converted Hyperreal/Zorn to Isar format and moved to Library
authorpaulson
Sat, 31 Aug 2002 14:03:49 +0200
changeset 13551 b7f64ee8da84
parent 13550 5a176b8dda84
child 13552 83d674e8cd2a
converted Hyperreal/Zorn to Isar format and moved to Library
src/HOL/Hyperreal/Filter.ML
src/HOL/Hyperreal/Zorn.ML
src/HOL/Hyperreal/Zorn.thy
src/HOL/IsaMakefile
src/HOL/Library/Zorn.thy
--- a/src/HOL/Hyperreal/Filter.ML	Fri Aug 30 16:42:45 2002 +0200
+++ b/src/HOL/Hyperreal/Filter.ML	Sat Aug 31 14:03:49 2002 +0200
@@ -5,6 +5,12 @@
     Description : Filters and Ultrafilter
 *) 
 
+(*ML bindings for Library/Zorn theorems*)
+val chain_def = thm "chain_def";
+val chainD = thm "chainD";
+val chainD2 = thm "chainD2";
+val Zorn_Lemma2 = thm "Zorn_Lemma2";
+
 (*------------------------------------------------------------------
       Properties of Filters and Freefilters - 
       rules for intro, destruction etc.
--- a/src/HOL/Hyperreal/Zorn.ML	Fri Aug 30 16:42:45 2002 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,285 +0,0 @@
-(*  Title       : Zorn.ML
-    ID          : $Id$
-    Author      : Jacques D. Fleuriot
-    Copyright   : 1998  University of Cambridge
-    Description : Zorn's Lemma -- adapted proofs from lcp's ZF/Zorn.ML
-*) 
-
-(*---------------------------------------------------------------
-      Section 1.  Mathematical Preamble 
- ---------------------------------------------------------------*)
-
-Goal "(ALL x:C. x<=A | B<=x) ==> Union(C)<=A | B<=Union(C)";
-by (Blast_tac 1);
-qed "Union_lemma0";
-
-(*-- similar to subset_cs in ZF/subset.thy --*)
-bind_thms ("thissubset_SIs",
-    [subset_refl,Union_least, UN_least, Un_least, 
-     Inter_greatest, Int_greatest,
-     Un_upper1, Un_upper2, Int_lower1, Int_lower2]);
-
-
-(*A claset for subset reasoning*)
-val thissubset_cs = claset() 
-    delrules [subsetI, subsetCE]
-    addSIs thissubset_SIs
-    addIs  [Union_upper, Inter_lower];
-
-(* increasingD2 of ZF/Zorn.ML *) 
-Goalw [succ_def] "x <= succ S x";
-by (rtac (split_if RS iffD2) 1);
-by (auto_tac (claset(),simpset() addsimps [super_def,
-               maxchain_def,psubset_def]));
-by (rtac swap 1 THEN assume_tac 1);
-by (rtac someI2 1);
-by (ALLGOALS(Blast_tac));
-qed "Abrial_axiom1";
-
-val [TFin_succI, Pow_TFin_UnionI] = TFin.intrs;
-val TFin_UnionI = PowI RS Pow_TFin_UnionI;
-bind_thm ("TFin_succI", TFin_succI);
-bind_thm ("Pow_TFin_UnionI", Pow_TFin_UnionI);
-bind_thm ("TFin_UnionI", TFin_UnionI);
-
-val major::prems = Goal  
-          "[| n : TFin S; \
-\            !!x. [| x: TFin S; P(x) |] ==> P(succ S x); \
-\            !!Y. [| Y <= TFin S; Ball Y P |] ==> P(Union Y) |] \
-\         ==> P(n)";
-by (rtac (major RS TFin.induct) 1);
-by (ALLGOALS (fast_tac (claset() addIs prems)));
-qed "TFin_induct";
-
-(*Perform induction on n, then prove the major premise using prems. *)
-fun TFin_ind_tac a prems i = 
-    EVERY [induct_thm_tac TFin_induct a i,
