation.term)" where
+  [code_unfold]: "setify xs = Code_Evaluation.valtermify Cset.set {\<cdot>} xs"
+
+notation fcomp (infixl "\<circ>>" 60)
+notation scomp (infixl "\<circ>\<rightarrow>" 60)
+
+instantiation Cset.set :: (random) random
+begin
+
+definition
+  "Quickcheck.random i = Quickcheck.random i \<circ>\<rightarrow> (\<lambda>xs. Pair (setify xs))"
+
+instance ..
+
+end
+
+no_notation fcomp (infixl "\<circ>>" 60)
+no_notation scomp (infixl "\<circ>\<rightarrow>" 60)
+
+
+subsection {* Lattice instantiation *}
+
+instantiation Cset.set :: (type) boolean_algebra
+begin
+
+definition less_eq_set :: "'a Cset.set \<Rightarrow> 'a Cset.set \<Rightarrow> bool" where
+  [simp]: "A \<le> B \<longleftrightarrow> member A \<subseteq> member B"
+
+definition less_set :: "'a Cset.set \<Rightarrow> 'a Cset.set \<Rightarrow> bool" where
+  [simp]: "A < B \<longleftrightarrow> member A \<subset> member B"
+
+definition inf_set :: "'a Cset.set \<Rightarrow> 'a Cset.set \<Rightarrow> 'a Cset.set" where
+  [simp]: "inf A B = Set (member A \<inter> member B)"
+
+definition sup_set :: "'a Cset.set \<Rightarrow> 'a Cset.set \<Rightarrow> 'a Cset.set" where
+  [simp]: "sup A B = Set (member A \<union> member B)"
+
+definition bot_set :: "'a Cset.set" where
+  [simp]: "bot = Set {}"
+
+definition top_set :: "'a Cset.set" where
+  [simp]: "top = Set UNIV"
+
+definition uminus_set :: "'a Cset.set \<Rightarrow> 'a Cset.set" where
+  [simp]: "- A = Set (- (member A))"
+
+definition minus_set :: "'a Cset.set \<Rightarrow> 'a Cset.set \<Rightarrow> 'a Cset.set" where
+  [simp]: "A - B = Set (member A - member B)"
+
+instance proof
+qed (auto intro: Cset.set_eqI)
+
+end
+
+instantiation Cset.set :: (type) complete_lattice
+begin
+
+definition Inf_set :: "'a Cset.set set \<Rightarrow> 'a Cset.set" where
+  [simp]: "Inf_set As = Set (Inf (image member As))"
+
+definition Sup_set :: "'a Cset.set set \<Rightarrow> 'a Cset.set" where
+  [simp]: "Sup_set As = Set (Sup (image member As))"
+
+instance proof
+qed (auto simp add: le_fun_def le_bool_def)
+
+end
+
+
+subsection {* Basic operations *}
+
+definition is_empty :: "'a Cset.set \<Rightarrow> bool" where
+  [simp]: "is_empty A \<longleftrightarrow> More_Set.is_empty (member A)"
+
+lemma is_empty_set [code]:
+  "is_empty (Cset.set xs) \<longleftrightarrow> List.null xs"
+  by (simp add: is_empty_set)
+hide_fact (open) is_empty_set
+
+lemma empty_set [code]:
+  "bot = Cset.set []"
+  by (simp add: set_def)
+hide_fact (open) empty_set
+
+lemma UNIV_set [code]:
+  "top = Cset.coset []"
+  by (simp add: coset_def)
+hide_fact (open) UNIV_set
+
+definition insert :: "'a \<Rightarrow> 'a Cset.set \<Rightarrow> 'a Cset.set" where
+  [simp]: "insert x A = Set (Set.insert x (member A))"
+
+lemma insert_set [code]:
+  "insert x (Cset.set xs) = Cset.set (List.insert x xs)"
+  "insert x (Cset.coset xs) = Cset.coset (removeAll x xs)"
+  by (simp_all add: set_def coset_def)
+
+definition remove :: "'a \<Rightarrow> 'a Cset.set \<Rightarrow> 'a Cset.set" where
+  [simp]: "remove x A = Set (More_Set.remove x (member A))"
+
+lemma remove_set [code]:
+  "remove x (Cset.set xs) = Cset.set (removeAll x xs)"
