updated certificates
authorblanchet
Tue, 24 Sep 2013 16:21:04 +0200
changeset 53824 b81cea96a85e
parent 53823 191ec7f873d5
child 53825 fb66852b3227
updated certificates
src/HOL/SMT_Examples/SMT_Examples.certs
--- a/src/HOL/SMT_Examples/SMT_Examples.certs	Tue Sep 24 16:21:03 2013 +0200
+++ b/src/HOL/SMT_Examples/SMT_Examples.certs	Tue Sep 24 16:21:04 2013 +0200
@@ -1,12210 +1,12210 @@
+23d01cdabb599769b54210e40617eea3d6c91e30 8 0
+#2 := false
+#1 := true
+#7 := (not true)
+#29 := (iff #7 false)
+#30 := [rewrite]: #29
+#28 := [asserted]: #7
+[mp #28 #30]: false
+unsat
 22e23526a38d50ce23abbe4dbfb697891cbcd840 22 0
-#2 := false
-decl f1 :: S1
-#3 := f1
-decl f3 :: S1
-#7 := f3
-#8 := (= f3 f1)
-#9 := (not #8)
-#10 := (or #8 #9)
-#11 := (not #10)
-#40 := (iff #11 false)
-#1 := true
-#35 := (not true)
-#38 := (iff #35 false)
-#39 := [rewrite]: #38
-#36 := (iff #11 #35)
-#33 := (iff #10 true)
-#34 := [rewrite]: #33
-#37 := [monotonicity #34]: #36
-#41 := [trans #37 #39]: #40
-#32 := [asserted]: #11
-[mp #32 #41]: false
-unsat
-23d01cdabb599769b54210e40617eea3d6c91e30 8 0
-#2 := false
-#1 := true
-#7 := (not true)
-#29 := (iff #7 false)
-#30 := [rewrite]: #29
-#28 := [asserted]: #7
-[mp #28 #30]: false
-unsat
+#2 := false
+decl f1 :: S1
+#3 := f1
+decl f3 :: S1
+#7 := f3
+#8 := (= f3 f1)
+#9 := (not #8)
+#10 := (or #8 #9)
+#11 := (not #10)
+#40 := (iff #11 false)
+#1 := true
+#35 := (not true)
+#38 := (iff #35 false)
+#39 := [rewrite]: #38
+#36 := (iff #11 #35)
+#33 := (iff #10 true)
+#34 := [rewrite]: #33
+#37 := [monotonicity #34]: #36
+#41 := [trans #37 #39]: #40
+#32 := [asserted]: #11
+[mp #32 #41]: false
+unsat
 121552dd328e0993a2c6099c592d9c3db7fff190 28 0
-#2 := false
-decl f1 :: S1
-#3 := f1
-decl f3 :: S1
-#7 := f3
-#8 := (= f3 f1)
-#1 := true
-#9 := (and #8 true)
-#10 := (iff #9 #8)
-#11 := (not #10)
-#46 := (iff #11 false)
-#41 := (not true)
-#44 := (iff #41 false)
-#45 := [rewrite]: #44
-#42 := (iff #11 #41)
-#39 := (iff #10 true)
-#34 := (iff #8 #8)
-#37 := (iff #34 true)
-#38 := [rewrite]: #37
-#35 := (iff #10 #34)
-#33 := [rewrite]: #10
-#36 := [monotonicity #33]: #35
-#40 := [trans #36 #38]: #39
-#43 := [monotonicity #40]: #42
-#47 := [trans #43 #45]: #46
-#32 := [asserted]: #11
-[mp #32 #47]: false
-unsat
+#2 := false
+decl f1 :: S1
+#3 := f1
+decl f3 :: S1
+#7 := f3
+#8 := (= f3 f1)
+#1 := true
+#9 := (and #8 true)
+#10 := (iff #9 #8)
+#11 := (not #10)
+#46 := (iff #11 false)
+#41 := (not true)
+#44 := (iff #41 false)
+#45 := [rewrite]: #44
+#42 := (iff #11 #41)
+#39 := (iff #10 true)
+#34 := (iff #8 #8)
+#37 := (iff #34 true)
+#38 := [rewrite]: #37
+#35 := (iff #10 #34)
+#33 := [rewrite]: #10
+#36 := [monotonicity #33]: #35
+#40 := [trans #36 #38]: #39
+#43 := [monotonicity #40]: #42
+#47 := [trans #43 #45]: #46
+#32 := [asserted]: #11
+[mp #32 #47]: false
+unsat
 263480c8c5909524c36f6198f60c623fbcfc953d 41 0
-#2 := false
-decl f1 :: S1
-#3 := f1
-decl f4 :: S1
-#9 := f4
-#10 := (= f4 f1)
-decl f3 :: S1
-#7 := f3
-#8 := (= f3 f1)
-#11 := (or #8 #10)
-#64 := (iff #11 false)
-#59 := (or false false)
-#62 := (iff #59 false)
-#63 := [rewrite]: #62
-#60 := (iff #11 #59)
-#57 := (iff #10 false)
-#48 := (not #10)
-#12 := (not #8)
-#13 := (and #11 #12)
-#37 := (not #13)
-#38 := (or #37 #10)
-#41 := (not #38)
-#14 := (implies #13 #10)
-#15 := (not #14)
-#42 := (iff #15 #41)
-#39 := (iff #14 #38)
-#40 := [rewrite]: #39
-#43 := [monotonicity #40]: #42
-#36 := [asserted]: #15
-#46 := [mp #36 #43]: #41
-#49 := [not-or-elim #46]: #48
-#58 := [iff-false #49]: #57
-#55 := (iff #8 false)
-#44 := [not-or-elim #46]: #13
-#47 := [and-elim #44]: #12
-#56 := [iff-false #47]: #55
-#61 := [monotonicity #56 #58]: #60
-#65 := [trans #61 #63]: #64
-#45 := [and-elim #44]: #11
-[mp #45 #65]: false
-unsat
+#2 := false
+decl f1 :: S1
+#3 := f1
+decl f4 :: S1
+#9 := f4
+#10 := (= f4 f1)
+decl f3 :: S1
+#7 := f3
+#8 := (= f3 f1)
+#11 := (or #8 #10)
+#64 := (iff #11 false)
+#59 := (or false false)
+#62 := (iff #59 false)
+#63 := [rewrite]: #62
+#60 := (iff #11 #59)
+#57 := (iff #10 false)
+#48 := (not #10)
+#12 := (not #8)
+#13 := (and #11 #12)
+#37 := (not #13)
+#38 := (or #37 #10)
+#41 := (not #38)
+#14 := (implies #13 #10)
+#15 := (not #14)
+#42 := (iff #15 #41)
+#39 := (iff #14 #38)
+#40 := [rewrite]: #39
+#43 := [monotonicity #40]: #42
+#36 := [asserted]: #15
+#46 := [mp #36 #43]: #41
+#49 := [not-or-elim #46]: #48
+#58 := [iff-false #49]: #57
+#55 := (iff #8 false)
+#44 := [not-or-elim #46]: #13
+#47 := [and-elim #44]: #12
+#56 := [iff-false #47]: #55
+#61 := [monotonicity #56 #58]: #60
+#65 := [trans #61 #63]: #64
+#45 := [and-elim #44]: #11
+[mp #45 #65]: false
+unsat
 050883983ebe99dc3b7f24a011b1724b1b2c4dd9 33 0
-#2 := false
-decl f1 :: S1
-#3 := f1
-decl f6 :: S1
-#14 := f6
-#15 := (= f6 f1)
-decl f5 :: S1
-#12 := f5
-#13 := (= f5 f1)
-#16 := (and #13 #15)
-decl f4 :: S1
-#9 := f4
-#10 := (= f4 f1)
-decl f3 :: S1
-#7 := f3
-#8 := (= f3 f1)
-#11 := (and #8 #10)
-#17 := (or #11 #16)
-#18 := (implies #17 #17)
-#19 := (not #18)
-#48 := (iff #19 false)
-#1 := true
-#43 := (not true)
-#46 := (iff #43 false)
-#47 := [rewrite]: #46
-#44 := (iff #19 #43)
-#41 := (iff #18 true)
-#42 := [rewrite]: #41
-#45 := [monotonicity #42]: #44
-#49 := [trans #45 #47]: #48
-#40 := [asserted]: #19
-[mp #40 #49]: false
-unsat
+#2 := false
+decl f1 :: S1
+#3 := f1
+decl f6 :: S1
+#14 := f6
+#15 := (= f6 f1)
+decl f5 :: S1
+#12 := f5
+#13 := (= f5 f1)
+#16 := (and #13 #15)
+decl f4 :: S1
+#9 := f4
+#10 := (= f4 f1)
+decl f3 :: S1
+#7 := f3
+#8 := (= f3 f1)
+#11 := (and #8 #10)
+#17 := (or #11 #16)
+#18 := (implies #17 #17)
+#19 := (not #18)
+#48 := (iff #19 false)
+#1 := true
+#43 := (not true)
+#46 := (iff #43 false)
+#47 := [rewrite]: #46
+#44 := (iff #19 #43)
+#41 := (iff #18 true)
+#42 := [rewrite]: #41
+#45 := [monotonicity #42]: #44
+#49 := [trans #45 #47]: #48
+#40 := [asserted]: #19
+[mp #40 #49]: false
+unsat
 79d9d246dd9d27e03e8f1ea895e790f3a4420bfd 55 0
-#2 := false
-decl f1 :: S1
-#3 := f1
-decl f3 :: S1
-#7 := f3
-#8 := (= f3 f1)
-decl f5 :: S1
-#12 := f5
-#13 := (= f5 f1)
-#16 := (and #8 #13)
-decl f4 :: S1
-#9 := f4
-#10 := (= f4 f1)
-#15 := (and #13 #10)
-#17 := (or #15 #16)
-#18 := (implies #8 #17)
-#19 := (or #18 #8)
-#11 := (and #8 #10)
-#14 := (or #11 #13)
-#20 := (implies #14 #19)
-#21 := (not #20)
-#71 := (iff #21 false)
-#43 := (not #8)
-#44 := (or #43 #17)
-#47 := (or #44 #8)
-#53 := (not #14)
-#54 := (or #53 #47)
-#59 := (not #54)
-#69 := (iff #59 false)
-#1 := true
-#64 := (not true)
-#67 := (iff #64 false)
-#68 := [rewrite]: #67
-#65 := (iff #59 #64)
-#62 := (iff #54 true)
-#63 := [rewrite]: #62
-#66 := [monotonicity #63]: #65
-#70 := [trans #66 #68]: #69
-#60 := (iff #21 #59)
-#57 := (iff #20 #54)
-#50 := (implies #14 #47)
-#55 := (iff #50 #54)
-#56 := [rewrite]: #55
-#51 := (iff #20 #50)
-#48 := (iff #19 #47)
-#45 := (iff #18 #44)
-#46 := [rewrite]: #45
-#49 := [monotonicity #46]: #48
-#52 := [monotonicity #49]: #51
-#58 := [trans #52 #56]: #57
-#61 := [monotonicity #58]: #60
-#72 := [trans #61 #70]: #71
-#42 := [asserted]: #21
-[mp #42 #72]: false
-unsat
+#2 := false
+decl f1 :: S1
+#3 := f1
+decl f3 :: S1
+#7 := f3
+#8 := (= f3 f1)
+decl f5 :: S1
+#12 := f5
+#13 := (= f5 f1)
+#16 := (and #8 #13)
+decl f4 :: S1
+#9 := f4
+#10 := (= f4 f1)
+#15 := (and #13 #10)
+#17 := (or #15 #16)
+#18 := (implies #8 #17)
+#19 := (or #18 #8)
+#11 := (and #8 #10)
+#14 := (or #11 #13)
+#20 := (implies #14 #19)
+#21 := (not #20)
+#71 := (iff #21 false)
+#43 := (not #8)
+#44 := (or #43 #17)
+#47 := (or #44 #8)
+#53 := (not #14)
+#54 := (or #53 #47)
+#59 := (not #54)
+#69 := (iff #59 false)
+#1 := true
+#64 := (not true)
+#67 := (iff #64 false)
+#68 := [rewrite]: #67
+#65 := (iff #59 #64)
+#62 := (iff #54 true)
+#63 := [rewrite]: #62
+#66 := [monotonicity #63]: #65
+#70 := [trans #66 #68]: #69
+#60 := (iff #21 #59)
+#57 := (iff #20 #54)
+#50 := (implies #14 #47)
+#55 := (iff #50 #54)
+#56 := [rewrite]: #55
+#51 := (iff #20 #50)
+#48 := (iff #19 #47)
+#45 := (iff #18 #44)
+#46 := [rewrite]: #45
+#49 := [monotonicity #46]: #48
+#52 := [monotonicity #49]: #51
+#58 := [trans #52 #56]: #57
+#61 := [monotonicity #58]: #60
+#72 := [trans #61 #70]: #71
+#42 := [asserted]: #21
+[mp #42 #72]: false
+unsat
 8575241c64c02491d277f6598ca57e576f5a6b45 60 0
-#2 := false
-decl f1 :: S1
-#3 := f1
-decl f3 :: S1
-#7 := f3
-#8 := (= f3 f1)
-#9 := (iff #8 #8)
-#10 := (iff #9 #8)
-#11 := (iff #10 #8)
-#12 := (iff #11 #8)
-#13 := (iff #12 #8)
-#14 := (iff #13 #8)
-#15 := (iff #14 #8)
-#16 := (iff #15 #8)
-#17 := (iff #16 #8)
-#18 := (not #17)
-#78 := (iff #18 false)
-#1 := true
-#73 := (not true)
-#76 := (iff #73 false)
-#77 := [rewrite]: #76
-#74 := (iff #18 #73)
-#71 := (iff #17 true)
-#40 := (iff #9 true)
-#41 := [rewrite]: #40
-#69 := (iff #17 #9)
-#42 := (iff true #8)
-#45 := (iff #42 #8)
-#46 := [rewrite]: #45
-#66 := (iff #16 #42)
-#64 := (iff #15 true)
-#62 := (iff #15 #9)
-#59 := (iff #14 #42)
-#57 := (iff #13 true)
-#55 := (iff #13 #9)
-#52 := (iff #12 #42)
-#50 := (iff #11 true)
-#48 := (iff #11 #9)
-#43 := (iff #10 #42)
-#44 := [monotonicity #41]: #43
-#47 := [trans #44 #46]: #11
-#49 := [monotonicity #47]: #48
-#51 := [trans #49 #41]: #50
-#53 := [monotonicity #51]: #52
-#54 := [trans #53 #46]: #13
-#56 := [monotonicity #54]: #55
-#58 := [trans #56 #41]: #57
-#60 := [monotonicity #58]: #59
-#61 := [trans #60 #46]: #15
-#63 := [monotonicity #61]: #62
-#65 := [trans #63 #41]: #64
-#67 := [monotonicity #65]: #66
-#68 := [trans #67 #46]: #17
-#70 := [monotonicity #68]: #69
-#72 := [trans #70 #41]: #71
-#75 := [monotonicity #72]: #74
-#79 := [trans #75 #77]: #78
-#39 := [asserted]: #18
-[mp #39 #79]: false
-unsat
+#2 := false
+decl f1 :: S1
+#3 := f1
+decl f3 :: S1
+#7 := f3
+#8 := (= f3 f1)
+#9 := (iff #8 #8)
+#10 := (iff #9 #8)
+#11 := (iff #10 #8)
+#12 := (iff #11 #8)
+#13 := (iff #12 #8)
+#14 := (iff #13 #8)
+#15 := (iff #14 #8)
+#16 := (iff #15 #8)
+#17 := (iff #16 #8)
+#18 := (not #17)
+#78 := (iff #18 false)
+#1 := true
+#73 := (not true)
+#76 := (iff #73 false)
+#77 := [rewrite]: #76
+#74 := (iff #18 #73)
+#71 := (iff #17 true)
+#40 := (iff #9 true)
+#41 := [rewrite]: #40
+#69 := (iff #17 #9)
+#42 := (iff true #8)
+#45 := (iff #42 #8)
+#46 := [rewrite]: #45
+#66 := (iff #16 #42)
+#64 := (iff #15 true)
+#62 := (iff #15 #9)
+#59 := (iff #14 #42)
+#57 := (iff #13 true)
+#55 := (iff #13 #9)
+#52 := (iff #12 #42)
+#50 := (iff #11 true)
+#48 := (iff #11 #9)
+#43 := (iff #10 #42)
+#44 := [monotonicity #41]: #43
+#47 := [trans #44 #46]: #11
+#49 := [monotonicity #47]: #48
+#51 := [trans #49 #41]: #50
+#53 := [monotonicity #51]: #52
+#54 := [trans #53 #46]: #13
+#56 := [monotonicity #54]: #55
+#58 := [trans #56 #41]: #57
+#60 := [monotonicity #58]: #59
+#61 := [trans #60 #46]: #15
+#63 := [monotonicity #61]: #62
+#65 := [trans #63 #41]: #64
+#67 := [monotonicity #65]: #66
+#68 := [trans #67 #46]: #17
+#70 := [monotonicity #68]: #69
+#72 := [trans #70 #41]: #71
+#75 := [monotonicity #72]: #74
+#79 := [trans #75 #77]: #78
+#39 := [asserted]: #18
+[mp #39 #79]: false
+unsat
 8434421285df70a7e1728b19173d86303151090b 165 0
-#2 := false
-decl f1 :: S1
-#3 := f1
-decl f6 :: S1
-#13 := f6
-#14 := (= f6 f1)
-decl f5 :: S1
-#11 := f5
-#12 := (= f5 f1)
-decl f4 :: S1
-#9 := f4
-#10 := (= f4 f1)
-decl f3 :: S1
-#7 := f3
-#8 := (= f3 f1)
-#75 := (or #8 #10 #12 #14)
-#215 := (iff #75 false)
-#210 := (or false false false false)
-#213 := (iff #210 false)
-#214 := [rewrite]: #213
-#211 := (iff #75 #210)
-#167 := (iff #14 false)
-#119 := (not #14)
-#122 := (or #119 #12)
-#175 := (iff #122 #119)
-#170 := (or #119 false)
-#173 := (iff #170 #119)
-#174 := [rewrite]: #173
-#171 := (iff #122 #170)
-#168 := (iff #12 false)
-#25 := (not #12)
-decl f11 :: S1
-#43 := f11
-#44 := (= f11 f1)
-#45 := (not #44)
-#46 := (and #44 #45)
-decl f10 :: S1
-#40 := f10
-#41 := (= f10 f1)
-#47 := (or #41 #46)
-#42 := (not #41)
-#48 := (and #42 #47)
-#49 := (or #12 #48)
-#50 := (not #49)
-#150 := (iff #50 #25)
-#148 := (iff #49 #12)
-#143 := (or #12 false)
-#146 := (iff #143 #12)
-#147 := [rewrite]: #146
-#144 := (iff #49 #143)
-#141 := (iff #48 false)
-#136 := (and #42 #41)
-#139 := (iff #136 false)
-#140 := [rewrite]: #139
-#137 := (iff #48 #136)
-#134 := (iff #47 #41)
-#129 := (or #41 false)
-#132 := (iff #129 #41)
-#133 := [rewrite]: #132
-#130 := (iff #47 #129)
-#126 := (iff #46 false)
-#128 := [rewrite]: #126
-#131 := [monotonicity #128]: #130
-#135 := [trans #131 #133]: #134
-#138 := [monotonicity #135]: #137
-#142 := [trans #138 #140]: #141
-#145 := [monotonicity #142]: #144
-#149 := [trans #145 #147]: #148
-#151 := [monotonicity #149]: #150
-#125 := [asserted]: #50
-#154 := [mp #125 #151]: #25
-#169 := [iff-false #154]: #168
-#172 := [monotonicity #169]: #171
-#176 := [trans #172 #174]: #175
-#37 := (or #14 false)
-#38 := (not #37)
-#39 := (or #38 #12)
-#123 := (iff #39 #122)
-#120 := (iff #38 #119)
-#116 := (iff #37 #14)
-#118 := [rewrite]: #116
-#121 := [monotonicity #118]: #120
-#124 := [monotonicity #121]: #123
-#115 := [asserted]: #39
-#127 := [mp #115 #124]: #122
-#166 := [mp #127 #176]: #119
-#177 := [iff-false #166]: #167
-#165 := (iff #10 false)
-#109 := (not #10)
-#112 := (or #109 #12)
-#183 := (iff #112 #109)
-#178 := (or #109 false)
-#181 := (iff #178 #109)
-#182 := [rewrite]: #181
-#179 := (iff #112 #178)
-#180 := [monotonicity #169]: #179
-#184 := [trans #180 #182]: #183
-decl f9 :: S1
-#30 := f9
-#31 := (= f9 f1)
-#32 := (not #31)
-#33 := (or #31 #32)
-#34 := (and #10 #33)
-#35 := (not #34)
-#36 := (or #35 #12)
-#113 := (iff #36 #112)
-#110 := (iff #35 #109)
-#107 := (iff #34 #10)
-#1 := true
-#102 := (and #10 true)
-#105 := (iff #102 #10)
-#106 := [rewrite]: #105
-#103 := (iff #34 #102)
-#99 := (iff #33 true)
-#101 := [rewrite]: #99
-#104 := [monotonicity #101]: #103
-#108 := [trans #104 #106]: #107
-#111 := [monotonicity #108]: #110
-#114 := [monotonicity #111]: #113
-#98 := [asserted]: #36
-#117 := [mp #98 #114]: #112
-#164 := [mp #117 #184]: #109
-#185 := [iff-false #164]: #165
-#163 := (iff #8 false)
-#92 := (not #8)
-#95 := (or #92 #10)
-#191 := (iff #95 #92)
-#186 := (or #92 false)
-#189 := (iff #186 #92)
-#190 := [rewrite]: #189
-#187 := (iff #95 #186)
-#188 := [monotonicity #185]: #187
-#192 := [trans #188 #190]: #191
-#26 := (and #12 #25)
-#27 := (or #8 #26)
-#28 := (not #27)
-#29 := (or #28 #10)
-#96 := (iff #29 #95)
-#93 := (iff #28 #92)
-#90 := (iff #27 #8)
-#85 := (or #8 false)
-#88 := (iff #85 #8)
-#89 := [rewrite]: #88
-#86 := (iff #27 #85)
-#79 := (iff #26 false)
-#84 := [rewrite]: #79
-#87 := [monotonicity #84]: #86
-#91 := [trans #87 #89]: #90
-#94 := [monotonicity #91]: #93
-#97 := [monotonicity #94]: #96
-#74 := [asserted]: #29
-#100 := [mp #74 #97]: #95
-#162 := [mp #100 #192]: #92
-#193 := [iff-false #162]: #163
-#212 := [monotonicity #193 #185 #169 #177]: #211
-#216 := [trans #212 #214]: #215
-#15 := (or #12 #14)
-#16 := (or #10 #15)
-#17 := (or #8 #16)
-#76 := (iff #17 #75)
-#77 := [rewrite]: #76
-#72 := [asserted]: #17
-#78 := [mp #72 #77]: #75
-[mp #78 #216]: false
-unsat
+#2 := false
+decl f1 :: S1
+#3 := f1
+decl f6 :: S1
+#13 := f6
+#14 := (= f6 f1)
+decl f5 :: S1
+#11 := f5
+#12 := (= f5 f1)
+decl f4 :: S1
+#9 := f4
+#10 := (= f4 f1)
+decl f3 :: S1
+#7 := f3
+#8 := (= f3 f1)
+#75 := (or #8 #10 #12 #14)
+#215 := (iff #75 false)
+#210 := (or false false false false)
+#213 := (iff #210 false)
+#214 := [rewrite]: #213
+#211 := (iff #75 #210)
+#167 := (iff #14 false)
+#119 := (not #14)
+#122 := (or #119 #12)
+#175 := (iff #122 #119)
+#170 := (or #119 false)
+#173 := (iff #170 #119)
+#174 := [rewrite]: #173
+#171 := (iff #122 #170)
+#168 := (iff #12 false)
+#25 := (not #12)
+decl f11 :: S1
+#43 := f11
+#44 := (= f11 f1)
+#45 := (not #44)
+#46 := (and #44 #45)
+decl f10 :: S1
+#40 := f10
+#41 := (= f10 f1)
+#47 := (or #41 #46)
+#42 := (not #41)
+#48 := (and #42 #47)
+#49 := (or #12 #48)
+#50 := (not #49)
+#150 := (iff #50 #25)
+#148 := (iff #49 #12)
+#143 := (or #12 false)
+#146 := (iff #143 #12)
+#147 := [rewrite]: #146
+#144 := (iff #49 #143)
+#141 := (iff #48 false)
+#136 := (and #42 #41)
+#139 := (iff #136 false)
+#140 := [rewrite]: #139
+#137 := (iff #48 #136)
+#134 := (iff #47 #41)
+#129 := (or #41 false)
+#132 := (iff #129 #41)
+#133 := [rewrite]: #132
+#130 := (iff #47 #129)
+#126 := (iff #46 false)
+#128 := [rewrite]: #126
+#131 := [monotonicity #128]: #130
+#135 := [trans #131 #133]: #134
+#138 := [monotonicity #135]: #137
+#142 := [trans #138 #140]: #141
+#145 := [monotonicity #142]: #144
+#149 := [trans #145 #147]: #148
+#151 := [monotonicity #149]: #150
+#125 := [asserted]: #50
+#154 := [mp #125 #151]: #25
+#169 := [iff-false #154]: #168
+#172 := [monotonicity #169]: #171
+#176 := [trans #172 #174]: #175
+#37 := (or #14 false)
+#38 := (not #37)
+#39 := (or #38 #12)
+#123 := (iff #39 #122)
+#120 := (iff #38 #119)
+#116 := (iff #37 #14)
+#118 := [rewrite]: #116
+#121 := [monotonicity #118]: #120
+#124 := [monotonicity #121]: #123
+#115 := [asserted]: #39
+#127 := [mp #115 #124]: #122
+#166 := [mp #127 #176]: #119
+#177 := [iff-false #166]: #167
+#165 := (iff #10 false)
+#109 := (not #10)
+#112 := (or #109 #12)
+#183 := (iff #112 #109)
+#178 := (or #109 false)
+#181 := (iff #178 #109)
+#182 := [rewrite]: #181
+#179 := (iff #112 #178)
+#180 := [monotonicity #169]: #179
+#184 := [trans #180 #182]: #183
+decl f9 :: S1
+#30 := f9
+#31 := (= f9 f1)
+#32 := (not #31)
+#33 := (or #31 #32)
+#34 := (and #10 #33)
+#35 := (not #34)
+#36 := (or #35 #12)
+#113 := (iff #36 #112)
+#110 := (iff #35 #109)
+#107 := (iff #34 #10)
+#1 := true
+#102 := (and #10 true)
+#105 := (iff #102 #10)
+#106 := [rewrite]: #105
+#103 := (iff #34 #102)
+#99 := (iff #33 true)
+#101 := [rewrite]: #99
+#104 := [monotonicity #101]: #103
+#108 := [trans #104 #106]: #107
+#111 := [monotonicity #108]: #110
+#114 := [monotonicity #111]: #113
+#98 := [asserted]: #36
+#117 := [mp #98 #114]: #112
+#164 := [mp #117 #184]: #109
+#185 := [iff-false #164]: #165
+#163 := (iff #8 false)
+#92 := (not #8)
+#95 := (or #92 #10)
+#191 := (iff #95 #92)
+#186 := (or #92 false)
+#189 := (iff #186 #92)
+#190 := [rewrite]: #189
+#187 := (iff #95 #186)
+#188 := [monotonicity #185]: #187
+#192 := [trans #188 #190]: #191
+#26 := (and #12 #25)
+#27 := (or #8 #26)
+#28 := (not #27)
+#29 := (or #28 #10)
+#96 := (iff #29 #95)
+#93 := (iff #28 #92)
+#90 := (iff #27 #8)
+#85 := (or #8 false)
+#88 := (iff #85 #8)
+#89 := [rewrite]: #88
+#86 := (iff #27 #85)
+#79 := (iff #26 false)
+#84 := [rewrite]: #79
+#87 := [monotonicity #84]: #86
+#91 := [trans #87 #89]: #90
+#94 := [monotonicity #91]: #93
+#97 := [monotonicity #94]: #96
+#74 := [asserted]: #29
+#100 := [mp #74 #97]: #95
+#162 := [mp #100 #192]: #92
+#193 := [iff-false #162]: #163
+#212 := [monotonicity #193 #185 #169 #177]: #211
+#216 := [trans #212 #214]: #215
+#15 := (or #12 #14)
+#16 := (or #10 #15)
+#17 := (or #8 #16)
+#76 := (iff #17 #75)
+#77 := [rewrite]: #76
+#72 := [asserted]: #17
+#78 := [mp #72 #77]: #75
+[mp #78 #216]: false
+unsat
 2571c5d0e3c2bb55fd62ced2ec0c2fd2a4870074 59 0
-#2 := false
-decl f3 :: (-> S3 S2 S2)
-decl f6 :: S2
-#16 := f6
-decl f4 :: (-> S4 S2 S3)
-decl f7 :: S2
-#19 := f7
-decl f5 :: S4
-#7 := f5
-#21 := (f4 f5 f7)
-#22 := (f3 #21 f6)
-#18 := (f4 f5 f6)
-#20 := (f3 #18 f7)
-#23 := (= #20 #22)
-#57 := (not #23)
-#17 := (= f6 f6)
-#24 := (and #17 #23)
-#25 := (not #24)
-#58 := (iff #25 #57)
-#55 := (iff #24 #23)
-#1 := true
-#50 := (and true #23)
-#53 := (iff #50 #23)
-#54 := [rewrite]: #53
-#51 := (iff #24 #50)
-#48 := (iff #17 true)
-#49 := [rewrite]: #48
-#52 := [monotonicity #49]: #51
-#56 := [trans #52 #54]: #55
-#59 := [monotonicity #56]: #58
-#47 := [asserted]: #25
-#62 := [mp #47 #59]: #57
-#8 := (:var 1 S2)
-#10 := (:var 0 S2)
-#12 := (f4 f5 #10)
-#13 := (f3 #12 #8)
-#546 := (pattern #13)
-#9 := (f4 f5 #8)
-#11 := (f3 #9 #10)
-#545 := (pattern #11)
-#14 := (= #11 #13)
-#547 := (forall (vars (?v0 S2) (?v1 S2)) (:pat #545 #546) #14)
-#15 := (forall (vars (?v0 S2) (?v1 S2)) #14)
-#550 := (iff #15 #547)
-#548 := (iff #14 #14)
-#549 := [refl]: #548
-#551 := [quant-intro #549]: #550
-#70 := (~ #15 #15)
-#68 := (~ #14 #14)
-#69 := [refl]: #68
-#71 := [nnf-pos #69]: #70
-#46 := [asserted]: #15
-#61 := [mp~ #46 #71]: #15
-#552 := [mp #61 #551]: #547
-#130 := (not #547)
-#216 := (or #130 #23)
-#131 := [quant-inst #16 #19]: #216
-[unit-resolution #131 #552 #62]: false
-unsat
+#2 := false
+decl f3 :: (-> S3 S2 S2)
+decl f6 :: S2
+#16 := f6
+decl f4 :: (-> S4 S2 S3)
+decl f7 :: S2
+#19 := f7
+decl f5 :: S4
+#7 := f5
+#21 := (f4 f5 f7)
+#22 := (f3 #21 f6)
+#18 := (f4 f5 f6)
+#20 := (f3 #18 f7)
+#23 := (= #20 #22)
+#57 := (not #23)
+#17 := (= f6 f6)
+#24 := (and #17 #23)
+#25 := (not #24)
+#58 := (iff #25 #57)
+#55 := (iff #24 #23)
+#1 := true
+#50 := (and true #23)
+#53 := (iff #50 #23)
+#54 := [rewrite]: #53
+#51 := (iff #24 #50)
+#48 := (iff #17 true)
+#49 := [rewrite]: #48
+#52 := [monotonicity #49]: #51
+#56 := [trans #52 #54]: #55
+#59 := [monotonicity #56]: #58
+#47 := [asserted]: #25
+#62 := [mp #47 #59]: #57
+#8 := (:var 1 S2)
+#10 := (:var 0 S2)
+#12 := (f4 f5 #10)
+#13 := (f3 #12 #8)
+#546 := (pattern #13)
+#9 := (f4 f5 #8)
+#11 := (f3 #9 #10)
+#545 := (pattern #11)
+#14 := (= #11 #13)
+#547 := (forall (vars (?v0 S2) (?v1 S2)) (:pat #545 #546) #14)
+#15 := (forall (vars (?v0 S2) (?v1 S2)) #14)
+#550 := (iff #15 #547)
+#548 := (iff #14 #14)
+#549 := [refl]: #548
+#551 := [quant-intro #549]: #550
+#70 := (~ #15 #15)
+#68 := (~ #14 #14)
+#69 := [refl]: #68
+#71 := [nnf-pos #69]: #70
+#46 := [asserted]: #15
+#61 := [mp~ #46 #71]: #15
+#552 := [mp #61 #551]: #547
+#130 := (not #547)
+#216 := (or #130 #23)
+#131 := [quant-inst #16 #19]: #216
+[unit-resolution #131 #552 #62]: false
+unsat
+53042978396971446eabf6039172bd47071e3fd3 67 0
+#2 := false
+decl f1 :: S1
+#3 := f1
+decl f3 :: (-> Int S1)
+decl ?v0!0 :: Int
+#55 := ?v0!0
+#56 := (f3 ?v0!0)
+#57 := (= #56 f1)
+#58 := (not #57)
+decl ?v1!1 :: Int
+#66 := ?v1!1
+#67 := (f3 ?v1!1)
+#68 := (= #67 f1)
+#69 := (or #57 #68)
+#70 := (not #69)
+#86 := (and #57 #70)
+#63 := (not #58)
+#76 := (and #63 #70)
+#87 := (iff #76 #86)
+#84 := (iff #63 #57)
+#85 := [rewrite]: #84
+#88 := [monotonicity #85]: #87
+#7 := (:var 0 Int)
+#8 := (f3 #7)
+#9 := (= #8 f1)
+#10 := (:var 1 Int)
+#11 := (f3 #10)
+#12 := (= #11 f1)
+#13 := (or #12 #9)
+#14 := (forall (vars (?v1 Int)) #13)
+#39 := (not #9)
+#40 := (or #39 #14)
+#43 := (forall (vars (?v0 Int)) #40)
+#46 := (not #43)
+#79 := (~ #46 #76)
+#50 := (or #57 #9)
+#52 := (forall (vars (?v1 Int)) #50)
+#59 := (or #58 #52)
+#60 := (not #59)
+#77 := (~ #60 #76)
+#71 := (not #52)
+#72 := (~ #71 #70)
+#73 := [sk]: #72
+#64 := (~ #63 #63)
+#65 := [refl]: #64
+#78 := [nnf-neg #65 #73]: #77
+#61 := (~ #46 #60)
+#62 := [sk]: #61
+#80 := [trans #62 #78]: #79
+#15 := (implies #9 #14)
+#16 := (forall (vars (?v0 Int)) #15)
+#17 := (not #16)
+#47 := (iff #17 #46)
+#44 := (iff #16 #43)
+#41 := (iff #15 #40)
+#42 := [rewrite]: #41
+#45 := [quant-intro #42]: #44
+#48 := [monotonicity #45]: #47
+#38 := [asserted]: #17
+#51 := [mp #38 #48]: #46
+#81 := [mp~ #51 #80]: #76
+#82 := [mp #81 #88]: #86
+#89 := [and-elim #82]: #70
+#90 := [not-or-elim #89]: #58
+#83 := [and-elim #82]: #57
+[unit-resolution #83 #90]: false
+unsat
 d97439af6f5bc7794ab403d0f6cc318d103016a1 1288 0
-#2 := false
-decl f1 :: S1
-#3 := f1
-decl f9 :: S1
-#25 := f9
-#26 := (= f9 f1)
-decl f20 :: S1
-#59 := f20
-#60 := (= f20 f1)
-decl f21 :: S1
-#61 := f21
-#62 := (= f21 f1)
-#249 := (not #62)
-decl f31 :: S1
-#97 := f31
-#98 := (= f31 f1)
-decl f62 :: S1
-#207 := f62
-#208 := (= f62 f1)
-decl f58 :: S1
-#189 := f58
-#190 := (= f58 f1)
-#388 := (not #190)
-decl f47 :: S1
-#151 := f47
-#152 := (= f47 f1)
-#289 := (not #98)
-#980 := [hypothesis]: #289
-decl f46 :: S1
-#149 := f46
-#150 := (= f46 f1)
-#346 := (not #150)
-decl f48 :: S1
-#156 := f48
-#157 := (= f48 f1)
-decl f57 :: S1
-#187 := f57
-#188 := (= f57 f1)
-#387 := (not #188)
-decl f45 :: S1
-#144 := f45
-#145 := (= f45 f1)
-#339 := (not #145)
-decl f42 :: S1
-#135 := f42
-#136 := (= f42 f1)
-#1467 := (or #136 #98)
-decl f40 :: S1
-#128 := f40
-#129 := (= f40 f1)
-#330 := (not #136)
-#1095 := [hypothesis]: #330
-decl f32 :: S1
-#99 := f32
-#100 := (= f32 f1)
-#290 := (not #100)
-decl f16 :: S1
-#46 := f16
-#47 := (= f16 f1)
-decl f17 :: S1
-#48 := f17
-#49 := (= f17 f1)
-#236 := (not #49)
-decl f28 :: S1
-#86 := f28
-#87 := (= f28 f1)
-#1450 := (or #87 #98 #136)
-decl f29 :: S1
-#90 := f29
-#91 := (= f29 f1)
-#281 := (not #91)
-#322 := (not #129)
-#277 := (not #87)
-#867 := [hypothesis]: #277
-#1427 := (or #322 #87)
-decl f51 :: S1
-#166 := f51
-#167 := (= f51 f1)
-#363 := (not #167)
-decl f54 :: S1
-#175 := f54
-#176 := (= f54 f1)
-decl f56 :: S1
-#182 := f56
-#183 := (= f56 f1)
-#380 := (not #183)
-#372 := (not #176)
-#1160 := [hypothesis]: #372
-#1189 := (or #388 #176)
-decl f18 :: S1
-#52 := f18
-#53 := (= f18 f1)
-decl f33 :: S1
-#104 := f33
-#105 := (= f33 f1)
-#297 := (not #105)
-decl f36 :: S1
-#113 := f36
-#114 := (= f36 f1)
-#347 := (not #152)
-#1155 := [hypothesis]: #190
-#393 := (or #388 #347)
-#730 := [asserted]: #393
-#1156 := [unit-resolution #730 #1155]: #347
-#389 := (or #387 #388)
-#726 := [asserted]: #389
-#1157 := [unit-resolution #726 #1155]: #387
-#194 := (or #188 #157)
-decl f6 :: S1
-#16 := f6
-#17 := (= f6 f1)
-#579 := (or #17 #188 #157)
-#840 := (iff #579 #194)
-#835 := (or false #188 #157)
-#838 := (iff #835 #194)
-#839 := [rewrite]: #838
-#836 := (iff #579 #835)
-#759 := (iff #17 false)
-#18 := (not #17)
-#439 := [asserted]: #18
-#760 := [iff-false #439]: #759
-#837 := [monotonicity #760]: #836
-#841 := [trans #837 #839]: #840
-#195 := (or #17 #194)
-#580 := (iff #195 #579)
-#581 := [rewrite]: #580
-#568 := [asserted]: #195
-#582 := [mp #568 #581]: #579
-#842 := [mp #582 #841]: #194
-#1158 := [unit-resolution #842 #1157]: #157
-#354 := (not #157)
-#355 := (or #354 #346)
-#702 := [asserted]: #355
-#1159 := [unit-resolution #702 #1158]: #346
-decl f44 :: S1
-#142 := f44
-#143 := (= f44 f1)
-#338 := (not #143)
-decl f61 :: S1
-#203 := f61
-#204 := (= f61 f1)
-decl f60 :: S1
-#199 := f60
-#200 := (= f60 f1)
-#400 := (not #200)
-decl f37 :: S1
-#118 := f37
-#119 := (= f37 f1)
-#313 := (not #119)
-#356 := (or #354 #313)
-#703 := [asserted]: #356
-#1161 := [unit-resolution #703 #1158]: #313
-#983 := (or #400 #150 #152 #119)
-#248 := (not #60)
-decl f23 :: S1
-#68 := f23
-#69 := (= f23 f1)