-           rename_last_tac a ["1"] (i+1),
-           rename_last_tac a ["2"] (i+2),
-           ares_tac prems i];
-
-Goal "x <= y ==> x <= succ S y";
-by (etac (Abrial_axiom1 RSN (2,subset_trans)) 1);
-qed "succ_trans";
-
-(*Lemma 1 of section 3.1*)
-Goal "[| n: TFin S;  m: TFin S;  \
-\        ALL x: TFin S. x <= m --> x = m | succ S x <= m \
-\     |] ==> n <= m | succ S m <= n";
-by (etac TFin_induct 1);
-by (etac Union_lemma0 2);               (*or just Blast_tac*)
-by (blast_tac (thissubset_cs addIs [succ_trans]) 1);
-qed "TFin_linear_lemma1";
-
-(* Lemma 2 of section 3.2 *)
-Goal "m: TFin S ==> ALL n: TFin S. n<=m --> n=m | succ S n<=m";
-by (etac TFin_induct 1);
-by (rtac (impI RS ballI) 1);
-(*case split using TFin_linear_lemma1*)
-by (res_inst_tac [("n1","n"), ("m1","x")] 
-    (TFin_linear_lemma1 RS disjE) 1  THEN  REPEAT (assume_tac 1));
-by (dres_inst_tac [("x","n")] bspec 1 THEN assume_tac 1);
-by (blast_tac (thissubset_cs addIs [succ_trans]) 1);
-by (REPEAT (ares_tac [disjI1,equalityI] 1));
-(*second induction step*)
-by (rtac (impI RS ballI) 1);
-by (rtac (Union_lemma0 RS disjE) 1);
-by (rtac disjI2 3);
-by (REPEAT (ares_tac [disjI1,equalityI] 2));
-by (rtac ballI 1);
-by (ball_tac 1);
-by (set_mp_tac 1);
-by (res_inst_tac [("n1","n"), ("m1","x")] 
-    (TFin_linear_lemma1 RS disjE) 1  THEN  REPEAT (assume_tac 1));
-by (blast_tac thissubset_cs 1);
-by (rtac (Abrial_axiom1 RS subset_trans RS disjI1) 1);
-by (assume_tac 1);
-qed "TFin_linear_lemma2";
-
-(*a more convenient form for Lemma 2*)
-Goal "[| n<=m;  m: TFin S;  n: TFin S |] ==> n=m | succ S n<=m";
-by (rtac (TFin_linear_lemma2 RS bspec RS mp) 1);
-by (REPEAT (assume_tac 1));
-qed "TFin_subsetD";
-
-(*Consequences from section 3.3 -- Property 3.2, the ordering is total*)
-Goal "[| m: TFin S;  n: TFin S|] ==> n<=m | m<=n";
-by (rtac (TFin_linear_lemma2 RSN (3,TFin_linear_lemma1) RS disjE) 1);
-by (REPEAT (assume_tac 1) THEN etac disjI2 1);
-by (blast_tac (thissubset_cs addIs [Abrial_axiom1 RS subset_trans]) 1);
-qed "TFin_subset_linear";
-
-(*Lemma 3 of section 3.3*)
-Goal "[| n: TFin S;  m: TFin S;  m = succ S m |] ==> n<=m";
-by (etac TFin_induct 1);
-by (dtac TFin_subsetD 1);
-by (REPEAT (assume_tac 1));
-by (fast_tac (claset() addEs [ssubst]) 1);
-by (blast_tac (thissubset_cs) 1);
-qed "eq_succ_upper";
-
-(*Property 3.3 of section 3.3*)
-Goal "m: TFin S ==> (m = succ S m) = (m = Union(TFin S))";
-by (rtac iffI 1);
-by (rtac (Union_upper RS equalityI) 1);
-by (rtac (eq_succ_upper RS Union_least) 2);
-by (REPEAT (assume_tac 1));
-by (etac ssubst 1);
-by (rtac (Abrial_axiom1 RS equalityI) 1);
-by (blast_tac (thissubset_cs addIs [TFin_UnionI, TFin_succI]) 1);
-qed "equal_succ_Union";
-
-(*-------------------------------------------------------------------------
-    Section 4.  Hausdorff's Theorem: every set contains a maximal chain 
-    NB: We assume the partial ordering is <=, the subset relation! 