+  "remove x (Cset.coset xs) = Cset.coset (List.insert x xs)"
+  by (simp_all add: set_def coset_def remove_set_compl)
+    (simp add: More_Set.remove_def)
+
+definition map :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a Cset.set \<Rightarrow> 'b Cset.set" where
+  [simp]: "map f A = Set (image f (member A))"
+
+lemma map_set [code]:
+  "map f (Cset.set xs) = Cset.set (remdups (List.map f xs))"
+  by (simp add: set_def)
+
+type_mapper map
+  by (simp_all add: image_image)
+
+definition filter :: "('a \<Rightarrow> bool) \<Rightarrow> 'a Cset.set \<Rightarrow> 'a Cset.set" where
+  [simp]: "filter P A = Set (More_Set.project P (member A))"
+
+lemma filter_set [code]:
+  "filter P (Cset.set xs) = Cset.set (List.filter P xs)"
+  by (simp add: set_def project_set)
+
+definition forall :: "('a \<Rightarrow> bool) \<Rightarrow> 'a Cset.set \<Rightarrow> bool" where
+  [simp]: "forall P A \<longleftrightarrow> Ball (member A) P"
+
+lemma forall_set [code]:
+  "forall P (Cset.set xs) \<longleftrightarrow> list_all P xs"
+  by (simp add: set_def list_all_iff)
+
+definition exists :: "('a \<Rightarrow> bool) \<Rightarrow> 'a Cset.set \<Rightarrow> bool" where
+  [simp]: "exists P A \<longleftrightarrow> Bex (member A) P"
+
+lemma exists_set [code]:
+  "exists P (Cset.set xs) \<longleftrightarrow> list_ex P xs"
+  by (simp add: set_def list_ex_iff)
+
+definition card :: "'a Cset.set \<Rightarrow> nat" where
+  [simp]: "card A = Finite_Set.card (member A)"
+
+lemma card_set [code]:
+  "card (Cset.set xs) = length (remdups xs)"
+proof -
+  have "Finite_Set.card (set (remdups xs)) = length (remdups xs)"
+    by (rule distinct_card) simp
+  then show ?thesis by (simp add: set_def)
+qed
+
+lemma compl_set [simp, code]:
+  "- Cset.set xs = Cset.coset xs"
+  by (simp add: set_def coset_def)
+
+lemma compl_coset [simp, code]:
+  "- Cset.coset xs = Cset.set xs"
+  by (simp add: set_def coset_def)
+
+
+subsection {* Derived operations *}
+
+lemma subset_eq_forall [code]:
+  "A \<le> B \<longleftrightarrow> forall (member B) A"
+  by (simp add: subset_eq)
+
+lemma subset_subset_eq [code]:
+  "A < B \<longleftrightarrow> A \<le> B \<and> \<not> B \<le> (A :: 'a Cset.set)"
+  by (fact less_le_not_le)
+
+instantiation Cset.set :: (type) equal
+begin
+
+definition [code]:
+  "HOL.equal A B \<longleftrightarrow> A \<le> B \<and> B \<le> (A :: 'a Cset.set)"
+
+instance proof
+qed (simp add: equal_set_def set_eq [symmetric] Cset.set_eq_iff)
+
+end
+
+lemma [code nbe]:
+  "HOL.equal (A :: 'a Cset.set) A \<longleftrightarrow> True"
+  by (fact equal_refl)
+
+
+subsection {* Functorial operations *}
+
+lemma inter_project [code]:
+  "inf A (Cset.set xs) = Cset.set (List.filter (member A) xs)"
+  "inf A (Cset.coset xs) = foldr remove xs A"
+proof -
+  show "inf A (Cset.set xs) = Cset.set (List.filter (member A) xs)"
+    by (simp add: inter project_def set_def)
+  have *: "\<And>x::'a. remove = (\<lambda>x. Set \<circ> More_Set.remove x \<circ> member)"
+    by (simp add: fun_eq_iff)
+  have "member \<circ> fold (\<lambda>x. Set \<circ> More_Set.remove x \<circ> member) xs =
+    fold More_Set.remove xs \<circ> member"
+    by (rule fold_commute) (simp add: fun_eq_iff)