-decl f34 :: S1
-#106 := f34
-#107 := (= f34 f1)
-#298 := (not #107)
-#1051 := [hypothesis]: #347
-#1052 := [hypothesis]: #346
-#306 := (not #114)
-decl f25 :: S1
-#75 := f25
-#76 := (= f25 f1)
-decl f39 :: S1
-#124 := f39
-#125 := (= f39 f1)
-#318 := (not #125)
-decl f50 :: S1
-#162 := f50
-#163 := (= f50 f1)
-decl f59 :: S1
-#196 := f59
-#197 := (= f59 f1)
-#398 := (not #197)
-#1024 := [hypothesis]: #200
-#401 := (or #400 #398)
-#736 := [asserted]: #401
-#1021 := [unit-resolution #736 #1024]: #398
-#198 := (or #197 #163)
-#573 := [asserted]: #198
-#1022 := [unit-resolution #573 #1021]: #163
-#359 := (not #163)
-#362 := (or #359 #318)
-#707 := [asserted]: #362
-#1019 := [unit-resolution #707 #1022]: #318
-decl f26 :: S1
-#80 := f26
-#81 := (= f26 f1)
-#1153 := [hypothesis]: #313
-decl f35 :: S1
-#111 := f35
-#112 := (= f35 f1)
-#305 := (not #112)
-decl f43 :: S1
-#137 := f43
-#138 := (= f43 f1)
-#331 := (not #138)
-decl f52 :: S1
-#168 := f52
-#169 := (= f52 f1)
-#364 := (not #169)
-#402 := (or #400 #364)
-#737 := [asserted]: #402
-#1020 := [unit-resolution #737 #1024]: #364
-decl f49 :: S1
-#160 := f49
-#161 := (= f49 f1)
-#358 := (not #161)
-#360 := (or #358 #359)
-#705 := [asserted]: #360
-#1017 := [unit-resolution #705 #1022]: #358
-decl f41 :: S1
-#130 := f41
-#131 := (= f41 f1)
-#323 := (not #131)
-#1126 := (or #323 #119 #125)
-#272 := (not #81)
-decl f15 :: S1
-#43 := f15
-#44 := (= f15 f1)
-decl f13 :: S1
-#37 := f13
-#38 := (= f13 f1)
-#228 := (not #38)
-decl f11 :: S1
-#31 := f11
-#32 := (= f11 f1)
-#218 := (not #26)
-decl f7 :: S1
-#19 := f7
-#20 := (= f7 f1)
-decl f8 :: S1
-#21 := f8
-#22 := (= f8 f1)
-#214 := (not #22)
-#1154 := [hypothesis]: #318
-decl f38 :: S1
-#122 := f38
-#123 := (= f38 f1)
-#317 := (not #123)
-#1151 := [hypothesis]: #131
-#327 := (or #323 #317)
-#681 := [asserted]: #327
-#1152 := [unit-resolution #681 #1151]: #317
-#524 := (or #123 #125 #87)
-#126 := (or #125 #87)
-#127 := (or #123 #126)
-#525 := (iff #127 #524)
-#526 := [rewrite]: #525
-#513 := [asserted]: #127
-#527 := [mp #513 #526]: #524
-#1149 := [unit-resolution #527 #1152 #1154]: #87
-#280 := (or #277 #236)
-#647 := [asserted]: #280
-#1150 := [unit-resolution #647 #1149]: #236
-#783 := (or #47 #49)
-decl f4 :: S1
-#10 := f4
-#11 := (= f4 f1)
-#464 := (or #47 #49 #11)
-#786 := (iff #464 #783)
-#780 := (or #47 #49 false)
-#784 := (iff #780 #783)
-#785 := [rewrite]: #784
-#781 := (iff #464 #780)
-#755 := (iff #11 false)
-#12 := (not #11)
-#437 := [asserted]: #12
-#756 := [iff-false #437]: #755
-#782 := [monotonicity #756]: #781
-#787 := [trans #782 #785]: #786
-#50 := (or #49 #11)
-#51 := (or #47 #50)
-#465 := (iff #51 #464)
-#466 := [rewrite]: #465
-#457 := [asserted]: #51
-#467 := [mp #457 #466]: #464
-#788 := [mp #467 #787]: #783
-#1147 := [unit-resolution #788 #1150]: #47
-#235 := (not #47)
-#247 := (or #235 #214)
-#623 := [asserted]: #247
-#1148 := [unit-resolution #623 #1147]: #214
-#764 := (or #20 #22)
-decl f3 :: S1
-#7 := f3
-#8 := (= f3 f1)
-#443 := (or #20 #22 #8)
-#767 := (iff #443 #764)
-#761 := (or #20 #22 false)
-#765 := (iff #761 #764)
-#766 := [rewrite]: #765
-#762 := (iff #443 #761)
-#752 := (iff #8 false)
-#9 := (not #8)
-#436 := [asserted]: #9
-#754 := [iff-false #436]: #752
-#763 := [monotonicity #754]: #762
-#768 := [trans #763 #766]: #767
-#23 := (or #22 #8)
-#24 := (or #20 #23)
-#444 := (iff #24 #443)
-#445 := [rewrite]: #444
-#440 := [asserted]: #24
-#446 := [mp #440 #445]: #443
-#769 := [mp #446 #768]: #764
-#1145 := [unit-resolution #769 #1148]: #20
-#213 := (not #20)
-#221 := (or #218 #213)
-#606 := [asserted]: #221
-#1146 := [unit-resolution #606 #1145]: #218
-decl f12 :: S1
-#33 := f12
-#34 := (= f12 f1)
-#224 := (not #34)
-decl f30 :: S1
-#92 := f30
-#93 := (= f30 f1)
-#282 := (not #93)
-#328 := (or #323 #282)
-#682 := [asserted]: #328
-#1143 := [unit-resolution #682 #1151]: #282
-decl f27 :: S1
-#84 := f27
-#85 := (= f27 f1)
-#276 := (not #85)
-#278 := (or #276 #277)
-#645 := [asserted]: #278
-#1144 := [unit-resolution #645 #1149]: #276
-decl f19 :: S1
-#54 := f19
-#55 := (= f19 f1)
-#241 := (not #55)
-#245 := (or #241 #235)
-#621 := [asserted]: #245
-#1141 := [unit-resolution #621 #1147]: #241
-#499 := (or #91 #93 #85 #55)
-#94 := (or #85 #55)
-#95 := (or #93 #94)
-#96 := (or #91 #95)
-#500 := (iff #96 #499)
-#501 := [rewrite]: #500
-#488 := [asserted]: #96
-#502 := [mp #488 #501]: #499
-#1142 := [unit-resolution #502 #1141 #1144 #1143]: #91
-#296 := (or #281 #249)
-#659 := [asserted]: #296
-#1139 := [unit-resolution #659 #1142]: #249
-#240 := (not #53)
-#243 := (or #240 #235)
-#619 := [asserted]: #243
-#1140 := [unit-resolution #619 #1147]: #240
-decl f10 :: S1
-#27 := f10
-#28 := (= f10 f1)
-#219 := (not #28)
-#222 := (or #219 #213)
-#607 := [asserted]: #222
-#1137 := [unit-resolution #607 #1145]: #219
-#474 := (or #60 #62 #53 #28)
-#63 := (or #53 #28)
-#64 := (or #62 #63)
-#65 := (or #60 #64)
-#475 := (iff #65 #474)
-#476 := [rewrite]: #475
-#463 := [asserted]: #65
-#477 := [mp #463 #476]: #474
-#1138 := [unit-resolution #477 #1137 #1140 #1139]: #60
-#263 := (or #248 #224)
-#635 := [asserted]: #263
-#1135 := [unit-resolution #635 #1138]: #224
-#453 := (or #32 #34 #26)
-#35 := (or #34 #26)
-#36 := (or #32 #35)
-#454 := (iff #36 #453)
-#455 := [rewrite]: #454
-#442 := [asserted]: #36
-#456 := [mp #442 #455]: #453
-#1136 := [unit-resolution #456 #1135 #1146]: #32
-#223 := (not #32)
-#231 := (or #228 #223)
-#612 := [asserted]: #231
-#1133 := [unit-resolution #612 #1136]: #228
-#45 := (or #44 #38)
-#452 := [asserted]: #45
-#1134 := [unit-resolution #452 #1133]: #44
-#233 := (not #44)
-#274 := (or #272 #233)
-#643 := [asserted]: #274
-#1131 := [unit-resolution #643 #1134]: #272
-#519 := (or #119 #112 #81)
-#120 := (or #112 #81)
-#121 := (or #119 #120)
-#520 := (iff #121 #519)
-#521 := [rewrite]: #520
-#508 := [asserted]: #121
-#522 := [mp #508 #521]: #519
-#1132 := [unit-resolution #522 #1131 #1153]: #112
-decl f14 :: S1
-#39 := f14
-#40 := (= f14 f1)
-#229 := (not #40)
-#232 := (or #229 #223)
-#613 := [asserted]: #232
-#1129 := [unit-resolution #613 #1136]: #229
-decl f22 :: S1
-#66 := f22
-#67 := (= f22 f1)
-#256 := (not #67)
-#259 := (or #256 #248)
-#631 := [asserted]: #259
-#1130 := [unit-resolution #631 #1138]: #256
-decl f24 :: S1
-#73 := f24
-#74 := (= f24 f1)
-#264 := (not #74)
-#275 := (or #264 #233)
-#644 := [asserted]: #275
-#1127 := [unit-resolution #644 #1134]: #264
-#484 := (or #74 #76 #67 #40)
-#77 := (or #67 #40)
-#78 := (or #76 #77)
-#79 := (or #74 #78)
-#485 := (iff #79 #484)
-#486 := [rewrite]: #485
-#473 := [asserted]: #79
-#487 := [mp #473 #486]: #484
-#1128 := [unit-resolution #487 #1127 #1130 #1129]: #76
-#265 := (not #76)
-#309 := (or #305 #265)
-#668 := [asserted]: #309
-#1125 := [unit-resolution #668 #1128 #1132]: false
-#1123 := [lemma #1125]: #1126
-#1018 := [unit-resolution #1123 #1019 #1153]: #323
-#559 := (or #167 #169 #161 #131)
-#170 := (or #161 #131)
-#171 := (or #169 #170)
-#172 := (or #167 #171)
-#560 := (iff #172 #559)
-#561 := [rewrite]: #560
-#548 := [asserted]: #172
-#562 := [mp #548 #561]: #559
-#1015 := [unit-resolution #562 #1018 #1017 #1020]: #167
-#378 := (or #363 #331)
-#719 := [asserted]: #378
-#1016 := [unit-resolution #719 #1015]: #331
-#1026 := (or #305 #138 #125 #150 #152)
-#1049 := [hypothesis]: #112
-#307 := (or #305 #306)
-#666 := [asserted]: #307
-#1050 := [unit-resolution #666 #1049]: #306
-#544 := (or #150 #152 #143 #114)
-#153 := (or #143 #114)
-#154 := (or #152 #153)
-#155 := (or #150 #154)
-#545 := (iff #155 #544)
-#546 := [rewrite]: #545
-#533 := [asserted]: #155
-#547 := [mp #533 #546]: #544
-#1047 := [unit-resolution #547 #1050 #1052 #1051]: #143
-#342 := (or #338 #298)
-#692 := [asserted]: #342
-#1048 := [unit-resolution #692 #1047]: #298
-#308 := (or #305 #297)
-#667 := [asserted]: #308
-#1045 := [unit-resolution #667 #1049]: #297
-#341 := (or #338 #330)
-#691 := [asserted]: #341
-#1046 := [unit-resolution #691 #1047]: #330
-#1096 := [hypothesis]: #331
-#1063 := (or #277 #138 #136 #105 #107)
-#1083 := [hypothesis]: #87
-#1084 := [unit-resolution #647 #1083]: #236
-#1081 := [unit-resolution #788 #1084]: #47
-#1082 := [unit-resolution #623 #1081]: #214
-#1079 := [unit-resolution #769 #1082]: #20
-#1080 := [unit-resolution #607 #1079]: #219
-#1077 := [unit-resolution #619 #1081]: #240
-#1078 := [hypothesis]: #298
-#1075 := [hypothesis]: #297
-#1076 := [unit-resolution #621 #1081]: #241
-#1073 := [unit-resolution #645 #1083]: #276
-#1085 := (or #289 #85 #55 #138 #136)
-#1093 := [hypothesis]: #98
-#291 := (or #289 #290)
-#654 := [asserted]: #291
-#1094 := [unit-resolution #654 #1093]: #290
-#534 := (or #136 #138 #129 #100)
-#139 := (or #129 #100)
-#140 := (or #138 #139)
-#141 := (or #136 #140)
-#535 := (iff #141 #534)
-#536 := [rewrite]: #535
-#523 := [asserted]: #141
-#537 := [mp #523 #536]: #534
-#1091 := [unit-resolution #537 #1094 #1096 #1095]: #129
-#1092 := [hypothesis]: #241
-#1089 := [hypothesis]: #276
-#292 := (or #289 #281)
-#655 := [asserted]: #292
-#1090 := [unit-resolution #655 #1093]: #281
-#1087 := [unit-resolution #502 #1090 #1089 #1092]: #93
-#326 := (or #322 #282)
-#680 := [asserted]: #326
-#1088 := [unit-resolution #680 #1087 #1091]: false
-#1086 := [lemma #1088]: #1085
-#1074 := [unit-resolution #1086 #1073 #1076 #1096 #1095]: #289
-#509 := (or #105 #107 #98 #69)
-#108 := (or #98 #69)
-#109 := (or #107 #108)
-#110 := (or #105 #109)
-#510 := (iff #110 #509)
-#511 := [rewrite]: #510
-#498 := [asserted]: #110
-#512 := [mp #498 #511]: #509
-#1071 := [unit-resolution #512 #1074 #1075 #1078]: #69
-#257 := (not #69)
-#261 := (or #257 #248)
-#633 := [asserted]: #261
-#1072 := [unit-resolution #633 #1071]: #248
-#1069 := [unit-resolution #477 #1072 #1077 #1080]: #62
-#295 := (or #290 #249)
-#658 := [asserted]: #295
-#1070 := [unit-resolution #658 #1069]: #290
-#1067 := [unit-resolution #537 #1070 #1096 #1095]: #129
-#1068 := [unit-resolution #659 #1069]: #281
-#1065 := [unit-resolution #502 #1068 #1073 #1076]: #93
-#1066 := [unit-resolution #680 #1065 #1067]: false
-#1064 := [lemma #1066]: #1063
-#1043 := [unit-resolution #1064 #1046 #1096 #1045 #1048]: #277
-#1044 := [unit-resolution #527 #1043 #1154]: #123
-#325 := (or #322 #317)
-#679 := [asserted]: #325
-#1041 := [unit-resolution #679 #1044]: #322
-#1042 := [unit-resolution #537 #1041 #1096 #1046]: #100
-#1039 := [unit-resolution #654 #1042]: #289
-#1040 := [unit-resolution #512 #1039 #1045 #1048]: #69
-#1037 := [unit-resolution #633 #1040]: #248
-#1038 := [unit-resolution #658 #1042]: #249
-#294 := (or #290 #281)
-#657 := [asserted]: #294
-#1035 := [unit-resolution #657 #1042]: #281
-#329 := (or #317 #282)
-#683 := [asserted]: #329
-#1036 := [unit-resolution #683 #1044]: #282
-#1053 := (or #235 #62 #60)
-#1061 := [hypothesis]: #248
-#1062 := [hypothesis]: #249
-#1059 := [hypothesis]: #47
-#1060 := [unit-resolution #619 #1059]: #240
-#1057 := [unit-resolution #477 #1060 #1062 #1061]: #28
-#1058 := [unit-resolution #623 #1059]: #214
-#1055 := [unit-resolution #769 #1058]: #20
-#1056 := [unit-resolution #607 #1055 #1057]: false
-#1054 := [lemma #1056]: #1053
-#1033 := [unit-resolution #1054 #1038 #1037]: #235
-#1034 := [unit-resolution #788 #1033]: #49
-#279 := (or #276 #236)
-#646 := [asserted]: #279
-#1031 := [unit-resolution #646 #1034]: #276
-#1032 := [unit-resolution #502 #1031 #1036 #1035]: #55
-#242 := (or #240 #241)
-#618 := [asserted]: #242
-#1029 := [unit-resolution #618 #1032]: #240
-#1030 := [unit-resolution #477 #1029 #1038 #1037]: #28
-#246 := (or #241 #214)
-#622 := [asserted]: #246
-#1027 := [unit-resolution #622 #1032]: #214
-#1028 := [unit-resolution #769 #1027]: #20
-#1025 := [unit-resolution #607 #1028 #1030]: false
-#1023 := [lemma #1025]: #1026
-#1013 := [unit-resolution #1023 #1016 #1019 #1052 #1051]: #305
-#1014 := [unit-resolution #522 #1013 #1153]: #81
-#1097 := (or #272 #125 #76)
-#1124 := [hypothesis]: #81
-#1121 := [unit-resolution #643 #1124]: #233
-#1122 := [unit-resolution #452 #1121]: #38
-#1119 := [unit-resolution #612 #1122]: #223
-#273 := (or #272 #264)
-#642 := [asserted]: #273
-#1120 := [unit-resolution #642 #1124]: #264
-#1117 := [hypothesis]: #265
-#230 := (or #228 #229)
-#611 := [asserted]: #230
-#1118 := [unit-resolution #611 #1122]: #229
-#1115 := [unit-resolution #487 #1118 #1117 #1120]: #67
-#260 := (or #256 #224)
-#632 := [asserted]: #260
-#1116 := [unit-resolution #632 #1115]: #224
-#1113 := [unit-resolution #456 #1116 #1119]: #26
-#220 := (or #218 #219)
-#605 := [asserted]: #220
-#1114 := [unit-resolution #605 #1113]: #219
-#1111 := [unit-resolution #631 #1115]: #248
-#1112 := [unit-resolution #606 #1113]: #213
-#1109 := [unit-resolution #769 #1112]: #22
-#244 := (or #240 #214)
-#620 := [asserted]: #244
-#1110 := [unit-resolution #620 #1109]: #240
-#1107 := [unit-resolution #477 #1110 #1111 #1114]: #62
-#1108 := [unit-resolution #659 #1107]: #281
-#1105 := [unit-resolution #622 #1109]: #241
-#1106 := [unit-resolution #623 #1109]: #235
-#1103 := [unit-resolution #788 #1106]: #49
-#1104 := [unit-resolution #646 #1103]: #276
-#1101 := [unit-resolution #502 #1104 #1105 #1108]: #93
-#1102 := [unit-resolution #647 #1103]: #277
-#1099 := [unit-resolution #527 #1102 #1154]: #123
-#1100 := [unit-resolution #683 #1099 #1101]: false
-#1098 := [lemma #1100]: #1097
-#1011 := [unit-resolution #1098 #1014 #1019]: #76
-#311 := (or #306 #265)
-#670 := [asserted]: #311
-#1012 := [unit-resolution #670 #1011]: #306
-#1009 := [unit-resolution #547 #1012 #1052 #1051]: #143
-#1010 := [unit-resolution #692 #1009]: #298
-#312 := (or #297 #265)
-#671 := [asserted]: #312
-#1007 := [unit-resolution #671 #1011]: #297
-#1008 := [unit-resolution #691 #1009]: #330
-#1005 := [unit-resolution #1064 #1008 #1016 #1007 #1010]: #277
-#1006 := [unit-resolution #527 #1005 #1019]: #123
-#1003 := [unit-resolution #679 #1006]: #322
-#1004 := [unit-resolution #537 #1003 #1016 #1008]: #100
-#1001 := [unit-resolution #654 #1004]: #289
-#1002 := [unit-resolution #512 #1001 #1007 #1010]: #69
-#999 := [unit-resolution #633 #1002]: #248
-#1000 := [unit-resolution #658 #1004]: #249
-#997 := [unit-resolution #643 #1014]: #233
-#998 := [unit-resolution #452 #997]: #38
-#995 := [unit-resolution #612 #998]: #223
-#262 := (or #257 #224)
-#634 := [asserted]: #262
-#996 := [unit-resolution #634 #1002]: #224
-#993 := [unit-resolution #456 #996 #995]: #26
-#994 := [unit-resolution #605 #993]: #219
-#991 := [unit-resolution #477 #994 #1000 #999]: #53
-#992 := [unit-resolution #657 #1004]: #281
-#989 := [unit-resolution #683 #1006]: #282
-#990 := [unit-resolution #1054 #999 #1000]: #235
-#987 := [unit-resolution #788 #990]: #49
-#988 := [unit-resolution #646 #987]: #276
-#985 := [unit-resolution #502 #988 #989 #992]: #55
-#986 := [unit-resolution #618 #985 #991]: false
-#984 := [lemma #986]: #983
-#1162 := [unit-resolution #984 #1159 #1156 #1161]: #400
-#590 := (or #204 #200 #176)
-#205 := (or #200 #176)
-#206 := (or #204 #205)
-#591 := (iff #206 #590)
-#592 := [rewrite]: #591
-#583 := [asserted]: #206
-#593 := [mp #583 #592]: #590
-#1163 := [unit-resolution #593 #1162 #1160]: #204
-#404 := (not #204)
-#411 := (or #404 #380)
-#744 := [asserted]: #411
-#1164 := [unit-resolution #744 #1163]: #380
-decl f55 :: S1
-#180 := f55
-#181 := (= f55 f1)
-#379 := (not #181)
-#392 := (or #388 #379)
-#729 := [asserted]: #392
-#1165 := [unit-resolution #729 #1155]: #379
-decl f53 :: S1
-#173 := f53
-#174 := (= f53 f1)
-#371 := (not #174)
-#913 := (or #248 #181 #183 #150 #152 #119)
-#937 := [hypothesis]: #60
-#938 := [unit-resolution #631 #937]: #256
-#939 := (or #306 #67 #119)
-#971 := [hypothesis]: #256
-#950 := [hypothesis]: #114
-#947 := [unit-resolution #670 #950]: #265
-#948 := [unit-resolution #666 #950]: #305
-#945 := [unit-resolution #522 #948 #1153]: #81
-#946 := [unit-resolution #642 #945]: #264
-#943 := [unit-resolution #487 #946 #947 #971]: #40
-#944 := [unit-resolution #643 #945]: #233
-#941 := [unit-resolution #452 #944]: #38
-#942 := [unit-resolution #611 #941 #943]: false
-#940 := [lemma #942]: #939
-#935 := [unit-resolution #940 #938 #1153]: #306
-#936 := [unit-resolution #547 #935 #1052 #1051]: #143
-#933 := [unit-resolution #691 #936]: #330
-#934 := [unit-resolution #635 #937]: #224
-#952 := (or #223 #67 #119)
-#959 := [hypothesis]: #32
-#960 := [unit-resolution #612 #959]: #228
-#957 := [unit-resolution #452 #960]: #44
-#958 := [unit-resolution #643 #957]: #272
-#955 := [unit-resolution #522 #958 #1153]: #112
-#956 := [unit-resolution #613 #959]: #229
-#953 := [unit-resolution #644 #957]: #264
-#954 := [unit-resolution #487 #953 #956 #971]: #76
-#951 := [unit-resolution #668 #954 #955]: false
-#949 := [lemma #951]: #952
-#931 := [unit-resolution #949 #938 #1153]: #223
-#932 := [unit-resolution #456 #931 #934]: #26
-#929 := [unit-resolution #606 #932]: #213
-#930 := [unit-resolution #769 #929]: #22
-#927 := [unit-resolution #622 #930]: #241
-#928 := [unit-resolution #623 #930]: #235
-#925 := [unit-resolution #788 #928]: #49
-#926 := [unit-resolution #646 #925]: #276
-#961 := (or #297 #67 #119)
-#972 := [hypothesis]: #105
-#969 := [unit-resolution #671 #972]: #265
-#970 := [unit-resolution #667 #972]: #305
-#967 := [unit-resolution #522 #970 #1153]: #81
-#968 := [unit-resolution #642 #967]: #264
-#965 := [unit-resolution #487 #968 #969 #971]: #40
-#966 := [unit-resolution #643 #967]: #233
-#963 := [unit-resolution #452 #966]: #38
-#964 := [unit-resolution #611 #963 #965]: false
-#962 := [lemma #964]: #961
-#923 := [unit-resolution #962 #938 #1153]: #297
-#924 := [unit-resolution #633 #937]: #257
-#921 := [unit-resolution #692 #936]: #298
-#922 := [unit-resolution #512 #921 #924 #923]: #98
-#919 := [hypothesis]: #380
-#920 := [hypothesis]: #379
-#340 := (or #338 #339)
-#690 := [asserted]: #340
-#917 := [unit-resolution #690 #936]: #339
-#569 := (or #181 #183 #174 #145)
-#184 := (or #174 #145)
-#185 := (or #183 #184)
-#186 := (or #181 #185)
-#570 := (iff #186 #569)
-#571 := [rewrite]: #570
-#558 := [asserted]: #186
-#572 := [mp #558 #571]: #569
-#918 := [unit-resolution #572 #917 #920 #919]: #174
-#375 := (or #371 #331)
-#716 := [asserted]: #375
-#915 := [unit-resolution #716 #918]: #331
-#916 := [unit-resolution #1086 #915 #922 #926 #927 #933]: false
-#914 := [lemma #916]: #913
-#1166 := [unit-resolution #914 #1165 #1164 #1159 #1156 #1161]: #248
-#753 := (or #371 #150 #152 #119 #60)
-#793 := [hypothesis]: #174
-#374 := (or #371 #363)
-#715 := [asserted]: #374
-#794 := [unit-resolution #715 #793]: #363
-#791 := [unit-resolution #716 #793]: #331
-#802 := (or #236 #119 #150 #152 #138 #60 #167)
-#881 := [hypothesis]: #363
-#819 := [hypothesis]: #49
-#820 := [unit-resolution #647 #819]: #277
-#834 := (or #322 #167 #87)
-#849 := [hypothesis]: #129
-#324 := (or #322 #323)
-#678 := [asserted]: #324
-#850 := [unit-resolution #678 #849]: #323
-#847 := [unit-resolution #679 #849]: #317
-#848 := [unit-resolution #527 #847 #867]: #125
-#361 := (or #358 #318)
-#706 := [asserted]: #361
-#845 := [unit-resolution #706 #848]: #358
-#846 := [unit-resolution #562 #845 #881 #850]: #169
-#843 := [unit-resolution #707 #848]: #359
-#844 := [unit-resolution #573 #843]: #197
-#403 := (or #398 #364)
-#738 := [asserted]: #403
-#833 := [unit-resolution #738 #844 #846]: false
-#831 := [lemma #833]: #834
-#817 := [unit-resolution #831 #820 #881]: #322
-#818 := [unit-resolution #646 #819]: #276
-#851 := (or #282 #167 #87)
-#869 := [hypothesis]: #93
-#870 := [unit-resolution #682 #869]: #323
-#868 := [unit-resolution #683 #869]: #317
-#865 := [unit-resolution #527 #868 #867]: #125
-#866 := [unit-resolution #706 #865]: #358
-#863 := [unit-resolution #562 #866 #881 #870]: #169
-#864 := [unit-resolution #707 #865]: #359
-#861 := [unit-resolution #573 #864]: #197
-#862 := [unit-resolution #738 #861 #863]: false
-#852 := [lemma #862]: #851
-#815 := [unit-resolution #852 #820 #881]: #282
-#821 := (or #55 #138 #129 #150 #152 #93 #85 #60 #119)
-#832 := [hypothesis]: #322
-#829 := [hypothesis]: #282
-#830 := [unit-resolution #502 #1092 #829 #1089]: #91
-#827 := [unit-resolution #657 #830]: #290
-#891 := (or #67 #55 #85 #138 #60 #150 #152 #119)
-#911 := [unit-resolution #940 #971 #1153]: #306
-#912 := [unit-resolution #547 #911 #1052 #1051]: #143
-#909 := [unit-resolution #691 #912]: #330
-#910 := [unit-resolution #949 #971 #1153]: #223
-#907 := [unit-resolution #962 #971 #1153]: #297
-#908 := [unit-resolution #692 #912]: #298
-#905 := [unit-resolution #1086 #909 #1096 #1089 #1092]: #289
-#906 := [unit-resolution #512 #905 #908 #907]: #69
-#903 := [unit-resolution #634 #906]: #224
-#904 := [unit-resolution #456 #903 #910]: #26
-#901 := [unit-resolution #605 #904]: #219
-#902 := [unit-resolution #606 #904]: #213
-#899 := [unit-resolution #769 #902]: #22
-#900 := [unit-resolution #620 #899]: #240
-#897 := [unit-resolution #477 #900 #1061 #901]: #62
-#898 := [unit-resolution #658 #897]: #290
-#895 := [unit-resolution #537 #898 #1096 #909]: #129
-#896 := [unit-resolution #659 #897]: #281
-#893 := [unit-resolution #502 #896 #1092 #1089]: #93
-#894 := [unit-resolution #680 #893 #895]: false
-#892 := [lemma #894]: #891
-#828 := [unit-resolution #892 #1092 #1089 #1096 #1061 #1052 #1051 #1153]: #67
-#258 := (or #256 #257)
-#630 := [asserted]: #258
-#825 := [unit-resolution #630 #828]: #257
-#826 := [unit-resolution #655 #830]: #289
-#973 := (or #330 #69 #98 #150 #152)
-#981 := [hypothesis]: #136
-#982 := [unit-resolution #691 #981]: #338
-#979 := [unit-resolution #547 #982 #1052 #1051]: #114
-#977 := [hypothesis]: #257
-#345 := (or #330 #298)
-#695 := [asserted]: #345
-#978 := [unit-resolution #695 #981]: #298
-#975 := [unit-resolution #512 #978 #977 #980]: #105
-#310 := (or #306 #297)
-#669 := [asserted]: #310
-#976 := [unit-resolution #669 #975 #979]: false
-#974 := [lemma #976]: #973
-#823 := [unit-resolution #974 #826 #825 #1052 #1051]: #330
-#824 := [unit-resolution #537 #823 #827 #1096 #832]: false
-#822 := [lemma #824]: #821
-#816 := [unit-resolution #822 #817 #1096 #1052 #1051 #815 #818 #1061 #1153]: #55
-#813 := [unit-resolution #618 #816]: #240
-#814 := [unit-resolution #622 #816]: #214
-#811 := [unit-resolution #769 #814]: #20
-#812 := [unit-resolution #607 #811]: #219
-#809 := [unit-resolution #477 #812 #1061 #813]: #62
-#810 := [unit-resolution #658 #809]: #290
-#807 := [unit-resolution #537 #810 #1096 #817]: #136
-#808 := [unit-resolution #691 #807]: #338
-#805 := [unit-resolution #547 #808 #1052 #1051]: #114
-#293 := (or #289 #249)
-#656 := [asserted]: #293
-#806 := [unit-resolution #656 #809]: #289
-#803 := [unit-resolution #974 #807 #806 #1052 #1051]: #69
-#804 := [unit-resolution #630 #803]: #256
-#801 := [unit-resolution #940 #804 #805 #1153]: false
-#799 := [lemma #801]: #802
-#792 := [unit-resolution #799 #791 #1052 #1051 #1153 #1061 #794]: #236
-#789 := [unit-resolution #788 #792]: #47
-#790 := [unit-resolution #1054 #789 #1061]: #62
-#778 := [unit-resolution #658 #790]: #290
-#779 := [unit-resolution #656 #790]: #289
-#795 := (or #330 #119 #150 #152 #98)
-#800 := [unit-resolution #974 #981 #980 #1052 #1051]: #69
-#797 := [unit-resolution #630 #800]: #256
-#798 := [unit-resolution #940 #797 #979 #1153]: false
-#796 := [lemma #798]: #795
-#776 := [unit-resolution #796 #779 #1052 #1051 #1153]: #330
-#777 := [unit-resolution #537 #776 #791 #778]: #129
-#774 := [unit-resolution #831 #777 #794]: #87
-#775 := [unit-resolution #659 #790]: #281
-#772 := [unit-resolution #621 #789]: #241
-#773 := [unit-resolution #680 #777]: #282
-#770 := [unit-resolution #502 #773 #772 #775]: #85
-#771 := [unit-resolution #645 #770 #774]: false
-#751 := [lemma #771]: #753
-#1167 := [unit-resolution #751 #1159 #1156 #1161 #1166]: #371
-#1168 := [unit-resolution #572 #1167 #1165 #1164]: #145
-#1169 := [unit-resolution #690 #1168]: #338
-#1170 := [unit-resolution #547 #1169 #1159 #1156]: #114
-#1171 := [unit-resolution #669 #1170]: #297
-#344 := (or #339 #298)
-#694 := [asserted]: #344
-#1172 := [unit-resolution #694 #1168]: #298
-#1173 := [unit-resolution #940 #1170 #1161]: #67
-#1174 := [unit-resolution #630 #1173]: #257
-#1175 := [unit-resolution #512 #1174 #1172 #1171]: #98
-#1176 := [unit-resolution #656 #1175]: #249
-#1177 := [unit-resolution #632 #1173]: #224
-#1178 := [unit-resolution #666 #1170]: #305
-#1179 := [unit-resolution #522 #1178 #1161]: #81
-#1180 := [unit-resolution #643 #1179]: #233
-#1181 := [unit-resolution #452 #1180]: #38
-#1182 := [unit-resolution #612 #1181]: #223
-#1183 := [unit-resolution #456 #1182 #1177]: #26
-#1184 := [unit-resolution #605 #1183]: #219
-#1185 := [unit-resolution #477 #1184 #1166 #1176]: #53
-#1186 := [unit-resolution #606 #1183]: #213
-#1187 := [unit-resolution #769 #1186]: #22
-#1188 := [unit-resolution #620 #1187 #1185]: false
-#1190 := [lemma #1188]: #1189
-#1365 := [unit-resolution #1190 #1160]: #388
-#211 := (or #208 #190)
-decl f5 :: S1
-#13 := f5
-#14 := (= f5 f1)
-#600 := (or #14 #208 #190)
-#858 := (iff #600 #211)
-#853 := (or false #208 #190)
-#856 := (iff #853 #211)
-#857 := [rewrite]: #856
-#854 := (iff #600 #853)
-#757 := (iff #14 false)
-#15 := (not #14)
-#438 := [asserted]: #15
-#758 := [iff-false #438]: #757
-#855 := [monotonicity #758]: #854
-#859 := [trans #855 #857]: #858
-#212 := (or #14 #211)
-#601 := (iff #212 #600)
-#602 := [rewrite]: #601
-#589 := [asserted]: #212
-#603 := [mp #589 #602]: #600
-#860 := [mp #603 #859]: #211
-#1366 := [unit-resolution #860 #1365]: #208
-#408 := (not #208)
-#410 := (or #408 #380)
-#743 := [asserted]: #410
-#1367 := [unit-resolution #743 #1366]: #380
-#409 := (or #408 #404)
-#742 := [asserted]: #409
-#1368 := [unit-resolution #742 #1366]: #404
-#1369 := [unit-resolution #593 #1368 #1160]: #200
-#1239 := (or #119 #183 #400)
-#1224 := [unit-resolution #1123 #1153 #1019]: #323
-#1225 := [unit-resolution #562 #1224 #1017 #1020]: #167
-#1226 := [unit-resolution #715 #1225]: #371
-#1222 := (or #379 #400 #119)
-#1216 := [hypothesis]: #181
-#390 := (or #387 #379)
-#727 := [asserted]: #390
-#1217 := [unit-resolution #727 #1216]: #387
-#1218 := [unit-resolution #842 #1217]: #157
-#394 := (or #379 #347)
-#731 := [asserted]: #394
-#1219 := [unit-resolution #731 #1216]: #347
-#1220 := [unit-resolution #984 #1219 #1024 #1153]: #150
-#1221 := [unit-resolution #702 #1220 #1218]: false
-#1223 := [lemma #1221]: #1222
-#1227 := [unit-resolution #1223 #1153 #1024]: #379
-#1228 := [unit-resolution #572 #1227 #1226 #919]: #145
