--- a/src/HOL/Tools/Sledgehammer/sledgehammer_mash.ML Thu Jun 26 13:36:13 2014 +0200
+++ b/src/HOL/Tools/Sledgehammer/sledgehammer_mash.ML Thu Jun 26 13:36:22 2014 +0200
@@ -38,9 +38,9 @@
datatype mash_engine =
MaSh_Py
| MaSh_SML_kNN
- | MaSh_SML_kNN_Cpp
+ | MaSh_SML_kNN_Ext
| MaSh_SML_NB
- | MaSh_SML_NB_Cpp
+ | MaSh_SML_NB_Ext
val is_mash_enabled : unit -> bool
val the_mash_engine : unit -> mash_engine
@@ -144,9 +144,9 @@
datatype mash_engine =
MaSh_Py
| MaSh_SML_kNN
-| MaSh_SML_kNN_Cpp
+| MaSh_SML_kNN_Ext
| MaSh_SML_NB
-| MaSh_SML_NB_Cpp
+| MaSh_SML_NB_Ext
fun mash_engine () =
let val flag1 = Options.default_string @{system_option MaSh} in
@@ -155,9 +155,9 @@
| "py" => SOME MaSh_Py
| "sml" => SOME MaSh_SML_NB
| "sml_knn" => SOME MaSh_SML_kNN
- | "sml_knn_cpp" => SOME MaSh_SML_kNN_Cpp
+ | "sml_knn_ext" => SOME MaSh_SML_kNN_Ext
| "sml_nb" => SOME MaSh_SML_NB
- | "sml_nb_cpp" => SOME MaSh_SML_NB_Cpp
+ | "sml_nb_ext" => SOME MaSh_SML_NB_Ext
| _ => NONE)
end
@@ -574,7 +574,7 @@
end
(* experimental *)
-fun c_plus_plus_tool tool max_suggs learns cfeats =
+fun experimental_external_tool tool max_suggs learns cfeats =
let
val ser = string_of_int (serial ()) (* poor person's attempt at thread-safety *)
val ocs = TextIO.openOut ("adv_syms" ^ ser)
@@ -608,9 +608,9 @@
forkexec max_suggs)
end
-val k_nearest_neighbors_cpp =
- c_plus_plus_tool ("newknn/knn" ^ " " ^ string_of_int number_of_nearest_neighbors)
-val naive_bayes_cpp = c_plus_plus_tool "predict/nbayes"
+val k_nearest_neighbors_ext =
+ experimental_external_tool ("newknn/knn" ^ " " ^ string_of_int number_of_nearest_neighbors)
+val naive_bayes_ext = experimental_external_tool "predict/nbayes"
fun reorder_learns (num_facts, fact_tab) learns0 =
let
@@ -624,10 +624,10 @@
fun query ctxt engine (fact_xtab as (num_facts, fact_tab)) (num_feats, feat_tab) visible_facts
max_suggs learns0 conj_feats =
- if engine = MaSh_SML_kNN_Cpp then
- k_nearest_neighbors_cpp max_suggs learns0 conj_feats
- else if engine = MaSh_SML_NB_Cpp then
- naive_bayes_cpp max_suggs learns0 conj_feats
+ if engine = MaSh_SML_kNN_Ext then
+ k_nearest_neighbors_ext max_suggs learns0 conj_feats
+ else if engine = MaSh_SML_NB_Ext then
+ naive_bayes_ext max_suggs learns0 conj_feats
else
let
val learns = reorder_learns fact_xtab learns0