+  then have "fold More_Set.remove xs (member A) = 
+    member (fold (\<lambda>x. Set \<circ> More_Set.remove x \<circ> member) xs A)"
+    by (simp add: fun_eq_iff)
+  then have "inf A (Cset.coset xs) = fold remove xs A"
+    by (simp add: Diff_eq [symmetric] minus_set *)
+  moreover have "\<And>x y :: 'a. Cset.remove y \<circ> Cset.remove x = Cset.remove x \<circ> Cset.remove y"
+    by (auto simp add: More_Set.remove_def * intro: ext)
+  ultimately show "inf A (Cset.coset xs) = foldr remove xs A"
+    by (simp add: foldr_fold)
+qed
+
+lemma subtract_remove [code]:
+  "A - Cset.set xs = foldr remove xs A"
+  "A - Cset.coset xs = Cset.set (List.filter (member A) xs)"
+  by (simp_all only: diff_eq compl_set compl_coset inter_project)
+
+lemma union_insert [code]:
+  "sup (Cset.set xs) A = foldr insert xs A"
+  "sup (Cset.coset xs) A = Cset.coset (List.filter (Not \<circ> member A) xs)"
+proof -
+  have *: "\<And>x::'a. insert = (\<lambda>x. Set \<circ> Set.insert x \<circ> member)"
+    by (simp add: fun_eq_iff)
+  have "member \<circ> fold (\<lambda>x. Set \<circ> Set.insert x \<circ> member) xs =
+    fold Set.insert xs \<circ> member"
+    by (rule fold_commute) (simp add: fun_eq_iff)
+  then have "fold Set.insert xs (member A) =
+    member (fold (\<lambda>x. Set \<circ> Set.insert x \<circ> member) xs A)"
+    by (simp add: fun_eq_iff)
+  then have "sup (Cset.set xs) A = fold insert xs A"
+    by (simp add: union_set *)
+  moreover have "\<And>x y :: 'a. Cset.insert y \<circ> Cset.insert x = Cset.insert x \<circ> Cset.insert y"
+    by (auto simp add: * intro: ext)
+  ultimately show "sup (Cset.set xs) A = foldr insert xs A"
+    by (simp add: foldr_fold)
+  show "sup (Cset.coset xs) A = Cset.coset (List.filter (Not \<circ> member A) xs)"
+    by (auto simp add: coset_def)
+qed
+
+context complete_lattice
+begin
+
+definition Infimum :: "'a Cset.set \<Rightarrow> 'a" where
+  [simp]: "Infimum A = Inf (member A)"
+
+lemma Infimum_inf [code]:
+  "Infimum (Cset.set As) = foldr inf As top"
+  "Infimum (Cset.coset []) = bot"
+  by (simp_all add: Inf_set_foldr Inf_UNIV)
+
+definition Supremum :: "'a Cset.set \<Rightarrow> 'a" where
+  [simp]: "Supremum A = Sup (member A)"
+
+lemma Supremum_sup [code]:
+  "Supremum (Cset.set As) = foldr sup As bot"
+  "Supremum (Cset.coset []) = top"
+  by (simp_all add: Sup_set_foldr Sup_UNIV)
+
+end
+
+
+subsection {* Simplified simprules *}
+
+lemma is_empty_simp [simp]:
+  "is_empty A \<longleftrightarrow> member A = {}"
+  by (simp add: More_Set.is_empty_def)
+declare is_empty_def [simp del]
+
+lemma remove_simp [simp]:
+  "remove x A = Set (member A - {x})"
+  by (simp add: More_Set.remove_def)
+declare remove_def [simp del]
+
+lemma filter_simp [simp]:
+  "filter P A = Set {x \<in> member A. P x}"
+  by (simp add: More_Set.project_def)
+declare filter_def [simp del]
+
+declare mem_def [simp del]
+
+
+hide_const (open) setify is_empty insert remove map filter forall exists card
+  Inter Union
+
+end
--- a/src/HOL/Library/Dlist.thy	Mon Nov 22 09:37:39 2010 +0100
+++ b/src/HOL/Library/Dlist.thy	Mon Nov 22 17:46:51 2010 +0100
@@ -3,7 +3,7 @@
 header {* Lists with elements distinct as canonical example for datatype invariants *}
 