-#1229 := [unit-resolution #694 #1228]: #298
-#1192 := (or #297 #125 #119)
-#1191 := [unit-resolution #1098 #967 #969 #1154]: false
-#1193 := [lemma #1191]: #1192
-#1230 := [unit-resolution #1193 #1153 #1019]: #297
-#1231 := [unit-resolution #719 #1225]: #331
-#343 := (or #339 #330)
-#693 := [asserted]: #343
-#1232 := [unit-resolution #693 #1228]: #330
-#1233 := [unit-resolution #1064 #1232 #1231 #1230 #1229]: #277
-#1234 := [unit-resolution #527 #1233 #1019]: #123
-#1214 := (or #339 #138 #119 #125 #98)
-#1194 := [hypothesis]: #145
-#1195 := [unit-resolution #693 #1194]: #330
-#1196 := [unit-resolution #694 #1194]: #298
-#1197 := [unit-resolution #1193 #1153 #1154]: #297
-#1198 := [unit-resolution #1064 #1195 #1096 #1197 #1196]: #277
-#1199 := [unit-resolution #527 #1198 #1154]: #123
-#1200 := [unit-resolution #679 #1199]: #322
-#1201 := [unit-resolution #537 #1200 #1096 #1195]: #100
-#1202 := [unit-resolution #658 #1201]: #249
-#1203 := [unit-resolution #512 #1196 #1197 #980]: #69
-#1204 := [unit-resolution #633 #1203]: #248
-#1205 := [unit-resolution #634 #1203]: #224
-#1206 := [unit-resolution #630 #1203]: #256
-#1207 := [unit-resolution #949 #1206 #1153]: #223
-#1208 := [unit-resolution #456 #1207 #1205]: #26
-#1209 := [unit-resolution #605 #1208]: #219
-#1210 := [unit-resolution #477 #1209 #1204 #1202]: #53
-#1211 := [unit-resolution #606 #1208]: #213
-#1212 := [unit-resolution #769 #1211]: #22
-#1213 := [unit-resolution #620 #1212 #1210]: false
-#1215 := [lemma #1213]: #1214
-#1235 := [unit-resolution #1215 #1228 #1153 #1019 #1231]: #98
-#1236 := [unit-resolution #654 #1235]: #290
-#1237 := [unit-resolution #537 #1236 #1231 #1232]: #129
-#1238 := [unit-resolution #679 #1237 #1234]: false
-#1240 := [lemma #1238]: #1239
-#1370 := [unit-resolution #1240 #1367 #1369]: #119
-#1371 := [unit-resolution #703 #1370]: #354
-#1372 := [unit-resolution #842 #1371]: #188
-#1373 := [unit-resolution #727 #1372]: #379
-#1374 := [unit-resolution #737 #1369]: #364
-#1375 := [unit-resolution #736 #1369]: #398
-#1376 := [unit-resolution #573 #1375]: #163
-#1377 := [unit-resolution #705 #1376]: #358
-#1378 := [unit-resolution #707 #1376]: #318
-#391 := (or #387 #347)
-#728 := [asserted]: #391
-#1379 := [unit-resolution #728 #1372]: #347
-#357 := (or #346 #313)
-#704 := [asserted]: #357
-#1380 := [unit-resolution #704 #1370]: #346
-#1351 := (or #98 #125 #161 #169 #181 #183 #150 #152)
-#1258 := [hypothesis]: #364
-#1259 := [hypothesis]: #358
-#1332 := (or #136 #150 #152 #181 #183 #125 #161 #169 #98)
-#1317 := (or #129 #125 #136 #161 #169 #181 #183 #150 #152 #98)
-#1297 := (or #105 #125 #98 #161 #169 #181 #183 #129 #136)
-#1276 := (or #290 #125 #161 #169 #181 #183 #98 #105)
-#1256 := [hypothesis]: #100
-#1257 := [unit-resolution #657 #1256]: #281
-#1260 := [unit-resolution #658 #1256]: #249
-#1254 := (or #60 #62 #91 #125)
-#1241 := [hypothesis]: #281
-#1242 := [unit-resolution #1054 #1061 #1062]: #235
-#1243 := [unit-resolution #788 #1242]: #49
-#1244 := [unit-resolution #646 #1243]: #276
-#1245 := [unit-resolution #647 #1243]: #277
-#1246 := [unit-resolution #527 #1245 #1154]: #123
-#1247 := [unit-resolution #683 #1246]: #282
-#1248 := [unit-resolution #502 #1247 #1244 #1241]: #55
-#1249 := [unit-resolution #618 #1248]: #240
-#1250 := [unit-resolution #477 #1249 #1061 #1062]: #28
-#1251 := [unit-resolution #622 #1248]: #214
-#1252 := [unit-resolution #769 #1251]: #20
-#1253 := [unit-resolution #607 #1252 #1250]: false
-#1255 := [lemma #1253]: #1254
-#1261 := [unit-resolution #1255 #1260 #1257 #1154]: #60
-#1262 := [unit-resolution #633 #1261]: #257
-#1263 := [unit-resolution #512 #1262 #980 #1075]: #107
-#1264 := [unit-resolution #694 #1263]: #339
-#1265 := [unit-resolution #572 #1264 #920 #919]: #174
-#1266 := [unit-resolution #715 #1265]: #363
-#1267 := [unit-resolution #562 #1266 #1259 #1258]: #131
-#1268 := [unit-resolution #682 #1267]: #282
-#1269 := [unit-resolution #681 #1267]: #317
-#1270 := [unit-resolution #527 #1269 #1154]: #87
-#1271 := [unit-resolution #645 #1270]: #276
-#1272 := [unit-resolution #502 #1271 #1268 #1257]: #55
-#1273 := [unit-resolution #647 #1270]: #236
-#1274 := [unit-resolution #788 #1273]: #47
-#1275 := [unit-resolution #621 #1274 #1272]: false
-#1277 := [lemma #1275]: #1276
-#1278 := [unit-resolution #1277 #1075 #1259 #1258 #920 #919 #980 #1154]: #290
-#1279 := [unit-resolution #537 #1278 #832 #1095]: #138
-#1280 := [unit-resolution #716 #1279]: #371
-#1281 := [unit-resolution #572 #1280 #920 #919]: #145
-#1282 := [unit-resolution #694 #1281]: #298
-#1283 := [unit-resolution #512 #1282 #980 #1075]: #69
-#1284 := [unit-resolution #633 #1283]: #248
-#1285 := [unit-resolution #719 #1279]: #363
-#1286 := [unit-resolution #562 #1285 #1259 #1258]: #131
-#1287 := [unit-resolution #681 #1286]: #317
-#1288 := [unit-resolution #527 #1287 #1154]: #87
-#1289 := [unit-resolution #647 #1288]: #236
-#1290 := [unit-resolution #788 #1289]: #47
-#1291 := [unit-resolution #1054 #1290 #1284]: #62
-#1292 := [unit-resolution #645 #1288]: #276
-#1293 := [unit-resolution #682 #1286]: #282
-#1294 := [unit-resolution #621 #1290]: #241
-#1295 := [unit-resolution #502 #1294 #1293 #1292]: #91
-#1296 := [unit-resolution #659 #1295 #1291]: false
-#1298 := [lemma #1296]: #1297
-#1299 := [unit-resolution #1298 #832 #980 #1259 #1258 #920 #919 #1154 #1095]: #105
-#1300 := [unit-resolution #669 #1299]: #306
-#1301 := [unit-resolution #547 #1300 #1052 #1051]: #143
-#1302 := [unit-resolution #690 #1301]: #339
-#1303 := [unit-resolution #572 #1302 #920 #919]: #174
-#1304 := [unit-resolution #716 #1303]: #331
-#1305 := [unit-resolution #537 #1304 #832 #1095]: #100
-#1306 := [unit-resolution #657 #1305]: #281
-#1307 := [unit-resolution #715 #1303]: #363
-#1308 := [unit-resolution #562 #1307 #1259 #1258]: #131
-#1309 := [unit-resolution #682 #1308]: #282
-#1310 := [unit-resolution #681 #1308]: #317
-#1311 := [unit-resolution #527 #1310 #1154]: #87
-#1312 := [unit-resolution #645 #1311]: #276
-#1313 := [unit-resolution #502 #1312 #1309 #1306]: #55
-#1314 := [unit-resolution #647 #1311]: #236
-#1315 := [unit-resolution #788 #1314]: #47
-#1316 := [unit-resolution #621 #1315 #1313]: false
-#1318 := [lemma #1316]: #1317
-#1319 := [unit-resolution #1318 #1095 #1154 #1259 #1258 #920 #919 #1052 #1051 #980]: #129
-#1320 := [unit-resolution #678 #1319]: #323
-#1321 := [unit-resolution #562 #1320 #1259 #1258]: #167
-#1322 := [unit-resolution #715 #1321]: #371
-#1323 := [unit-resolution #572 #1322 #920 #919]: #145
-#1324 := [unit-resolution #690 #1323]: #338
-#1325 := [unit-resolution #547 #1324 #1052 #1051]: #114
-#1326 := [unit-resolution #679 #1319]: #317
-#1327 := [unit-resolution #527 #1326 #1154]: #87
-#335 := (or #331 #322)
-#687 := [asserted]: #335
-#1328 := [unit-resolution #687 #1319]: #331
-#1329 := [unit-resolution #694 #1323]: #298
-#1330 := [unit-resolution #1064 #1329 #1095 #1328 #1327]: #105
-#1331 := [unit-resolution #669 #1330 #1325]: false
-#1333 := [lemma #1331]: #1332
-#1334 := [unit-resolution #1333 #980 #1051 #920 #919 #1154 #1259 #1258 #1052]: #136
-#1335 := [unit-resolution #974 #1334 #980 #1052 #1051]: #69
-#1336 := [unit-resolution #633 #1335]: #248
-#1337 := [unit-resolution #693 #1334]: #339
-#1338 := [unit-resolution #572 #1337 #920 #919]: #174
-#1339 := [unit-resolution #715 #1338]: #363
-#1340 := [unit-resolution #562 #1339 #1259 #1258]: #131
-#1341 := [unit-resolution #681 #1340]: #317
-#1342 := [unit-resolution #527 #1341 #1154]: #87
-#1343 := [unit-resolution #647 #1342]: #236
-#1344 := [unit-resolution #788 #1343]: #47
-#1345 := [unit-resolution #1054 #1344 #1336]: #62
-#1346 := [unit-resolution #645 #1342]: #276
-#1347 := [unit-resolution #682 #1340]: #282
-#1348 := [unit-resolution #621 #1344]: #241
-#1349 := [unit-resolution #502 #1348 #1347 #1346]: #91
-#1350 := [unit-resolution #659 #1349 #1345]: false
-#1352 := [lemma #1350]: #1351
-#1381 := [unit-resolution #1352 #1378 #1377 #1374 #1373 #1367 #1380 #1379]: #98
-#1382 := [unit-resolution #654 #1381]: #290
-#1363 := (or #317 #100 #181 #183 #161 #169)
-#1353 := [hypothesis]: #123
-#1354 := [unit-resolution #681 #1353]: #323
-#1355 := [unit-resolution #562 #1354 #1259 #1258]: #167
-#1356 := [unit-resolution #715 #1355]: #371
-#1357 := [unit-resolution #572 #1356 #920 #919]: #145
-#1358 := [unit-resolution #679 #1353]: #322
-#1359 := [hypothesis]: #290
-#1360 := [unit-resolution #719 #1355]: #331
-#1361 := [unit-resolution #537 #1360 #1359 #1358]: #136
-#1362 := [unit-resolution #693 #1361 #1357]: false
-#1364 := [lemma #1362]: #1363
-#1383 := [unit-resolution #1364 #1382 #1373 #1367 #1377 #1374]: #317
-#1384 := [unit-resolution #527 #1383 #1378]: #87
-#1385 := [unit-resolution #645 #1384]: #276
-#1386 := [unit-resolution #655 #1381]: #281
-#1387 := [unit-resolution #647 #1384]: #236
-#1388 := [unit-resolution #788 #1387]: #47
-#1389 := [unit-resolution #621 #1388]: #241
-#1390 := [unit-resolution #502 #1389 #1386 #1385]: #93
-#1391 := [unit-resolution #682 #1390]: #323
-#1392 := [unit-resolution #562 #1391 #1377 #1374]: #167
-#1393 := [unit-resolution #715 #1392]: #371
-#1394 := [unit-resolution #572 #1393 #1373 #1367]: #145
-#1395 := [unit-resolution #680 #1390]: #322
-#1396 := [unit-resolution #719 #1392]: #331
-#1397 := [unit-resolution #537 #1396 #1382 #1395]: #136
-#1398 := [unit-resolution #693 #1397 #1394]: false
-#1399 := [lemma #1398]: #176
-#376 := (or #372 #363)
-#717 := [asserted]: #376
-#1426 := [unit-resolution #717 #1399]: #363
-#1428 := [unit-resolution #831 #1426]: #1427
-#1429 := [unit-resolution #1428 #867]: #322
-#1431 := (or #136 #129 #100)
-#377 := (or #372 #331)
-#718 := [asserted]: #377
-#1430 := [unit-resolution #718 #1399]: #331
-#1432 := [unit-resolution #537 #1430]: #1431
-#1433 := [unit-resolution #1432 #1429 #1095]: #100
-#1434 := [unit-resolution #657 #1433]: #281
-#1435 := (or #282 #87)
-#1436 := [unit-resolution #852 #1426]: #1435
-#1437 := [unit-resolution #1436 #867]: #282
-#1419 := (or #214 #93 #91)
-#1413 := [hypothesis]: #22
-#1414 := [unit-resolution #622 #1413]: #241
-#1415 := [unit-resolution #502 #1414 #829 #1241]: #85
-#1416 := [unit-resolution #623 #1413]: #235
-#1417 := [unit-resolution #788 #1416]: #49
-#1418 := [unit-resolution #646 #1417 #1415]: false
-#1420 := [lemma #1418]: #1419
-#1438 := [unit-resolution #1420 #1437 #1434]: #214
-#1439 := [unit-resolution #769 #1438]: #20
-#1440 := [unit-resolution #607 #1439]: #219
-#1441 := [unit-resolution #658 #1433]: #249
-#1442 := [unit-resolution #606 #1439]: #218
-#1424 := (or #248 #26 #98)
-#1421 := [hypothesis]: #218
-#1411 := (or #223 #98 #69 #67)
-#1400 := [unit-resolution #949 #959 #971]: #119
-#1401 := [unit-resolution #703 #1400]: #354
-#1402 := [unit-resolution #842 #1401]: #188
-#1403 := [unit-resolution #728 #1402]: #347
-#1404 := [unit-resolution #704 #1400]: #346
-#1405 := [unit-resolution #487 #953 #971 #956]: #76
-#1406 := [unit-resolution #670 #1405]: #306
-#1407 := [unit-resolution #547 #1406 #1404 #1403]: #143
-#1408 := [unit-resolution #671 #1405]: #297
-#1409 := [unit-resolution #512 #1408 #980 #977]: #107
-#1410 := [unit-resolution #692 #1409 #1407]: false
-#1412 := [lemma #1410]: #1411
-#1422 := [unit-resolution #1412 #924 #980 #938]: #223
-#1423 := [unit-resolution #456 #1422 #934 #1421]: false
-#1425 := [lemma #1423]: #1424
-#1443 := [unit-resolution #1425 #1442 #980]: #248
-#1444 := [unit-resolution #477 #1443 #1441 #1440]: #53
-#1445 := [unit-resolution #618 #1444]: #241
-#1446 := [unit-resolution #1054 #1443 #1441]: #235
-#1447 := [unit-resolution #788 #1446]: #49
-#1448 := [unit-resolution #646 #1447]: #276
-#1449 := [unit-resolution #502 #1448 #1445 #1437 #1434]: false
-#1451 := [lemma #1449]: #1450
-#1452 := [unit-resolution #1451 #1095 #980]: #87
-#1453 := [unit-resolution #647 #1452]: #236
-#1454 := [unit-resolution #788 #1453]: #47
-#1455 := [unit-resolution #623 #1454]: #214
-#1456 := [unit-resolution #769 #1455]: #20
-#1457 := [unit-resolution #606 #1456]: #218
-#1458 := [unit-resolution #1425 #1457 #980]: #248
-#1459 := [unit-resolution #1054 #1458 #1454]: #62
-#1460 := [unit-resolution #658 #1459]: #290
-#1461 := [unit-resolution #1432 #1460 #1095]: #129
-#1462 := [unit-resolution #621 #1454]: #241
-#1463 := [unit-resolution #645 #1452]: #276
-#1464 := [unit-resolution #659 #1459]: #281
-#1465 := [unit-resolution #502 #1464 #1463 #1462]: #93
-#1466 := [unit-resolution #680 #1465 #1461]: false
-#1468 := [lemma #1466]: #1467
-#1481 := [unit-resolution #1468 #980]: #136
-#1482 := [unit-resolution #693 #1481]: #339
-#1479 := (or #387 #145)
-#1469 := [hypothesis]: #188
-#1470 := [unit-resolution #726 #1469]: #388
-#1471 := [unit-resolution #860 #1470]: #208
-#1472 := [hypothesis]: #339
-#1473 := [unit-resolution #727 #1469]: #379
-#1475 := (or #181 #183 #145)
-#373 := (or #371 #372)
-#714 := [asserted]: #373
-#1474 := [unit-resolution #714 #1399]: #371
-#1476 := [unit-resolution #572 #1474]: #1475
-#1477 := [unit-resolution #1476 #1473 #1472]: #183
-#1478 := [unit-resolution #743 #1477 #1471]: false
-#1480 := [lemma #1478]: #1479
-#1483 := [unit-resolution #1480 #1482]: #387
-#1484 := [unit-resolution #842 #1483]: #157
-#1485 := [unit-resolution #702 #1484]: #346
-#1486 := [unit-resolution #703 #1484]: #313
-#1487 := [unit-resolution #796 #1486 #1481 #1485 #980]: #152
-#1488 := [unit-resolution #730 #1487]: #388
-#1489 := [unit-resolution #860 #1488]: #208
-#1490 := [unit-resolution #731 #1487]: #379
-#1491 := [unit-resolution #1476 #1490 #1482]: #183
-#1492 := [unit-resolution #743 #1491 #1489]: false
-#1493 := [lemma #1492]: #98
-#1515 := [unit-resolution #656 #1493]: #249
-#1511 := [unit-resolution #655 #1493]: #281
-#1512 := [unit-resolution #1420 #829 #1511]: #214
-#1513 := [unit-resolution #769 #1512]: #20
-#1514 := [unit-resolution #607 #1513]: #219
-#1516 := [unit-resolution #606 #1513]: #218
-#1509 := (or #248 #26)
-#1494 := [unit-resolution #654 #1493]: #290
-#1495 := [unit-resolution #1432 #1095 #1494]: #129
-#300 := (or #297 #289)
-#661 := [asserted]: #300
-#1496 := [unit-resolution #661 #1493]: #297
-#302 := (or #298 #289)
-#663 := [asserted]: #302
-#1497 := [unit-resolution #663 #1493]: #298
-#1498 := (or #277 #136 #105 #107)
-#1499 := [unit-resolution #1064 #1430]: #1498
-#1500 := [unit-resolution #1499 #1095 #1497 #1496]: #277
-#1501 := [unit-resolution #1428 #1500 #1495]: false
-#1502 := [lemma #1501]: #136
-#1503 := [unit-resolution #693 #1502]: #339
-#1504 := [unit-resolution #1480 #1503]: #387
-#1505 := [unit-resolution #842 #1504]: #157
-#1506 := [unit-resolution #703 #1505]: #313
-#1507 := [unit-resolution #949 #938 #1506]: #223
-#1508 := [unit-resolution #456 #1507 #934 #1421]: false
-#1510 := [lemma #1508]: #1509
-#1517 := [unit-resolution #1510 #1516]: #248
-#1518 := [unit-resolution #477 #1517 #1515 #1514]: #53
-#1519 := [unit-resolution #618 #1518]: #241
-#1520 := [unit-resolution #1054 #1517 #1515]: #235
-#1521 := [unit-resolution #788 #1520]: #49
-#1522 := [unit-resolution #646 #1521]: #276
-#1523 := [unit-resolution #502 #1522 #1519 #1511 #829]: false
-#1524 := [lemma #1523]: #93
-#1525 := [unit-resolution #1436 #1524]: #87
-#321 := (or #318 #277)
-#677 := [asserted]: #321
-#1526 := [unit-resolution #677 #1525]: #318
-#1527 := [unit-resolution #1255 #1526 #1511 #1515]: #60
-#1528 := [unit-resolution #1510 #1527]: #26
-#1529 := [unit-resolution #647 #1525]: #236
-#1530 := [unit-resolution #788 #1529]: #47
-#1531 := [unit-resolution #623 #1530]: #214
-#1532 := [unit-resolution #769 #1531]: #20
-[unit-resolution #606 #1532 #1528]: false
-unsat
-53042978396971446eabf6039172bd47071e3fd3 67 0
-#2 := false
-decl f1 :: S1
-#3 := f1
-decl f3 :: (-> Int S1)
-decl ?v0!0 :: Int
-#55 := ?v0!0
-#56 := (f3 ?v0!0)
-#57 := (= #56 f1)
-#58 := (not #57)
-decl ?v1!1 :: Int
-#66 := ?v1!1
-#67 := (f3 ?v1!1)
-#68 := (= #67 f1)
-#69 := (or #57 #68)
-#70 := (not #69)
-#86 := (and #57 #70)
-#63 := (not #58)
-#76 := (and #63 #70)
-#87 := (iff #76 #86)
-#84 := (iff #63 #57)
-#85 := [rewrite]: #84
-#88 := [monotonicity #85]: #87
-#7 := (:var 0 Int)
-#8 := (f3 #7)
-#9 := (= #8 f1)
-#10 := (:var 1 Int)
-#11 := (f3 #10)
-#12 := (= #11 f1)
-#13 := (or #12 #9)
-#14 := (forall (vars (?v1 Int)) #13)
-#39 := (not #9)
-#40 := (or #39 #14)
-#43 := (forall (vars (?v0 Int)) #40)
-#46 := (not #43)
-#79 := (~ #46 #76)
-#50 := (or #57 #9)
-#52 := (forall (vars (?v1 Int)) #50)
-#59 := (or #58 #52)
-#60 := (not #59)
-#77 := (~ #60 #76)
-#71 := (not #52)
-#72 := (~ #71 #70)
-#73 := [sk]: #72
-#64 := (~ #63 #63)
-#65 := [refl]: #64
-#78 := [nnf-neg #65 #73]: #77
-#61 := (~ #46 #60)
-#62 := [sk]: #61
-#80 := [trans #62 #78]: #79
-#15 := (implies #9 #14)
-#16 := (forall (vars (?v0 Int)) #15)
-#17 := (not #16)
-#47 := (iff #17 #46)
-#44 := (iff #16 #43)
-#41 := (iff #15 #40)
-#42 := [rewrite]: #41
-#45 := [quant-intro #42]: #44
-#48 := [monotonicity #45]: #47
-#38 := [asserted]: #17
-#51 := [mp #38 #48]: #46
-#81 := [mp~ #51 #80]: #76
-#82 := [mp #81 #88]: #86
-#89 := [and-elim #82]: #70
-#90 := [not-or-elim #89]: #58
-#83 := [and-elim #82]: #57
-[unit-resolution #83 #90]: false
-unsat
+#2 := false
+decl f1 :: S1
+#3 := f1
+decl f9 :: S1
+#25 := f9
+#26 := (= f9 f1)
+decl f20 :: S1
+#59 := f20
+#60 := (= f20 f1)
+decl f21 :: S1
+#61 := f21
+#62 := (= f21 f1)
+#249 := (not #62)
+decl f31 :: S1
+#97 := f31
+#98 := (= f31 f1)
+decl f62 :: S1
+#207 := f62
+#208 := (= f62 f1)
+decl f58 :: S1
+#189 := f58
+#190 := (= f58 f1)
+#388 := (not #190)
+decl f47 :: S1
+#151 := f47
+#152 := (= f47 f1)
+#289 := (not #98)
+#980 := [hypothesis]: #289
+decl f46 :: S1
+#149 := f46
+#150 := (= f46 f1)
+#346 := (not #150)
+decl f48 :: S1
+#156 := f48
+#157 := (= f48 f1)
+decl f57 :: S1
+#187 := f57
+#188 := (= f57 f1)
+#387 := (not #188)
+decl f45 :: S1
+#144 := f45
+#145 := (= f45 f1)
+#339 := (not #145)
+decl f42 :: S1
+#135 := f42
+#136 := (= f42 f1)
+#1467 := (or #136 #98)
+decl f40 :: S1
+#128 := f40
+#129 := (= f40 f1)
+#330 := (not #136)
+#1095 := [hypothesis]: #330
+decl f32 :: S1
+#99 := f32
+#100 := (= f32 f1)
+#290 := (not #100)
+decl f16 :: S1
+#46 := f16
+#47 := (= f16 f1)
+decl f17 :: S1
+#48 := f17
+#49 := (= f17 f1)
+#236 := (not #49)
+decl f28 :: S1
+#86 := f28
+#87 := (= f28 f1)
+#1450 := (or #87 #98 #136)
+decl f29 :: S1
+#90 := f29
+#91 := (= f29 f1)
+#281 := (not #91)
+#322 := (not #129)
+#277 := (not #87)
+#867 := [hypothesis]: #277
+#1427 := (or #322 #87)
+decl f51 :: S1
+#166 := f51
+#167 := (= f51 f1)
+#363 := (not #167)
+decl f54 :: S1
+#175 := f54
+#176 := (= f54 f1)
+decl f56 :: S1
+#182 := f56
+#183 := (= f56 f1)
+#380 := (not #183)
+#372 := (not #176)
+#1160 := [hypothesis]: #372
+#1189 := (or #388 #176)
+decl f18 :: S1
+#52 := f18
+#53 := (= f18 f1)
+decl f33 :: S1
+#104 := f33
+#105 := (= f33 f1)
+#297 := (not #105)
+decl f36 :: S1
+#113 := f36
+#114 := (= f36 f1)
+#347 := (not #152)
+#1155 := [hypothesis]: #190
+#393 := (or #388 #347)
+#730 := [asserted]: #393
+#1156 := [unit-resolution #730 #1155]: #347
+#389 := (or #387 #388)
+#726 := [asserted]: #389
+#1157 := [unit-resolution #726 #1155]: #387
+#194 := (or #188 #157)
+decl f6 :: S1
+#16 := f6
+#17 := (= f6 f1)
+#579 := (or #17 #188 #157)
+#840 := (iff #579 #194)
+#835 := (or false #188 #157)
+#838 := (iff #835 #194)
+#839 := [rewrite]: #838
+#836 := (iff #579 #835)
+#759 := (iff #17 false)
+#18 := (not #17)
+#439 := [asserted]: #18
+#760 := [iff-false #439]: #759
+#837 := [monotonicity #760]: #836
+#841 := [trans #837 #839]: #840
+#195 := (or #17 #194)
+#580 := (iff #195 #579)
+#581 := [rewrite]: #580
+#568 := [asserted]: #195
+#582 := [mp #568 #581]: #579
+#842 := [mp #582 #841]: #194
+#1158 := [unit-resolution #842 #1157]: #157
+#354 := (not #157)
+#355 := (or #354 #346)
+#702 := [asserted]: #355
+#1159 := [unit-resolution #702 #1158]: #346
+decl f44 :: S1
+#142 := f44
+#143 := (= f44 f1)
+#338 := (not #143)
+decl f61 :: S1
+#203 := f61
+#204 := (= f61 f1)
+decl f60 :: S1
+#199 := f60
+#200 := (= f60 f1)
+#400 := (not #200)
+decl f37 :: S1
+#118 := f37
+#119 := (= f37 f1)
+#313 := (not #119)
+#356 := (or #354 #313)
+#703 := [asserted]: #356
+#1161 := [unit-resolution #703 #1158]: #313
+#983 := (or #400 #150 #152 #119)
+#248 := (not #60)
+decl f23 :: S1
+#68 := f23
+#69 := (= f23 f1)
+decl f34 :: S1
+#106 := f34
+#107 := (= f34 f1)
+#298 := (not #107)
+#1051 := [hypothesis]: #347
+#1052 := [hypothesis]: #346
+#306 := (not #114)
+decl f25 :: S1
+#75 := f25
+#76 := (= f25 f1)
+decl f39 :: S1
+#124 := f39
+#125 := (= f39 f1)
+#318 := (not #125)
+decl f50 :: S1
+#162 := f50
+#163 := (= f50 f1)
+decl f59 :: S1
+#196 := f59
+#197 := (= f59 f1)
+#398 := (not #197)
+#1024 := [hypothesis]: #200
+#401 := (or #400 #398)
+#736 := [asserted]: #401
+#1021 := [unit-resolution #736 #1024]: #398
+#198 := (or #197 #163)
+#573 := [asserted]: #198
+#1022 := [unit-resolution #573 #1021]: #163
+#359 := (not #163)
+#362 := (or #359 #318)
+#707 := [asserted]: #362
+#1019 := [unit-resolution #707 #1022]: #318
+decl f26 :: S1
+#80 := f26
+#81 := (= f26 f1)
+#1153 := [hypothesis]: #313
+decl f35 :: S1
+#111 := f35
+#112 := (= f35 f1)
+#305 := (not #112)
+decl f43 :: S1
+#137 := f43
+#138 := (= f43 f1)
+#331 := (not #138)
+decl f52 :: S1
+#168 := f52
+#169 := (= f52 f1)
+#364 := (not #169)
+#402 := (or #400 #364)
+#737 := [asserted]: #402
+#1020 := [unit-resolution #737 #1024]: #364
+decl f49 :: S1
+#160 := f49
+#161 := (= f49 f1)
+#358 := (not #161)
+#360 := (or #358 #359)
+#705 := [asserted]: #360
+#1017 := [unit-resolution #705 #1022]: #358
+decl f41 :: S1
+#130 := f41
+#131 := (= f41 f1)
+#323 := (not #131)
+#1126 := (or #323 #119 #125)
+#272 := (not #81)
+decl f15 :: S1
+#43 := f15
+#44 := (= f15 f1)
+decl f13 :: S1
+#37 := f13
+#38 := (= f13 f1)
+#228 := (not #38)
+decl f11 :: S1
+#31 := f11
+#32 := (= f11 f1)
+#218 := (not #26)
+decl f7 :: S1
+#19 := f7
+#20 := (= f7 f1)
+decl f8 :: S1
+#21 := f8
+#22 := (= f8 f1)
+#214 := (not #22)
+#1154 := [hypothesis]: #318
+decl f38 :: S1
+#122 := f38
+#123 := (= f38 f1)
+#317 := (not #123)
+#1151 := [hypothesis]: #131
+#327 := (or #323 #317)
+#681 := [asserted]: #327
+#1152 := [unit-resolution #681 #1151]: #317
+#524 := (or #123 #125 #87)
+#126 := (or #125 #87)
+#127 := (or #123 #126)
+#525 := (iff #127 #524)
+#526 := [rewrite]: #525
+#513 := [asserted]: #127
+#527 := [mp #513 #526]: #524
+#1149 := [unit-resolution #527 #1152 #1154]: #87
+#280 := (or #277 #236)
+#647 := [asserted]: #280
+#1150 := [unit-resolution #647 #1149]: #236
+#783 := (or #47 #49)
+decl f4 :: S1
+#10 := f4
+#11 := (= f4 f1)
+#464 := (or #47 #49 #11)
+#786 := (iff #464 #783)
+#780 := (or #47 #49 false)
+#784 := (iff #780 #783)
+#785 := [rewrite]: #784
+#781 := (iff #464 #780)
+#755 := (iff #11 false)
+#12 := (not #11)
+#437 := [asserted]: #12
+#756 := [iff-false #437]: #755
+#782 := [monotonicity #756]: #781
+#787 := [trans #782 #785]: #786
+#50 := (or #49 #11)
+#51 := (or #47 #50)
+#465 := (iff #51 #464)
+#466 := [rewrite]: #465
+#457 := [asserted]: #51
+#467 := [mp #457 #466]: #464
+#788 := [mp #467 #787]: #783
+#1147 := [unit-resolution #788 #1150]: #47
+#235 := (not #47)
+#247 := (or #235 #214)
+#623 := [asserted]: #247
+#1148 := [unit-resolution #623 #1147]: #214
+#764 := (or #20 #22)
+decl f3 :: S1
+#7 := f3
+#8 := (= f3 f1)
+#443 := (or #20 #22 #8)
+#767 := (iff #443 #764)
+#761 := (or #20 #22 false)
+#765 := (iff #761 #764)
+#766 := [rewrite]: #765
+#762 := (iff #443 #761)
+#752 := (iff #8 false)
+#9 := (not #8)
+#436 := [asserted]: #9
+#754 := [iff-false #436]: #752
+#763 := [monotonicity #754]: #762
+#768 := [trans #763 #766]: #767
+#23 := (or #22 #8)
+#24 := (or #20 #23)
+#444 := (iff #24 #443)
+#445 := [rewrite]: #444
+#440 := [asserted]: #24
+#446 := [mp #440 #445]: #443
+#769 := [mp #446 #768]: #764
+#1145 := [unit-resolution #769 #1148]: #20
+#213 := (not #20)
+#221 := (or #218 #213)
+#606 := [asserted]: #221
+#1146 := [unit-resolution #606 #1145]: #218
+decl f12 :: S1
+#33 := f12
+#34 := (= f12 f1)
+#224 := (not #34)
+decl f30 :: S1
+#92 := f30
+#93 := (= f30 f1)
+#282 := (not #93)
+#328 := (or #323 #282)
+#682 := [asserted]: #328
+#1143 := [unit-resolution #682 #1151]: #282
+decl f27 :: S1
+#84 := f27
+#85 := (= f27 f1)
+#276 := (not #85)
+#278 := (or #276 #277)
+#645 := [asserted]: #278
+#1144 := [unit-resolution #645 #1149]: #276
+decl f19 :: S1
+#54 := f19
+#55 := (= f19 f1)
+#241 := (not #55)
+#245 := (or #241 #235)
+#621 := [asserted]: #245
+#1141 := [unit-resolution #621 #1147]: #241
+#499 := (or #91 #93 #85 #55)
+#94 := (or #85 #55)
+#95 := (or #93 #94)
+#96 := (or #91 #95)
+#500 := (iff #96 #499)
+#501 := [rewrite]: #500
+#488 := [asserted]: #96
+#502 := [mp #488 #501]: #499
+#1142 := [unit-resolution #502 #1141 #1144 #1143]: #91
+#296 := (or #281 #249)
+#659 := [asserted]: #296
+#1139 := [unit-resolution #659 #1142]: #249
+#240 := (not #53)
+#243 := (or #240 #235)
+#619 := [asserted]: #243
+#1140 := [unit-resolution #619 #1147]: #240
+decl f10 :: S1
+#27 := f10
+#28 := (= f10 f1)
+#219 := (not #28)
+#222 := (or #219 #213)
+#607 := [asserted]: #222
+#1137 := [unit-resolution #607 #1145]: #219
+#474 := (or #60 #62 #53 #28)
+#63 := (or #53 #28)
+#64 := (or #62 #63)
+#65 := (or #60 #64)
+#475 := (iff #65 #474)
+#476 := [rewrite]: #475
+#463 := [asserted]: #65
+#477 := [mp #463 #476]: #474
+#1138 := [unit-resolution #477 #1137 #1140 #1139]: #60
+#263 := (or #248 #224)
+#635 := [asserted]: #263
+#1135 := [unit-resolution #635 #1138]: #224
+#453 := (or #32 #34 #26)
+#35 := (or #34 #26)
+#36 := (or #32 #35)
+#454 := (iff #36 #453)
+#455 := [rewrite]: #454
+#442 := [asserted]: #36
+#456 := [mp #442 #455]: #453
+#1136 := [unit-resolution #456 #1135 #1146]: #32
+#223 := (not #32)
+#231 := (or #228 #223)
+#612 := [asserted]: #231
+#1133 := [unit-resolution #612 #1136]: #228
+#45 := (or #44 #38)
+#452 := [asserted]: #45
+#1134 := [unit-resolution #452 #1133]: #44
+#233 := (not #44)
+#274 := (or #272 #233)
+#643 := [asserted]: #274
+#1131 := [unit-resolution #643 #1134]: #272
+#519 := (or #119 #112 #81)
+#120 := (or #112 #81)
+#121 := (or #119 #120)
+#520 := (iff #121 #519)
+#521 := [rewrite]: #520
+#508 := [asserted]: #121
+#522 := [mp #508 #521]: #519
+#1132 := [unit-resolution #522 #1131 #1153]: #112
+decl f14 :: S1
+#39 := f14
+#40 := (= f14 f1)
+#229 := (not #40)
+#232 := (or #229 #223)
+#613 := [asserted]: #232
+#1129 := [unit-resolution #613 #1136]: #229
+decl f22 :: S1
+#66 := f22
+#67 := (= f22 f1)
+#256 := (not #67)
+#259 := (or #256 #248)
+#631 := [asserted]: #259