- -------------------------------------------------------------------------*)
-
-Goalw [chain_def] "({} :: 'a set set) : chain S";
-by (Auto_tac);
-qed "empty_set_mem_chain";
-
-Goalw [super_def] "super S c <= chain S";
-by (Fast_tac 1);
-qed "super_subset_chain";
-
-Goalw [maxchain_def] "maxchain S <= chain S";
-by (Fast_tac 1);
-qed "maxchain_subset_chain";
-
-Goalw [succ_def] "c ~: chain S ==> succ S c = c";
-by (fast_tac (claset() addSIs [if_P]) 1);
-qed "succI1";
-
-Goalw [succ_def] "c: maxchain S ==> succ S c = c";
-by (fast_tac (claset() addSIs [if_P]) 1);
-qed "succI2";
-
-Goalw [succ_def] "c: chain S - maxchain S ==> \
-\                         succ S c = (@c'. c': super S c)";
-by (fast_tac (claset() addSIs [if_not_P]) 1);
-qed "succI3";
-
-Goal "c: chain S - maxchain S ==> ? d. d: super S c";
-by (rewrite_goals_tac [super_def,maxchain_def]);
-by (Auto_tac);
-qed "mem_super_Ex";
-
-Goal "c: chain S - maxchain S ==> \
-\                         (@c'. c': super S c): super S c";
-by (etac (mem_super_Ex RS exE) 1);
-by (rtac someI2 1);
-by (Auto_tac);
-qed "select_super";
-
-Goal "c: chain S - maxchain S ==> \
-\                         (@c'. c': super S c) ~= c";
-by (rtac notI 1);
-by (dtac select_super 1);
-by (asm_full_simp_tac (simpset() addsimps [super_def,psubset_def]) 1);
-qed "select_not_equals";
-
-Goal "c: chain S - maxchain S ==> \
-\                         succ S c ~= c";
-by (ftac succI3 1);
-by (Asm_simp_tac 1);
-by (rtac select_not_equals 1);
-by (assume_tac 1);
-qed "succ_not_equals";
-
-Goal "c: TFin S ==> (c :: 'a set set): chain S";
-by (etac TFin_induct 1);
-by (asm_simp_tac (simpset() addsimps [succ_def,
-    select_super RS (super_subset_chain RS subsetD)]
-                   addsplits [split_if]) 1);
-by (rewtac chain_def);
-by (rtac CollectI 1);
-by Safe_tac;
-by (dtac bspec 1 THEN assume_tac 1);
-by (res_inst_tac  [("m1","Xa"), ("n1","X")] (TFin_subset_linear RS disjE) 2);
-by (ALLGOALS(Blast_tac));
-qed "TFin_chain_lemm4";
- 
-Goal "EX c. (c :: 'a set set): maxchain S";
-by (res_inst_tac [("x", "Union(TFin S)")] exI 1);
-by (rtac classical 1);
-by (subgoal_tac "succ S (Union(TFin S)) = Union(TFin S)" 1);
-by (resolve_tac [equal_succ_Union RS iffD2 RS sym] 2);
-by (resolve_tac [subset_refl RS TFin_UnionI] 2);
-by (rtac refl 2);
-by (cut_facts_tac [subset_refl RS TFin_UnionI RS TFin_chain_lemm4] 1);
-by (dtac (DiffI RS succ_not_equals) 1);
-by (ALLGOALS(Blast_tac));
-qed "Hausdorff";
-
-
-(*---------------------------------------------------------------
-  Section 5.  Zorn's Lemma: if all chains have upper bounds 
-                               there is  a maximal element 
- ----------------------------------------------------------------*)
-Goalw [chain_def]
-    "[| c: chain S; z: S; \