 theory Dlist
-imports Main Fset
+imports Main Cset
 begin
 
 section {* The type of distinct lists *}
@@ -181,27 +181,27 @@
 
 section {* Implementation of sets by distinct lists -- canonical! *}
 
-definition Set :: "'a dlist \<Rightarrow> 'a fset" where
-  "Set dxs = Fset.Set (list_of_dlist dxs)"
+definition Set :: "'a dlist \<Rightarrow> 'a Cset.set" where
+  "Set dxs = Cset.set (list_of_dlist dxs)"
 
-definition Coset :: "'a dlist \<Rightarrow> 'a fset" where
-  "Coset dxs = Fset.Coset (list_of_dlist dxs)"
+definition Coset :: "'a dlist \<Rightarrow> 'a Cset.set" where
+  "Coset dxs = Cset.coset (list_of_dlist dxs)"
 
 code_datatype Set Coset
 
 declare member_code [code del]
-declare is_empty_Set [code del]
-declare empty_Set [code del]
-declare UNIV_Set [code del]
-declare insert_Set [code del]
-declare remove_Set [code del]
-declare compl_Set [code del]
-declare compl_Coset [code del]
-declare map_Set [code del]
-declare filter_Set [code del]
-declare forall_Set [code del]
-declare exists_Set [code del]
-declare card_Set [code del]
+declare Cset.is_empty_set [code del]
+declare Cset.empty_set [code del]
+declare Cset.UNIV_set [code del]
+declare insert_set [code del]
+declare remove_set [code del]
+declare compl_set [code del]
+declare compl_coset [code del]
+declare map_set [code del]
+declare filter_set [code del]
+declare forall_set [code del]
+declare exists_set [code del]
+declare card_set [code del]
 declare inter_project [code del]
 declare subtract_remove [code del]
 declare union_insert [code del]
@@ -209,31 +209,31 @@
 declare Supremum_sup [code del]
 
 lemma Set_Dlist [simp]:
-  "Set (Dlist xs) = Fset (set xs)"
-  by (rule fset_eqI) (simp add: Set_def)
+  "Set (Dlist xs) = Cset.Set (set xs)"
+  by (rule Cset.set_eqI) (simp add: Set_def)
 
 lemma Coset_Dlist [simp]:
-  "Coset (Dlist xs) = Fset (- set xs)"
-  by (rule fset_eqI) (simp add: Coset_def)
+  "Coset (Dlist xs) = Cset.Set (- set xs)"
+  by (rule Cset.set_eqI) (simp add: Coset_def)
 
 lemma member_Set [simp]:
-  "Fset.member (Set dxs) = List.member (list_of_dlist dxs)"
+  "Cset.member (Set dxs) = List.member (list_of_dlist dxs)"
   by (simp add: Set_def member_set)
 
 lemma member_Coset [simp]:
-  "Fset.member (Coset dxs) = Not \<circ> List.member (list_of_dlist dxs)"
+  "Cset.member (Coset dxs) = Not \<circ> List.member (list_of_dlist dxs)"
   by (simp add: Coset_def member_set not_set_compl)
 
 lemma Set_dlist_of_list [code]:
-  "Fset.Set xs = Set (dlist_of_list xs)"
-  by (rule fset_eqI) simp
+  "Cset.set xs = Set (dlist_of_list xs)"
+  by (rule Cset.set_eqI) simp
 
 lemma Coset_dlist_of_list [code]:
-  "Fset.Coset xs = Coset (dlist_of_list xs)"
-  by (rule fset_eqI) simp
+  "Cset.coset xs = Coset (dlist_of_list xs)"
+  by (rule Cset.set_eqI) simp
 
 lemma is_empty_Set [code]:
-  "Fset.is_empty (Set dxs) \<longleftrightarrow> null dxs"
+  "Cset.is_empty (Set dxs) \<longleftrightarrow> null dxs"
   by (simp add: null_def List.null_def member_set)
 
 lemma bot_code [code]:
@@ -245,58 +245,58 @@
   by (simp add: empty_def)
 
 lemma insert_code [code]:
-  "Fset.insert x (Set dxs) = Set (insert x dxs)"
-  "Fset.insert x (Coset dxs) = Coset (remove x dxs)"
+  "Cset.insert x (Set dxs) = Set (insert x dxs)"
+  "Cset.insert x (Coset dxs) = Coset (remove x dxs)"
   by (simp_all add: insert_def remove_def member_set not_set_compl)
 
 lemma remove_code [code]:
-  "Fset.remove x (Set dxs) = Set (remove x dxs)"
-  "Fset.remove x (Coset dxs) = Coset (insert x dxs)"
+  "Cset.remove x (Set dxs) = Set (remove x dxs)"
+  "Cset.remove x (Coset dxs) = Coset (insert x dxs)"
   by (auto simp add: insert_def remove_def member_set not_set_compl)
 
 lemma member_code [code]:
-  "Fset.member (Set dxs) = member dxs"
-  "Fset.member (Coset dxs) = Not \<circ> member dxs"
+  "Cset.member (Set dxs) = member dxs"
+  "Cset.member (Coset dxs) = Not \<circ> member dxs"
   by (simp_all add: member_def)
 
 lemma compl_code [code]:
   "- Set dxs = Coset dxs"
   "- Coset dxs = Set dxs"
-  by (rule fset_eqI, simp add: member_set not_set_compl)+
+  by (rule Cset.set_eqI, simp add: member_set not_set_compl)+
 