+#1130 := [unit-resolution #631 #1138]: #256
+decl f24 :: S1
+#73 := f24
+#74 := (= f24 f1)
+#264 := (not #74)
+#275 := (or #264 #233)
+#644 := [asserted]: #275
+#1127 := [unit-resolution #644 #1134]: #264
+#484 := (or #74 #76 #67 #40)
+#77 := (or #67 #40)
+#78 := (or #76 #77)
+#79 := (or #74 #78)
+#485 := (iff #79 #484)
+#486 := [rewrite]: #485
+#473 := [asserted]: #79
+#487 := [mp #473 #486]: #484
+#1128 := [unit-resolution #487 #1127 #1130 #1129]: #76
+#265 := (not #76)
+#309 := (or #305 #265)
+#668 := [asserted]: #309
+#1125 := [unit-resolution #668 #1128 #1132]: false
+#1123 := [lemma #1125]: #1126
+#1018 := [unit-resolution #1123 #1019 #1153]: #323
+#559 := (or #167 #169 #161 #131)
+#170 := (or #161 #131)
+#171 := (or #169 #170)
+#172 := (or #167 #171)
+#560 := (iff #172 #559)
+#561 := [rewrite]: #560
+#548 := [asserted]: #172
+#562 := [mp #548 #561]: #559
+#1015 := [unit-resolution #562 #1018 #1017 #1020]: #167
+#378 := (or #363 #331)
+#719 := [asserted]: #378
+#1016 := [unit-resolution #719 #1015]: #331
+#1026 := (or #305 #138 #125 #150 #152)
+#1049 := [hypothesis]: #112
+#307 := (or #305 #306)
+#666 := [asserted]: #307
+#1050 := [unit-resolution #666 #1049]: #306
+#544 := (or #150 #152 #143 #114)
+#153 := (or #143 #114)
+#154 := (or #152 #153)
+#155 := (or #150 #154)
+#545 := (iff #155 #544)
+#546 := [rewrite]: #545
+#533 := [asserted]: #155
+#547 := [mp #533 #546]: #544
+#1047 := [unit-resolution #547 #1050 #1052 #1051]: #143
+#342 := (or #338 #298)
+#692 := [asserted]: #342
+#1048 := [unit-resolution #692 #1047]: #298
+#308 := (or #305 #297)
+#667 := [asserted]: #308
+#1045 := [unit-resolution #667 #1049]: #297
+#341 := (or #338 #330)
+#691 := [asserted]: #341
+#1046 := [unit-resolution #691 #1047]: #330
+#1096 := [hypothesis]: #331
+#1063 := (or #277 #138 #136 #105 #107)
+#1083 := [hypothesis]: #87
+#1084 := [unit-resolution #647 #1083]: #236
+#1081 := [unit-resolution #788 #1084]: #47
+#1082 := [unit-resolution #623 #1081]: #214
+#1079 := [unit-resolution #769 #1082]: #20
+#1080 := [unit-resolution #607 #1079]: #219
+#1077 := [unit-resolution #619 #1081]: #240
+#1078 := [hypothesis]: #298
+#1075 := [hypothesis]: #297
+#1076 := [unit-resolution #621 #1081]: #241
+#1073 := [unit-resolution #645 #1083]: #276
+#1085 := (or #289 #85 #55 #138 #136)
+#1093 := [hypothesis]: #98
+#291 := (or #289 #290)
+#654 := [asserted]: #291
+#1094 := [unit-resolution #654 #1093]: #290
+#534 := (or #136 #138 #129 #100)
+#139 := (or #129 #100)
+#140 := (or #138 #139)
+#141 := (or #136 #140)
+#535 := (iff #141 #534)
+#536 := [rewrite]: #535
+#523 := [asserted]: #141
+#537 := [mp #523 #536]: #534
+#1091 := [unit-resolution #537 #1094 #1096 #1095]: #129
+#1092 := [hypothesis]: #241
+#1089 := [hypothesis]: #276
+#292 := (or #289 #281)
+#655 := [asserted]: #292
+#1090 := [unit-resolution #655 #1093]: #281
+#1087 := [unit-resolution #502 #1090 #1089 #1092]: #93
+#326 := (or #322 #282)
+#680 := [asserted]: #326
+#1088 := [unit-resolution #680 #1087 #1091]: false
+#1086 := [lemma #1088]: #1085
+#1074 := [unit-resolution #1086 #1073 #1076 #1096 #1095]: #289
+#509 := (or #105 #107 #98 #69)
+#108 := (or #98 #69)
+#109 := (or #107 #108)
+#110 := (or #105 #109)
+#510 := (iff #110 #509)
+#511 := [rewrite]: #510
+#498 := [asserted]: #110
+#512 := [mp #498 #511]: #509
+#1071 := [unit-resolution #512 #1074 #1075 #1078]: #69
+#257 := (not #69)
+#261 := (or #257 #248)
+#633 := [asserted]: #261
+#1072 := [unit-resolution #633 #1071]: #248
+#1069 := [unit-resolution #477 #1072 #1077 #1080]: #62
+#295 := (or #290 #249)
+#658 := [asserted]: #295
+#1070 := [unit-resolution #658 #1069]: #290
+#1067 := [unit-resolution #537 #1070 #1096 #1095]: #129
+#1068 := [unit-resolution #659 #1069]: #281
+#1065 := [unit-resolution #502 #1068 #1073 #1076]: #93
+#1066 := [unit-resolution #680 #1065 #1067]: false
+#1064 := [lemma #1066]: #1063
+#1043 := [unit-resolution #1064 #1046 #1096 #1045 #1048]: #277
+#1044 := [unit-resolution #527 #1043 #1154]: #123
+#325 := (or #322 #317)
+#679 := [asserted]: #325
+#1041 := [unit-resolution #679 #1044]: #322
+#1042 := [unit-resolution #537 #1041 #1096 #1046]: #100
+#1039 := [unit-resolution #654 #1042]: #289
+#1040 := [unit-resolution #512 #1039 #1045 #1048]: #69
+#1037 := [unit-resolution #633 #1040]: #248
+#1038 := [unit-resolution #658 #1042]: #249
+#294 := (or #290 #281)
+#657 := [asserted]: #294
+#1035 := [unit-resolution #657 #1042]: #281
+#329 := (or #317 #282)
+#683 := [asserted]: #329
+#1036 := [unit-resolution #683 #1044]: #282
+#1053 := (or #235 #62 #60)
+#1061 := [hypothesis]: #248
+#1062 := [hypothesis]: #249
+#1059 := [hypothesis]: #47
+#1060 := [unit-resolution #619 #1059]: #240
+#1057 := [unit-resolution #477 #1060 #1062 #1061]: #28
+#1058 := [unit-resolution #623 #1059]: #214
+#1055 := [unit-resolution #769 #1058]: #20
+#1056 := [unit-resolution #607 #1055 #1057]: false
+#1054 := [lemma #1056]: #1053
+#1033 := [unit-resolution #1054 #1038 #1037]: #235
+#1034 := [unit-resolution #788 #1033]: #49
+#279 := (or #276 #236)
+#646 := [asserted]: #279
+#1031 := [unit-resolution #646 #1034]: #276
+#1032 := [unit-resolution #502 #1031 #1036 #1035]: #55
+#242 := (or #240 #241)
+#618 := [asserted]: #242
+#1029 := [unit-resolution #618 #1032]: #240
+#1030 := [unit-resolution #477 #1029 #1038 #1037]: #28
+#246 := (or #241 #214)
+#622 := [asserted]: #246
+#1027 := [unit-resolution #622 #1032]: #214
+#1028 := [unit-resolution #769 #1027]: #20
+#1025 := [unit-resolution #607 #1028 #1030]: false
+#1023 := [lemma #1025]: #1026
+#1013 := [unit-resolution #1023 #1016 #1019 #1052 #1051]: #305
+#1014 := [unit-resolution #522 #1013 #1153]: #81
+#1097 := (or #272 #125 #76)
+#1124 := [hypothesis]: #81
+#1121 := [unit-resolution #643 #1124]: #233
+#1122 := [unit-resolution #452 #1121]: #38
+#1119 := [unit-resolution #612 #1122]: #223
+#273 := (or #272 #264)
+#642 := [asserted]: #273
+#1120 := [unit-resolution #642 #1124]: #264
+#1117 := [hypothesis]: #265
+#230 := (or #228 #229)
+#611 := [asserted]: #230
+#1118 := [unit-resolution #611 #1122]: #229
+#1115 := [unit-resolution #487 #1118 #1117 #1120]: #67
+#260 := (or #256 #224)
+#632 := [asserted]: #260
+#1116 := [unit-resolution #632 #1115]: #224
+#1113 := [unit-resolution #456 #1116 #1119]: #26
+#220 := (or #218 #219)
+#605 := [asserted]: #220
+#1114 := [unit-resolution #605 #1113]: #219
+#1111 := [unit-resolution #631 #1115]: #248
+#1112 := [unit-resolution #606 #1113]: #213
+#1109 := [unit-resolution #769 #1112]: #22
+#244 := (or #240 #214)
+#620 := [asserted]: #244
+#1110 := [unit-resolution #620 #1109]: #240
+#1107 := [unit-resolution #477 #1110 #1111 #1114]: #62
+#1108 := [unit-resolution #659 #1107]: #281
+#1105 := [unit-resolution #622 #1109]: #241
+#1106 := [unit-resolution #623 #1109]: #235
+#1103 := [unit-resolution #788 #1106]: #49
+#1104 := [unit-resolution #646 #1103]: #276
+#1101 := [unit-resolution #502 #1104 #1105 #1108]: #93
+#1102 := [unit-resolution #647 #1103]: #277
+#1099 := [unit-resolution #527 #1102 #1154]: #123
+#1100 := [unit-resolution #683 #1099 #1101]: false
+#1098 := [lemma #1100]: #1097
+#1011 := [unit-resolution #1098 #1014 #1019]: #76
+#311 := (or #306 #265)
+#670 := [asserted]: #311
+#1012 := [unit-resolution #670 #1011]: #306
+#1009 := [unit-resolution #547 #1012 #1052 #1051]: #143
+#1010 := [unit-resolution #692 #1009]: #298
+#312 := (or #297 #265)
+#671 := [asserted]: #312
+#1007 := [unit-resolution #671 #1011]: #297
+#1008 := [unit-resolution #691 #1009]: #330
+#1005 := [unit-resolution #1064 #1008 #1016 #1007 #1010]: #277
+#1006 := [unit-resolution #527 #1005 #1019]: #123
+#1003 := [unit-resolution #679 #1006]: #322
+#1004 := [unit-resolution #537 #1003 #1016 #1008]: #100
+#1001 := [unit-resolution #654 #1004]: #289
+#1002 := [unit-resolution #512 #1001 #1007 #1010]: #69
+#999 := [unit-resolution #633 #1002]: #248
+#1000 := [unit-resolution #658 #1004]: #249
+#997 := [unit-resolution #643 #1014]: #233
+#998 := [unit-resolution #452 #997]: #38
+#995 := [unit-resolution #612 #998]: #223
+#262 := (or #257 #224)
+#634 := [asserted]: #262
+#996 := [unit-resolution #634 #1002]: #224
+#993 := [unit-resolution #456 #996 #995]: #26
+#994 := [unit-resolution #605 #993]: #219
+#991 := [unit-resolution #477 #994 #1000 #999]: #53
+#992 := [unit-resolution #657 #1004]: #281
+#989 := [unit-resolution #683 #1006]: #282
+#990 := [unit-resolution #1054 #999 #1000]: #235
+#987 := [unit-resolution #788 #990]: #49
+#988 := [unit-resolution #646 #987]: #276
+#985 := [unit-resolution #502 #988 #989 #992]: #55
+#986 := [unit-resolution #618 #985 #991]: false
+#984 := [lemma #986]: #983
+#1162 := [unit-resolution #984 #1159 #1156 #1161]: #400
+#590 := (or #204 #200 #176)
+#205 := (or #200 #176)
+#206 := (or #204 #205)
+#591 := (iff #206 #590)
+#592 := [rewrite]: #591
+#583 := [asserted]: #206
+#593 := [mp #583 #592]: #590
+#1163 := [unit-resolution #593 #1162 #1160]: #204
+#404 := (not #204)
+#411 := (or #404 #380)
+#744 := [asserted]: #411
+#1164 := [unit-resolution #744 #1163]: #380
+decl f55 :: S1
+#180 := f55
+#181 := (= f55 f1)
+#379 := (not #181)
+#392 := (or #388 #379)
+#729 := [asserted]: #392
+#1165 := [unit-resolution #729 #1155]: #379
+decl f53 :: S1
+#173 := f53
+#174 := (= f53 f1)
+#371 := (not #174)
+#913 := (or #248 #181 #183 #150 #152 #119)
+#937 := [hypothesis]: #60
+#938 := [unit-resolution #631 #937]: #256
+#939 := (or #306 #67 #119)
+#971 := [hypothesis]: #256
+#950 := [hypothesis]: #114
+#947 := [unit-resolution #670 #950]: #265
+#948 := [unit-resolution #666 #950]: #305
+#945 := [unit-resolution #522 #948 #1153]: #81
+#946 := [unit-resolution #642 #945]: #264
+#943 := [unit-resolution #487 #946 #947 #971]: #40
+#944 := [unit-resolution #643 #945]: #233
+#941 := [unit-resolution #452 #944]: #38
+#942 := [unit-resolution #611 #941 #943]: false
+#940 := [lemma #942]: #939
+#935 := [unit-resolution #940 #938 #1153]: #306
+#936 := [unit-resolution #547 #935 #1052 #1051]: #143
+#933 := [unit-resolution #691 #936]: #330
+#934 := [unit-resolution #635 #937]: #224
+#952 := (or #223 #67 #119)
+#959 := [hypothesis]: #32
+#960 := [unit-resolution #612 #959]: #228
+#957 := [unit-resolution #452 #960]: #44
+#958 := [unit-resolution #643 #957]: #272
+#955 := [unit-resolution #522 #958 #1153]: #112
+#956 := [unit-resolution #613 #959]: #229
+#953 := [unit-resolution #644 #957]: #264
+#954 := [unit-resolution #487 #953 #956 #971]: #76
+#951 := [unit-resolution #668 #954 #955]: false
+#949 := [lemma #951]: #952
+#931 := [unit-resolution #949 #938 #1153]: #223
+#932 := [unit-resolution #456 #931 #934]: #26
+#929 := [unit-resolution #606 #932]: #213
+#930 := [unit-resolution #769 #929]: #22
+#927 := [unit-resolution #622 #930]: #241
+#928 := [unit-resolution #623 #930]: #235
+#925 := [unit-resolution #788 #928]: #49
+#926 := [unit-resolution #646 #925]: #276
+#961 := (or #297 #67 #119)
+#972 := [hypothesis]: #105
+#969 := [unit-resolution #671 #972]: #265
+#970 := [unit-resolution #667 #972]: #305
+#967 := [unit-resolution #522 #970 #1153]: #81
+#968 := [unit-resolution #642 #967]: #264
+#965 := [unit-resolution #487 #968 #969 #971]: #40
+#966 := [unit-resolution #643 #967]: #233
+#963 := [unit-resolution #452 #966]: #38
+#964 := [unit-resolution #611 #963 #965]: false
+#962 := [lemma #964]: #961
+#923 := [unit-resolution #962 #938 #1153]: #297
+#924 := [unit-resolution #633 #937]: #257
+#921 := [unit-resolution #692 #936]: #298
+#922 := [unit-resolution #512 #921 #924 #923]: #98
+#919 := [hypothesis]: #380
+#920 := [hypothesis]: #379
+#340 := (or #338 #339)
+#690 := [asserted]: #340
+#917 := [unit-resolution #690 #936]: #339
+#569 := (or #181 #183 #174 #145)
+#184 := (or #174 #145)
+#185 := (or #183 #184)
+#186 := (or #181 #185)
+#570 := (iff #186 #569)
+#571 := [rewrite]: #570
+#558 := [asserted]: #186
+#572 := [mp #558 #571]: #569
+#918 := [unit-resolution #572 #917 #920 #919]: #174
+#375 := (or #371 #331)
+#716 := [asserted]: #375
+#915 := [unit-resolution #716 #918]: #331
+#916 := [unit-resolution #1086 #915 #922 #926 #927 #933]: false
+#914 := [lemma #916]: #913
+#1166 := [unit-resolution #914 #1165 #1164 #1159 #1156 #1161]: #248
+#753 := (or #371 #150 #152 #119 #60)
+#793 := [hypothesis]: #174
+#374 := (or #371 #363)
+#715 := [asserted]: #374
+#794 := [unit-resolution #715 #793]: #363
+#791 := [unit-resolution #716 #793]: #331
+#802 := (or #236 #119 #150 #152 #138 #60 #167)
+#881 := [hypothesis]: #363
+#819 := [hypothesis]: #49
+#820 := [unit-resolution #647 #819]: #277
+#834 := (or #322 #167 #87)
+#849 := [hypothesis]: #129
+#324 := (or #322 #323)
+#678 := [asserted]: #324
+#850 := [unit-resolution #678 #849]: #323
+#847 := [unit-resolution #679 #849]: #317
+#848 := [unit-resolution #527 #847 #867]: #125
+#361 := (or #358 #318)
+#706 := [asserted]: #361
+#845 := [unit-resolution #706 #848]: #358
+#846 := [unit-resolution #562 #845 #881 #850]: #169
+#843 := [unit-resolution #707 #848]: #359
+#844 := [unit-resolution #573 #843]: #197
+#403 := (or #398 #364)
+#738 := [asserted]: #403
+#833 := [unit-resolution #738 #844 #846]: false
+#831 := [lemma #833]: #834
+#817 := [unit-resolution #831 #820 #881]: #322
+#818 := [unit-resolution #646 #819]: #276
+#851 := (or #282 #167 #87)
+#869 := [hypothesis]: #93
+#870 := [unit-resolution #682 #869]: #323
+#868 := [unit-resolution #683 #869]: #317
+#865 := [unit-resolution #527 #868 #867]: #125
+#866 := [unit-resolution #706 #865]: #358
+#863 := [unit-resolution #562 #866 #881 #870]: #169
+#864 := [unit-resolution #707 #865]: #359
+#861 := [unit-resolution #573 #864]: #197
+#862 := [unit-resolution #738 #861 #863]: false
+#852 := [lemma #862]: #851
+#815 := [unit-resolution #852 #820 #881]: #282
+#821 := (or #55 #138 #129 #150 #152 #93 #85 #60 #119)
+#832 := [hypothesis]: #322
+#829 := [hypothesis]: #282
+#830 := [unit-resolution #502 #1092 #829 #1089]: #91
+#827 := [unit-resolution #657 #830]: #290
+#891 := (or #67 #55 #85 #138 #60 #150 #152 #119)
+#911 := [unit-resolution #940 #971 #1153]: #306
+#912 := [unit-resolution #547 #911 #1052 #1051]: #143
+#909 := [unit-resolution #691 #912]: #330
+#910 := [unit-resolution #949 #971 #1153]: #223
+#907 := [unit-resolution #962 #971 #1153]: #297
+#908 := [unit-resolution #692 #912]: #298
+#905 := [unit-resolution #1086 #909 #1096 #1089 #1092]: #289
+#906 := [unit-resolution #512 #905 #908 #907]: #69
+#903 := [unit-resolution #634 #906]: #224
+#904 := [unit-resolution #456 #903 #910]: #26
+#901 := [unit-resolution #605 #904]: #219
+#902 := [unit-resolution #606 #904]: #213
+#899 := [unit-resolution #769 #902]: #22
+#900 := [unit-resolution #620 #899]: #240
+#897 := [unit-resolution #477 #900 #1061 #901]: #62
+#898 := [unit-resolution #658 #897]: #290
+#895 := [unit-resolution #537 #898 #1096 #909]: #129
+#896 := [unit-resolution #659 #897]: #281
+#893 := [unit-resolution #502 #896 #1092 #1089]: #93
+#894 := [unit-resolution #680 #893 #895]: false
+#892 := [lemma #894]: #891
+#828 := [unit-resolution #892 #1092 #1089 #1096 #1061 #1052 #1051 #1153]: #67
+#258 := (or #256 #257)
+#630 := [asserted]: #258
+#825 := [unit-resolution #630 #828]: #257
+#826 := [unit-resolution #655 #830]: #289
+#973 := (or #330 #69 #98 #150 #152)
+#981 := [hypothesis]: #136
+#982 := [unit-resolution #691 #981]: #338
+#979 := [unit-resolution #547 #982 #1052 #1051]: #114
+#977 := [hypothesis]: #257
+#345 := (or #330 #298)
+#695 := [asserted]: #345
+#978 := [unit-resolution #695 #981]: #298
+#975 := [unit-resolution #512 #978 #977 #980]: #105
+#310 := (or #306 #297)
+#669 := [asserted]: #310
+#976 := [unit-resolution #669 #975 #979]: false
+#974 := [lemma #976]: #973
+#823 := [unit-resolution #974 #826 #825 #1052 #1051]: #330
+#824 := [unit-resolution #537 #823 #827 #1096 #832]: false
+#822 := [lemma #824]: #821
+#816 := [unit-resolution #822 #817 #1096 #1052 #1051 #815 #818 #1061 #1153]: #55
+#813 := [unit-resolution #618 #816]: #240
+#814 := [unit-resolution #622 #816]: #214
+#811 := [unit-resolution #769 #814]: #20
+#812 := [unit-resolution #607 #811]: #219
+#809 := [unit-resolution #477 #812 #1061 #813]: #62
+#810 := [unit-resolution #658 #809]: #290
+#807 := [unit-resolution #537 #810 #1096 #817]: #136
+#808 := [unit-resolution #691 #807]: #338
+#805 := [unit-resolution #547 #808 #1052 #1051]: #114
+#293 := (or #289 #249)
+#656 := [asserted]: #293
+#806 := [unit-resolution #656 #809]: #289
+#803 := [unit-resolution #974 #807 #806 #1052 #1051]: #69
+#804 := [unit-resolution #630 #803]: #256
+#801 := [unit-resolution #940 #804 #805 #1153]: false
+#799 := [lemma #801]: #802
+#792 := [unit-resolution #799 #791 #1052 #1051 #1153 #1061 #794]: #236
+#789 := [unit-resolution #788 #792]: #47
+#790 := [unit-resolution #1054 #789 #1061]: #62
+#778 := [unit-resolution #658 #790]: #290
+#779 := [unit-resolution #656 #790]: #289
+#795 := (or #330 #119 #150 #152 #98)
+#800 := [unit-resolution #974 #981 #980 #1052 #1051]: #69
+#797 := [unit-resolution #630 #800]: #256
+#798 := [unit-resolution #940 #797 #979 #1153]: false
+#796 := [lemma #798]: #795
+#776 := [unit-resolution #796 #779 #1052 #1051 #1153]: #330
+#777 := [unit-resolution #537 #776 #791 #778]: #129
+#774 := [unit-resolution #831 #777 #794]: #87
+#775 := [unit-resolution #659 #790]: #281
+#772 := [unit-resolution #621 #789]: #241
+#773 := [unit-resolution #680 #777]: #282
+#770 := [unit-resolution #502 #773 #772 #775]: #85
+#771 := [unit-resolution #645 #770 #774]: false
+#751 := [lemma #771]: #753
+#1167 := [unit-resolution #751 #1159 #1156 #1161 #1166]: #371
+#1168 := [unit-resolution #572 #1167 #1165 #1164]: #145
+#1169 := [unit-resolution #690 #1168]: #338
+#1170 := [unit-resolution #547 #1169 #1159 #1156]: #114
+#1171 := [unit-resolution #669 #1170]: #297
+#344 := (or #339 #298)
+#694 := [asserted]: #344
+#1172 := [unit-resolution #694 #1168]: #298
+#1173 := [unit-resolution #940 #1170 #1161]: #67
+#1174 := [unit-resolution #630 #1173]: #257
+#1175 := [unit-resolution #512 #1174 #1172 #1171]: #98
+#1176 := [unit-resolution #656 #1175]: #249
+#1177 := [unit-resolution #632 #1173]: #224
+#1178 := [unit-resolution #666 #1170]: #305
+#1179 := [unit-resolution #522 #1178 #1161]: #81
+#1180 := [unit-resolution #643 #1179]: #233
+#1181 := [unit-resolution #452 #1180]: #38
+#1182 := [unit-resolution #612 #1181]: #223
+#1183 := [unit-resolution #456 #1182 #1177]: #26
+#1184 := [unit-resolution #605 #1183]: #219
+#1185 := [unit-resolution #477 #1184 #1166 #1176]: #53
+#1186 := [unit-resolution #606 #1183]: #213
+#1187 := [unit-resolution #769 #1186]: #22
+#1188 := [unit-resolution #620 #1187 #1185]: false
+#1190 := [lemma #1188]: #1189
+#1365 := [unit-resolution #1190 #1160]: #388
+#211 := (or #208 #190)
+decl f5 :: S1
+#13 := f5
+#14 := (= f5 f1)
+#600 := (or #14 #208 #190)
+#858 := (iff #600 #211)
+#853 := (or false #208 #190)
+#856 := (iff #853 #211)
+#857 := [rewrite]: #856
+#854 := (iff #600 #853)
+#757 := (iff #14 false)
+#15 := (not #14)
+#438 := [asserted]: #15
+#758 := [iff-false #438]: #757
+#855 := [monotonicity #758]: #854
+#859 := [trans #855 #857]: #858
+#212 := (or #14 #211)
+#601 := (iff #212 #600)
+#602 := [rewrite]: #601
+#589 := [asserted]: #212
+#603 := [mp #589 #602]: #600
+#860 := [mp #603 #859]: #211
+#1366 := [unit-resolution #860 #1365]: #208
+#408 := (not #208)
+#410 := (or #408 #380)
+#743 := [asserted]: #410
+#1367 := [unit-resolution #743 #1366]: #380
+#409 := (or #408 #404)
+#742 := [asserted]: #409
+#1368 := [unit-resolution #742 #1366]: #404
+#1369 := [unit-resolution #593 #1368 #1160]: #200
+#1239 := (or #119 #183 #400)
+#1224 := [unit-resolution #1123 #1153 #1019]: #323
+#1225 := [unit-resolution #562 #1224 #1017 #1020]: #167
+#1226 := [unit-resolution #715 #1225]: #371
+#1222 := (or #379 #400 #119)
+#1216 := [hypothesis]: #181
+#390 := (or #387 #379)
+#727 := [asserted]: #390
+#1217 := [unit-resolution #727 #1216]: #387
+#1218 := [unit-resolution #842 #1217]: #157
+#394 := (or #379 #347)
+#731 := [asserted]: #394
+#1219 := [unit-resolution #731 #1216]: #347
+#1220 := [unit-resolution #984 #1219 #1024 #1153]: #150
+#1221 := [unit-resolution #702 #1220 #1218]: false
+#1223 := [lemma #1221]: #1222
+#1227 := [unit-resolution #1223 #1153 #1024]: #379
+#1228 := [unit-resolution #572 #1227 #1226 #919]: #145
+#1229 := [unit-resolution #694 #1228]: #298
+#1192 := (or #297 #125 #119)
+#1191 := [unit-resolution #1098 #967 #969 #1154]: false
+#1193 := [lemma #1191]: #1192
+#1230 := [unit-resolution #1193 #1153 #1019]: #297
+#1231 := [unit-resolution #719 #1225]: #331
+#343 := (or #339 #330)
+#693 := [asserted]: #343
+#1232 := [unit-resolution #693 #1228]: #330
+#1233 := [unit-resolution #1064 #1232 #1231 #1230 #1229]: #277
+#1234 := [unit-resolution #527 #1233 #1019]: #123
+#1214 := (or #339 #138 #119 #125 #98)
+#1194 := [hypothesis]: #145
+#1195 := [unit-resolution #693 #1194]: #330
+#1196 := [unit-resolution #694 #1194]: #298
+#1197 := [unit-resolution #1193 #1153 #1154]: #297
+#1198 := [unit-resolution #1064 #1195 #1096 #1197 #1196]: #277
+#1199 := [unit-resolution #527 #1198 #1154]: #123
+#1200 := [unit-resolution #679 #1199]: #322
+#1201 := [unit-resolution #537 #1200 #1096 #1195]: #100
+#1202 := [unit-resolution #658 #1201]: #249
+#1203 := [unit-resolution #512 #1196 #1197 #980]: #69
+#1204 := [unit-resolution #633 #1203]: #248
+#1205 := [unit-resolution #634 #1203]: #224
+#1206 := [unit-resolution #630 #1203]: #256
+#1207 := [unit-resolution #949 #1206 #1153]: #223
+#1208 := [unit-resolution #456 #1207 #1205]: #26
+#1209 := [unit-resolution #605 #1208]: #219
+#1210 := [unit-resolution #477 #1209 #1204 #1202]: #53
+#1211 := [unit-resolution #606 #1208]: #213
+#1212 := [unit-resolution #769 #1211]: #22
+#1213 := [unit-resolution #620 #1212 #1210]: false
+#1215 := [lemma #1213]: #1214
+#1235 := [unit-resolution #1215 #1228 #1153 #1019 #1231]: #98
+#1236 := [unit-resolution #654 #1235]: #290
+#1237 := [unit-resolution #537 #1236 #1231 #1232]: #129
+#1238 := [unit-resolution #679 #1237 #1234]: false
+#1240 := [lemma #1238]: #1239
+#1370 := [unit-resolution #1240 #1367 #1369]: #119
+#1371 := [unit-resolution #703 #1370]: #354
+#1372 := [unit-resolution #842 #1371]: #188
+#1373 := [unit-resolution #727 #1372]: #379
+#1374 := [unit-resolution #737 #1369]: #364
+#1375 := [unit-resolution #736 #1369]: #398
+#1376 := [unit-resolution #573 #1375]: #163
+#1377 := [unit-resolution #705 #1376]: #358
+#1378 := [unit-resolution #707 #1376]: #318
+#391 := (or #387 #347)
+#728 := [asserted]: #391
+#1379 := [unit-resolution #728 #1372]: #347
+#357 := (or #346 #313)
+#704 := [asserted]: #357
+#1380 := [unit-resolution #704 #1370]: #346
+#1351 := (or #98 #125 #161 #169 #181 #183 #150 #152)
+#1258 := [hypothesis]: #364
+#1259 := [hypothesis]: #358
+#1332 := (or #136 #150 #152 #181 #183 #125 #161 #169 #98)
+#1317 := (or #129 #125 #136 #161 #169 #181 #183 #150 #152 #98)
+#1297 := (or #105 #125 #98 #161 #169 #181 #183 #129 #136)
+#1276 := (or #290 #125 #161 #169 #181 #183 #98 #105)
+#1256 := [hypothesis]: #100
+#1257 := [unit-resolution #657 #1256]: #281
+#1260 := [unit-resolution #658 #1256]: #249
+#1254 := (or #60 #62 #91 #125)
+#1241 := [hypothesis]: #281
+#1242 := [unit-resolution #1054 #1061 #1062]: #235
+#1243 := [unit-resolution #788 #1242]: #49
+#1244 := [unit-resolution #646 #1243]: #276
+#1245 := [unit-resolution #647 #1243]: #277
+#1246 := [unit-resolution #527 #1245 #1154]: #123
+#1247 := [unit-resolution #683 #1246]: #282
+#1248 := [unit-resolution #502 #1247 #1244 #1241]: #55
+#1249 := [unit-resolution #618 #1248]: #240
+#1250 := [unit-resolution #477 #1249 #1061 #1062]: #28
+#1251 := [unit-resolution #622 #1248]: #214
+#1252 := [unit-resolution #769 #1251]: #20
+#1253 := [unit-resolution #607 #1252 #1250]: false
+#1255 := [lemma #1253]: #1254
+#1261 := [unit-resolution #1255 #1260 #1257 #1154]: #60
+#1262 := [unit-resolution #633 #1261]: #257
+#1263 := [unit-resolution #512 #1262 #980 #1075]: #107
+#1264 := [unit-resolution #694 #1263]: #339
+#1265 := [unit-resolution #572 #1264 #920 #919]: #174
+#1266 := [unit-resolution #715 #1265]: #363
+#1267 := [unit-resolution #562 #1266 #1259 #1258]: #131
+#1268 := [unit-resolution #682 #1267]: #282
+#1269 := [unit-resolution #681 #1267]: #317
+#1270 := [unit-resolution #527 #1269 #1154]: #87
+#1271 := [unit-resolution #645 #1270]: #276
+#1272 := [unit-resolution #502 #1271 #1268 #1257]: #55
+#1273 := [unit-resolution #647 #1270]: #236
+#1274 := [unit-resolution #788 #1273]: #47
+#1275 := [unit-resolution #621 #1274 #1272]: false
+#1277 := [lemma #1275]: #1276
+#1278 := [unit-resolution #1277 #1075 #1259 #1258 #920 #919 #980 #1154]: #290
+#1279 := [unit-resolution #537 #1278 #832 #1095]: #138
+#1280 := [unit-resolution #716 #1279]: #371
+#1281 := [unit-resolution #572 #1280 #920 #919]: #145
+#1282 := [unit-resolution #694 #1281]: #298
+#1283 := [unit-resolution #512 #1282 #980 #1075]: #69
+#1284 := [unit-resolution #633 #1283]: #248
+#1285 := [unit-resolution #719 #1279]: #363
+#1286 := [unit-resolution #562 #1285 #1259 #1258]: #131
+#1287 := [unit-resolution #681 #1286]: #317
+#1288 := [unit-resolution #527 #1287 #1154]: #87
+#1289 := [unit-resolution #647 #1288]: #236
+#1290 := [unit-resolution #788 #1289]: #47
+#1291 := [unit-resolution #1054 #1290 #1284]: #62
+#1292 := [unit-resolution #645 #1288]: #276
+#1293 := [unit-resolution #682 #1286]: #282
+#1294 := [unit-resolution #621 #1290]: #241
+#1295 := [unit-resolution #502 #1294 #1293 #1292]: #91
+#1296 := [unit-resolution #659 #1295 #1291]: false
+#1298 := [lemma #1296]: #1297
+#1299 := [unit-resolution #1298 #832 #980 #1259 #1258 #920 #919 #1154 #1095]: #105
+#1300 := [unit-resolution #669 #1299]: #306
+#1301 := [unit-resolution #547 #1300 #1052 #1051]: #143
+#1302 := [unit-resolution #690 #1301]: #339
+#1303 := [unit-resolution #572 #1302 #920 #919]: #174
+#1304 := [unit-resolution #716 #1303]: #331
+#1305 := [unit-resolution #537 #1304 #832 #1095]: #100
+#1306 := [unit-resolution #657 #1305]: #281
+#1307 := [unit-resolution #715 #1303]: #363
+#1308 := [unit-resolution #562 #1307 #1259 #1258]: #131
+#1309 := [unit-resolution #682 #1308]: #282
+#1310 := [unit-resolution #681 #1308]: #317
+#1311 := [unit-resolution #527 #1310 #1154]: #87
+#1312 := [unit-resolution #645 #1311]: #276
+#1313 := [unit-resolution #502 #1312 #1309 #1306]: #55
+#1314 := [unit-resolution #647 #1311]: #236
+#1315 := [unit-resolution #788 #1314]: #47
+#1316 := [unit-resolution #621 #1315 #1313]: false
+#1318 := [lemma #1316]: #1317