-\             ALL x:c. x<=(z:: 'a set) |] ==> {z} Un c : chain S";
-by (Blast_tac 1);
-qed "chain_extend";
-
-Goalw [chain_def] "[| c: chain S; x: c |] ==> x <= Union(c)";
-by (Auto_tac);
-qed "chain_Union_upper";
-
-Goalw [chain_def] "c: chain S ==> ! x: c. x <= Union(c)";
-by (Auto_tac);
-qed "chain_ball_Union_upper";
-
-Goal "[| c: maxchain S; u: S; Union(c) <= u |] ==> Union(c) = u";
-by (rtac ccontr 1);
-by (asm_full_simp_tac (simpset() addsimps [maxchain_def]) 1);
-by (etac conjE 1);
-by (subgoal_tac "({u} Un c): super S c" 1);
-by (Asm_full_simp_tac 1);
-by (rewrite_tac [super_def,psubset_def]);
-by (blast_tac (claset() addIs [chain_extend] addDs [chain_Union_upper]) 1);
-qed "maxchain_Zorn";
-
-Goal "ALL c: chain S. Union(c): S ==> \
-\     EX y: S. ALL z: S. y <= z --> y = z";
-by (cut_facts_tac [Hausdorff,maxchain_subset_chain] 1);
-by (etac exE 1);
-by (dtac subsetD 1 THEN assume_tac 1);
-by (dtac bspec 1 THEN assume_tac 1);
-by (res_inst_tac [("x","Union(c)")] bexI 1);
-by (rtac ballI 1 THEN rtac impI 1);
-by (blast_tac (claset() addSDs [maxchain_Zorn]) 1);
-by (assume_tac 1);
-qed "Zorn_Lemma";
-
-(*-------------------------------------------------------------
-             Alternative version of Zorn's Lemma
- --------------------------------------------------------------*)
-Goal "ALL (c:: 'a set set): chain S. EX y : S. ALL x : c. x <= y ==> \
-\     EX y : S. ALL x : S. (y :: 'a set) <= x --> y = x";
-by (cut_facts_tac [Hausdorff,maxchain_subset_chain] 1);
-by (EVERY1[etac exE, dtac subsetD, assume_tac]);
-by (EVERY1[dtac bspec, assume_tac, etac bexE]);
-by (res_inst_tac [("x","y")] bexI 1);
-by (assume_tac 2);
-by (EVERY1[rtac ballI, rtac impI, rtac ccontr]);
-by (forw_inst_tac [("z","x")]  chain_extend 1);
-by (assume_tac 1 THEN Blast_tac 1);
-by (rewrite_tac [maxchain_def,super_def,psubset_def]);
-by (blast_tac (claset() addSEs [equalityCE]) 1);
-qed "Zorn_Lemma2";
-
-(** misc. lemmas **)
-
-Goalw [chain_def] "[| c : chain S; x: c; y: c |] ==> x <= y | y <= x";
-by (Blast_tac 1);
-qed "chainD";
-
-Goalw [chain_def] "!!(c :: 'a set set). c: chain S ==> c <= S";
-by (Blast_tac 1);
-qed "chainD2";
-
-(* proved elsewhere? *) 
-Goal "x : Union(c) ==> EX m:c. x:m";
-by (Blast_tac 1);
-qed "mem_UnionD";
--- a/src/HOL/Hyperreal/Zorn.thy	Fri Aug 30 16:42:45 2002 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,34 +0,0 @@
-(*  Title       : Zorn.thy
-    ID          : $Id$
-    Author      : Jacques D. Fleuriot
-    Copyright   : 1998  University of Cambridge
-    Description : Zorn's Lemma -- See lcp's Zorn.thy in ZF
-*) 
-
-Zorn = Main +
-
-constdefs
-  chain     ::  'a::ord set => 'a set set
-    "chain S  == {F. F <= S & (ALL x: F. ALL y: F. x <= y | y <= x)}" 
-