 lemma map_code [code]:
-  "Fset.map f (Set dxs) = Set (map f dxs)"
-  by (rule fset_eqI) (simp add: member_set)
+  "Cset.map f (Set dxs) = Set (map f dxs)"
+  by (rule Cset.set_eqI) (simp add: member_set)
   
 lemma filter_code [code]:
-  "Fset.filter f (Set dxs) = Set (filter f dxs)"
-  by (rule fset_eqI) (simp add: member_set)
+  "Cset.filter f (Set dxs) = Set (filter f dxs)"
+  by (rule Cset.set_eqI) (simp add: member_set)
 
 lemma forall_Set [code]:
-  "Fset.forall P (Set xs) \<longleftrightarrow> list_all P (list_of_dlist xs)"
+  "Cset.forall P (Set xs) \<longleftrightarrow> list_all P (list_of_dlist xs)"
   by (simp add: member_set list_all_iff)
 
 lemma exists_Set [code]:
-  "Fset.exists P (Set xs) \<longleftrightarrow> list_ex P (list_of_dlist xs)"
+  "Cset.exists P (Set xs) \<longleftrightarrow> list_ex P (list_of_dlist xs)"
   by (simp add: member_set list_ex_iff)
 
 lemma card_code [code]:
-  "Fset.card (Set dxs) = length dxs"
+  "Cset.card (Set dxs) = length dxs"
   by (simp add: length_def member_set distinct_card)
 
 lemma inter_code [code]:
-  "inf A (Set xs) = Set (filter (Fset.member A) xs)"
-  "inf A (Coset xs) = foldr Fset.remove xs A"
+  "inf A (Set xs) = Set (filter (Cset.member A) xs)"
+  "inf A (Coset xs) = foldr Cset.remove xs A"
   by (simp_all only: Set_def Coset_def foldr_def inter_project list_of_dlist_filter)
 
 lemma subtract_code [code]:
-  "A - Set xs = foldr Fset.remove xs A"
-  "A - Coset xs = Set (filter (Fset.member A) xs)"
+  "A - Set xs = foldr Cset.remove xs A"
+  "A - Coset xs = Set (filter (Cset.member A) xs)"
   by (simp_all only: Set_def Coset_def foldr_def subtract_remove list_of_dlist_filter)
 
 lemma union_code [code]:
-  "sup (Set xs) A = foldr Fset.insert xs A"
-  "sup (Coset xs) A = Coset (filter (Not \<circ> Fset.member A) xs)"
+  "sup (Set xs) A = foldr Cset.insert xs A"
+  "sup (Coset xs) A = Coset (filter (Not \<circ> Cset.member A) xs)"
   by (simp_all only: Set_def Coset_def foldr_def union_insert list_of_dlist_filter)
 
 context complete_lattice
--- a/src/HOL/Library/Executable_Set.thy	Mon Nov 22 09:37:39 2010 +0100
+++ b/src/HOL/Library/Executable_Set.thy	Mon Nov 22 17:46:51 2010 +0100
@@ -12,7 +12,7 @@
 text {*
   This is just an ad-hoc hack which will rarely give you what you want.
   For the moment, whenever you need executable sets, consider using
-  type @{text fset} from theory @{text Fset}.
+  type @{text fset} from theory @{text Cset}.
 *}
 