+#1319 := [unit-resolution #1318 #1095 #1154 #1259 #1258 #920 #919 #1052 #1051 #980]: #129
+#1320 := [unit-resolution #678 #1319]: #323
+#1321 := [unit-resolution #562 #1320 #1259 #1258]: #167
+#1322 := [unit-resolution #715 #1321]: #371
+#1323 := [unit-resolution #572 #1322 #920 #919]: #145
+#1324 := [unit-resolution #690 #1323]: #338
+#1325 := [unit-resolution #547 #1324 #1052 #1051]: #114
+#1326 := [unit-resolution #679 #1319]: #317
+#1327 := [unit-resolution #527 #1326 #1154]: #87
+#335 := (or #331 #322)
+#687 := [asserted]: #335
+#1328 := [unit-resolution #687 #1319]: #331
+#1329 := [unit-resolution #694 #1323]: #298
+#1330 := [unit-resolution #1064 #1329 #1095 #1328 #1327]: #105
+#1331 := [unit-resolution #669 #1330 #1325]: false
+#1333 := [lemma #1331]: #1332
+#1334 := [unit-resolution #1333 #980 #1051 #920 #919 #1154 #1259 #1258 #1052]: #136
+#1335 := [unit-resolution #974 #1334 #980 #1052 #1051]: #69
+#1336 := [unit-resolution #633 #1335]: #248
+#1337 := [unit-resolution #693 #1334]: #339
+#1338 := [unit-resolution #572 #1337 #920 #919]: #174
+#1339 := [unit-resolution #715 #1338]: #363
+#1340 := [unit-resolution #562 #1339 #1259 #1258]: #131
+#1341 := [unit-resolution #681 #1340]: #317
+#1342 := [unit-resolution #527 #1341 #1154]: #87
+#1343 := [unit-resolution #647 #1342]: #236
+#1344 := [unit-resolution #788 #1343]: #47
+#1345 := [unit-resolution #1054 #1344 #1336]: #62
+#1346 := [unit-resolution #645 #1342]: #276
+#1347 := [unit-resolution #682 #1340]: #282
+#1348 := [unit-resolution #621 #1344]: #241
+#1349 := [unit-resolution #502 #1348 #1347 #1346]: #91
+#1350 := [unit-resolution #659 #1349 #1345]: false
+#1352 := [lemma #1350]: #1351
+#1381 := [unit-resolution #1352 #1378 #1377 #1374 #1373 #1367 #1380 #1379]: #98
+#1382 := [unit-resolution #654 #1381]: #290
+#1363 := (or #317 #100 #181 #183 #161 #169)
+#1353 := [hypothesis]: #123
+#1354 := [unit-resolution #681 #1353]: #323
+#1355 := [unit-resolution #562 #1354 #1259 #1258]: #167
+#1356 := [unit-resolution #715 #1355]: #371
+#1357 := [unit-resolution #572 #1356 #920 #919]: #145
+#1358 := [unit-resolution #679 #1353]: #322
+#1359 := [hypothesis]: #290
+#1360 := [unit-resolution #719 #1355]: #331
+#1361 := [unit-resolution #537 #1360 #1359 #1358]: #136
+#1362 := [unit-resolution #693 #1361 #1357]: false
+#1364 := [lemma #1362]: #1363
+#1383 := [unit-resolution #1364 #1382 #1373 #1367 #1377 #1374]: #317
+#1384 := [unit-resolution #527 #1383 #1378]: #87
+#1385 := [unit-resolution #645 #1384]: #276
+#1386 := [unit-resolution #655 #1381]: #281
+#1387 := [unit-resolution #647 #1384]: #236
+#1388 := [unit-resolution #788 #1387]: #47
+#1389 := [unit-resolution #621 #1388]: #241
+#1390 := [unit-resolution #502 #1389 #1386 #1385]: #93
+#1391 := [unit-resolution #682 #1390]: #323
+#1392 := [unit-resolution #562 #1391 #1377 #1374]: #167
+#1393 := [unit-resolution #715 #1392]: #371
+#1394 := [unit-resolution #572 #1393 #1373 #1367]: #145
+#1395 := [unit-resolution #680 #1390]: #322
+#1396 := [unit-resolution #719 #1392]: #331
+#1397 := [unit-resolution #537 #1396 #1382 #1395]: #136
+#1398 := [unit-resolution #693 #1397 #1394]: false
+#1399 := [lemma #1398]: #176
+#376 := (or #372 #363)
+#717 := [asserted]: #376
+#1426 := [unit-resolution #717 #1399]: #363
+#1428 := [unit-resolution #831 #1426]: #1427
+#1429 := [unit-resolution #1428 #867]: #322
+#1431 := (or #136 #129 #100)
+#377 := (or #372 #331)
+#718 := [asserted]: #377
+#1430 := [unit-resolution #718 #1399]: #331
+#1432 := [unit-resolution #537 #1430]: #1431
+#1433 := [unit-resolution #1432 #1429 #1095]: #100
+#1434 := [unit-resolution #657 #1433]: #281
+#1435 := (or #282 #87)
+#1436 := [unit-resolution #852 #1426]: #1435
+#1437 := [unit-resolution #1436 #867]: #282
+#1419 := (or #214 #93 #91)
+#1413 := [hypothesis]: #22
+#1414 := [unit-resolution #622 #1413]: #241
+#1415 := [unit-resolution #502 #1414 #829 #1241]: #85
+#1416 := [unit-resolution #623 #1413]: #235
+#1417 := [unit-resolution #788 #1416]: #49
+#1418 := [unit-resolution #646 #1417 #1415]: false
+#1420 := [lemma #1418]: #1419
+#1438 := [unit-resolution #1420 #1437 #1434]: #214
+#1439 := [unit-resolution #769 #1438]: #20
+#1440 := [unit-resolution #607 #1439]: #219
+#1441 := [unit-resolution #658 #1433]: #249
+#1442 := [unit-resolution #606 #1439]: #218
+#1424 := (or #248 #26 #98)
+#1421 := [hypothesis]: #218
+#1411 := (or #223 #98 #69 #67)
+#1400 := [unit-resolution #949 #959 #971]: #119
+#1401 := [unit-resolution #703 #1400]: #354
+#1402 := [unit-resolution #842 #1401]: #188
+#1403 := [unit-resolution #728 #1402]: #347
+#1404 := [unit-resolution #704 #1400]: #346
+#1405 := [unit-resolution #487 #953 #971 #956]: #76
+#1406 := [unit-resolution #670 #1405]: #306
+#1407 := [unit-resolution #547 #1406 #1404 #1403]: #143
+#1408 := [unit-resolution #671 #1405]: #297
+#1409 := [unit-resolution #512 #1408 #980 #977]: #107
+#1410 := [unit-resolution #692 #1409 #1407]: false
+#1412 := [lemma #1410]: #1411
+#1422 := [unit-resolution #1412 #924 #980 #938]: #223
+#1423 := [unit-resolution #456 #1422 #934 #1421]: false
+#1425 := [lemma #1423]: #1424
+#1443 := [unit-resolution #1425 #1442 #980]: #248
+#1444 := [unit-resolution #477 #1443 #1441 #1440]: #53
+#1445 := [unit-resolution #618 #1444]: #241
+#1446 := [unit-resolution #1054 #1443 #1441]: #235
+#1447 := [unit-resolution #788 #1446]: #49
+#1448 := [unit-resolution #646 #1447]: #276
+#1449 := [unit-resolution #502 #1448 #1445 #1437 #1434]: false
+#1451 := [lemma #1449]: #1450
+#1452 := [unit-resolution #1451 #1095 #980]: #87
+#1453 := [unit-resolution #647 #1452]: #236
+#1454 := [unit-resolution #788 #1453]: #47
+#1455 := [unit-resolution #623 #1454]: #214
+#1456 := [unit-resolution #769 #1455]: #20
+#1457 := [unit-resolution #606 #1456]: #218
+#1458 := [unit-resolution #1425 #1457 #980]: #248
+#1459 := [unit-resolution #1054 #1458 #1454]: #62
+#1460 := [unit-resolution #658 #1459]: #290
+#1461 := [unit-resolution #1432 #1460 #1095]: #129
+#1462 := [unit-resolution #621 #1454]: #241
+#1463 := [unit-resolution #645 #1452]: #276
+#1464 := [unit-resolution #659 #1459]: #281
+#1465 := [unit-resolution #502 #1464 #1463 #1462]: #93
+#1466 := [unit-resolution #680 #1465 #1461]: false
+#1468 := [lemma #1466]: #1467
+#1481 := [unit-resolution #1468 #980]: #136
+#1482 := [unit-resolution #693 #1481]: #339
+#1479 := (or #387 #145)
+#1469 := [hypothesis]: #188
+#1470 := [unit-resolution #726 #1469]: #388
+#1471 := [unit-resolution #860 #1470]: #208
+#1472 := [hypothesis]: #339
+#1473 := [unit-resolution #727 #1469]: #379
+#1475 := (or #181 #183 #145)
+#373 := (or #371 #372)
+#714 := [asserted]: #373
+#1474 := [unit-resolution #714 #1399]: #371
+#1476 := [unit-resolution #572 #1474]: #1475
+#1477 := [unit-resolution #1476 #1473 #1472]: #183
+#1478 := [unit-resolution #743 #1477 #1471]: false
+#1480 := [lemma #1478]: #1479
+#1483 := [unit-resolution #1480 #1482]: #387
+#1484 := [unit-resolution #842 #1483]: #157
+#1485 := [unit-resolution #702 #1484]: #346
+#1486 := [unit-resolution #703 #1484]: #313
+#1487 := [unit-resolution #796 #1486 #1481 #1485 #980]: #152
+#1488 := [unit-resolution #730 #1487]: #388
+#1489 := [unit-resolution #860 #1488]: #208
+#1490 := [unit-resolution #731 #1487]: #379
+#1491 := [unit-resolution #1476 #1490 #1482]: #183
+#1492 := [unit-resolution #743 #1491 #1489]: false
+#1493 := [lemma #1492]: #98
+#1515 := [unit-resolution #656 #1493]: #249
+#1511 := [unit-resolution #655 #1493]: #281
+#1512 := [unit-resolution #1420 #829 #1511]: #214
+#1513 := [unit-resolution #769 #1512]: #20
+#1514 := [unit-resolution #607 #1513]: #219
+#1516 := [unit-resolution #606 #1513]: #218
+#1509 := (or #248 #26)
+#1494 := [unit-resolution #654 #1493]: #290
+#1495 := [unit-resolution #1432 #1095 #1494]: #129
+#300 := (or #297 #289)
+#661 := [asserted]: #300
+#1496 := [unit-resolution #661 #1493]: #297
+#302 := (or #298 #289)
+#663 := [asserted]: #302
+#1497 := [unit-resolution #663 #1493]: #298
+#1498 := (or #277 #136 #105 #107)
+#1499 := [unit-resolution #1064 #1430]: #1498
+#1500 := [unit-resolution #1499 #1095 #1497 #1496]: #277
+#1501 := [unit-resolution #1428 #1500 #1495]: false
+#1502 := [lemma #1501]: #136
+#1503 := [unit-resolution #693 #1502]: #339
+#1504 := [unit-resolution #1480 #1503]: #387
+#1505 := [unit-resolution #842 #1504]: #157
+#1506 := [unit-resolution #703 #1505]: #313
+#1507 := [unit-resolution #949 #938 #1506]: #223
+#1508 := [unit-resolution #456 #1507 #934 #1421]: false
+#1510 := [lemma #1508]: #1509
+#1517 := [unit-resolution #1510 #1516]: #248
+#1518 := [unit-resolution #477 #1517 #1515 #1514]: #53
+#1519 := [unit-resolution #618 #1518]: #241
+#1520 := [unit-resolution #1054 #1517 #1515]: #235
+#1521 := [unit-resolution #788 #1520]: #49
+#1522 := [unit-resolution #646 #1521]: #276
+#1523 := [unit-resolution #502 #1522 #1519 #1511 #829]: false
+#1524 := [lemma #1523]: #93
+#1525 := [unit-resolution #1436 #1524]: #87
+#321 := (or #318 #277)
+#677 := [asserted]: #321
+#1526 := [unit-resolution #677 #1525]: #318
+#1527 := [unit-resolution #1255 #1526 #1511 #1515]: #60
+#1528 := [unit-resolution #1510 #1527]: #26
+#1529 := [unit-resolution #647 #1525]: #236
+#1530 := [unit-resolution #788 #1529]: #47
+#1531 := [unit-resolution #623 #1530]: #214
+#1532 := [unit-resolution #769 #1531]: #20
+[unit-resolution #606 #1532 #1528]: false
+unsat
 a69a9e8c5e31ec6b9da4cf96f47b52cf6b9404d9 117 0
-#2 := false
-decl f3 :: (-> S3 S2 S1)
-#10 := (:var 0 S2)
-decl f4 :: (-> S4 S1 S3)
-decl f6 :: S1
-#16 := f6
-decl f5 :: S4
-#7 := f5
-#17 := (f4 f5 f6)
-#18 := (f3 #17 #10)
-#573 := (pattern #18)
-decl f1 :: S1
-#3 := f1
-#19 := (= #18 f1)
-#76 := (not #19)
-#574 := (forall (vars (?v0 S2)) (:pat #573) #76)
-decl f7 :: S2
-#21 := f7
-#22 := (f3 #17 f7)
-#23 := (= #22 f1)
-#150 := (= f6 f1)
-#151 := (iff #23 #150)
-#8 := (:var 1 S1)
-#9 := (f4 f5 #8)
-#11 := (f3 #9 #10)
-#566 := (pattern #11)
-#13 := (= #8 f1)
-#12 := (= #11 f1)
-#14 := (iff #12 #13)
-#567 := (forall (vars (?v0 S1) (?v1 S2)) (:pat #566) #14)
-#15 := (forall (vars (?v0 S1) (?v1 S2)) #14)
-#570 := (iff #15 #567)
-#568 := (iff #14 #14)
-#569 := [refl]: #568
-#571 := [quant-intro #569]: #570
-#62 := (~ #15 #15)
-#60 := (~ #14 #14)
-#61 := [refl]: #60
-#63 := [nnf-pos #61]: #62
-#46 := [asserted]: #15
-#53 := [mp~ #46 #63]: #15
-#572 := [mp #53 #571]: #567
-#152 := (not #567)
-#228 := (or #152 #151)
-#561 := [quant-inst #16 #21]: #228
-#237 := [unit-resolution #561 #572]: #151
-decl ?v0!0 :: S2
-#66 := ?v0!0
-#67 := (f3 #17 ?v0!0)
-#68 := (= #67 f1)
-#236 := (iff #68 #150)
-#238 := (or #152 #236)
-#229 := [quant-inst #16 #66]: #238
-#227 := [unit-resolution #229 #572]: #236
-#240 := (not #236)
-#199 := (or #240 #150)
-#55 := (not #23)
-#215 := [hypothesis]: #55
-#83 := (or #68 #23)
-#79 := (forall (vars (?v0 S2)) #76)
-#82 := (or #79 #55)
-#84 := (and #83 #82)
-#20 := (exists (vars (?v0 S2)) #19)
-#48 := (not #20)
-#49 := (iff #48 #23)
-#85 := (~ #49 #84)
-#57 := (~ #23 #23)
-#65 := [refl]: #57
-#64 := (~ #55 #55)
-#56 := [refl]: #64
-#80 := (~ #48 #79)
-#77 := (~ #76 #76)
-#78 := [refl]: #77
-#81 := [nnf-neg #78]: #80
-#73 := (not #48)
-#74 := (~ #73 #68)
-#69 := (~ #20 #68)
-#70 := [sk]: #69
-#75 := [nnf-neg #70]: #74
-#86 := [nnf-pos #75 #81 #56 #65]: #85
-#24 := (iff #20 #23)
-#25 := (not #24)
-#50 := (iff #25 #49)
-#51 := [rewrite]: #50
-#47 := [asserted]: #25
-#54 := [mp #47 #51]: #49
-#87 := [mp~ #54 #86]: #84
-#90 := [and-elim #87]: #83
-#557 := [unit-resolution #90 #215]: #68
-#243 := (not #68)
-#222 := (or #240 #243 #150)
-#558 := [def-axiom]: #222
-#541 := [unit-resolution #558 #557]: #199
-#203 := [unit-resolution #541 #227]: #150
-#241 := (not #150)
-#562 := (not #151)
-#204 := (or #562 #241)
-#563 := (or #562 #23 #241)
-#564 := [def-axiom]: #563
-#205 := [unit-resolution #564 #215]: #204
-#206 := [unit-resolution #205 #203 #237]: false
-#543 := [lemma #206]: #23
-#579 := (or #574 #55)
-#580 := (iff #82 #579)
-#577 := (iff #79 #574)
-#575 := (iff #76 #76)
-#576 := [refl]: #575
-#578 := [quant-intro #576]: #577
-#581 := [monotonicity #578]: #580
-#91 := [and-elim #87]: #82
-#582 := [mp #91 #581]: #579
-#242 := [unit-resolution #582 #543]: #574
-#555 := (not #574)
-#214 := (or #555 #55)
-#219 := [quant-inst #21]: #214
-[unit-resolution #219 #543 #242]: false
-unsat
+#2 := false
+decl f3 :: (-> S3 S2 S1)
+#10 := (:var 0 S2)
+decl f4 :: (-> S4 S1 S3)
+decl f6 :: S1
+#16 := f6
+decl f5 :: S4
+#7 := f5
+#17 := (f4 f5 f6)
+#18 := (f3 #17 #10)
+#573 := (pattern #18)
+decl f1 :: S1
+#3 := f1
+#19 := (= #18 f1)
+#76 := (not #19)
+#574 := (forall (vars (?v0 S2)) (:pat #573) #76)
+decl f7 :: S2
+#21 := f7
+#22 := (f3 #17 f7)
+#23 := (= #22 f1)
+#150 := (= f6 f1)
+#151 := (iff #23 #150)
+#8 := (:var 1 S1)
+#9 := (f4 f5 #8)
+#11 := (f3 #9 #10)
+#566 := (pattern #11)
+#13 := (= #8 f1)
+#12 := (= #11 f1)
+#14 := (iff #12 #13)
+#567 := (forall (vars (?v0 S1) (?v1 S2)) (:pat #566) #14)
+#15 := (forall (vars (?v0 S1) (?v1 S2)) #14)
+#570 := (iff #15 #567)
+#568 := (iff #14 #14)
+#569 := [refl]: #568
+#571 := [quant-intro #569]: #570
+#62 := (~ #15 #15)
+#60 := (~ #14 #14)
+#61 := [refl]: #60
+#63 := [nnf-pos #61]: #62
+#46 := [asserted]: #15
+#53 := [mp~ #46 #63]: #15
+#572 := [mp #53 #571]: #567
+#152 := (not #567)
+#228 := (or #152 #151)
+#561 := [quant-inst #16 #21]: #228
+#237 := [unit-resolution #561 #572]: #151
+decl ?v0!0 :: S2
+#66 := ?v0!0
+#67 := (f3 #17 ?v0!0)
+#68 := (= #67 f1)
+#236 := (iff #68 #150)
+#238 := (or #152 #236)
+#229 := [quant-inst #16 #66]: #238
+#227 := [unit-resolution #229 #572]: #236
+#240 := (not #236)
+#199 := (or #240 #150)
+#55 := (not #23)
+#215 := [hypothesis]: #55
+#83 := (or #68 #23)
+#79 := (forall (vars (?v0 S2)) #76)
+#82 := (or #79 #55)
+#84 := (and #83 #82)
+#20 := (exists (vars (?v0 S2)) #19)
+#48 := (not #20)
+#49 := (iff #48 #23)
+#85 := (~ #49 #84)
+#57 := (~ #23 #23)
+#65 := [refl]: #57
+#64 := (~ #55 #55)
+#56 := [refl]: #64
+#80 := (~ #48 #79)
+#77 := (~ #76 #76)
+#78 := [refl]: #77
+#81 := [nnf-neg #78]: #80
+#73 := (not #48)
+#74 := (~ #73 #68)
+#69 := (~ #20 #68)
+#70 := [sk]: #69
+#75 := [nnf-neg #70]: #74
+#86 := [nnf-pos #75 #81 #56 #65]: #85
+#24 := (iff #20 #23)
+#25 := (not #24)
+#50 := (iff #25 #49)
+#51 := [rewrite]: #50
+#47 := [asserted]: #25
+#54 := [mp #47 #51]: #49
+#87 := [mp~ #54 #86]: #84
+#90 := [and-elim #87]: #83
+#557 := [unit-resolution #90 #215]: #68
+#243 := (not #68)
+#222 := (or #240 #243 #150)
+#558 := [def-axiom]: #222
+#541 := [unit-resolution #558 #557]: #199
+#203 := [unit-resolution #541 #227]: #150
+#241 := (not #150)
+#562 := (not #151)
+#204 := (or #562 #241)
+#563 := (or #562 #23 #241)
+#564 := [def-axiom]: #563
+#205 := [unit-resolution #564 #215]: #204
+#206 := [unit-resolution #205 #203 #237]: false
+#543 := [lemma #206]: #23
+#579 := (or #574 #55)
+#580 := (iff #82 #579)
+#577 := (iff #79 #574)
+#575 := (iff #76 #76)
+#576 := [refl]: #575
+#578 := [quant-intro #576]: #577
+#581 := [monotonicity #578]: #580
+#91 := [and-elim #87]: #82
+#582 := [mp #91 #581]: #579
+#242 := [unit-resolution #582 #543]: #574
+#555 := (not #574)
+#214 := (or #555 #55)
+#219 := [quant-inst #21]: #214
+[unit-resolution #219 #543 #242]: false
+unsat
 fdf61e060f49731790f4d6c8f9b26c21349c60b3 117 0
-#2 := false
-decl f1 :: S1
-#3 := f1
-decl f7 :: S1
-#25 := f7
-#206 := (= f7 f1)
-decl f3 :: (-> S3 S2 S1)
-decl f6 :: S2
-#20 := f6
-decl f4 :: (-> S4 S1 S3)
-decl f5 :: S4
-#7 := f5
-#26 := (f4 f5 f7)
-#30 := (f3 #26 f6)
-#31 := (= #30 f1)
-#292 := (iff #31 #206)
-#10 := (:var 0 S2)
-#8 := (:var 1 S1)
-#9 := (f4 f5 #8)
-#11 := (f3 #9 #10)
-#622 := (pattern #11)
-#13 := (= #8 f1)
-#12 := (= #11 f1)
-#14 := (iff #12 #13)
-#623 := (forall (vars (?v0 S1) (?v1 S2)) (:pat #622) #14)
-#15 := (forall (vars (?v0 S1) (?v1 S2)) #14)
-#626 := (iff #15 #623)
-#624 := (iff #14 #14)
-#625 := [refl]: #624
-#627 := [quant-intro #625]: #626
-#73 := (~ #15 #15)
-#71 := (~ #14 #14)
-#72 := [refl]: #71
-#74 := [nnf-pos #72]: #73
-#54 := [asserted]: #15
-#62 := [mp~ #54 #74]: #15
-#628 := [mp #62 #627]: #623
-#295 := (not #623)
-#611 := (or #295 #292)
-#270 := [quant-inst #25 #20]: #611
-#297 := [unit-resolution #270 #628]: #292
-decl ?v0!3 :: S2
-#120 := ?v0!3
-#123 := (f3 #26 ?v0!3)
-#124 := (= #123 f1)
-#296 := (iff #124 #206)
-#299 := (or #295 #296)
-#278 := [quant-inst #25 #120]: #299
-#298 := [unit-resolution #278 #628]: #296
-#614 := (not #296)
-#599 := (or #614 #206)
-#108 := (not #31)
-#27 := (f3 #26 #10)
-#654 := (pattern #27)
-#28 := (= #27 f1)
-#132 := (not #28)
-#655 := (forall (vars (?v0 S2)) (:pat #654) #132)
-#207 := [hypothesis]: #31
-#660 := (or #655 #108)
-#135 := (forall (vars (?v0 S2)) #132)
-#138 := (or #135 #108)
-#661 := (iff #138 #660)
-#658 := (iff #135 #655)
-#656 := (iff #132 #132)
-#657 := [refl]: #656
-#659 := [quant-intro #657]: #658
-#662 := [monotonicity #659]: #661
-#139 := (or #124 #31)
-#140 := (and #139 #138)
-#29 := (exists (vars (?v0 S2)) #28)
-#57 := (not #29)
-#58 := (iff #57 #31)
-#141 := (~ #58 #140)
-#81 := (~ #31 #31)
-#119 := [refl]: #81
-#109 := (~ #108 #108)
-#80 := [refl]: #109
-#136 := (~ #57 #135)
-#133 := (~ #132 #132)
-#134 := [refl]: #133
-#137 := [nnf-neg #134]: #136
-#129 := (not #57)
-#130 := (~ #129 #124)
-#125 := (~ #29 #124)
-#126 := [sk]: #125
-#131 := [nnf-neg #126]: #130
-#142 := [nnf-pos #131 #137 #80 #119]: #141
-#32 := (iff #29 #31)
-#33 := (not #32)
-#59 := (iff #33 #58)
-#60 := [rewrite]: #59
-#56 := [asserted]: #33
-#63 := [mp #56 #60]: #58
-#143 := [mp~ #63 #142]: #140
-#147 := [and-elim #143]: #138
-#663 := [mp #147 #662]: #660
-#293 := [unit-resolution #663 #207]: #655
-#610 := (not #655)
-#283 := (or #610 #108)
-#284 := [quant-inst #20]: #283
-#617 := [unit-resolution #284 #207 #293]: false
-#618 := [lemma #617]: #108
-#146 := [and-elim #143]: #139
-#262 := [unit-resolution #146 #618]: #124
-#208 := (not #124)
-#294 := (or #614 #208 #206)
-#285 := [def-axiom]: #294
-#600 := [unit-resolution #285 #262]: #599
-#601 := [unit-resolution #600 #298]: #206
-#616 := (not #206)
-#275 := (not #292)
-#602 := (or #275 #616)
-#612 := (or #275 #31 #616)
-#271 := [def-axiom]: #612
-#603 := [unit-resolution #271 #618]: #602
-[unit-resolution #603 #601 #297]: false
-unsat
+#2 := false
+decl f1 :: S1
+#3 := f1
+decl f7 :: S1
+#25 := f7
+#206 := (= f7 f1)
+decl f3 :: (-> S3 S2 S1)
+decl f6 :: S2
+#20 := f6
+decl f4 :: (-> S4 S1 S3)
+decl f5 :: S4
+#7 := f5
+#26 := (f4 f5 f7)
+#30 := (f3 #26 f6)
+#31 := (= #30 f1)
+#292 := (iff #31 #206)
+#10 := (:var 0 S2)
+#8 := (:var 1 S1)
+#9 := (f4 f5 #8)
+#11 := (f3 #9 #10)
+#622 := (pattern #11)
+#13 := (= #8 f1)
+#12 := (= #11 f1)
+#14 := (iff #12 #13)
+#623 := (forall (vars (?v0 S1) (?v1 S2)) (:pat #622) #14)
+#15 := (forall (vars (?v0 S1) (?v1 S2)) #14)
+#626 := (iff #15 #623)
+#624 := (iff #14 #14)
+#625 := [refl]: #624
+#627 := [quant-intro #625]: #626
+#73 := (~ #15 #15)
+#71 := (~ #14 #14)
+#72 := [refl]: #71
+#74 := [nnf-pos #72]: #73
+#54 := [asserted]: #15
+#62 := [mp~ #54 #74]: #15
+#628 := [mp #62 #627]: #623
+#295 := (not #623)
+#611 := (or #295 #292)
+#270 := [quant-inst #25 #20]: #611
+#297 := [unit-resolution #270 #628]: #292
+decl ?v0!3 :: S2
+#120 := ?v0!3
+#123 := (f3 #26 ?v0!3)
+#124 := (= #123 f1)
+#296 := (iff #124 #206)
+#299 := (or #295 #296)
+#278 := [quant-inst #25 #120]: #299
+#298 := [unit-resolution #278 #628]: #296
+#614 := (not #296)
+#599 := (or #614 #206)
+#108 := (not #31)
+#27 := (f3 #26 #10)
+#654 := (pattern #27)
+#28 := (= #27 f1)
+#132 := (not #28)
+#655 := (forall (vars (?v0 S2)) (:pat #654) #132)
+#207 := [hypothesis]: #31
+#660 := (or #655 #108)
+#135 := (forall (vars (?v0 S2)) #132)
+#138 := (or #135 #108)
+#661 := (iff #138 #660)
+#658 := (iff #135 #655)
+#656 := (iff #132 #132)
+#657 := [refl]: #656
+#659 := [quant-intro #657]: #658
+#662 := [monotonicity #659]: #661
+#139 := (or #124 #31)
+#140 := (and #139 #138)
+#29 := (exists (vars (?v0 S2)) #28)
+#57 := (not #29)
+#58 := (iff #57 #31)
+#141 := (~ #58 #140)
+#81 := (~ #31 #31)
+#119 := [refl]: #81
+#109 := (~ #108 #108)
+#80 := [refl]: #109
+#136 := (~ #57 #135)
+#133 := (~ #132 #132)
+#134 := [refl]: #133
+#137 := [nnf-neg #134]: #136
+#129 := (not #57)
+#130 := (~ #129 #124)
+#125 := (~ #29 #124)
+#126 := [sk]: #125
+#131 := [nnf-neg #126]: #130
+#142 := [nnf-pos #131 #137 #80 #119]: #141
+#32 := (iff #29 #31)
+#33 := (not #32)
+#59 := (iff #33 #58)
+#60 := [rewrite]: #59
+#56 := [asserted]: #33
+#63 := [mp #56 #60]: #58
+#143 := [mp~ #63 #142]: #140
+#147 := [and-elim #143]: #138
+#663 := [mp #147 #662]: #660
+#293 := [unit-resolution #663 #207]: #655
+#610 := (not #655)
+#283 := (or #610 #108)
+#284 := [quant-inst #20]: #283
+#617 := [unit-resolution #284 #207 #293]: false
+#618 := [lemma #617]: #108
+#146 := [and-elim #143]: #139
+#262 := [unit-resolution #146 #618]: #124
+#208 := (not #124)
+#294 := (or #614 #208 #206)
+#285 := [def-axiom]: #294
+#600 := [unit-resolution #285 #262]: #599
+#601 := [unit-resolution #600 #298]: #206
+#616 := (not #206)
+#275 := (not #292)
+#602 := (or #275 #616)
+#612 := (or #275 #31 #616)
+#271 := [def-axiom]: #612
+#603 := [unit-resolution #271 #618]: #602
+[unit-resolution #603 #601 #297]: false
+unsat
+0ce3a745d60cdbf0fe26b07c5e76de09d459dd25 17 0
+#2 := false
+#7 := 3::Int
+#8 := (= 3::Int 3::Int)
+#9 := (not #8)
+#38 := (iff #9 false)
+#1 := true
+#33 := (not true)
+#36 := (iff #33 false)
+#37 := [rewrite]: #36
+#34 := (iff #9 #33)
+#31 := (iff #8 true)
+#32 := [rewrite]: #31
+#35 := [monotonicity #32]: #34
+#39 := [trans #35 #37]: #38
+#30 := [asserted]: #9
+[mp #30 #39]: false
+unsat
 5c792581e65682628e5c59ca9f3f8801e6aeba72 61 0
-#2 := false
-decl f1 :: S1
-#3 := f1
-decl f3 :: (-> S2 S1)
-decl f4 :: S2
-#7 := f4
-#8 := (f3 f4)
-#9 := (= #8 f1)
-decl f5 :: S2
-#18 := f5
-#19 := (f3 f5)
-#20 := (= #19 f1)
-#45 := (not #9)
-#46 := (or #45 #20)
-#49 := (not #46)
-#21 := (implies #9 #20)
-#22 := (not #21)
-#50 := (iff #22 #49)
-#47 := (iff #21 #46)
-#48 := [rewrite]: #47
-#51 := [monotonicity #48]: #50
-#44 := [asserted]: #22
-#54 := [mp #44 #51]: #49
-#52 := [not-or-elim #54]: #9
-#10 := (:var 0 S2)
-#11 := (f3 #10)
-#550 := (pattern #11)
-#12 := (= #11 f1)
-#15 := (not #12)
-#551 := (forall (vars (?v0 S2)) (:pat #550) #15)
-#16 := (forall (vars (?v0 S2)) #15)
-#554 := (iff #16 #551)
-#552 := (iff #15 #15)
-#553 := [refl]: #552
-#555 := [quant-intro #553]: #554
-#13 := (exists (vars (?v0 S2)) #12)
-#14 := (not #13)
-#60 := (~ #14 #16)
-#63 := (~ #15 #15)
-#64 := [refl]: #63
-#72 := [nnf-neg #64]: #60
-#17 := (if #9 #14 #16)
-#70 := (iff #17 #14)
-#1 := true
-#65 := (if true #14 #16)
-#68 := (iff #65 #14)
-#69 := [rewrite]: #68
-#66 := (iff #17 #65)
-#61 := (iff #9 true)
-#62 := [iff-true #52]: #61
-#67 := [monotonicity #62]: #66
-#71 := [trans #67 #69]: #70
-#43 := [asserted]: #17
-#59 := [mp #43 #71]: #14
-#57 := [mp~ #59 #72]: #16
-#556 := [mp #57 #555]: #551
-#135 := (not #551)
-#221 := (or #135 #45)
-#136 := [quant-inst #7]: #221
-[unit-resolution #136 #556 #52]: false
-unsat
-0ce3a745d60cdbf0fe26b07c5e76de09d459dd25 17 0
-#2 := false
-#7 := 3::Int
-#8 := (= 3::Int 3::Int)
-#9 := (not #8)
-#38 := (iff #9 false)
-#1 := true
-#33 := (not true)
-#36 := (iff #33 false)
-#37 := [rewrite]: #36
-#34 := (iff #9 #33)
-#31 := (iff #8 true)
-#32 := [rewrite]: #31
-#35 := [monotonicity #32]: #34
-#39 := [trans #35 #37]: #38
-#30 := [asserted]: #9
-[mp #30 #39]: false
-unsat
+#2 := false
+decl f1 :: S1
+#3 := f1
+decl f3 :: (-> S2 S1)
+decl f4 :: S2
+#7 := f4
+#8 := (f3 f4)
+#9 := (= #8 f1)
+decl f5 :: S2
+#18 := f5
+#19 := (f3 f5)
+#20 := (= #19 f1)
+#45 := (not #9)
+#46 := (or #45 #20)
+#49 := (not #46)
+#21 := (implies #9 #20)
+#22 := (not #21)
+#50 := (iff #22 #49)
+#47 := (iff #21 #46)
+#48 := [rewrite]: #47
+#51 := [monotonicity #48]: #50
+#44 := [asserted]: #22
+#54 := [mp #44 #51]: #49
+#52 := [not-or-elim #54]: #9
+#10 := (:var 0 S2)
+#11 := (f3 #10)
+#550 := (pattern #11)
+#12 := (= #11 f1)
+#15 := (not #12)
+#551 := (forall (vars (?v0 S2)) (:pat #550) #15)
+#16 := (forall (vars (?v0 S2)) #15)
+#554 := (iff #16 #551)
+#552 := (iff #15 #15)
+#553 := [refl]: #552
+#555 := [quant-intro #553]: #554
+#13 := (exists (vars (?v0 S2)) #12)
+#14 := (not #13)
+#60 := (~ #14 #16)
+#63 := (~ #15 #15)
+#64 := [refl]: #63
+#72 := [nnf-neg #64]: #60
+#17 := (if #9 #14 #16)
+#70 := (iff #17 #14)
+#1 := true
+#65 := (if true #14 #16)
+#68 := (iff #65 #14)
+#69 := [rewrite]: #68
+#66 := (iff #17 #65)
+#61 := (iff #9 true)
+#62 := [iff-true #52]: #61
+#67 := [monotonicity #62]: #66
+#71 := [trans #67 #69]: #70
+#43 := [asserted]: #17
+#59 := [mp #43 #71]: #14
+#57 := [mp~ #59 #72]: #16
+#556 := [mp #57 #555]: #551
+#135 := (not #551)
+#221 := (or #135 #45)
+#136 := [quant-inst #7]: #221
+[unit-resolution #136 #556 #52]: false
+unsat
 1532b1dde71eb42ca0a012bb62d9bbadf37fa326 17 0
-#2 := false
-#7 := 3::Real
-#8 := (= 3::Real 3::Real)
-#9 := (not #8)
-#38 := (iff #9 false)
-#1 := true
-#33 := (not true)
-#36 := (iff #33 false)
-#37 := [rewrite]: #36
-#34 := (iff #9 #33)
-#31 := (iff #8 true)
-#32 := [rewrite]: #31
-#35 := [monotonicity #32]: #34
-#39 := [trans #35 #37]: #38
-#30 := [asserted]: #9
-[mp #30 #39]: false
-unsat
+#2 := false
+#7 := 3::Real
+#8 := (= 3::Real 3::Real)
+#9 := (not #8)
+#38 := (iff #9 false)
+#1 := true
+#33 := (not true)
+#36 := (iff #33 false)
+#37 := [rewrite]: #36
+#34 := (iff #9 #33)
+#31 := (iff #8 true)
+#32 := [rewrite]: #31
+#35 := [monotonicity #32]: #34
+#39 := [trans #35 #37]: #38
+#30 := [asserted]: #9
+[mp #30 #39]: false
+unsat
 94425abeeb45b838fcb1ab9c8323796e36a681e5 26 0
-#2 := false
-#10 := 4::Int
-#8 := 1::Int
-#7 := 3::Int
-#9 := (+ 3::Int 1::Int)
-#11 := (= #9 4::Int)
-#12 := (not #11)
-#47 := (iff #12 false)
-#1 := true
-#42 := (not true)
-#45 := (iff #42 false)
-#46 := [rewrite]: #45
-#43 := (iff #12 #42)
-#40 := (iff #11 true)
-#35 := (= 4::Int 4::Int)
-#38 := (iff #35 true)
-#39 := [rewrite]: #38
-#36 := (iff #11 #35)
-#34 := [rewrite]: #11
-#37 := [monotonicity #34]: #36
-#41 := [trans #37 #39]: #40
-#44 := [monotonicity #41]: #43
-#48 := [trans #44 #46]: #47
-#33 := [asserted]: #12
-[mp #33 #48]: false
-unsat
+#2 := false
+#10 := 4::Int
+#8 := 1::Int
+#7 := 3::Int
+#9 := (+ 3::Int 1::Int)
+#11 := (= #9 4::Int)
+#12 := (not #11)
+#47 := (iff #12 false)
+#1 := true
+#42 := (not true)
+#45 := (iff #42 false)
+#46 := [rewrite]: #45
+#43 := (iff #12 #42)
+#40 := (iff #11 true)
+#35 := (= 4::Int 4::Int)
+#38 := (iff #35 true)
+#39 := [rewrite]: #38
+#36 := (iff #11 #35)