-  super     ::  ['a::ord set,'a set] => 'a set set
-    "super S c == {d. d: chain(S) & c < d}"
-
-  maxchain  ::  'a::ord set => 'a set set
-    "maxchain S == {c. c: chain S & super S c = {}}"
-
-  succ      ::  ['a::ord set,'a set] => 'a set
-    "succ S c == if (c ~: chain S| c: maxchain S) 
-                 then c else (@c'. c': (super S c))" 
-
-consts 
-  "TFin" :: 'a::ord set => 'a set set
-
-inductive "TFin(S)"
-  intrs
-    succI        "x : TFin S ==> succ S x : TFin S"
-    Pow_UnionI   "Y : Pow(TFin S) ==> Union(Y) : TFin S"
-           
-  monos          Pow_mono
-end
-
--- a/src/HOL/IsaMakefile	Fri Aug 30 16:42:45 2002 +0200
+++ b/src/HOL/IsaMakefile	Sat Aug 31 14:03:49 2002 +0200
@@ -159,6 +159,7 @@
 HOL-Hyperreal: HOL-Real $(OUT)/HOL-Hyperreal
 
 $(OUT)/HOL-Hyperreal: $(OUT)/HOL-Real Hyperreal/ROOT.ML\
+  Library/Zorn.thy\
   Hyperreal/EvenOdd.ML Hyperreal/EvenOdd.thy Hyperreal/ExtraThms2.ML\
   Hyperreal/ExtraThms2.thy Hyperreal/Fact.ML Hyperreal/Fact.thy\
   Hyperreal/Filter.ML Hyperreal/Filter.thy Hyperreal/HRealAbs.ML\
@@ -176,8 +177,7 @@
   Hyperreal/Poly.ML Hyperreal/Poly.thy\
   Hyperreal/SEQ.ML Hyperreal/SEQ.thy Hyperreal/Series.ML Hyperreal/Series.thy\
   Hyperreal/Star.ML Hyperreal/Star.thy Hyperreal/Transcendental.ML\
-  Hyperreal/Transcendental.thy Hyperreal/Zorn.ML Hyperreal/Zorn.thy\
-  Hyperreal/fuf.ML Hyperreal/hypreal_arith.ML \
+  Hyperreal/Transcendental.thy Hyperreal/fuf.ML Hyperreal/hypreal_arith.ML \
   Hyperreal/hypreal_arith0.ML
 	@cd Hyperreal; $(ISATOOL) usedir -b $(OUT)/HOL-Real HOL-Hyperreal
 
@@ -203,6 +203,7 @@
   Library/Ring_and_Field_Example.thy Library/Nat_Infinity.thy \
   Library/README.html Library/Continuity.thy \
   Library/Nested_Environment.thy Library/Rational_Numbers.thy \
+  Library/Zorn.thy\
   Library/Library/ROOT.ML Library/Library/document/root.tex \
   Library/Library/document/root.bib Library/While_Combinator.thy
 	@cd Library; $(ISATOOL) usedir $(OUT)/HOL Library
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/Zorn.thy	Sat Aug 31 14:03:49 2002 +0200
@@ -0,0 +1,263 @@
+(*  Title       \<in> Zorn.thy
+    ID          \<in> $Id$
+    Author      \<in> Jacques D. Fleuriot
+    Copyright   \<in> 1998  University of Cambridge
+    Description \<in> Zorn's Lemma -- See Larry Paulson's Zorn.thy in ZF
+*) 
+
+header {*Zorn's Lemma*}
+
+theory Zorn = Main:
+
+text{*The lemma and section numbers refer to an unpublished article ``Towards
+the Mechanization of the Proofs of Some Classical Theorems of Set Theory,'' by
+Abrial and Laffitte.  *}
+
+constdefs
+  chain     ::  "'a::ord set => 'a set set"
+    "chain S  == {F. F \<subseteq> S & (\<forall>x \<in> F. \<forall>y \<in> F. x \<subseteq> y | y \<subseteq> x)}" 
+
+  super     ::  "['a::ord set,'a set] => 'a set set"