 declare mem_def [code del]
--- a/src/HOL/Library/Fset.thy	Mon Nov 22 09:37:39 2010 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,347 +0,0 @@
-
-(* Author: Florian Haftmann, TU Muenchen *)
-
-header {* A set type which is executable on its finite part *}
-
-theory Fset
-imports More_Set More_List
-begin
-
-subsection {* Lifting *}
-
-typedef (open) 'a fset = "UNIV :: 'a set set"
-  morphisms member Fset by rule+
-
-lemma member_Fset [simp]:
-  "member (Fset A) = A"
-  by (rule Fset_inverse) rule
-
-lemma Fset_member [simp]:
-  "Fset (member A) = A"
-  by (fact member_inverse)
-
-lemma Fset_inject [simp]:
-  "Fset A = Fset B \<longleftrightarrow> A = B"
-  by (simp add: Fset_inject)
-
-lemma fset_eq_iff:
-  "A = B \<longleftrightarrow> member A = member B"
-  by (simp add: member_inject)
-
-lemma fset_eqI:
-  "member A = member B \<Longrightarrow> A = B"
-  by (simp add: fset_eq_iff)
-
-declare mem_def [simp]
-
-definition Set :: "'a list \<Rightarrow> 'a fset" where
-  "Set xs = Fset (set xs)"
-
-lemma member_Set [simp]:
-  "member (Set xs) = set xs"
-  by (simp add: Set_def)
-
-definition Coset :: "'a list \<Rightarrow> 'a fset" where
-  "Coset xs = Fset (- set xs)"
-
-lemma member_Coset [simp]:
-  "member (Coset xs) = - set xs"
-  by (simp add: Coset_def)
-
-code_datatype Set Coset
-
-lemma member_code [code]:
-  "member (Set xs) = List.member xs"
-  "member (Coset xs) = Not \<circ> List.member xs"
-  by (simp_all add: fun_eq_iff member_def fun_Compl_def bool_Compl_def)
-
-lemma member_image_UNIV [simp]:
-  "member ` UNIV = UNIV"
-proof -
-  have "\<And>A \<Colon> 'a set. \<exists>B \<Colon> 'a fset. A = member B"
-  proof
-    fix A :: "'a set"
-    show "A = member (Fset A)" by simp
-  qed
-  then show ?thesis by (simp add: image_def)
-qed
-
-definition (in term_syntax)
-  setify :: "'a\<Colon>typerep list \<times> (unit \<Rightarrow> Code_Evaluation.term)
-    \<Rightarrow> 'a fset \<times> (unit \<Rightarrow> Code_Evaluation.term)" where
-  [code_unfold]: "setify xs = Code_Evaluation.valtermify Set {\<cdot>} xs"
-
-notation fcomp (infixl "\<circ>>" 60)
-notation scomp (infixl "\<circ>\<rightarrow>" 60)
-
-instantiation fset :: (random) random
-begin
-
-definition
-  "Quickcheck.random i = Quickcheck.random i \<circ>\<rightarrow> (\<lambda>xs. Pair (setify xs))"
-
-instance ..
-
-end
-
-no_notation fcomp (infixl "\<circ>>" 60)
-no_notation scomp (infixl "\<circ>\<rightarrow>" 60)
-
-
-subsection {* Lattice instantiation *}
-
-instantiation fset :: (type) boolean_algebra
-begin
-
-definition less_eq_fset :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> bool" where
-  [simp]: "A \<le> B \<longleftrightarrow> member A \<subseteq> member B"
-
-definition less_fset :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> bool" where
-  [simp]: "A < B \<longleftrightarrow> member A \<subset> member B"
-
-definition inf_fset :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset" where
-  [simp]: "inf A B = Fset (member A \<inter> member B)"
-
-definition sup_fset :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset" where
-  [simp]: "sup A B = Fset (member A \<union> member B)"
-
-definition bot_fset :: "'a fset" where
-  [simp]: "bot = Fset {}"
-
-definition top_fset :: "'a fset" where
-  [simp]: "top = Fset UNIV"
-
-definition uminus_fset :: "'a fset \<Rightarrow> 'a fset" where
-  [simp]: "- A = Fset (- (member A))"
-
-definition minus_fset :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset" where
-  [simp]: "A - B = Fset (member A - member B)"
-
-instance proof
-qed (auto intro: fset_eqI)
-
-end
-
-instantiation fset :: (type) complete_lattice
-begin
-
-definition Inf_fset :: "'a fset set \<Rightarrow> 'a fset" where
-  [simp]: "Inf_fset As = Fset (Inf (image member As))"
-
-definition Sup_fset :: "'a fset set \<Rightarrow> 'a fset" where