+#34 := [rewrite]: #11
+#37 := [monotonicity #34]: #36
+#41 := [trans #37 #39]: #40
+#44 := [monotonicity #41]: #43
+#48 := [trans #44 #46]: #47
+#33 := [asserted]: #12
+[mp #33 #48]: false
+unsat
 673f00f23a414ea8ab1557752d859ea787c89c1b 41 0
-#2 := false
-decl f3 :: Int
-#7 := f3
-decl f5 :: Int
-#9 := f5
-#12 := (+ f5 f3)
-decl f4 :: Int
-#8 := f4
-#13 := (+ f4 #12)
-#10 := (+ f4 f5)
-#11 := (+ f3 #10)
-#14 := (= #11 #13)
-#15 := (not #14)
-#59 := (iff #15 false)
-#1 := true
-#54 := (not true)
-#57 := (iff #54 false)
-#58 := [rewrite]: #57
-#55 := (iff #15 #54)
-#52 := (iff #14 true)
-#47 := (= #11 #11)
-#50 := (iff #47 true)
-#51 := [rewrite]: #50
-#48 := (iff #14 #47)
-#45 := (= #13 #11)
-#37 := (+ f3 f5)
-#40 := (+ f4 #37)
-#43 := (= #40 #11)
-#44 := [rewrite]: #43
-#41 := (= #13 #40)
-#38 := (= #12 #37)
-#39 := [rewrite]: #38
-#42 := [monotonicity #39]: #41
-#46 := [trans #42 #44]: #45
-#49 := [monotonicity #46]: #48
-#53 := [trans #49 #51]: #52
-#56 := [monotonicity #53]: #55
-#60 := [trans #56 #58]: #59
-#36 := [asserted]: #15
-[mp #36 #60]: false
-unsat
+#2 := false
+decl f3 :: Int
+#7 := f3
+decl f5 :: Int
+#9 := f5
+#12 := (+ f5 f3)
+decl f4 :: Int
+#8 := f4
+#13 := (+ f4 #12)
+#10 := (+ f4 f5)
+#11 := (+ f3 #10)
+#14 := (= #11 #13)
+#15 := (not #14)
+#59 := (iff #15 false)
+#1 := true
+#54 := (not true)
+#57 := (iff #54 false)
+#58 := [rewrite]: #57
+#55 := (iff #15 #54)
+#52 := (iff #14 true)
+#47 := (= #11 #11)
+#50 := (iff #47 true)
+#51 := [rewrite]: #50
+#48 := (iff #14 #47)
+#45 := (= #13 #11)
+#37 := (+ f3 f5)
+#40 := (+ f4 #37)
+#43 := (= #40 #11)
+#44 := [rewrite]: #43
+#41 := (= #13 #40)
+#38 := (= #12 #37)
+#39 := [rewrite]: #38
+#42 := [monotonicity #39]: #41
+#46 := [trans #42 #44]: #45
+#49 := [monotonicity #46]: #48
+#53 := [trans #49 #51]: #52
+#56 := [monotonicity #53]: #55
+#60 := [trans #56 #58]: #59
+#36 := [asserted]: #15
+[mp #36 #60]: false
+unsat
 1f5e59fc26e6d68939e39d2fe658ebc1a264f509 35 0
-#2 := false
-#8 := 3::Int
-#9 := 8::Int
-#10 := (<= 3::Int 8::Int)
-#11 := (if #10 8::Int 3::Int)
-#7 := 5::Int
-#12 := (< 5::Int #11)
-#13 := (not #12)
-#58 := (iff #13 false)
-#1 := true
-#53 := (not true)
-#56 := (iff #53 false)
-#57 := [rewrite]: #56
-#54 := (iff #13 #53)
-#51 := (iff #12 true)
-#46 := (< 5::Int 8::Int)
-#49 := (iff #46 true)
-#50 := [rewrite]: #49
-#47 := (iff #12 #46)
-#44 := (= #11 8::Int)
-#39 := (if true 8::Int 3::Int)
-#42 := (= #39 8::Int)
-#43 := [rewrite]: #42
-#40 := (= #11 #39)
-#37 := (iff #10 true)
-#38 := [rewrite]: #37
-#41 := [monotonicity #38]: #40
-#45 := [trans #41 #43]: #44
-#48 := [monotonicity #45]: #47
-#52 := [trans #48 #50]: #51
-#55 := [monotonicity #52]: #54
-#59 := [trans #55 #57]: #58
-#34 := [asserted]: #13
-[mp #34 #59]: false
-unsat
+#2 := false
+#8 := 3::Int
+#9 := 8::Int
+#10 := (<= 3::Int 8::Int)
+#11 := (if #10 8::Int 3::Int)
+#7 := 5::Int
+#12 := (< 5::Int #11)
+#13 := (not #12)
+#58 := (iff #13 false)
+#1 := true
+#53 := (not true)
+#56 := (iff #53 false)
+#57 := [rewrite]: #56
+#54 := (iff #13 #53)
+#51 := (iff #12 true)
+#46 := (< 5::Int 8::Int)
+#49 := (iff #46 true)
+#50 := [rewrite]: #49
+#47 := (iff #12 #46)
+#44 := (= #11 8::Int)
+#39 := (if true 8::Int 3::Int)
+#42 := (= #39 8::Int)
+#43 := [rewrite]: #42
+#40 := (= #11 #39)
+#37 := (iff #10 true)
+#38 := [rewrite]: #37
+#41 := [monotonicity #38]: #40
+#45 := [trans #41 #43]: #44
+#48 := [monotonicity #45]: #47
+#52 := [trans #48 #50]: #51
+#55 := [monotonicity #52]: #54
+#59 := [trans #55 #57]: #58
+#34 := [asserted]: #13
+[mp #34 #59]: false
+unsat
 e7f019160a38d08774f8a2e816f96aa54c924fba 216 0
-#2 := false
-#10 := 0::Real
-decl f4 :: Real
-#8 := f4
-#43 := -1::Real
-#45 := (* -1::Real f4)
-decl f3 :: Real
-#7 := f3
-#44 := (* -1::Real f3)
-#46 := (+ #44 #45)
-#9 := (+ f3 f4)
-#71 := (>= #9 0::Real)
-#78 := (if #71 #9 #46)
-#153 := (* -1::Real #78)
-#181 := (+ #46 #153)
-#183 := (>= #181 0::Real)
-#134 := (= #46 #78)
-#72 := (not #71)
-#95 := (>= f4 0::Real)
-#96 := (not #95)
-#154 := (+ #9 #153)
-#156 := (>= #154 0::Real)
-#133 := (= #9 #78)
-#197 := (not #134)
-#192 := (not #183)
-#163 := [hypothesis]: #95
-#193 := (or #192 #96)
-#184 := [hypothesis]: #183
-#102 := (if #95 f4 #45)
-#114 := (* -1::Real #102)
-#83 := (>= f3 0::Real)
-#90 := (if #83 f3 #44)
-#113 := (* -1::Real #90)
-#115 := (+ #113 #114)
-#116 := (+ #78 #115)
-#117 := (<= #116 0::Real)
-#122 := (not #117)
-#18 := (- f4)
-#17 := (< f4 0::Real)
-#19 := (if #17 #18 f4)
-#15 := (- f3)
-#14 := (< f3 0::Real)
-#16 := (if #14 #15 f3)
-#20 := (+ #16 #19)
-#12 := (- #9)
-#11 := (< #9 0::Real)
-#13 := (if #11 #12 #9)
-#21 := (<= #13 #20)
-#22 := (not #21)
-#125 := (iff #22 #122)
-#59 := (if #17 #45 f4)
-#54 := (if #14 #44 f3)
-#62 := (+ #54 #59)
-#49 := (if #11 #46 #9)
-#65 := (<= #49 #62)
-#68 := (not #65)
-#123 := (iff #68 #122)
-#120 := (iff #65 #117)
-#107 := (+ #90 #102)
-#110 := (<= #78 #107)
-#118 := (iff #110 #117)
-#119 := [rewrite]: #118
-#111 := (iff #65 #110)
-#108 := (= #62 #107)
-#105 := (= #59 #102)
-#99 := (if #96 #45 f4)
-#103 := (= #99 #102)
-#104 := [rewrite]: #103
-#100 := (= #59 #99)
-#97 := (iff #17 #96)
-#98 := [rewrite]: #97
-#101 := [monotonicity #98]: #100
-#106 := [trans #101 #104]: #105
-#93 := (= #54 #90)
-#84 := (not #83)
-#87 := (if #84 #44 f3)
-#91 := (= #87 #90)
-#92 := [rewrite]: #91
-#88 := (= #54 #87)
-#85 := (iff #14 #84)
-#86 := [rewrite]: #85
-#89 := [monotonicity #86]: #88
-#94 := [trans #89 #92]: #93
-#109 := [monotonicity #94 #106]: #108
-#81 := (= #49 #78)
-#75 := (if #72 #46 #9)
-#79 := (= #75 #78)
-#80 := [rewrite]: #79
-#76 := (= #49 #75)
-#73 := (iff #11 #72)
-#74 := [rewrite]: #73
-#77 := [monotonicity #74]: #76
-#82 := [trans #77 #80]: #81
-#112 := [monotonicity #82 #109]: #111
-#121 := [trans #112 #119]: #120
-#124 := [monotonicity #121]: #123
-#69 := (iff #22 #68)
-#66 := (iff #21 #65)
-#63 := (= #20 #62)
-#60 := (= #19 #59)
-#57 := (= #18 #45)
-#58 := [rewrite]: #57
-#61 := [monotonicity #58]: #60
-#55 := (= #16 #54)
-#52 := (= #15 #44)
-#53 := [rewrite]: #52
-#56 := [monotonicity #53]: #55
-#64 := [monotonicity #56 #61]: #63
-#50 := (= #13 #49)
-#47 := (= #12 #46)
-#48 := [rewrite]: #47
-#51 := [monotonicity #48]: #50
-#67 := [monotonicity #51 #64]: #66
-#70 := [monotonicity #67]: #69
-#126 := [trans #70 #124]: #125
-#42 := [asserted]: #22
-#127 := [mp #42 #126]: #122
-#147 := (+ f4 #114)
-#148 := (<= #147 0::Real)
-#141 := (= f4 #102)
-#143 := (or #96 #141)
-#144 := [def-axiom]: #143
-#172 := [unit-resolution #144 #163]: #141
-#173 := (not #141)
-#174 := (or #173 #148)
-#175 := [th-lemma arith triangle-eq]: #174
-#176 := [unit-resolution #175 #172]: #148
-#152 := (+ #44 #113)
-#155 := (<= #152 0::Real)
-#130 := (= #44 #90)
-#178 := (or #84 #96)
-#150 := (+ f3 #113)
-#151 := (<= #150 0::Real)
-#129 := (= f3 #90)
-#157 := [hypothesis]: #83
-#137 := (or #84 #129)
-#138 := [def-axiom]: #137
-#158 := [unit-resolution #138 #157]: #129
-#159 := (not #129)
-#160 := (or #159 #151)
-#161 := [th-lemma arith triangle-eq]: #160
-#162 := [unit-resolution #161 #158]: #151
-#164 := (or #71 #84 #96)
-#165 := [th-lemma arith assign-bounds -1 -1]: #164
-#166 := [unit-resolution #165 #157 #163]: #71
-#135 := (or #72 #133)
-#136 := [def-axiom]: #135
-#167 := [unit-resolution #136 #166]: #133
-#168 := (not #133)
-#169 := (or #168 #156)
-#170 := [th-lemma arith triangle-eq]: #169
-#171 := [unit-resolution #170 #167]: #156
-#177 := [th-lemma arith farkas 1 -1 -1 1 #176 #171 #127 #162]: false
-#179 := [lemma #177]: #178
-#185 := [unit-resolution #179 #163]: #84
-#139 := (or #83 #130)
-#140 := [def-axiom]: #139
-#186 := [unit-resolution #140 #185]: #130
-#187 := (not #130)
-#188 := (or #187 #155)
-#189 := [th-lemma arith triangle-eq]: #188
-#190 := [unit-resolution #189 #186]: #155
-#191 := [th-lemma arith farkas 2 -1 -1 1 1 #163 #190 #176 #127 #184]: false
-#194 := [lemma #191]: #193
-#202 := [unit-resolution #194 #163]: #192
-#198 := (or #197 #183)
-#195 := [hypothesis]: #192
-#196 := [hypothesis]: #134
-#199 := [th-lemma arith triangle-eq]: #198
-#200 := [unit-resolution #199 #196 #195]: false
-#201 := [lemma #200]: #198
-#203 := [unit-resolution #201 #202]: #197
-#131 := (or #71 #134)
-#132 := [def-axiom]: #131
-#204 := [unit-resolution #132 #203]: #71
-#205 := [unit-resolution #136 #204]: #133
-#206 := [unit-resolution #170 #205]: #156
-#207 := [th-lemma arith farkas 2 1 1 1 1 #185 #190 #176 #127 #206]: false
-#208 := [lemma #207]: #96
-#149 := (+ #45 #114)
-#180 := (<= #149 0::Real)
-#142 := (= #45 #102)
-#145 := (or #95 #142)
-#146 := [def-axiom]: #145
-#213 := [unit-resolution #146 #208]: #142
-#214 := (not #142)
-#215 := (or #214 #180)
-#216 := [th-lemma arith triangle-eq]: #215
-#217 := [unit-resolution #216 #213]: #180
-#219 := (not #156)
-#220 := (not #151)
-#221 := (or #219 #220)
-#211 := [hypothesis]: #151
-#212 := [hypothesis]: #156
-#218 := [th-lemma arith farkas 2 1 1 1 1 #208 #217 #127 #212 #211]: false
-#222 := [lemma #218]: #221
-#227 := [unit-resolution #222 #162]: #219
-#223 := [hypothesis]: #219
-#224 := [hypothesis]: #133
-#225 := [unit-resolution #170 #224 #223]: false
-#226 := [lemma #225]: #169
-#228 := [unit-resolution #226 #227]: #168
-#229 := [unit-resolution #136 #228]: #72
-#230 := [unit-resolution #132 #229]: #134
-#231 := [unit-resolution #201 #230]: #183
-#232 := [th-lemma arith farkas 1/2 -1/2 -1/2 1/2 1 #231 #162 #217 #127 #157]: false
-#233 := [lemma #232]: #84
-#234 := (or #72 #83 #95)
-#235 := [th-lemma arith assign-bounds 1 1]: #234
-#236 := [unit-resolution #235 #233 #208]: #72
-#237 := [unit-resolution #132 #236]: #134
-#238 := [unit-resolution #201 #237]: #183
-#239 := [unit-resolution #140 #233]: #130
-#240 := [unit-resolution #189 #239]: #155
-[th-lemma arith farkas -1 -1 1 1 #240 #217 #127 #238]: false
-unsat
+#2 := false
+#10 := 0::Real
+decl f4 :: Real
+#8 := f4
+#43 := -1::Real
+#45 := (* -1::Real f4)
+decl f3 :: Real
+#7 := f3
+#44 := (* -1::Real f3)
+#46 := (+ #44 #45)
+#9 := (+ f3 f4)
+#71 := (>= #9 0::Real)
+#78 := (if #71 #9 #46)
+#153 := (* -1::Real #78)
+#181 := (+ #46 #153)
+#183 := (>= #181 0::Real)
+#134 := (= #46 #78)
+#72 := (not #71)
+#95 := (>= f4 0::Real)
+#96 := (not #95)
+#154 := (+ #9 #153)
+#156 := (>= #154 0::Real)
+#133 := (= #9 #78)
+#197 := (not #134)
+#192 := (not #183)
+#163 := [hypothesis]: #95
+#193 := (or #192 #96)
+#184 := [hypothesis]: #183
+#102 := (if #95 f4 #45)
+#114 := (* -1::Real #102)
+#83 := (>= f3 0::Real)
+#90 := (if #83 f3 #44)
+#113 := (* -1::Real #90)
+#115 := (+ #113 #114)
+#116 := (+ #78 #115)
+#117 := (<= #116 0::Real)
+#122 := (not #117)
+#18 := (- f4)
+#17 := (< f4 0::Real)
+#19 := (if #17 #18 f4)
+#15 := (- f3)
+#14 := (< f3 0::Real)
+#16 := (if #14 #15 f3)
+#20 := (+ #16 #19)
+#12 := (- #9)
+#11 := (< #9 0::Real)
+#13 := (if #11 #12 #9)
+#21 := (<= #13 #20)
+#22 := (not #21)
+#125 := (iff #22 #122)
+#59 := (if #17 #45 f4)
+#54 := (if #14 #44 f3)
+#62 := (+ #54 #59)
+#49 := (if #11 #46 #9)
+#65 := (<= #49 #62)
+#68 := (not #65)
+#123 := (iff #68 #122)
+#120 := (iff #65 #117)
+#107 := (+ #90 #102)
+#110 := (<= #78 #107)
+#118 := (iff #110 #117)
+#119 := [rewrite]: #118
+#111 := (iff #65 #110)
+#108 := (= #62 #107)
+#105 := (= #59 #102)
+#99 := (if #96 #45 f4)
+#103 := (= #99 #102)
+#104 := [rewrite]: #103
+#100 := (= #59 #99)
+#97 := (iff #17 #96)
+#98 := [rewrite]: #97
+#101 := [monotonicity #98]: #100
+#106 := [trans #101 #104]: #105
+#93 := (= #54 #90)
+#84 := (not #83)
+#87 := (if #84 #44 f3)
+#91 := (= #87 #90)
+#92 := [rewrite]: #91
+#88 := (= #54 #87)
+#85 := (iff #14 #84)
+#86 := [rewrite]: #85
+#89 := [monotonicity #86]: #88
+#94 := [trans #89 #92]: #93
+#109 := [monotonicity #94 #106]: #108
+#81 := (= #49 #78)
+#75 := (if #72 #46 #9)
+#79 := (= #75 #78)
+#80 := [rewrite]: #79
+#76 := (= #49 #75)
+#73 := (iff #11 #72)
+#74 := [rewrite]: #73
+#77 := [monotonicity #74]: #76
+#82 := [trans #77 #80]: #81
+#112 := [monotonicity #82 #109]: #111
+#121 := [trans #112 #119]: #120
+#124 := [monotonicity #121]: #123
+#69 := (iff #22 #68)
+#66 := (iff #21 #65)
+#63 := (= #20 #62)
+#60 := (= #19 #59)
+#57 := (= #18 #45)
+#58 := [rewrite]: #57
+#61 := [monotonicity #58]: #60
+#55 := (= #16 #54)
+#52 := (= #15 #44)
+#53 := [rewrite]: #52
+#56 := [monotonicity #53]: #55
+#64 := [monotonicity #56 #61]: #63
+#50 := (= #13 #49)
+#47 := (= #12 #46)
+#48 := [rewrite]: #47
+#51 := [monotonicity #48]: #50
+#67 := [monotonicity #51 #64]: #66
+#70 := [monotonicity #67]: #69
+#126 := [trans #70 #124]: #125
+#42 := [asserted]: #22
+#127 := [mp #42 #126]: #122
+#147 := (+ f4 #114)
+#148 := (<= #147 0::Real)
+#141 := (= f4 #102)
+#143 := (or #96 #141)
+#144 := [def-axiom]: #143
+#172 := [unit-resolution #144 #163]: #141
+#173 := (not #141)
+#174 := (or #173 #148)
+#175 := [th-lemma arith triangle-eq]: #174
+#176 := [unit-resolution #175 #172]: #148
+#152 := (+ #44 #113)
+#155 := (<= #152 0::Real)
+#130 := (= #44 #90)
+#178 := (or #84 #96)
+#150 := (+ f3 #113)
+#151 := (<= #150 0::Real)
+#129 := (= f3 #90)
+#157 := [hypothesis]: #83
+#137 := (or #84 #129)
+#138 := [def-axiom]: #137
+#158 := [unit-resolution #138 #157]: #129
+#159 := (not #129)
+#160 := (or #159 #151)
+#161 := [th-lemma arith triangle-eq]: #160
+#162 := [unit-resolution #161 #158]: #151
+#164 := (or #71 #84 #96)
+#165 := [th-lemma arith assign-bounds -1 -1]: #164
+#166 := [unit-resolution #165 #157 #163]: #71
+#135 := (or #72 #133)
+#136 := [def-axiom]: #135
+#167 := [unit-resolution #136 #166]: #133
+#168 := (not #133)
+#169 := (or #168 #156)
+#170 := [th-lemma arith triangle-eq]: #169
+#171 := [unit-resolution #170 #167]: #156
+#177 := [th-lemma arith farkas 1 -1 -1 1 #176 #171 #127 #162]: false
+#179 := [lemma #177]: #178
+#185 := [unit-resolution #179 #163]: #84
+#139 := (or #83 #130)
+#140 := [def-axiom]: #139
+#186 := [unit-resolution #140 #185]: #130
+#187 := (not #130)
+#188 := (or #187 #155)
+#189 := [th-lemma arith triangle-eq]: #188
+#190 := [unit-resolution #189 #186]: #155
+#191 := [th-lemma arith farkas 2 -1 -1 1 1 #163 #190 #176 #127 #184]: false
+#194 := [lemma #191]: #193
+#202 := [unit-resolution #194 #163]: #192
+#198 := (or #197 #183)
+#195 := [hypothesis]: #192
+#196 := [hypothesis]: #134
+#199 := [th-lemma arith triangle-eq]: #198
+#200 := [unit-resolution #199 #196 #195]: false
+#201 := [lemma #200]: #198
+#203 := [unit-resolution #201 #202]: #197
+#131 := (or #71 #134)
+#132 := [def-axiom]: #131
+#204 := [unit-resolution #132 #203]: #71
+#205 := [unit-resolution #136 #204]: #133
+#206 := [unit-resolution #170 #205]: #156
+#207 := [th-lemma arith farkas 2 1 1 1 1 #185 #190 #176 #127 #206]: false
+#208 := [lemma #207]: #96
+#149 := (+ #45 #114)
+#180 := (<= #149 0::Real)
+#142 := (= #45 #102)
+#145 := (or #95 #142)
+#146 := [def-axiom]: #145
+#213 := [unit-resolution #146 #208]: #142
+#214 := (not #142)
+#215 := (or #214 #180)
+#216 := [th-lemma arith triangle-eq]: #215
+#217 := [unit-resolution #216 #213]: #180
+#219 := (not #156)
+#220 := (not #151)
+#221 := (or #219 #220)
+#211 := [hypothesis]: #151
+#212 := [hypothesis]: #156
+#218 := [th-lemma arith farkas 2 1 1 1 1 #208 #217 #127 #212 #211]: false
+#222 := [lemma #218]: #221
+#227 := [unit-resolution #222 #162]: #219
+#223 := [hypothesis]: #219
+#224 := [hypothesis]: #133
+#225 := [unit-resolution #170 #224 #223]: false
+#226 := [lemma #225]: #169
+#228 := [unit-resolution #226 #227]: #168
+#229 := [unit-resolution #136 #228]: #72
+#230 := [unit-resolution #132 #229]: #134
+#231 := [unit-resolution #201 #230]: #183
+#232 := [th-lemma arith farkas 1/2 -1/2 -1/2 1/2 1 #231 #162 #217 #127 #157]: false
+#233 := [lemma #232]: #84
+#234 := (or #72 #83 #95)
+#235 := [th-lemma arith assign-bounds 1 1]: #234
+#236 := [unit-resolution #235 #233 #208]: #72
+#237 := [unit-resolution #132 #236]: #134
+#238 := [unit-resolution #201 #237]: #183
+#239 := [unit-resolution #140 #233]: #130
+#240 := [unit-resolution #189 #239]: #155
+[th-lemma arith farkas -1 -1 1 1 #240 #217 #127 #238]: false
+unsat
 9e5f324cc33eb4abf1be11d977dfdec45557ae46 42 0
-#2 := false
-decl f3 :: (-> S1 S2)
-decl f1 :: S1
-#3 := f1
-#12 := (f3 f1)
-decl f2 :: S1
-#4 := f2
-#8 := 3::Int
-#7 := 2::Int
-#9 := (< 2::Int 3::Int)
-#10 := (if #9 f1 f2)
-#11 := (f3 #10)
-#13 := (= #11 #12)
-#14 := (not #13)
-#60 := (iff #14 false)
-#1 := true
-#55 := (not true)
-#58 := (iff #55 false)
-#59 := [rewrite]: #58
-#56 := (iff #14 #55)
-#53 := (iff #13 true)
-#48 := (= #12 #12)
-#51 := (iff #48 true)
-#52 := [rewrite]: #51
-#49 := (iff #13 #48)
-#45 := (= #10 f1)
-#40 := (if true f1 f2)
-#43 := (= #40 f1)
-#44 := [rewrite]: #43
-#41 := (= #10 #40)
-#38 := (iff #9 true)
-#39 := [rewrite]: #38
-#42 := [monotonicity #39]: #41
-#46 := [trans #42 #44]: #45
-#47 := [monotonicity #46]: #13
-#50 := [monotonicity #47]: #49
-#54 := [trans #50 #52]: #53
-#57 := [monotonicity #54]: #56
-#61 := [trans #57 #59]: #60
-#35 := [asserted]: #14
-[mp #35 #61]: false
-unsat
+#2 := false
+decl f3 :: (-> S1 S2)
+decl f1 :: S1
+#3 := f1
+#12 := (f3 f1)
+decl f2 :: S1
+#4 := f2
+#8 := 3::Int
+#7 := 2::Int
+#9 := (< 2::Int 3::Int)
+#10 := (if #9 f1 f2)
+#11 := (f3 #10)
+#13 := (= #11 #12)
+#14 := (not #13)
+#60 := (iff #14 false)
+#1 := true
+#55 := (not true)
+#58 := (iff #55 false)
+#59 := [rewrite]: #58
+#56 := (iff #14 #55)
+#53 := (iff #13 true)
+#48 := (= #12 #12)
+#51 := (iff #48 true)
+#52 := [rewrite]: #51
+#49 := (iff #13 #48)
+#45 := (= #10 f1)
+#40 := (if true f1 f2)
+#43 := (= #40 f1)
+#44 := [rewrite]: #43
+#41 := (= #10 #40)
+#38 := (iff #9 true)
+#39 := [rewrite]: #38
+#42 := [monotonicity #39]: #41
+#46 := [trans #42 #44]: #45
+#47 := [monotonicity #46]: #13
+#50 := [monotonicity #47]: #49
+#54 := [trans #50 #52]: #53
+#57 := [monotonicity #54]: #56
+#61 := [trans #57 #59]: #60
+#35 := [asserted]: #14
+[mp #35 #61]: false
+unsat
 cc322c3513bba37f77e905b379b26c79239b69a4 49 0
-#2 := false
-#12 := 1::Int
-decl f3 :: Int
-#8 := f3
-#13 := (< f3 1::Int)
-#9 := 3::Int
-#10 := (+ f3 3::Int)
-#7 := 4::Int
-#11 := (<= 4::Int #10)
-#14 := (or #11 #13)
-#15 := (not #14)
-#69 := (iff #15 false)
-#37 := (+ 3::Int f3)
-#40 := (<= 4::Int #37)
-#43 := (or #40 #13)
-#46 := (not #43)
-#67 := (iff #46 false)
-#1 := true
-#62 := (not true)
-#65 := (iff #62 false)
-#66 := [rewrite]: #65
-#63 := (iff #46 #62)
-#60 := (iff #43 true)
-#51 := (>= f3 1::Int)
-#52 := (not #51)
-#55 := (or #51 #52)
-#58 := (iff #55 true)
-#59 := [rewrite]: #58
-#56 := (iff #43 #55)
-#53 := (iff #13 #52)
-#54 := [rewrite]: #53
-#49 := (iff #40 #51)
-#50 := [rewrite]: #49
-#57 := [monotonicity #50 #54]: #56
-#61 := [trans #57 #59]: #60
-#64 := [monotonicity #61]: #63
-#68 := [trans #64 #66]: #67
-#47 := (iff #15 #46)
-#44 := (iff #14 #43)
-#41 := (iff #11 #40)
-#38 := (= #10 #37)
-#39 := [rewrite]: #38
-#42 := [monotonicity #39]: #41
-#45 := [monotonicity #42]: #44
-#48 := [monotonicity #45]: #47
-#70 := [trans #48 #68]: #69
-#36 := [asserted]: #15
-[mp #36 #70]: false
-unsat
+#2 := false
+#12 := 1::Int
+decl f3 :: Int
+#8 := f3
+#13 := (< f3 1::Int)
+#9 := 3::Int
+#10 := (+ f3 3::Int)
+#7 := 4::Int
+#11 := (<= 4::Int #10)
+#14 := (or #11 #13)
+#15 := (not #14)
+#69 := (iff #15 false)
+#37 := (+ 3::Int f3)
+#40 := (<= 4::Int #37)
+#43 := (or #40 #13)
+#46 := (not #43)
+#67 := (iff #46 false)
+#1 := true
+#62 := (not true)
+#65 := (iff #62 false)
+#66 := [rewrite]: #65
+#63 := (iff #46 #62)
+#60 := (iff #43 true)
+#51 := (>= f3 1::Int)
+#52 := (not #51)
+#55 := (or #51 #52)
+#58 := (iff #55 true)
+#59 := [rewrite]: #58
+#56 := (iff #43 #55)
+#53 := (iff #13 #52)
+#54 := [rewrite]: #53
+#49 := (iff #40 #51)
+#50 := [rewrite]: #49
+#57 := [monotonicity #50 #54]: #56
+#61 := [trans #57 #59]: #60
+#64 := [monotonicity #61]: #63
+#68 := [trans #64 #66]: #67
+#47 := (iff #15 #46)
+#44 := (iff #14 #43)
+#41 := (iff #11 #40)
+#38 := (= #10 #37)
+#39 := [rewrite]: #38
+#42 := [monotonicity #39]: #41
+#45 := [monotonicity #42]: #44
+#48 := [monotonicity #45]: #47
+#70 := [trans #48 #68]: #69
+#36 := [asserted]: #15
+[mp #36 #70]: false
+unsat
 75c4589e7d7ab0bf262babccc302883b71f9a923 63 0
-#2 := false
-#14 := 0::Int
-decl f4 :: Int
-#10 := f4
-#49 := -1::Int
-#52 := (* -1::Int f4)
-decl f3 :: Int
-#8 := f3
-#53 := (+ f3 #52)
-#70 := (>= #53 0::Int)
-#94 := (iff #70 false)
-#51 := -4::Int
-#87 := (>= -4::Int 0::Int)
-#86 := (iff #87 false)
-#93 := [rewrite]: #86
-#88 := (iff #70 #87)
-#54 := (= #53 -4::Int)
-#11 := 4::Int
-#12 := (+ f3 4::Int)
-#13 := (= f4 #12)
-#56 := (iff #13 #54)
-#39 := (+ 4::Int f3)
-#46 := (= f4 #39)
-#50 := (iff #46 #54)
-#55 := [rewrite]: #50
-#47 := (iff #13 #46)
-#44 := (= #12 #39)
-#45 := [rewrite]: #44
-#48 := [monotonicity #45]: #47
-#57 := [trans #48 #55]: #56
-#38 := [asserted]: #13
-#58 := [mp #38 #57]: #54
-#85 := [monotonicity #58]: #88
-#95 := [trans #85 #93]: #94
-#15 := (- f4 f3)
-#16 := (< 0::Int #15)
-#17 := (not #16)
-#81 := (iff #17 #70)
-#60 := (* -1::Int f3)
-#61 := (+ #60 f4)
-#64 := (< 0::Int #61)
-#67 := (not #64)
-#79 := (iff #67 #70)
-#71 := (not #70)
-#74 := (not #71)
-#77 := (iff #74 #70)
-#78 := [rewrite]: #77
-#75 := (iff #67 #74)
-#72 := (iff #64 #71)
-#73 := [rewrite]: #72
-#76 := [monotonicity #73]: #75
-#80 := [trans #76 #78]: #79
-#68 := (iff #17 #67)
-#65 := (iff #16 #64)
-#62 := (= #15 #61)
-#63 := [rewrite]: #62
-#66 := [monotonicity #63]: #65
-#69 := [monotonicity #66]: #68
-#82 := [trans #69 #80]: #81
-#59 := [asserted]: #17
-#83 := [mp #59 #82]: #70
-[mp #83 #95]: false
-unsat
+#2 := false
+#14 := 0::Int
+decl f4 :: Int
+#10 := f4
+#49 := -1::Int
+#52 := (* -1::Int f4)
+decl f3 :: Int
+#8 := f3
+#53 := (+ f3 #52)
+#70 := (>= #53 0::Int)
+#94 := (iff #70 false)
+#51 := -4::Int
+#87 := (>= -4::Int 0::Int)
+#86 := (iff #87 false)
+#93 := [rewrite]: #86
+#88 := (iff #70 #87)
+#54 := (= #53 -4::Int)
+#11 := 4::Int
+#12 := (+ f3 4::Int)
+#13 := (= f4 #12)
+#56 := (iff #13 #54)
+#39 := (+ 4::Int f3)
+#46 := (= f4 #39)
+#50 := (iff #46 #54)
+#55 := [rewrite]: #50
+#47 := (iff #13 #46)
+#44 := (= #12 #39)
+#45 := [rewrite]: #44
+#48 := [monotonicity #45]: #47
+#57 := [trans #48 #55]: #56
+#38 := [asserted]: #13
+#58 := [mp #38 #57]: #54
+#85 := [monotonicity #58]: #88
+#95 := [trans #85 #93]: #94
+#15 := (- f4 f3)
+#16 := (< 0::Int #15)
+#17 := (not #16)
+#81 := (iff #17 #70)
+#60 := (* -1::Int f3)
+#61 := (+ #60 f4)
+#64 := (< 0::Int #61)
+#67 := (not #64)
+#79 := (iff #67 #70)
+#71 := (not #70)
+#74 := (not #71)
+#77 := (iff #74 #70)
+#78 := [rewrite]: #77
+#75 := (iff #67 #74)
+#72 := (iff #64 #71)
+#73 := [rewrite]: #72
+#76 := [monotonicity #73]: #75
+#80 := [trans #76 #78]: #79
+#68 := (iff #17 #67)
+#65 := (iff #16 #64)
+#62 := (= #15 #61)
+#63 := [rewrite]: #62
+#66 := [monotonicity #63]: #65
+#69 := [monotonicity #66]: #68
+#82 := [trans #69 #80]: #81
+#59 := [asserted]: #17
+#83 := [mp #59 #82]: #70
+[mp #83 #95]: false
+unsat
 31769d5312feac1587c3f744c5c881fb2d86e85f 35 0
-#2 := false
-#9 := 5::Int
-#7 := 2::Int
-#8 := (+ 2::Int 2::Int)
-#10 := (= #8 5::Int)
-#11 := (not #10)
-#12 := (not #11)
-#56 := (iff #12 false)
-#1 := true
-#51 := (not true)
-#54 := (iff #51 false)
-#55 := [rewrite]: #54
-#52 := (iff #12 #51)
-#49 := (iff #11 true)
-#44 := (not false)
-#47 := (iff #44 true)
-#48 := [rewrite]: #47
-#45 := (iff #11 #44)
-#42 := (iff #10 false)
-#34 := 4::Int
-#37 := (= 4::Int 5::Int)
-#40 := (iff #37 false)
-#41 := [rewrite]: #40
-#38 := (iff #10 #37)
-#35 := (= #8 4::Int)
-#36 := [rewrite]: #35
-#39 := [monotonicity #36]: #38
-#43 := [trans #39 #41]: #42
-#46 := [monotonicity #43]: #45
-#50 := [trans #46 #48]: #49
-#53 := [monotonicity #50]: #52
-#57 := [trans #53 #55]: #56
-#33 := [asserted]: #12
-[mp #33 #57]: false
-unsat
+#2 := false
+#9 := 5::Int
+#7 := 2::Int
+#8 := (+ 2::Int 2::Int)
+#10 := (= #8 5::Int)
+#11 := (not #10)
+#12 := (not #11)
+#56 := (iff #12 false)
+#1 := true
+#51 := (not true)
+#54 := (iff #51 false)
+#55 := [rewrite]: #54
+#52 := (iff #12 #51)
+#49 := (iff #11 true)
+#44 := (not false)
+#47 := (iff #44 true)
+#48 := [rewrite]: #47
+#45 := (iff #11 #44)
+#42 := (iff #10 false)
+#34 := 4::Int
+#37 := (= 4::Int 5::Int)
+#40 := (iff #37 false)
+#41 := [rewrite]: #40
+#38 := (iff #10 #37)
+#35 := (= #8 4::Int)
+#36 := [rewrite]: #35
+#39 := [monotonicity #36]: #38
+#43 := [trans #39 #41]: #42
+#46 := [monotonicity #43]: #45
+#50 := [trans #46 #48]: #49
+#53 := [monotonicity #50]: #52
+#57 := [trans #53 #55]: #56
+#33 := [asserted]: #12
+[mp #33 #57]: false
+unsat
 f8ba8c3ed7f7c7d5e49139b62e145fc6eee338f1 45 0
-#2 := false
-#14 := 4::Real
-decl f4 :: Real
-#11 := f4
-#10 := 7::Real
-#12 := (* 7::Real f4)
-decl f3 :: Real
-#8 := f3
-#7 := 3::Real
-#9 := (* 3::Real f3)
-#13 := (+ #9 #12)
-#48 := (>= #13 4::Real)
-#46 := (not #48)
-#15 := (< #13 4::Real)
-#47 := (iff #15 #46)
-#44 := [rewrite]: #47
-#41 := [asserted]: #15
-#45 := [mp #41 #44]: #46
-#16 := 2::Real
-#17 := (* 2::Real f3)
-#50 := (<= #17 3::Real)
-#51 := (not #50)
-#18 := (< 3::Real #17)
-#52 := (iff #18 #51)
-#53 := [rewrite]: #52
-#42 := [asserted]: #18
-#54 := [mp #42 #53]: #51
-#19 := 0::Real
-#58 := (>= f4 0::Real)
-#20 := (< f4 0::Real)
-#21 := (not #20)
-#65 := (iff #21 #58)
-#56 := (not #58)
-#60 := (not #56)
-#63 := (iff #60 #58)
-#64 := [rewrite]: #63
-#61 := (iff #21 #60)
-#57 := (iff #20 #56)
-#59 := [rewrite]: #57
-#62 := [monotonicity #59]: #61
-#66 := [trans #62 #64]: #65
-#43 := [asserted]: #21
-#67 := [mp #43 #66]: #58
-[th-lemma arith farkas 7 3/2 1 #67 #54 #45]: false
-unsat
+#2 := false
+#14 := 4::Real
+decl f4 :: Real
+#11 := f4
+#10 := 7::Real
+#12 := (* 7::Real f4)
+decl f3 :: Real
+#8 := f3
+#7 := 3::Real
+#9 := (* 3::Real f3)
+#13 := (+ #9 #12)
+#48 := (>= #13 4::Real)
+#46 := (not #48)
+#15 := (< #13 4::Real)
+#47 := (iff #15 #46)
+#44 := [rewrite]: #47
+#41 := [asserted]: #15
+#45 := [mp #41 #44]: #46
+#16 := 2::Real
+#17 := (* 2::Real f3)
+#50 := (<= #17 3::Real)
+#51 := (not #50)
+#18 := (< 3::Real #17)
+#52 := (iff #18 #51)
+#53 := [rewrite]: #52
+#42 := [asserted]: #18
+#54 := [mp #42 #53]: #51
+#19 := 0::Real
+#58 := (>= f4 0::Real)
+#20 := (< f4 0::Real)
+#21 := (not #20)
+#65 := (iff #21 #58)
+#56 := (not #58)
+#60 := (not #56)
+#63 := (iff #60 #58)
+#64 := [rewrite]: #63
+#61 := (iff #21 #60)
+#57 := (iff #20 #56)
+#59 := [rewrite]: #57
+#62 := [monotonicity #59]: #61
+#66 := [trans #62 #64]: #65
+#43 := [asserted]: #21
+#67 := [mp #43 #66]: #58
+[th-lemma arith farkas 7 3/2 1 #67 #54 #45]: false
+unsat
 c61600e5a5dab4b2c2864caededa0b50f81df696 59 0
-#2 := false
-#19 := (not false)