+    "super S c == {d. d \<in> chain(S) & c < d}"
+
+  maxchain  ::  "'a::ord set => 'a set set"
+    "maxchain S == {c. c \<in> chain S & super S c = {}}"
+
+  succ      ::  "['a::ord set,'a set] => 'a set"
+    "succ S c == if (c \<notin> chain S| c \<in> maxchain S) 
+                 then c else (@c'. c': (super S c))" 
+
+consts 
+  "TFin" ::  "'a::ord set => 'a set set"
+
+inductive "TFin(S)"
+  intros
+    succI:        "x \<in> TFin S ==> succ S x \<in> TFin S"
+    Pow_UnionI:   "Y \<in> Pow(TFin S) ==> Union(Y) \<in> TFin S"
+           
+  monos          Pow_mono
+
+
+subsection{*Mathematical Preamble*}
+
+lemma Union_lemma0: "(\<forall>x \<in> C. x \<subseteq> A | B \<subseteq> x) ==> Union(C)<=A | B \<subseteq> Union(C)"
+by blast
+
+
+text{*This is theorem @{text increasingD2} of ZF/Zorn.thy*}
+lemma Abrial_axiom1: "x \<subseteq> succ S x"
+apply (unfold succ_def)
+apply (rule split_if [THEN iffD2])
+apply (auto simp add: super_def maxchain_def psubset_def)
+apply (rule swap, assumption)
+apply (rule someI2, blast+)
+done
+
+lemmas TFin_UnionI = TFin.Pow_UnionI [OF PowI]
+
+lemma TFin_induct: 
+          "[| n \<in> TFin S;  
+             !!x. [| x \<in> TFin S; P(x) |] ==> P(succ S x);  
+             !!Y. [| Y \<subseteq> TFin S; Ball Y P |] ==> P(Union Y) |]  
+          ==> P(n)"
+apply (erule TFin.induct, blast+)
+done
+
+lemma succ_trans: "x \<subseteq> y ==> x \<subseteq> succ S y"
+apply (erule subset_trans) 
+apply (rule Abrial_axiom1) 
+done
+
+text{*Lemma 1 of section 3.1*}
+lemma TFin_linear_lemma1:
+     "[| n \<in> TFin S;  m \<in> TFin S;   
+         \<forall>x \<in> TFin S. x \<subseteq> m --> x = m | succ S x \<subseteq> m  
+      |] ==> n \<subseteq> m | succ S m \<subseteq> n"
+apply (erule TFin_induct)
+apply (erule_tac [2] Union_lemma0) txt{*or just Blast_tac*}
+apply (blast del: subsetI intro: succ_trans)
+done
+
+text{* Lemma 2 of section 3.2 *}
+lemma TFin_linear_lemma2:
+     "m \<in> TFin S ==> \<forall>n \<in> TFin S. n \<subseteq> m --> n=m | succ S n \<subseteq> m"
+apply (erule TFin_induct)
+apply (rule impI [THEN ballI])
+txt{*case split using TFin_linear_lemma1*}
+apply (rule_tac n1 = n and m1 = x in TFin_linear_lemma1 [THEN disjE], 
+       assumption+)
+apply (drule_tac x = n in bspec, assumption)
+apply (blast del: subsetI intro: succ_trans, blast) 
+txt{*second induction step*}
+apply (rule impI [THEN ballI])
+apply (rule Union_lemma0 [THEN disjE])
+apply (rule_tac [3] disjI2)
+ prefer 2 apply blast 
+apply (rule ballI)
+apply (rule_tac n1 = n and m1 = x in TFin_linear_lemma1 [THEN disjE], 
+       assumption+, auto) 
+apply (blast intro!: Abrial_axiom1 [THEN subsetD])  
+done
+
+text{*Re-ordering the premises of Lemma 2*}
+lemma TFin_subsetD:
+     "[| n \<subseteq> m;  m \<in> TFin S;  n \<in> TFin S |] ==> n=m | succ S n \<subseteq> m"
+apply (rule TFin_linear_lemma2 [rule_format])
+apply (assumption+)
+done
+
+text{*Consequences from section 3.3 -- Property 3.2, the ordering is total*}
+lemma TFin_subset_linear: "[| m \<in> TFin S;  n \<in> TFin S|] ==> n \<subseteq> m | m \<subseteq> n"
+apply (rule disjE) 
+apply (rule TFin_linear_lemma1 [OF _ _TFin_linear_lemma2])
+apply (assumption+, erule disjI2)
+apply (blast del: subsetI 
+             intro: subsetI Abrial_axiom1 [THEN subset_trans])
+done
+
+text{*Lemma 3 of section 3.3*}
+lemma eq_succ_upper: "[| n \<in> TFin S;  m \<in> TFin S;  m = succ S m |] ==> n \<subseteq> m"
+apply (erule TFin_induct)
+apply (drule TFin_subsetD)
+apply (assumption+, force, blast)
+done
+
+text{*Property 3.3 of section 3.3*}
+lemma equal_succ_Union: "m \<in> TFin S ==> (m = succ S m) = (m = Union(TFin S))"
+apply (rule iffI)
+apply (rule Union_upper [THEN equalityI])
+apply (rule_tac [2] eq_succ_upper [THEN Union_least])
+apply (assumption+)
+apply (erule ssubst)
+apply (rule Abrial_axiom1 [THEN equalityI])
+apply (blast del: subsetI
+	     intro: subsetI TFin_UnionI TFin.succI)
+done
+
+subsection{*Hausdorff's Theorem: Every Set Contains a Maximal Chain.*}
+
+text{*NB: We assume the partial ordering is @{text "\<subseteq>"}, 
+ the subset relation!*}
+
+lemma empty_set_mem_chain: "({} :: 'a set set) \<in> chain S"
+by (unfold chain_def, auto)
+
+lemma super_subset_chain: "super S c \<subseteq> chain S"
+by (unfold super_def, fast)
+
+lemma maxchain_subset_chain: "maxchain S \<subseteq> chain S"
+by (unfold maxchain_def, fast)
+
+lemma mem_super_Ex: "c \<in> chain S - maxchain S ==> ? d. d \<in> super S c"
+by (unfold super_def maxchain_def, auto)
+
+lemma select_super: "c \<in> chain S - maxchain S ==>  
+                          (@c'. c': super S c): super S c"
+apply (erule mem_super_Ex [THEN exE])
+apply (rule someI2, auto)
+done
+
+lemma select_not_equals: "c \<in> chain S - maxchain S ==>  
+                          (@c'. c': super S c) \<noteq> c"
+apply (rule notI)
+apply (drule select_super)
+apply (simp add: super_def psubset_def)
+done
+
+lemma succI3: "c \<in> chain S - maxchain S ==> succ S c = (@c'. c': super S c)"
+apply (unfold succ_def)
+apply (fast intro!: if_not_P)
+done
+
+lemma succ_not_equals: "c \<in> chain S - maxchain S ==> succ S c \<noteq> c"
+apply (frule succI3)
+apply (simp (no_asm_simp))
+apply (rule select_not_equals, assumption)
+done
+
+lemma TFin_chain_lemma4: "c \<in> TFin S ==> (c :: 'a set set): chain S"
+apply (erule TFin_induct)
+apply (simp add: succ_def select_super [THEN super_subset_chain[THEN subsetD]])
+apply (unfold chain_def)
+apply (rule CollectI, safe)
+apply (drule bspec, assumption)