-  [simp]: "Sup_fset As = Fset (Sup (image member As))"
-
-instance proof
-qed (auto simp add: le_fun_def le_bool_def)
-
-end
-
-
-subsection {* Basic operations *}
-
-definition is_empty :: "'a fset \<Rightarrow> bool" where
-  [simp]: "is_empty A \<longleftrightarrow> More_Set.is_empty (member A)"
-
-lemma is_empty_Set [code]:
-  "is_empty (Set xs) \<longleftrightarrow> List.null xs"
-  by (simp add: is_empty_set)
-
-lemma empty_Set [code]:
-  "bot = Set []"
-  by (simp add: Set_def)
-
-lemma UNIV_Set [code]:
-  "top = Coset []"
-  by (simp add: Coset_def)
-
-definition insert :: "'a \<Rightarrow> 'a fset \<Rightarrow> 'a fset" where
-  [simp]: "insert x A = Fset (Set.insert x (member A))"
-
-lemma insert_Set [code]:
-  "insert x (Set xs) = Set (List.insert x xs)"
-  "insert x (Coset xs) = Coset (removeAll x xs)"
-  by (simp_all add: Set_def Coset_def)
-
-definition remove :: "'a \<Rightarrow> 'a fset \<Rightarrow> 'a fset" where
-  [simp]: "remove x A = Fset (More_Set.remove x (member A))"
-
-lemma remove_Set [code]:
-  "remove x (Set xs) = Set (removeAll x xs)"
-  "remove x (Coset xs) = Coset (List.insert x xs)"
-  by (simp_all add: Set_def Coset_def remove_set_compl)
-    (simp add: More_Set.remove_def)
-
-definition map :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a fset \<Rightarrow> 'b fset" where
-  [simp]: "map f A = Fset (image f (member A))"
-
-lemma map_Set [code]:
-  "map f (Set xs) = Set (remdups (List.map f xs))"
-  by (simp add: Set_def)
-
-type_mapper map
-  by (simp_all add: image_image)
-
-definition filter :: "('a \<Rightarrow> bool) \<Rightarrow> 'a fset \<Rightarrow> 'a fset" where
-  [simp]: "filter P A = Fset (More_Set.project P (member A))"
-
-lemma filter_Set [code]:
-  "filter P (Set xs) = Set (List.filter P xs)"
-  by (simp add: Set_def project_set)
-
-definition forall :: "('a \<Rightarrow> bool) \<Rightarrow> 'a fset \<Rightarrow> bool" where
-  [simp]: "forall P A \<longleftrightarrow> Ball (member A) P"
-
-lemma forall_Set [code]:
-  "forall P (Set xs) \<longleftrightarrow> list_all P xs"
-  by (simp add: Set_def list_all_iff)
-
-definition exists :: "('a \<Rightarrow> bool) \<Rightarrow> 'a fset \<Rightarrow> bool" where
-  [simp]: "exists P A \<longleftrightarrow> Bex (member A) P"
-
-lemma exists_Set [code]:
-  "exists P (Set xs) \<longleftrightarrow> list_ex P xs"
-  by (simp add: Set_def list_ex_iff)
-
-definition card :: "'a fset \<Rightarrow> nat" where
-  [simp]: "card A = Finite_Set.card (member A)"
-
-lemma card_Set [code]:
-  "card (Set xs) = length (remdups xs)"
-proof -
-  have "Finite_Set.card (set (remdups xs)) = length (remdups xs)"
-    by (rule distinct_card) simp
-  then show ?thesis by (simp add: Set_def)
-qed
-
-lemma compl_Set [simp, code]:
-  "- Set xs = Coset xs"
-  by (simp add: Set_def Coset_def)
-
-lemma compl_Coset [simp, code]:
-  "- Coset xs = Set xs"
-  by (simp add: Set_def Coset_def)
-
-
-subsection {* Derived operations *}
-
-lemma subfset_eq_forall [code]:
-  "A \<le> B \<longleftrightarrow> forall (member B) A"
-  by (simp add: subset_eq)
-
-lemma subfset_subfset_eq [code]:
-  "A < B \<longleftrightarrow> A \<le> B \<and> \<not> B \<le> (A :: 'a fset)"
-  by (fact less_le_not_le)
-
-instantiation fset :: (type) equal
-begin
-
-definition [code]:
-  "HOL.equal A B \<longleftrightarrow> A \<le> B \<and> B \<le> (A :: 'a fset)"
-
-instance proof
-qed (simp add: equal_fset_def set_eq [symmetric] fset_eq_iff)
-
-end
-
-lemma [code nbe]:
-  "HOL.equal (A :: 'a fset) A \<longleftrightarrow> True"
-  by (fact equal_refl)
-
-
-subsection {* Functorial operations *}
-
-lemma inter_project [code]:
-  "inf A (Set xs) = Set (List.filter (member A) xs)"
-  "inf A (Coset xs) = foldr remove xs A"
-proof -
-  show "inf A (Set xs) = Set (List.filter (member A) xs)"
-    by (simp add: inter project_def Set_def)