-decl f4 :: Int
-#11 := f4
-#7 := 0::Int
-#15 := (<= 0::Int f4)
-#16 := (not #15)
-#17 := (or #16 #15)
-#9 := 1::Int
-#10 := (- 1::Int)
-#12 := (* #10 f4)
-decl f3 :: Int
-#8 := f3
-#13 := (+ f3 #12)
-#14 := (<= 0::Int #13)
-#18 := (or #14 #17)
-#20 := (iff #18 #19)
-#21 := (not #20)
-#77 := (iff #21 false)
-#1 := true
-#72 := (not true)
-#75 := (iff #72 false)
-#76 := [rewrite]: #75
-#73 := (iff #21 #72)
-#70 := (iff #20 true)
-#65 := (iff true true)
-#68 := (iff #65 true)
-#69 := [rewrite]: #68
-#66 := (iff #20 #65)
-#63 := (iff #19 true)
-#64 := [rewrite]: #63
-#61 := (iff #18 true)
-#42 := -1::Int
-#45 := (* -1::Int f4)
-#48 := (+ f3 #45)
-#51 := (<= 0::Int #48)
-#56 := (or #51 true)
-#59 := (iff #56 true)
-#60 := [rewrite]: #59
-#57 := (iff #18 #56)
-#54 := (iff #17 true)
-#55 := [rewrite]: #54
-#52 := (iff #14 #51)
-#49 := (= #13 #48)
-#46 := (= #12 #45)
-#43 := (= #10 -1::Int)
-#44 := [rewrite]: #43
-#47 := [monotonicity #44]: #46
-#50 := [monotonicity #47]: #49
-#53 := [monotonicity #50]: #52
-#58 := [monotonicity #53 #55]: #57
-#62 := [trans #58 #60]: #61
-#67 := [monotonicity #62 #64]: #66
-#71 := [trans #67 #69]: #70
-#74 := [monotonicity #71]: #73
-#78 := [trans #74 #76]: #77
-#41 := [asserted]: #21
-[mp #41 #78]: false
-unsat
+#2 := false
+#19 := (not false)
+decl f4 :: Int
+#11 := f4
+#7 := 0::Int
+#15 := (<= 0::Int f4)
+#16 := (not #15)
+#17 := (or #16 #15)
+#9 := 1::Int
+#10 := (- 1::Int)
+#12 := (* #10 f4)
+decl f3 :: Int
+#8 := f3
+#13 := (+ f3 #12)
+#14 := (<= 0::Int #13)
+#18 := (or #14 #17)
+#20 := (iff #18 #19)
+#21 := (not #20)
+#77 := (iff #21 false)
+#1 := true
+#72 := (not true)
+#75 := (iff #72 false)
+#76 := [rewrite]: #75
+#73 := (iff #21 #72)
+#70 := (iff #20 true)
+#65 := (iff true true)
+#68 := (iff #65 true)
+#69 := [rewrite]: #68
+#66 := (iff #20 #65)
+#63 := (iff #19 true)
+#64 := [rewrite]: #63
+#61 := (iff #18 true)
+#42 := -1::Int
+#45 := (* -1::Int f4)
+#48 := (+ f3 #45)
+#51 := (<= 0::Int #48)
+#56 := (or #51 true)
+#59 := (iff #56 true)
+#60 := [rewrite]: #59
+#57 := (iff #18 #56)
+#54 := (iff #17 true)
+#55 := [rewrite]: #54
+#52 := (iff #14 #51)
+#49 := (= #13 #48)
+#46 := (= #12 #45)
+#43 := (= #10 -1::Int)
+#44 := [rewrite]: #43
+#47 := [monotonicity #44]: #46
+#50 := [monotonicity #47]: #49
+#53 := [monotonicity #50]: #52
+#58 := [monotonicity #53 #55]: #57
+#62 := [trans #58 #60]: #61
+#67 := [monotonicity #62 #64]: #66
+#71 := [trans #67 #69]: #70
+#74 := [monotonicity #71]: #73
+#78 := [trans #74 #76]: #77
+#41 := [asserted]: #21
+[mp #41 #78]: false
+unsat
 7f98d11cd70eeb0eb4aea9722e1648cd3cfdbe2c 439 0
-#2 := false
-decl f4 :: Int
-#8 := f4
-decl f3 :: Int
-#7 := f3
-#20 := (= f3 f4)
-#287 := (not #20)
-#24 := (= f4 f3)
-#312 := (not #24)
-#499 := (iff #312 #287)
-#458 := (iff #24 #20)
-#459 := [commutativity]: #458
-#500 := [monotonicity #459]: #499
-decl f5 :: Int
-#10 := f5
-#30 := (= f5 f4)
-#13 := (= f4 f5)
-#493 := (iff #13 #30)
-#491 := (iff #30 #13)
-#492 := [commutativity]: #491
-#494 := [symm #492]: #493
-#18 := (= f3 f5)
-#238 := (not #18)
-#28 := (= f5 f3)
-#337 := (not #28)
-#485 := (iff #337 #238)
-#483 := (iff #28 #18)
-#484 := [commutativity]: #483
-#486 := [monotonicity #484]: #485
-#55 := 0::Int
-#77 := -1::Int
-#102 := (* -1::Int f4)
-#103 := (+ f3 #102)
-#104 := (<= #103 0::Int)
-#105 := (not #104)
-#118 := (>= #103 0::Int)
-#78 := (* -1::Int f5)
-#96 := (+ f4 #78)
-#95 := (>= #96 0::Int)
-#94 := (not #95)
-#261 := (not #13)
-#435 := [hypothesis]: #261
-#127 := (<= #96 0::Int)
-#474 := (or #18 #13)
-#441 := [hypothesis]: #238
-#447 := (or #104 #18 #13)
-#436 := [hypothesis]: #105
-#300 := (or #127 #104)
-#128 := (not #127)
-#134 := (and #128 #105)
-#216 := (not #134)
-#309 := (iff #216 #300)
-#301 := (not #300)
-#304 := (not #301)
-#307 := (iff #304 #300)
-#308 := [rewrite]: #307
-#305 := (iff #216 #304)
-#302 := (iff #134 #301)
-#303 := [rewrite]: #302
-#306 := [monotonicity #303]: #305
-#310 := [trans #306 #308]: #309
-#37 := (and #30 #24)
-#79 := (+ f3 #78)
-#80 := (<= #79 0::Int)
-#81 := (not #80)
-#84 := (and #13 #81)
-#88 := (>= #79 0::Int)
-#87 := (not #88)
-#91 := (and #24 #87)
-#99 := (and #94 #81)
-#108 := (and #105 #28)
-#111 := (and #105 #87)
-#114 := (and #30 #105)
-#117 := (not #118)
-#121 := (and #28 #117)
-#124 := (and #81 #117)
-#131 := (and #128 #24)
-#137 := (and #20 #94)
-#140 := (and #18 #128)
-#143 := (and #87 #128)
-#146 := (and #117 #13)
-#149 := (and #117 #94)
-#197 := (or #149 #146 #143 #140 #137 #134 #131 #124 #121 #114 #111 #108 #99 #91 #84 #37)
-#202 := (not #197)
-#26 := (< f5 f3)
-#36 := (and #13 #26)
-#38 := (or #36 #37)
-#15 := (< f3 f5)
-#35 := (and #24 #15)
-#39 := (or #35 #38)
-#11 := (< f4 f5)
-#34 := (and #11 #26)
-#40 := (or #34 #39)
-#22 := (< f4 f3)
-#33 := (and #22 #28)
-#41 := (or #33 #40)
-#32 := (and #22 #15)
-#42 := (or #32 #41)
-#31 := (and #30 #22)
-#43 := (or #31 #42)
-#9 := (< f3 f4)
-#29 := (and #28 #9)
-#44 := (or #29 #43)
-#27 := (and #26 #9)
-#45 := (or #27 #44)
-#16 := (< f5 f4)
-#25 := (and #16 #24)
-#46 := (or #25 #45)
-#23 := (and #16 #22)
-#47 := (or #23 #46)
-#21 := (and #20 #11)
-#48 := (or #21 #47)
-#19 := (and #18 #16)
-#49 := (or #19 #48)
-#17 := (and #15 #16)
-#50 := (or #17 #49)
-#14 := (and #9 #13)
-#51 := (or #14 #50)
-#12 := (and #9 #11)
-#52 := (or #12 #51)
-#53 := (not #52)
-#203 := (iff #53 #202)
-#200 := (iff #52 #197)
-#152 := (or #84 #37)
-#155 := (or #91 #152)
-#158 := (or #99 #155)
-#161 := (or #108 #158)
-#164 := (or #111 #161)
-#167 := (or #114 #164)
-#170 := (or #121 #167)
-#173 := (or #124 #170)
-#176 := (or #131 #173)
-#179 := (or #134 #176)
-#182 := (or #137 #179)
-#185 := (or #140 #182)
-#188 := (or #143 #185)
-#191 := (or #146 #188)
-#194 := (or #149 #191)
-#198 := (iff #194 #197)
-#199 := [rewrite]: #198
-#195 := (iff #52 #194)
-#192 := (iff #51 #191)
-#189 := (iff #50 #188)
-#186 := (iff #49 #185)
-#183 := (iff #48 #182)
-#180 := (iff #47 #179)
-#177 := (iff #46 #176)
-#174 := (iff #45 #173)
-#171 := (iff #44 #170)
-#168 := (iff #43 #167)
-#165 := (iff #42 #164)
-#162 := (iff #41 #161)
-#159 := (iff #40 #158)
-#156 := (iff #39 #155)
-#153 := (iff #38 #152)
-#85 := (iff #36 #84)
-#82 := (iff #26 #81)
-#83 := [rewrite]: #82
-#86 := [monotonicity #83]: #85
-#154 := [monotonicity #86]: #153
-#92 := (iff #35 #91)
-#89 := (iff #15 #87)
-#90 := [rewrite]: #89
-#93 := [monotonicity #90]: #92
-#157 := [monotonicity #93 #154]: #156
-#100 := (iff #34 #99)
-#97 := (iff #11 #94)
-#98 := [rewrite]: #97
-#101 := [monotonicity #98 #83]: #100
-#160 := [monotonicity #101 #157]: #159
-#109 := (iff #33 #108)
-#106 := (iff #22 #105)
-#107 := [rewrite]: #106
-#110 := [monotonicity #107]: #109
-#163 := [monotonicity #110 #160]: #162
-#112 := (iff #32 #111)
-#113 := [monotonicity #107 #90]: #112
-#166 := [monotonicity #113 #163]: #165
-#115 := (iff #31 #114)
-#116 := [monotonicity #107]: #115
-#169 := [monotonicity #116 #166]: #168
-#122 := (iff #29 #121)
-#119 := (iff #9 #117)
-#120 := [rewrite]: #119
-#123 := [monotonicity #120]: #122
-#172 := [monotonicity #123 #169]: #171
-#125 := (iff #27 #124)
-#126 := [monotonicity #83 #120]: #125
-#175 := [monotonicity #126 #172]: #174
-#132 := (iff #25 #131)
-#129 := (iff #16 #128)
-#130 := [rewrite]: #129
-#133 := [monotonicity #130]: #132
-#178 := [monotonicity #133 #175]: #177
-#135 := (iff #23 #134)
-#136 := [monotonicity #130 #107]: #135
-#181 := [monotonicity #136 #178]: #180
-#138 := (iff #21 #137)
-#139 := [monotonicity #98]: #138
-#184 := [monotonicity #139 #181]: #183
-#141 := (iff #19 #140)
-#142 := [monotonicity #130]: #141
-#187 := [monotonicity #142 #184]: #186
-#144 := (iff #17 #143)
-#145 := [monotonicity #90 #130]: #144
-#190 := [monotonicity #145 #187]: #189
-#147 := (iff #14 #146)
-#148 := [monotonicity #120]: #147
-#193 := [monotonicity #148 #190]: #192
-#150 := (iff #12 #149)
-#151 := [monotonicity #120 #98]: #150
-#196 := [monotonicity #151 #193]: #195
-#201 := [trans #196 #199]: #200
-#204 := [monotonicity #201]: #203
-#74 := [asserted]: #53
-#205 := [mp #74 #204]: #202
-#217 := [not-or-elim #205]: #216
-#311 := [mp #217 #310]: #300
-#437 := [unit-resolution #311 #436]: #127
-#438 := (or #13 #128 #94)
-#439 := [th-lemma arith triangle-eq]: #438
-#440 := [unit-resolution #439 #437 #435]: #94
-#363 := (or #104 #88)
-#226 := (not #111)
-#372 := (iff #226 #363)
-#364 := (not #363)
-#367 := (not #364)
-#370 := (iff #367 #363)
-#371 := [rewrite]: #370
-#368 := (iff #226 #367)
-#365 := (iff #111 #364)
-#366 := [rewrite]: #365
-#369 := [monotonicity #366]: #368
-#373 := [trans #369 #371]: #372
-#227 := [not-or-elim #205]: #226
-#374 := [mp #227 #373]: #363
-#442 := [unit-resolution #374 #436]: #88
-#443 := (or #18 #81 #87)
-#444 := [th-lemma arith triangle-eq]: #443
-#445 := [unit-resolution #444 #442 #441]: #81
-#387 := (or #95 #80)
-#230 := (not #99)
-#396 := (iff #230 #387)
-#388 := (not #387)
-#391 := (not #388)
-#394 := (iff #391 #387)
-#395 := [rewrite]: #394
-#392 := (iff #230 #391)
-#389 := (iff #99 #388)
-#390 := [rewrite]: #389
-#393 := [monotonicity #390]: #392
-#397 := [trans #393 #395]: #396
-#231 := [not-or-elim #205]: #230
-#398 := [mp #231 #397]: #387
-#446 := [unit-resolution #398 #445 #440]: false
-#448 := [lemma #446]: #447
-#466 := [unit-resolution #448 #441 #435]: #104
-#464 := (or #80 #13 #105)
-#460 := (iff #20 #24)
-#461 := [symm #459]: #460
-#453 := [hypothesis]: #104
-#449 := [hypothesis]: #81
-#325 := (or #80 #118)
-#220 := (not #124)
-#334 := (iff #220 #325)
-#326 := (not #325)
-#329 := (not #326)
-#332 := (iff #329 #325)
-#333 := [rewrite]: #332
-#330 := (iff #220 #329)
-#327 := (iff #124 #326)
-#328 := [rewrite]: #327
-#331 := [monotonicity #328]: #330
-#335 := [trans #331 #333]: #334
-#221 := [not-or-elim #205]: #220
-#336 := [mp #221 #335]: #325
-#454 := [unit-resolution #336 #449]: #118
-#455 := (or #20 #105 #117)
-#456 := [th-lemma arith triangle-eq]: #455
-#457 := [unit-resolution #456 #454 #453]: #20
-#462 := [mp #457 #461]: #24
-#450 := [unit-resolution #398 #449]: #95
-#451 := [unit-resolution #439 #450 #435]: #128
-#313 := (or #127 #312)
-#218 := (not #131)
-#322 := (iff #218 #313)
-#314 := (not #313)
-#317 := (not #314)
-#320 := (iff #317 #313)
-#321 := [rewrite]: #320
-#318 := (iff #218 #317)
-#315 := (iff #131 #314)
-#316 := [rewrite]: #315
-#319 := [monotonicity #316]: #318
-#323 := [trans #319 #321]: #322
-#219 := [not-or-elim #205]: #218
-#324 := [mp #219 #323]: #313
-#452 := [unit-resolution #324 #451]: #312
-#463 := [unit-resolution #452 #462]: false
-#465 := [lemma #463]: #464
-#467 := [unit-resolution #465 #466 #435]: #80
-#468 := [unit-resolution #444 #467 #441]: #87
-#250 := (or #88 #127)
-#210 := (not #143)
-#239 := (iff #210 #250)
-#247 := (not #250)
-#246 := (not #247)
-#241 := (iff #246 #250)
-#242 := [rewrite]: #241
-#243 := (iff #210 #246)
-#248 := (iff #143 #247)
-#245 := [rewrite]: #248
-#244 := [monotonicity #245]: #243
-#240 := [trans #244 #242]: #239
-#211 := [not-or-elim #205]: #210
-#76 := [mp #211 #240]: #250
-#469 := [unit-resolution #76 #468]: #127
-#470 := [unit-resolution #439 #469 #435]: #94
-#271 := (or #118 #95)
-#206 := (not #149)
-#266 := (iff #206 #271)
-#272 := (not #271)
-#269 := (not #272)
-#268 := (iff #269 #271)
-#265 := [rewrite]: #268
-#270 := (iff #206 #269)
-#273 := (iff #149 #272)
-#274 := [rewrite]: #273
-#267 := [monotonicity #274]: #270
-#263 := [trans #267 #265]: #266
-#207 := [not-or-elim #205]: #206
-#264 := [mp #207 #263]: #271
-#471 := [unit-resolution #264 #470]: #118
-#288 := (or #287 #95)
-#214 := (not #137)
-#297 := (iff #214 #288)
-#289 := (not #288)
-#292 := (not #289)
-#295 := (iff #292 #288)
-#296 := [rewrite]: #295
-#293 := (iff #214 #292)
-#290 := (iff #137 #289)
-#291 := [rewrite]: #290
-#294 := [monotonicity #291]: #293
-#298 := [trans #294 #296]: #297
-#215 := [not-or-elim #205]: #214
-#299 := [mp #215 #298]: #288
-#472 := [unit-resolution #299 #470]: #287
-#473 := [unit-resolution #456 #472 #471 #466]: false
-#475 := [lemma #473]: #474
-#476 := [unit-resolution #475 #435]: #18
-#275 := (or #238 #127)
-#212 := (not #140)
-#284 := (iff #212 #275)
-#276 := (not #275)
-#279 := (not #276)
-#282 := (iff #279 #275)
-#283 := [rewrite]: #282
-#280 := (iff #212 #279)
-#277 := (iff #140 #276)
-#278 := [rewrite]: #277
-#281 := [monotonicity #278]: #280
-#285 := [trans #281 #283]: #284
-#213 := [not-or-elim #205]: #212
-#286 := [mp #213 #285]: #275
-#477 := [unit-resolution #286 #476]: #127
-#478 := [unit-resolution #439 #477 #435]: #94
-#479 := [unit-resolution #264 #478]: #118
-#480 := [unit-resolution #299 #478]: #287
-#481 := [unit-resolution #456 #480 #479]: #105
-#375 := (or #104 #337)
-#228 := (not #108)
-#384 := (iff #228 #375)
-#376 := (not #375)
-#379 := (not #376)
-#382 := (iff #379 #375)
-#383 := [rewrite]: #382
-#380 := (iff #228 #379)
-#377 := (iff #108 #376)
-#378 := [rewrite]: #377
-#381 := [monotonicity #378]: #380
-#385 := [trans #381 #383]: #384
-#229 := [not-or-elim #205]: #228
-#386 := [mp #229 #385]: #375
-#482 := [unit-resolution #386 #481]: #337
-#487 := [mp #482 #486]: #238
-#488 := [unit-resolution #476 #487]: false
-#489 := [lemma #488]: #13
-#495 := [mp #489 #494]: #30
-#350 := (not #30)
-#423 := (or #350 #312)
-#236 := (not #37)
-#432 := (iff #236 #423)
-#424 := (not #423)
-#427 := (not #424)
-#430 := (iff #427 #423)
-#431 := [rewrite]: #430
-#428 := (iff #236 #427)
-#425 := (iff #37 #424)
-#426 := [rewrite]: #425
-#429 := [monotonicity #426]: #428
-#433 := [trans #429 #431]: #432
-#237 := [not-or-elim #205]: #236
-#434 := [mp #237 #433]: #423
-#498 := [unit-resolution #434 #495]: #312
-#501 := [mp #498 #500]: #287
-#262 := (or #118 #261)
-#208 := (not #146)
-#251 := (iff #208 #262)
-#259 := (not #262)
-#258 := (not #259)
-#253 := (iff #258 #262)
-#254 := [rewrite]: #253
-#255 := (iff #208 #258)
-#260 := (iff #146 #259)
-#257 := [rewrite]: #260
-#256 := [monotonicity #257]: #255
-#252 := [trans #256 #254]: #251
-#209 := [not-or-elim #205]: #208
-#249 := [mp #209 #252]: #262
-#490 := [unit-resolution #249 #489]: #118
-#351 := (or #350 #104)
-#224 := (not #114)
-#360 := (iff #224 #351)
-#352 := (not #351)
-#355 := (not #352)
-#358 := (iff #355 #351)
-#359 := [rewrite]: #358
-#356 := (iff #224 #355)
-#353 := (iff #114 #352)
-#354 := [rewrite]: #353
-#357 := [monotonicity #354]: #356
-#361 := [trans #357 #359]: #360
-#225 := [not-or-elim #205]: #224
-#362 := [mp #225 #361]: #351
-#496 := [unit-resolution #362 #495]: #104
-#497 := [unit-resolution #456 #496 #490]: #20
-[unit-resolution #497 #501]: false
-unsat
+#2 := false
+decl f4 :: Int
+#8 := f4
+decl f3 :: Int
+#7 := f3
+#20 := (= f3 f4)
+#287 := (not #20)
+#24 := (= f4 f3)
+#312 := (not #24)
+#499 := (iff #312 #287)
+#458 := (iff #24 #20)
+#459 := [commutativity]: #458
+#500 := [monotonicity #459]: #499
+decl f5 :: Int
+#10 := f5
+#30 := (= f5 f4)
+#13 := (= f4 f5)
+#493 := (iff #13 #30)
+#491 := (iff #30 #13)
+#492 := [commutativity]: #491
+#494 := [symm #492]: #493
+#18 := (= f3 f5)
+#238 := (not #18)
+#28 := (= f5 f3)
+#337 := (not #28)
+#485 := (iff #337 #238)
+#483 := (iff #28 #18)
+#484 := [commutativity]: #483
+#486 := [monotonicity #484]: #485
+#55 := 0::Int
+#77 := -1::Int
+#102 := (* -1::Int f4)
+#103 := (+ f3 #102)
+#104 := (<= #103 0::Int)
+#105 := (not #104)
+#118 := (>= #103 0::Int)
+#78 := (* -1::Int f5)
+#96 := (+ f4 #78)
+#95 := (>= #96 0::Int)
+#94 := (not #95)
+#261 := (not #13)
+#435 := [hypothesis]: #261
+#127 := (<= #96 0::Int)
+#474 := (or #18 #13)
+#441 := [hypothesis]: #238
+#447 := (or #104 #18 #13)
+#436 := [hypothesis]: #105
+#300 := (or #127 #104)
+#128 := (not #127)
+#134 := (and #128 #105)
+#216 := (not #134)
+#309 := (iff #216 #300)
+#301 := (not #300)
+#304 := (not #301)
+#307 := (iff #304 #300)
+#308 := [rewrite]: #307
+#305 := (iff #216 #304)
+#302 := (iff #134 #301)
+#303 := [rewrite]: #302
+#306 := [monotonicity #303]: #305
+#310 := [trans #306 #308]: #309
+#37 := (and #30 #24)
+#79 := (+ f3 #78)
+#80 := (<= #79 0::Int)
+#81 := (not #80)
+#84 := (and #13 #81)
+#88 := (>= #79 0::Int)
+#87 := (not #88)
+#91 := (and #24 #87)
+#99 := (and #94 #81)
+#108 := (and #105 #28)
+#111 := (and #105 #87)
+#114 := (and #30 #105)
+#117 := (not #118)
+#121 := (and #28 #117)
+#124 := (and #81 #117)
+#131 := (and #128 #24)
+#137 := (and #20 #94)
+#140 := (and #18 #128)
+#143 := (and #87 #128)
+#146 := (and #117 #13)
+#149 := (and #117 #94)
+#197 := (or #149 #146 #143 #140 #137 #134 #131 #124 #121 #114 #111 #108 #99 #91 #84 #37)
+#202 := (not #197)
+#26 := (< f5 f3)
+#36 := (and #13 #26)
+#38 := (or #36 #37)
+#15 := (< f3 f5)
+#35 := (and #24 #15)
+#39 := (or #35 #38)
+#11 := (< f4 f5)
+#34 := (and #11 #26)
+#40 := (or #34 #39)
+#22 := (< f4 f3)
+#33 := (and #22 #28)
+#41 := (or #33 #40)
+#32 := (and #22 #15)
+#42 := (or #32 #41)
+#31 := (and #30 #22)
+#43 := (or #31 #42)
+#9 := (< f3 f4)
+#29 := (and #28 #9)
+#44 := (or #29 #43)
+#27 := (and #26 #9)
+#45 := (or #27 #44)
+#16 := (< f5 f4)
+#25 := (and #16 #24)
+#46 := (or #25 #45)
+#23 := (and #16 #22)
+#47 := (or #23 #46)
+#21 := (and #20 #11)
+#48 := (or #21 #47)
+#19 := (and #18 #16)
+#49 := (or #19 #48)
+#17 := (and #15 #16)
+#50 := (or #17 #49)
+#14 := (and #9 #13)
+#51 := (or #14 #50)
+#12 := (and #9 #11)
+#52 := (or #12 #51)
+#53 := (not #52)
+#203 := (iff #53 #202)
+#200 := (iff #52 #197)
+#152 := (or #84 #37)
+#155 := (or #91 #152)
+#158 := (or #99 #155)
+#161 := (or #108 #158)
+#164 := (or #111 #161)
+#167 := (or #114 #164)
+#170 := (or #121 #167)
+#173 := (or #124 #170)
+#176 := (or #131 #173)
+#179 := (or #134 #176)
+#182 := (or #137 #179)
+#185 := (or #140 #182)
+#188 := (or #143 #185)
+#191 := (or #146 #188)
+#194 := (or #149 #191)
+#198 := (iff #194 #197)
+#199 := [rewrite]: #198
+#195 := (iff #52 #194)
+#192 := (iff #51 #191)
+#189 := (iff #50 #188)
+#186 := (iff #49 #185)
+#183 := (iff #48 #182)
+#180 := (iff #47 #179)
+#177 := (iff #46 #176)
+#174 := (iff #45 #173)
+#171 := (iff #44 #170)
+#168 := (iff #43 #167)
+#165 := (iff #42 #164)
+#162 := (iff #41 #161)
+#159 := (iff #40 #158)
+#156 := (iff #39 #155)
+#153 := (iff #38 #152)
+#85 := (iff #36 #84)
+#82 := (iff #26 #81)
+#83 := [rewrite]: #82
+#86 := [monotonicity #83]: #85
+#154 := [monotonicity #86]: #153
+#92 := (iff #35 #91)
+#89 := (iff #15 #87)
+#90 := [rewrite]: #89
+#93 := [monotonicity #90]: #92
+#157 := [monotonicity #93 #154]: #156
+#100 := (iff #34 #99)
+#97 := (iff #11 #94)
+#98 := [rewrite]: #97
+#101 := [monotonicity #98 #83]: #100
+#160 := [monotonicity #101 #157]: #159
+#109 := (iff #33 #108)
+#106 := (iff #22 #105)
+#107 := [rewrite]: #106
+#110 := [monotonicity #107]: #109
+#163 := [monotonicity #110 #160]: #162
+#112 := (iff #32 #111)
+#113 := [monotonicity #107 #90]: #112
+#166 := [monotonicity #113 #163]: #165
+#115 := (iff #31 #114)
+#116 := [monotonicity #107]: #115
+#169 := [monotonicity #116 #166]: #168
+#122 := (iff #29 #121)
+#119 := (iff #9 #117)
+#120 := [rewrite]: #119
+#123 := [monotonicity #120]: #122
+#172 := [monotonicity #123 #169]: #171
+#125 := (iff #27 #124)
+#126 := [monotonicity #83 #120]: #125
+#175 := [monotonicity #126 #172]: #174
+#132 := (iff #25 #131)
+#129 := (iff #16 #128)
+#130 := [rewrite]: #129
+#133 := [monotonicity #130]: #132
+#178 := [monotonicity #133 #175]: #177
+#135 := (iff #23 #134)
+#136 := [monotonicity #130 #107]: #135
+#181 := [monotonicity #136 #178]: #180
+#138 := (iff #21 #137)
+#139 := [monotonicity #98]: #138
+#184 := [monotonicity #139 #181]: #183
+#141 := (iff #19 #140)
+#142 := [monotonicity #130]: #141
+#187 := [monotonicity #142 #184]: #186
+#144 := (iff #17 #143)
+#145 := [monotonicity #90 #130]: #144
+#190 := [monotonicity #145 #187]: #189
+#147 := (iff #14 #146)
+#148 := [monotonicity #120]: #147
+#193 := [monotonicity #148 #190]: #192
+#150 := (iff #12 #149)
+#151 := [monotonicity #120 #98]: #150
+#196 := [monotonicity #151 #193]: #195
+#201 := [trans #196 #199]: #200
+#204 := [monotonicity #201]: #203
+#74 := [asserted]: #53
+#205 := [mp #74 #204]: #202
+#217 := [not-or-elim #205]: #216
+#311 := [mp #217 #310]: #300
+#437 := [unit-resolution #311 #436]: #127
+#438 := (or #13 #128 #94)
+#439 := [th-lemma arith triangle-eq]: #438
+#440 := [unit-resolution #439 #437 #435]: #94
+#363 := (or #104 #88)
+#226 := (not #111)
+#372 := (iff #226 #363)
+#364 := (not #363)
+#367 := (not #364)
+#370 := (iff #367 #363)
+#371 := [rewrite]: #370
+#368 := (iff #226 #367)
+#365 := (iff #111 #364)
+#366 := [rewrite]: #365
+#369 := [monotonicity #366]: #368
+#373 := [trans #369 #371]: #372
+#227 := [not-or-elim #205]: #226
+#374 := [mp #227 #373]: #363
+#442 := [unit-resolution #374 #436]: #88
+#443 := (or #18 #81 #87)
+#444 := [th-lemma arith triangle-eq]: #443
+#445 := [unit-resolution #444 #442 #441]: #81
+#387 := (or #95 #80)
+#230 := (not #99)
+#396 := (iff #230 #387)
+#388 := (not #387)
+#391 := (not #388)
+#394 := (iff #391 #387)
+#395 := [rewrite]: #394
+#392 := (iff #230 #391)
+#389 := (iff #99 #388)
+#390 := [rewrite]: #389
+#393 := [monotonicity #390]: #392
+#397 := [trans #393 #395]: #396
+#231 := [not-or-elim #205]: #230
+#398 := [mp #231 #397]: #387
+#446 := [unit-resolution #398 #445 #440]: false
+#448 := [lemma #446]: #447
+#466 := [unit-resolution #448 #441 #435]: #104
+#464 := (or #80 #13 #105)
+#460 := (iff #20 #24)
+#461 := [symm #459]: #460
+#453 := [hypothesis]: #104
+#449 := [hypothesis]: #81
+#325 := (or #80 #118)
+#220 := (not #124)
+#334 := (iff #220 #325)
+#326 := (not #325)
+#329 := (not #326)
+#332 := (iff #329 #325)
+#333 := [rewrite]: #332
+#330 := (iff #220 #329)
+#327 := (iff #124 #326)
+#328 := [rewrite]: #327
+#331 := [monotonicity #328]: #330
+#335 := [trans #331 #333]: #334
+#221 := [not-or-elim #205]: #220
+#336 := [mp #221 #335]: #325
+#454 := [unit-resolution #336 #449]: #118
+#455 := (or #20 #105 #117)
+#456 := [th-lemma arith triangle-eq]: #455
+#457 := [unit-resolution #456 #454 #453]: #20
+#462 := [mp #457 #461]: #24
+#450 := [unit-resolution #398 #449]: #95
+#451 := [unit-resolution #439 #450 #435]: #128
+#313 := (or #127 #312)
+#218 := (not #131)
+#322 := (iff #218 #313)
+#314 := (not #313)
+#317 := (not #314)
+#320 := (iff #317 #313)
+#321 := [rewrite]: #320
+#318 := (iff #218 #317)
+#315 := (iff #131 #314)
+#316 := [rewrite]: #315
+#319 := [monotonicity #316]: #318
+#323 := [trans #319 #321]: #322
+#219 := [not-or-elim #205]: #218
+#324 := [mp #219 #323]: #313
+#452 := [unit-resolution #324 #451]: #312
+#463 := [unit-resolution #452 #462]: false
+#465 := [lemma #463]: #464
+#467 := [unit-resolution #465 #466 #435]: #80
+#468 := [unit-resolution #444 #467 #441]: #87
+#250 := (or #88 #127)
+#210 := (not #143)
+#239 := (iff #210 #250)
+#247 := (not #250)
+#246 := (not #247)
+#241 := (iff #246 #250)
+#242 := [rewrite]: #241
+#243 := (iff #210 #246)
+#248 := (iff #143 #247)
+#245 := [rewrite]: #248
+#244 := [monotonicity #245]: #243
+#240 := [trans #244 #242]: #239
+#211 := [not-or-elim #205]: #210
+#76 := [mp #211 #240]: #250
+#469 := [unit-resolution #76 #468]: #127
+#470 := [unit-resolution #439 #469 #435]: #94
+#271 := (or #118 #95)
+#206 := (not #149)
+#266 := (iff #206 #271)
+#272 := (not #271)
+#269 := (not #272)
+#268 := (iff #269 #271)
+#265 := [rewrite]: #268
+#270 := (iff #206 #269)
+#273 := (iff #149 #272)
+#274 := [rewrite]: #273
+#267 := [monotonicity #274]: #270
+#263 := [trans #267 #265]: #266
+#207 := [not-or-elim #205]: #206
+#264 := [mp #207 #263]: #271
+#471 := [unit-resolution #264 #470]: #118
+#288 := (or #287 #95)
+#214 := (not #137)
+#297 := (iff #214 #288)
+#289 := (not #288)
+#292 := (not #289)
+#295 := (iff #292 #288)
+#296 := [rewrite]: #295
+#293 := (iff #214 #292)
+#290 := (iff #137 #289)
+#291 := [rewrite]: #290
+#294 := [monotonicity #291]: #293
+#298 := [trans #294 #296]: #297
+#215 := [not-or-elim #205]: #214
+#299 := [mp #215 #298]: #288
+#472 := [unit-resolution #299 #470]: #287
+#473 := [unit-resolution #456 #472 #471 #466]: false
+#475 := [lemma #473]: #474
+#476 := [unit-resolution #475 #435]: #18
+#275 := (or #238 #127)
+#212 := (not #140)
+#284 := (iff #212 #275)
+#276 := (not #275)
+#279 := (not #276)
+#282 := (iff #279 #275)
+#283 := [rewrite]: #282
+#280 := (iff #212 #279)
+#277 := (iff #140 #276)
+#278 := [rewrite]: #277
+#281 := [monotonicity #278]: #280
+#285 := [trans #281 #283]: #284
+#213 := [not-or-elim #205]: #212
+#286 := [mp #213 #285]: #275
+#477 := [unit-resolution #286 #476]: #127
+#478 := [unit-resolution #439 #477 #435]: #94
+#479 := [unit-resolution #264 #478]: #118
+#480 := [unit-resolution #299 #478]: #287
+#481 := [unit-resolution #456 #480 #479]: #105
+#375 := (or #104 #337)
+#228 := (not #108)
+#384 := (iff #228 #375)
+#376 := (not #375)
+#379 := (not #376)
+#382 := (iff #379 #375)
+#383 := [rewrite]: #382
+#380 := (iff #228 #379)
+#377 := (iff #108 #376)
+#378 := [rewrite]: #377
+#381 := [monotonicity #378]: #380
+#385 := [trans #381 #383]: #384
+#229 := [not-or-elim #205]: #228
+#386 := [mp #229 #385]: #375
+#482 := [unit-resolution #386 #481]: #337
+#487 := [mp #482 #486]: #238
+#488 := [unit-resolution #476 #487]: false
+#489 := [lemma #488]: #13
+#495 := [mp #489 #494]: #30
+#350 := (not #30)
+#423 := (or #350 #312)
+#236 := (not #37)
+#432 := (iff #236 #423)
+#424 := (not #423)
+#427 := (not #424)
+#430 := (iff #427 #423)
+#431 := [rewrite]: #430
+#428 := (iff #236 #427)
+#425 := (iff #37 #424)
+#426 := [rewrite]: #425
+#429 := [monotonicity #426]: #428
+#433 := [trans #429 #431]: #432
+#237 := [not-or-elim #205]: #236
+#434 := [mp #237 #433]: #423
+#498 := [unit-resolution #434 #495]: #312
+#501 := [mp #498 #500]: #287
+#262 := (or #118 #261)
+#208 := (not #146)
+#251 := (iff #208 #262)
+#259 := (not #262)
+#258 := (not #259)
+#253 := (iff #258 #262)
+#254 := [rewrite]: #253
+#255 := (iff #208 #258)
+#260 := (iff #146 #259)
+#257 := [rewrite]: #260
+#256 := [monotonicity #257]: #255
+#252 := [trans #256 #254]: #251
+#209 := [not-or-elim #205]: #208
+#249 := [mp #209 #252]: #262
+#490 := [unit-resolution #249 #489]: #118
+#351 := (or #350 #104)
+#224 := (not #114)
+#360 := (iff #224 #351)
+#352 := (not #351)
+#355 := (not #352)
+#358 := (iff #355 #351)
+#359 := [rewrite]: #358
+#356 := (iff #224 #355)
+#353 := (iff #114 #352)
+#354 := [rewrite]: #353
+#357 := [monotonicity #354]: #356
+#361 := [trans #357 #359]: #360
+#225 := [not-or-elim #205]: #224
+#362 := [mp #225 #361]: #351
+#496 := [unit-resolution #362 #495]: #104
+#497 := [unit-resolution #456 #496 #490]: #20
+[unit-resolution #497 #501]: false
+unsat