+apply (rule_tac [2] m1 = Xa and n1 = X in TFin_subset_linear [THEN disjE], 
+       blast+)
+done
+ 
+theorem Hausdorff: "\<exists>c. (c :: 'a set set): maxchain S"
+apply (rule_tac x = "Union (TFin S) " in exI)
+apply (rule classical)
+apply (subgoal_tac "succ S (Union (TFin S)) = Union (TFin S) ")
+ prefer 2
+ apply (blast intro!: TFin_UnionI equal_succ_Union [THEN iffD2, symmetric]) 
+apply (cut_tac subset_refl [THEN TFin_UnionI, THEN TFin_chain_lemma4])
+apply (drule DiffI [THEN succ_not_equals], blast+)
+done
+
+
+subsection{*Zorn's Lemma: If All Chains Have Upper Bounds Then 
+                               There Is  a Maximal Element*}
+
+lemma chain_extend: 
+    "[| c \<in> chain S; z \<in> S;  
+        \<forall>x \<in> c. x<=(z:: 'a set) |] ==> {z} Un c \<in> chain S"
+by (unfold chain_def, blast)
+
+lemma chain_Union_upper: "[| c \<in> chain S; x \<in> c |] ==> x \<subseteq> Union(c)"
+by (unfold chain_def, auto)
+
+lemma chain_ball_Union_upper: "c \<in> chain S ==> \<forall>x \<in> c. x \<subseteq> Union(c)"
+by (unfold chain_def, auto)
+
+lemma maxchain_Zorn:
+     "[| c \<in> maxchain S; u \<in> S; Union(c) \<subseteq> u |] ==> Union(c) = u"
+apply (rule ccontr)
+apply (simp add: maxchain_def)
+apply (erule conjE)
+apply (subgoal_tac " ({u} Un c) \<in> super S c")
+apply simp
+apply (unfold super_def psubset_def)
+apply (blast intro: chain_extend dest: chain_Union_upper)
+done
+
+theorem Zorn_Lemma:
+     "\<forall>c \<in> chain S. Union(c): S ==> \<exists>y \<in> S. \<forall>z \<in> S. y \<subseteq> z --> y = z"
+apply (cut_tac Hausdorff maxchain_subset_chain)
+apply (erule exE)
+apply (drule subsetD, assumption)
+apply (drule bspec, assumption)
+apply (rule_tac x = "Union (c) " in bexI)
+apply (rule ballI, rule impI)
+apply (blast dest!: maxchain_Zorn, assumption)
+done
+
+subsection{*Alternative version of Zorn's Lemma*}
+
+lemma Zorn_Lemma2:
+     "\<forall>c \<in> chain S. \<exists>y \<in> S. \<forall>x \<in> c. x \<subseteq> y
+      ==> \<exists>y \<in> S. \<forall>x \<in> S. (y :: 'a set) \<subseteq> x --> y = x"
+apply (cut_tac Hausdorff maxchain_subset_chain)
+apply (erule exE) 
+apply (drule subsetD, assumption) 
+apply (drule bspec, assumption, erule bexE) 
+apply (rule_tac x = y in bexI)
+ prefer 2 apply assumption
+apply clarify 
+apply (rule ccontr) 
+apply (frule_tac z = x in chain_extend)
+apply (assumption, blast)
+apply (unfold maxchain_def super_def psubset_def) 
+apply (blast elim!: equalityCE)
+done
+
+text{*Various other lemmas*}
+
+lemma chainD: "[| c \<in> chain S; x \<in> c; y \<in> c |] ==> x \<subseteq> y | y \<subseteq> x"
+by (unfold chain_def, blast)
+
+lemma chainD2: "!!(c :: 'a set set). c \<in> chain S ==> c \<subseteq> S"
+by (unfold chain_def, blast)
+
+end
+