-  have *: "\<And>x::'a. remove = (\<lambda>x. Fset \<circ> More_Set.remove x \<circ> member)"
-    by (simp add: fun_eq_iff)
-  have "member \<circ> fold (\<lambda>x. Fset \<circ> More_Set.remove x \<circ> member) xs =
-    fold More_Set.remove xs \<circ> member"
-    by (rule fold_commute) (simp add: fun_eq_iff)
-  then have "fold More_Set.remove xs (member A) = 
-    member (fold (\<lambda>x. Fset \<circ> More_Set.remove x \<circ> member) xs A)"
-    by (simp add: fun_eq_iff)
-  then have "inf A (Coset xs) = fold remove xs A"
-    by (simp add: Diff_eq [symmetric] minus_set *)
-  moreover have "\<And>x y :: 'a. Fset.remove y \<circ> Fset.remove x = Fset.remove x \<circ> Fset.remove y"
-    by (auto simp add: More_Set.remove_def * intro: ext)
-  ultimately show "inf A (Coset xs) = foldr remove xs A"
-    by (simp add: foldr_fold)
-qed
-
-lemma subtract_remove [code]:
-  "A - Set xs = foldr remove xs A"
-  "A - Coset xs = Set (List.filter (member A) xs)"
-  by (simp_all only: diff_eq compl_Set compl_Coset inter_project)
-
-lemma union_insert [code]:
-  "sup (Set xs) A = foldr insert xs A"
-  "sup (Coset xs) A = Coset (List.filter (Not \<circ> member A) xs)"
-proof -
-  have *: "\<And>x::'a. insert = (\<lambda>x. Fset \<circ> Set.insert x \<circ> member)"
-    by (simp add: fun_eq_iff)
-  have "member \<circ> fold (\<lambda>x. Fset \<circ> Set.insert x \<circ> member) xs =
-    fold Set.insert xs \<circ> member"
-    by (rule fold_commute) (simp add: fun_eq_iff)
-  then have "fold Set.insert xs (member A) =
-    member (fold (\<lambda>x. Fset \<circ> Set.insert x \<circ> member) xs A)"
-    by (simp add: fun_eq_iff)
-  then have "sup (Set xs) A = fold insert xs A"
-    by (simp add: union_set *)
-  moreover have "\<And>x y :: 'a. Fset.insert y \<circ> Fset.insert x = Fset.insert x \<circ> Fset.insert y"
-    by (auto simp add: * intro: ext)
-  ultimately show "sup (Set xs) A = foldr insert xs A"
-    by (simp add: foldr_fold)
-  show "sup (Coset xs) A = Coset (List.filter (Not \<circ> member A) xs)"
-    by (auto simp add: Coset_def)
-qed
-
-context complete_lattice
-begin
-
-definition Infimum :: "'a fset \<Rightarrow> 'a" where
-  [simp]: "Infimum A = Inf (member A)"
-
-lemma Infimum_inf [code]:
-  "Infimum (Set As) = foldr inf As top"
-  "Infimum (Coset []) = bot"
-  by (simp_all add: Inf_set_foldr Inf_UNIV)
-
-definition Supremum :: "'a fset \<Rightarrow> 'a" where
-  [simp]: "Supremum A = Sup (member A)"
-
-lemma Supremum_sup [code]:
-  "Supremum (Set As) = foldr sup As bot"
-  "Supremum (Coset []) = top"
-  by (simp_all add: Sup_set_foldr Sup_UNIV)
-
-end
-
-
-subsection {* Simplified simprules *}
-
-lemma is_empty_simp [simp]:
-  "is_empty A \<longleftrightarrow> member A = {}"
-  by (simp add: More_Set.is_empty_def)
-declare is_empty_def [simp del]
-
-lemma remove_simp [simp]:
-  "remove x A = Fset (member A - {x})"
-  by (simp add: More_Set.remove_def)
-declare remove_def [simp del]
-
-lemma filter_simp [simp]:
-  "filter P A = Fset {x \<in> member A. P x}"
-  by (simp add: More_Set.project_def)
-declare filter_def [simp del]
-
-declare mem_def [simp del]
-
-
-hide_const (open) setify is_empty insert remove map filter forall exists card
-  Inter Union
-
-end
--- a/src/HOL/Library/Library.thy	Mon Nov 22 09:37:39 2010 +0100
+++ b/src/HOL/Library/Library.thy	Mon Nov 22 17:46:51 2010 +0100
@@ -20,7 +20,7 @@
   Formal_Power_Series
   Fraction_Field
   FrechetDeriv
-  Fset
+  Cset
   FuncSet
   Function_Algebras
   Fundamental_Theorem_Algebra
--- a/src/HOL/Quotient_Examples/FSet.thy	Mon Nov 22 09:37:39 2010 +0100
+++ b/src/HOL/Quotient_Examples/FSet.thy	Mon Nov 22 17:46:51 2010 +0100
@@ -25,7 +25,7 @@
   unfolding reflp_def symp_def transp_def
   by auto
 
-text {* Fset type *}
+text {* Cset type *}
 
 quotient_type
   'a fset = "'a list" / "list_eq"