+70bd6436662c1fd4b8c8a6f696914593051990e6 52 0
+#2 := false
+#11 := 1::Real
+decl f3 :: Real
+#7 := f3
+#9 := 2::Real
+#10 := (* 2::Real f3)
+#12 := (+ #10 1::Real)
+#8 := (+ f3 f3)
+#13 := (< #8 #12)
+#14 := (or false #13)
+#15 := (or #13 #14)
+#16 := (not #15)
+#72 := (iff #16 false)
+#40 := (+ 1::Real #10)
+#43 := (< #10 #40)
+#60 := (not #43)
+#70 := (iff #60 false)
+#1 := true
+#65 := (not true)
+#68 := (iff #65 false)
+#69 := [rewrite]: #68
+#66 := (iff #60 #65)
+#63 := (iff #43 true)
+#64 := [rewrite]: #63
+#67 := [monotonicity #64]: #66
+#71 := [trans #67 #69]: #70
+#61 := (iff #16 #60)
+#58 := (iff #15 #43)
+#53 := (or #43 #43)
+#56 := (iff #53 #43)
+#57 := [rewrite]: #56
+#54 := (iff #15 #53)
+#51 := (iff #14 #43)
+#46 := (or false #43)
+#49 := (iff #46 #43)
+#50 := [rewrite]: #49
+#47 := (iff #14 #46)
+#44 := (iff #13 #43)
+#41 := (= #12 #40)
+#42 := [rewrite]: #41
+#38 := (= #8 #10)
+#39 := [rewrite]: #38
+#45 := [monotonicity #39 #42]: #44
+#48 := [monotonicity #45]: #47
+#52 := [trans #48 #50]: #51
+#55 := [monotonicity #45 #52]: #54
+#59 := [trans #55 #57]: #58
+#62 := [monotonicity #59]: #61
+#73 := [trans #62 #71]: #72
+#37 := [asserted]: #16
+[mp #37 #73]: false
+unsat
 6e7ef563e385e00340c905e5fb44172a278ff733 2215 0
-#2 := false
-decl f12 :: Int
-#52 := f12
-decl f5 :: Int
-#13 := f5
-#64 := (= f5 f12)
-#9 := 0::Int
-#97 := -1::Int
-#235 := (* -1::Int f12)
-#733 := (+ f5 #235)
-#735 := (>= #733 0::Int)
-decl f10 :: Int
-#40 := f10
-#201 := (* -1::Int f10)
-#394 := (>= f10 0::Int)
-#401 := (if #394 f10 #201)
-#412 := (* -1::Int #401)
-#746 := (+ f10 #412)
-#748 := (>= #746 0::Int)
-#916 := (not #748)
-decl f11 :: Int
-#46 := f11
-#218 := (* -1::Int f11)
-#365 := (>= f11 0::Int)
-#372 := (if #365 f11 #218)
-#383 := (* -1::Int #372)
-#743 := (+ f11 #383)
-#745 := (>= #743 0::Int)
-#717 := (= f11 #372)
-#899 := (not #735)
-#900 := [hypothesis]: #899
-#1902 := (or #365 #735)
-decl f4 :: Int
-#8 := f4
-#98 := (* -1::Int f4)
-#568 := (>= f4 0::Int)
-#575 := (if #568 f4 #98)
-#586 := (* -1::Int #575)
-#985 := (+ f4 #586)
-#986 := (<= #985 0::Int)
-#1269 := (not #986)
-#888 := (<= #746 0::Int)
-#709 := (= f10 #401)
-#366 := (not #365)
-#1202 := [hypothesis]: #366
-#1880 := (or #394 #735 #365)
-#655 := (= f4 #575)
-decl f3 :: Int
-#7 := f3
-#116 := (* -1::Int f3)
-#539 := (>= f3 0::Int)
-#546 := (if #539 f3 #116)
-#557 := (* -1::Int #546)
-#761 := (+ f3 #557)
-#762 := (<= #761 0::Int)
-#669 := (= f3 #546)
-#1863 := (or #539 #365 #735)
-#395 := (not #394)
-decl f6 :: Int
-#16 := f6
-#510 := (>= f6 0::Int)
-#511 := (not #510)
-decl f9 :: Int
-#34 := f9
-#184 := (* -1::Int f9)
-#423 := (>= f9 0::Int)
-#430 := (if #423 f9 #184)
-#441 := (* -1::Int #430)
-#749 := (+ f9 #441)
-#751 := (>= #749 0::Int)
-#701 := (= f9 #430)
-#1430 := (>= #985 0::Int)
-#1498 := (not #1430)
-#587 := (+ f5 #586)
-#588 := (+ f3 #587)
-#649 := (<= #588 0::Int)
-#589 := (= #588 0::Int)
-decl f13 :: Int
-#58 := f13
-#65 := (= f4 f13)
-#66 := (and #64 #65)
-#336 := (>= f12 0::Int)
-#343 := (if #336 f12 #235)
-#354 := (* -1::Int #343)
-#355 := (+ f13 #354)
-#356 := (+ f11 #355)
-#357 := (= #356 0::Int)
-#362 := (not #357)
-#384 := (+ f12 #383)
-#385 := (+ f10 #384)
-#386 := (= #385 0::Int)
-#391 := (not #386)
-#413 := (+ f11 #412)
-#414 := (+ f9 #413)
-#415 := (= #414 0::Int)
-#420 := (not #415)
-#442 := (+ f10 #441)
-decl f8 :: Int
-#28 := f8
-#443 := (+ f8 #442)
-#444 := (= #443 0::Int)
-#449 := (not #444)
-#167 := (* -1::Int f8)
-#452 := (>= f8 0::Int)
-#459 := (if #452 f8 #167)
-#470 := (* -1::Int #459)
-#471 := (+ f9 #470)
-decl f7 :: Int
-#22 := f7
-#472 := (+ f7 #471)
-#473 := (= #472 0::Int)
-#478 := (not #473)
-#150 := (* -1::Int f7)
-#481 := (>= f7 0::Int)
-#488 := (if #481 f7 #150)
-#499 := (* -1::Int #488)
-#500 := (+ f8 #499)
-#501 := (+ f6 #500)
-#502 := (= #501 0::Int)
-#507 := (not #502)
-#133 := (* -1::Int f6)
-#517 := (if #510 f6 #133)
-#528 := (* -1::Int #517)
-#529 := (+ f7 #528)
-#530 := (+ f3 #529)
-#531 := (= #530 0::Int)
-#536 := (not #531)
-#558 := (+ f6 #557)
-#559 := (+ f4 #558)
-#560 := (= #559 0::Int)
-#565 := (not #560)
-#594 := (not #589)
-#624 := (or #594 #565 #536 #507 #478 #449 #420 #391 #362 #66)
-#629 := (not #624)
-#60 := (- f12)
-#59 := (< f12 0::Int)
-#61 := (if #59 #60 f12)
-#62 := (- #61 f11)
-#63 := (= f13 #62)
-#67 := (implies #63 #66)
-#54 := (- f11)
-#53 := (< f11 0::Int)
-#55 := (if #53 #54 f11)
-#56 := (- #55 f10)
-#57 := (= f12 #56)
-#68 := (implies #57 #67)
-#48 := (- f10)
-#47 := (< f10 0::Int)
-#49 := (if #47 #48 f10)
-#50 := (- #49 f9)
-#51 := (= f11 #50)
-#69 := (implies #51 #68)
-#42 := (- f9)
-#41 := (< f9 0::Int)
-#43 := (if #41 #42 f9)
-#44 := (- #43 f8)
-#45 := (= f10 #44)
-#70 := (implies #45 #69)
-#36 := (- f8)
-#35 := (< f8 0::Int)
-#37 := (if #35 #36 f8)
-#38 := (- #37 f7)
-#39 := (= f9 #38)
-#71 := (implies #39 #70)
-#30 := (- f7)
-#29 := (< f7 0::Int)
-#31 := (if #29 #30 f7)
-#32 := (- #31 f6)
-#33 := (= f8 #32)
-#72 := (implies #33 #71)
-#24 := (- f6)
-#23 := (< f6 0::Int)
-#25 := (if #23 #24 f6)
-#26 := (- #25 f3)
-#27 := (= f7 #26)
-#73 := (implies #27 #72)
-#18 := (- f3)
-#17 := (< f3 0::Int)
-#19 := (if #17 #18 f3)
-#20 := (- #19 f4)
-#21 := (= f6 #20)
-#74 := (implies #21 #73)
-#11 := (- f4)
-#10 := (< f4 0::Int)
-#12 := (if #10 #11 f4)
-#14 := (- #12 f5)
-#15 := (= f3 #14)
-#75 := (implies #15 #74)
-#76 := (not #75)
-#632 := (iff #76 #629)
-#238 := (if #59 #235 f12)
-#244 := (+ #218 #238)
-#249 := (= f13 #244)
-#255 := (not #249)
-#256 := (or #255 #66)
-#221 := (if #53 #218 f11)
-#227 := (+ #201 #221)
-#232 := (= f12 #227)
-#264 := (not #232)
-#265 := (or #264 #256)
-#204 := (if #47 #201 f10)
-#210 := (+ #184 #204)
-#215 := (= f11 #210)
-#273 := (not #215)
-#274 := (or #273 #265)
-#187 := (if #41 #184 f9)
-#193 := (+ #167 #187)
-#198 := (= f10 #193)
-#282 := (not #198)
-#283 := (or #282 #274)
-#170 := (if #35 #167 f8)
-#176 := (+ #150 #170)
-#181 := (= f9 #176)
-#291 := (not #181)
-#292 := (or #291 #283)
-#153 := (if #29 #150 f7)
-#159 := (+ #133 #153)
-#164 := (= f8 #159)
-#300 := (not #164)
-#301 := (or #300 #292)
-#136 := (if #23 #133 f6)
-#142 := (+ #116 #136)
-#147 := (= f7 #142)
-#309 := (not #147)
-#310 := (or #309 #301)
-#119 := (if #17 #116 f3)
-#125 := (+ #98 #119)
-#130 := (= f6 #125)
-#318 := (not #130)
-#319 := (or #318 #310)
-#101 := (if #10 #98 f4)
-#107 := (* -1::Int f5)
-#108 := (+ #107 #101)
-#113 := (= f3 #108)
-#327 := (not #113)
-#328 := (or #327 #319)
-#333 := (not #328)
-#630 := (iff #333 #629)
-#627 := (iff #328 #624)
-#597 := (or #362 #66)
-#600 := (or #391 #597)
-#603 := (or #420 #600)
-#606 := (or #449 #603)
-#609 := (or #478 #606)
-#612 := (or #507 #609)
-#615 := (or #536 #612)
-#618 := (or #565 #615)
-#621 := (or #594 #618)
-#625 := (iff #621 #624)
-#626 := [rewrite]: #625
-#622 := (iff #328 #621)
-#619 := (iff #319 #618)
-#616 := (iff #310 #615)
-#613 := (iff #301 #612)
-#610 := (iff #292 #609)
-#607 := (iff #283 #606)
-#604 := (iff #274 #603)
-#601 := (iff #265 #600)
-#598 := (iff #256 #597)
-#363 := (iff #255 #362)
-#360 := (iff #249 #357)
-#348 := (+ #218 #343)
-#351 := (= f13 #348)
-#358 := (iff #351 #357)
-#359 := [rewrite]: #358
-#352 := (iff #249 #351)
-#349 := (= #244 #348)
-#346 := (= #238 #343)
-#337 := (not #336)
-#340 := (if #337 #235 f12)
-#344 := (= #340 #343)
-#345 := [rewrite]: #344
-#341 := (= #238 #340)
-#338 := (iff #59 #337)
-#339 := [rewrite]: #338
-#342 := [monotonicity #339]: #341
-#347 := [trans #342 #345]: #346
-#350 := [monotonicity #347]: #349
-#353 := [monotonicity #350]: #352
-#361 := [trans #353 #359]: #360
-#364 := [monotonicity #361]: #363
-#599 := [monotonicity #364]: #598
-#392 := (iff #264 #391)
-#389 := (iff #232 #386)
-#377 := (+ #201 #372)
-#380 := (= f12 #377)
-#387 := (iff #380 #386)
-#388 := [rewrite]: #387
-#381 := (iff #232 #380)
-#378 := (= #227 #377)
-#375 := (= #221 #372)
-#369 := (if #366 #218 f11)
-#373 := (= #369 #372)
-#374 := [rewrite]: #373
-#370 := (= #221 #369)
-#367 := (iff #53 #366)
-#368 := [rewrite]: #367
-#371 := [monotonicity #368]: #370
-#376 := [trans #371 #374]: #375
-#379 := [monotonicity #376]: #378
-#382 := [monotonicity #379]: #381
-#390 := [trans #382 #388]: #389
-#393 := [monotonicity #390]: #392
-#602 := [monotonicity #393 #599]: #601
-#421 := (iff #273 #420)
-#418 := (iff #215 #415)
-#406 := (+ #184 #401)
-#409 := (= f11 #406)
-#416 := (iff #409 #415)
-#417 := [rewrite]: #416
-#410 := (iff #215 #409)
-#407 := (= #210 #406)
-#404 := (= #204 #401)
-#398 := (if #395 #201 f10)
-#402 := (= #398 #401)
-#403 := [rewrite]: #402
-#399 := (= #204 #398)
-#396 := (iff #47 #395)
-#397 := [rewrite]: #396
-#400 := [monotonicity #397]: #399
-#405 := [trans #400 #403]: #404
-#408 := [monotonicity #405]: #407
-#411 := [monotonicity #408]: #410
-#419 := [trans #411 #417]: #418
-#422 := [monotonicity #419]: #421
-#605 := [monotonicity #422 #602]: #604
-#450 := (iff #282 #449)
-#447 := (iff #198 #444)
-#435 := (+ #167 #430)
-#438 := (= f10 #435)
-#445 := (iff #438 #444)
-#446 := [rewrite]: #445
-#439 := (iff #198 #438)
-#436 := (= #193 #435)
-#433 := (= #187 #430)
-#424 := (not #423)
-#427 := (if #424 #184 f9)
-#431 := (= #427 #430)
-#432 := [rewrite]: #431
-#428 := (= #187 #427)
-#425 := (iff #41 #424)
-#426 := [rewrite]: #425
-#429 := [monotonicity #426]: #428
-#434 := [trans #429 #432]: #433
-#437 := [monotonicity #434]: #436
-#440 := [monotonicity #437]: #439
-#448 := [trans #440 #446]: #447
-#451 := [monotonicity #448]: #450
-#608 := [monotonicity #451 #605]: #607
-#479 := (iff #291 #478)
-#476 := (iff #181 #473)
-#464 := (+ #150 #459)
-#467 := (= f9 #464)
-#474 := (iff #467 #473)
-#475 := [rewrite]: #474
-#468 := (iff #181 #467)
-#465 := (= #176 #464)
-#462 := (= #170 #459)
-#453 := (not #452)
-#456 := (if #453 #167 f8)
-#460 := (= #456 #459)
-#461 := [rewrite]: #460
-#457 := (= #170 #456)
-#454 := (iff #35 #453)
-#455 := [rewrite]: #454
-#458 := [monotonicity #455]: #457
-#463 := [trans #458 #461]: #462
-#466 := [monotonicity #463]: #465
-#469 := [monotonicity #466]: #468
-#477 := [trans #469 #475]: #476
-#480 := [monotonicity #477]: #479
-#611 := [monotonicity #480 #608]: #610
-#508 := (iff #300 #507)
-#505 := (iff #164 #502)
-#493 := (+ #133 #488)
-#496 := (= f8 #493)
-#503 := (iff #496 #502)
-#504 := [rewrite]: #503
-#497 := (iff #164 #496)
-#494 := (= #159 #493)
-#491 := (= #153 #488)
-#482 := (not #481)
-#485 := (if #482 #150 f7)
-#489 := (= #485 #488)
-#490 := [rewrite]: #489
-#486 := (= #153 #485)
-#483 := (iff #29 #482)
-#484 := [rewrite]: #483
-#487 := [monotonicity #484]: #486
-#492 := [trans #487 #490]: #491
-#495 := [monotonicity #492]: #494
-#498 := [monotonicity #495]: #497
-#506 := [trans #498 #504]: #505
-#509 := [monotonicity #506]: #508
-#614 := [monotonicity #509 #611]: #613
-#537 := (iff #309 #536)
-#534 := (iff #147 #531)
-#522 := (+ #116 #517)
-#525 := (= f7 #522)
-#532 := (iff #525 #531)
-#533 := [rewrite]: #532
-#526 := (iff #147 #525)
-#523 := (= #142 #522)
-#520 := (= #136 #517)
-#514 := (if #511 #133 f6)
-#518 := (= #514 #517)
-#519 := [rewrite]: #518
-#515 := (= #136 #514)
-#512 := (iff #23 #511)
-#513 := [rewrite]: #512
-#516 := [monotonicity #513]: #515
-#521 := [trans #516 #519]: #520
-#524 := [monotonicity #521]: #523
-#527 := [monotonicity #524]: #526
-#535 := [trans #527 #533]: #534
-#538 := [monotonicity #535]: #537
-#617 := [monotonicity #538 #614]: #616
-#566 := (iff #318 #565)
-#563 := (iff #130 #560)
-#551 := (+ #98 #546)
-#554 := (= f6 #551)
-#561 := (iff #554 #560)
-#562 := [rewrite]: #561
-#555 := (iff #130 #554)
-#552 := (= #125 #551)
-#549 := (= #119 #546)
-#540 := (not #539)
-#543 := (if #540 #116 f3)
-#547 := (= #543 #546)
-#548 := [rewrite]: #547
-#544 := (= #119 #543)
-#541 := (iff #17 #540)
-#542 := [rewrite]: #541
-#545 := [monotonicity #542]: #544
-#550 := [trans #545 #548]: #549
-#553 := [monotonicity #550]: #552
-#556 := [monotonicity #553]: #555
-#564 := [trans #556 #562]: #563
-#567 := [monotonicity #564]: #566
-#620 := [monotonicity #567 #617]: #619
-#595 := (iff #327 #594)
-#592 := (iff #113 #589)
-#580 := (+ #107 #575)
-#583 := (= f3 #580)
-#590 := (iff #583 #589)
-#591 := [rewrite]: #590
-#584 := (iff #113 #583)
-#581 := (= #108 #580)
-#578 := (= #101 #575)
-#569 := (not #568)
-#572 := (if #569 #98 f4)
-#576 := (= #572 #575)
-#577 := [rewrite]: #576
-#573 := (= #101 #572)
-#570 := (iff #10 #569)
-#571 := [rewrite]: #570
-#574 := [monotonicity #571]: #573
-#579 := [trans #574 #577]: #578
-#582 := [monotonicity #579]: #581
-#585 := [monotonicity #582]: #584
-#593 := [trans #585 #591]: #592
-#596 := [monotonicity #593]: #595
-#623 := [monotonicity #596 #620]: #622
-#628 := [trans #623 #626]: #627
-#631 := [monotonicity #628]: #630
-#334 := (iff #76 #333)
-#331 := (iff #75 #328)
-#324 := (implies #113 #319)
-#329 := (iff #324 #328)
-#330 := [rewrite]: #329
-#325 := (iff #75 #324)
-#322 := (iff #74 #319)
-#315 := (implies #130 #310)
-#320 := (iff #315 #319)
-#321 := [rewrite]: #320
-#316 := (iff #74 #315)
-#313 := (iff #73 #310)
-#306 := (implies #147 #301)
-#311 := (iff #306 #310)
-#312 := [rewrite]: #311
-#307 := (iff #73 #306)
-#304 := (iff #72 #301)
-#297 := (implies #164 #292)
-#302 := (iff #297 #301)
-#303 := [rewrite]: #302
-#298 := (iff #72 #297)
-#295 := (iff #71 #292)
-#288 := (implies #181 #283)
-#293 := (iff #288 #292)
-#294 := [rewrite]: #293
-#289 := (iff #71 #288)
-#286 := (iff #70 #283)
-#279 := (implies #198 #274)
-#284 := (iff #279 #283)
-#285 := [rewrite]: #284
-#280 := (iff #70 #279)
-#277 := (iff #69 #274)
-#270 := (implies #215 #265)
-#275 := (iff #270 #274)
-#276 := [rewrite]: #275
-#271 := (iff #69 #270)
-#268 := (iff #68 #265)
-#261 := (implies #232 #256)
-#266 := (iff #261 #265)
-#267 := [rewrite]: #266
-#262 := (iff #68 #261)
-#259 := (iff #67 #256)
-#252 := (implies #249 #66)
-#257 := (iff #252 #256)
-#258 := [rewrite]: #257
-#253 := (iff #67 #252)
-#250 := (iff #63 #249)
-#247 := (= #62 #244)
-#241 := (- #238 f11)
-#245 := (= #241 #244)
-#246 := [rewrite]: #245
-#242 := (= #62 #241)
-#239 := (= #61 #238)
-#236 := (= #60 #235)
-#237 := [rewrite]: #236
-#240 := [monotonicity #237]: #239
-#243 := [monotonicity #240]: #242
-#248 := [trans #243 #246]: #247
-#251 := [monotonicity #248]: #250
-#254 := [monotonicity #251]: #253
-#260 := [trans #254 #258]: #259
-#233 := (iff #57 #232)
-#230 := (= #56 #227)
-#224 := (- #221 f10)
-#228 := (= #224 #227)
-#229 := [rewrite]: #228
-#225 := (= #56 #224)
-#222 := (= #55 #221)
-#219 := (= #54 #218)
-#220 := [rewrite]: #219
-#223 := [monotonicity #220]: #222
-#226 := [monotonicity #223]: #225
-#231 := [trans #226 #229]: #230
-#234 := [monotonicity #231]: #233
-#263 := [monotonicity #234 #260]: #262
-#269 := [trans #263 #267]: #268
-#216 := (iff #51 #215)
-#213 := (= #50 #210)
-#207 := (- #204 f9)
-#211 := (= #207 #210)
-#212 := [rewrite]: #211
-#208 := (= #50 #207)
-#205 := (= #49 #204)
-#202 := (= #48 #201)
-#203 := [rewrite]: #202
-#206 := [monotonicity #203]: #205
-#209 := [monotonicity #206]: #208
-#214 := [trans #209 #212]: #213
-#217 := [monotonicity #214]: #216
-#272 := [monotonicity #217 #269]: #271
-#278 := [trans #272 #276]: #277
-#199 := (iff #45 #198)
-#196 := (= #44 #193)
-#190 := (- #187 f8)
-#194 := (= #190 #193)
-#195 := [rewrite]: #194
-#191 := (= #44 #190)
-#188 := (= #43 #187)
-#185 := (= #42 #184)
-#186 := [rewrite]: #185
-#189 := [monotonicity #186]: #188
-#192 := [monotonicity #189]: #191
-#197 := [trans #192 #195]: #196
-#200 := [monotonicity #197]: #199
-#281 := [monotonicity #200 #278]: #280
-#287 := [trans #281 #285]: #286
-#182 := (iff #39 #181)
-#179 := (= #38 #176)
-#173 := (- #170 f7)
-#177 := (= #173 #176)
-#178 := [rewrite]: #177
-#174 := (= #38 #173)
-#171 := (= #37 #170)
-#168 := (= #36 #167)
-#169 := [rewrite]: #168
-#172 := [monotonicity #169]: #171
-#175 := [monotonicity #172]: #174
-#180 := [trans #175 #178]: #179
-#183 := [monotonicity #180]: #182
-#290 := [monotonicity #183 #287]: #289
-#296 := [trans #290 #294]: #295
-#165 := (iff #33 #164)
-#162 := (= #32 #159)
-#156 := (- #153 f6)
-#160 := (= #156 #159)
-#161 := [rewrite]: #160
-#157 := (= #32 #156)
-#154 := (= #31 #153)
-#151 := (= #30 #150)
-#152 := [rewrite]: #151
-#155 := [monotonicity #152]: #154
-#158 := [monotonicity #155]: #157
-#163 := [trans #158 #161]: #162
-#166 := [monotonicity #163]: #165
-#299 := [monotonicity #166 #296]: #298
-#305 := [trans #299 #303]: #304
-#148 := (iff #27 #147)
-#145 := (= #26 #142)
-#139 := (- #136 f3)
-#143 := (= #139 #142)
-#144 := [rewrite]: #143
-#140 := (= #26 #139)
-#137 := (= #25 #136)
-#134 := (= #24 #133)
-#135 := [rewrite]: #134
-#138 := [monotonicity #135]: #137
-#141 := [monotonicity #138]: #140
-#146 := [trans #141 #144]: #145
-#149 := [monotonicity #146]: #148
-#308 := [monotonicity #149 #305]: #307
-#314 := [trans #308 #312]: #313
-#131 := (iff #21 #130)
-#128 := (= #20 #125)
-#122 := (- #119 f4)
-#126 := (= #122 #125)
-#127 := [rewrite]: #126
-#123 := (= #20 #122)
-#120 := (= #19 #119)
-#117 := (= #18 #116)
-#118 := [rewrite]: #117
-#121 := [monotonicity #118]: #120
-#124 := [monotonicity #121]: #123
-#129 := [trans #124 #127]: #128
-#132 := [monotonicity #129]: #131
-#317 := [monotonicity #132 #314]: #316
-#323 := [trans #317 #321]: #322
-#114 := (iff #15 #113)
-#111 := (= #14 #108)
-#104 := (- #101 f5)
-#109 := (= #104 #108)
-#110 := [rewrite]: #109
-#105 := (= #14 #104)
-#102 := (= #12 #101)
-#99 := (= #11 #98)
-#100 := [rewrite]: #99
-#103 := [monotonicity #100]: #102
-#106 := [monotonicity #103]: #105
-#112 := [trans #106 #110]: #111
-#115 := [monotonicity #112]: #114
-#326 := [monotonicity #115 #323]: #325
-#332 := [trans #326 #330]: #331
-#335 := [monotonicity #332]: #334
-#633 := [trans #335 #631]: #632
-#96 := [asserted]: #76
-#634 := [mp #96 #633]: #629
-#635 := [not-or-elim #634]: #589
-#1489 := (or #594 #649)
-#1490 := [th-lemma arith triangle-eq]: #1489
-#1491 := [unit-resolution #1490 #635]: #649
-#675 := (<= #559 0::Int)
-#636 := [not-or-elim #634]: #560
-#1486 := (or #565 #675)
-#1487 := [th-lemma arith triangle-eq]: #1486
-#1488 := [unit-resolution #1487 #636]: #675
-#1251 := (+ #167 #470)
-#741 := (>= #1251 0::Int)
-#1066 := [hypothesis]: #424
-#1804 := (or #539 #423)
-#818 := [hypothesis]: #540
-#1760 := (or #394 #539 #423)
-#747 := (+ #201 #412)
-#1708 := (>= #747 0::Int)
-#710 := (= #201 #401)
-#1122 := [hypothesis]: #395
-#713 := (or #394 #710)
-#714 := [def-axiom]: #713
-#1709 := [unit-resolution #714 #1122]: #710
-#1230 := (not #710)
-#1710 := (or #1230 #1708)
-#1711 := [th-lemma arith triangle-eq]: #1710
-#1712 := [unit-resolution #1711 #1709]: #1708
-#683 := (<= #530 0::Int)
-#637 := [not-or-elim #634]: #531
-#895 := (or #536 #683)
-#896 := [th-lemma arith triangle-eq]: #895
-#897 := [unit-resolution #896 #637]: #683
-#760 := (+ f6 #528)
-#756 := (>= #760 0::Int)
-#677 := (= f6 #517)
-#1197 := (or #510 #423)
-#989 := [hypothesis]: #511
-#1188 := (or #481 #510 #423)
-#752 := (+ f8 #470)
-#988 := (<= #752 0::Int)
-#1014 := (not #988)
-#1062 := (+ #150 #499)
-#1161 := (<= #1062 0::Int)
-#686 := (= #150 #488)
-#891 := [hypothesis]: #482
-#689 := (or #481 #686)
-#690 := [def-axiom]: #689
-#1169 := [unit-resolution #690 #891]: #686
-#1094 := (not #686)
-#1170 := (or #1094 #1161)
-#1171 := [th-lemma arith triangle-eq]: #1170
-#1172 := [unit-resolution #1171 #1169]: #1161
-#927 := (+ #184 #441)
-#744 := (>= #927 0::Int)
-#702 := (= #184 #430)
-#705 := (or #423 #702)
-#706 := [def-axiom]: #705
-#1071 := [unit-resolution #706 #1066]: #702
-#954 := (not #702)
-#1173 := (or #954 #744)
-#1174 := [th-lemma arith triangle-eq]: #1173
-#1175 := [unit-resolution #1174 #1071]: #744
-#1166 := (or #394 #423 #481)
-#700 := (>= #472 0::Int)
-#639 := [not-or-elim #634]: #473
-#1011 := (or #478 #700)
-#1012 := [th-lemma arith triangle-eq]: #1011
-#1013 := [unit-resolution #1012 #639]: #700
-#928 := (<= #927 0::Int)
-#955 := (or #954 #928)
-#1027 := (not #928)
-#1028 := [hypothesis]: #1027
-#1029 := [hypothesis]: #702
-#956 := [th-lemma arith triangle-eq]: #955
-#1030 := [unit-resolution #956 #1029 #1028]: false
-#1031 := [lemma #1030]: #955
-#1072 := [unit-resolution #1031 #1071]: #928
-#708 := (>= #443 0::Int)
-#640 := [not-or-elim #634]: #444
-#905 := (or #449 #708)
-#906 := [th-lemma arith triangle-eq]: #905
-#907 := [unit-resolution #906 #640]: #708
-#1015 := (not #700)
-#1048 := (not #708)
-#1130 := (or #481 #394 #1048 #1014 #1015 #423 #1027)
-#1131 := [th-lemma arith assign-bounds 1 1 1 1 2 1]: #1130
-#1162 := [unit-resolution #1131 #1122 #1066 #907 #891 #1072 #1013]: #1014
-#693 := (= f8 #459)
-#1123 := (or #452 #423 #394 #1048 #1027)
-#1124 := [th-lemma arith assign-bounds 1 1 1 1]: #1123
-#1163 := [unit-resolution #1124 #1122 #907 #1072 #1066]: #452
-#695 := (or #453 #693)
-#696 := [def-axiom]: #695
-#1164 := [unit-resolution #696 #1163]: #693
-#1007 := (not #693)
-#1008 := (or #1007 #988)
-#1067 := [hypothesis]: #1014
-#1068 := [hypothesis]: #693
-#1009 := [th-lemma arith triangle-eq]: #1008
-#1069 := [unit-resolution #1009 #1068 #1067]: false
-#1070 := [lemma #1069]: #1008
-#1165 := [unit-resolution #1070 #1164 #1162]: false
-#1167 := [lemma #1165]: #1166
-#1176 := [unit-resolution #1167 #891 #1066]: #394
-#707 := (<= #443 0::Int)
-#834 := (or #449 #707)
-#835 := [th-lemma arith triangle-eq]: #834
-#836 := [unit-resolution #835 #640]: #707
-#692 := (>= #501 0::Int)
-#638 := [not-or-elim #634]: #502
-#867 := (or #507 #692)
-#868 := [th-lemma arith triangle-eq]: #867
-#869 := [unit-resolution #868 #638]: #692
-#1002 := (not #692)
-#1179 := (not #1161)
-#1178 := (not #707)
-#1177 := (not #744)
-#1180 := (or #1014 #1015 #1177 #1178 #481 #395 #1179 #1002 #510)
-#1181 := [th-lemma arith assign-bounds 1 1 1 3 1 2 2 2]: #1180
-#1182 := [unit-resolution #1181 #891 #869 #1013 #836 #1176 #989 #1175 #1172]: #1014
-#1183 := (or #452 #1179 #1002 #510 #481)
-#1184 := [th-lemma arith assign-bounds 1 1 1 1]: #1183
-#1185 := [unit-resolution #1184 #891 #869 #989 #1172]: #452
-#1186 := [unit-resolution #696 #1185]: #693
-#1187 := [unit-resolution #1070 #1186 #1182]: false
-#1189 := [lemma #1187]: #1188
-#1168 := [unit-resolution #1189 #989 #1066]: #481
-#1159 := (or #539 #423 #510)
-#755 := (+ f7 #499)
-#812 := (<= #755 0::Int)
-#685 := (= f7 #488)
-#982 := (+ #133 #528)
-#983 := (<= #982 0::Int)
-#678 := (= #133 #517)
-#681 := (or #510 #678)
-#682 := [def-axiom]: #681
-#990 := [unit-resolution #682 #989]: #678
-#991 := (not #678)
-#992 := (or #991 #983)
-#993 := [th-lemma arith triangle-eq]: #992
-#994 := [unit-resolution #993 #990]: #983
-#684 := (>= #530 0::Int)
-#814 := (or #536 #684)
-#815 := [th-lemma arith triangle-eq]: #814
-#816 := [unit-resolution #815 #637]: #684
-#871 := (not #684)
-#995 := (not #983)
-#996 := (or #481 #995 #510 #539 #871)
-#997 := [th-lemma arith assign-bounds 1 1 1 1]: #996
-#1152 := [unit-resolution #997 #818 #816 #994 #989]: #481
-#687 := (or #482 #685)
-#688 := [def-axiom]: #687
-#1153 := [unit-resolution #688 #1152]: #685
-#876 := (not #685)
-#877 := (or #876 #812)
-#878 := [th-lemma arith triangle-eq]: #877
-#1154 := [unit-resolution #878 #1153]: #812
-#1001 := (not #812)
-#1016 := (or #423 #510 #1014 #1015 #1001 #1002)
-#1017 := [th-lemma arith assign-bounds 1 1 1 1 1]: #1016
-#1155 := [unit-resolution #1017 #1154 #1013 #1066 #989 #869]: #1014
-#1003 := (or #452 #1001 #1002 #510 #995 #539 #871)
-#1004 := [th-lemma arith assign-bounds 1 1 2 1 1 1]: #1003
-#1156 := [unit-resolution #1004 #1154 #816 #869 #818 #994 #989]: #452
-#1157 := [unit-resolution #696 #1156]: #693
-#1158 := [unit-resolution #1070 #1157 #1155]: false
-#1160 := [lemma #1158]: #1159
-#1190 := [unit-resolution #1160 #989 #1066]: #539
-#984 := (>= #982 0::Int)
-#1021 := (or #991 #984)
-#1022 := [th-lemma arith triangle-eq]: #1021
-#1023 := [unit-resolution #1022 #990]: #984
-#1191 := [unit-resolution #688 #1168]: #685
-#1192 := [unit-resolution #878 #1191]: #812
-#1079 := (not #984)
-#1051 := (not #683)
-#1108 := (or #452 #1001 #1002 #482 #540 #1051 #1079)
-#1109 := [th-lemma arith assign-bounds -1/2 1/2 1 1/2 -1/2 1/2]: #1108
-#1193 := [unit-resolution #1109 #1192 #1023 #869 #1190 #1168 #897]: #452
-#1194 := [unit-resolution #1017 #1192 #1013 #1066 #989 #869]: #1014
-#1195 := [unit-resolution #1070 #1194]: #1007
-#1196 := [unit-resolution #696 #1195 #1193]: false
-#1198 := [lemma #1196]: #1197
-#1203 := [unit-resolution #1198 #1066]: #510
-#679 := (or #511 #677)
-#680 := [def-axiom]: #679
-#1209 := [unit-resolution #680 #1203]: #677
-#830 := (not #677)
-#958 := (or #830 #756)
-#959 := [th-lemma arith triangle-eq]: #958
-#1713 := [unit-resolution #959 #1209]: #756
-#750 := (<= #749 0::Int)
-#1268 := (not #750)
-#1550 := [unit-resolution #1031 #1028]: #954
-#1551 := [unit-resolution #706 #1550]: #423
-#1552 := (or #928 #1268 #424)
-#1553 := [th-lemma arith assign-bounds 1 -2]: #1552
-#1554 := [unit-resolution #1553 #1551 #1028]: #1268
-#703 := (or #424 #701)
-#704 := [def-axiom]: #703
-#1555 := [unit-resolution #704 #1551]: #701
-#909 := (not #701)
-#910 := (or #909 #750)
-#911 := [th-lemma arith triangle-eq]: #910
-#1556 := [unit-resolution #911 #1555 #1554]: false
-#1557 := [lemma #1556]: #928
-#758 := (+ #116 #557)
-#759 := (<= #758 0::Int)
-#670 := (= #116 #546)
-#673 := (or #539 #670)
-#674 := [def-axiom]: #673
-#819 := [unit-resolution #674 #818]: #670
-#804 := (not #670)
-#805 := (or #804 #759)
-#806 := [th-lemma arith triangle-eq]: #805
-#820 := [unit-resolution #806 #819]: #759
-#691 := (<= #501 0::Int)
-#785 := (or #507 #691)
-#786 := [th-lemma arith triangle-eq]: #785
-#787 := [unit-resolution #786 #638]: #691
-#757 := (>= #755 0::Int)
-#1705 := (or #481 #423)
-#1356 := (<= #1251 0::Int)
-#1439 := (not #1356)
-#754 := (>= #752 0::Int)
-#1434 := (or #988 #754)
-#1435 := [th-lemma arith farkas 1 1]: #1434
-#1436 := [unit-resolution #1435 #1067]: #754
-#1437 := [unit-resolution #1070 #1067]: #1007
-#1438 := [unit-resolution #696 #1437]: #453
-#797 := (not #754)
-#1440 := (or #797 #1439 #452)
-#1441 := [th-lemma arith assign-bounds 1 2]: #1440
-#1442 := [unit-resolution #1441 #1438 #1436]: #1439
-#694 := (= #167 #459)
-#697 := (or #452 #694)
-#698 := [def-axiom]: #697
-#1443 := [unit-resolution #698 #1438]: #694
-#1444 := (not #694)
-#1445 := (or #1444 #1356)
-#1446 := [th-lemma arith triangle-eq]: #1445
-#1447 := [unit-resolution #1446 #1443 #1442]: false
-#1448 := [lemma #1447]: #988
-#1362 := [hypothesis]: #453
-#1466 := [unit-resolution #698 #1362]: #694
-#1478 := (or #1444 #741)
-#1479 := [th-lemma arith triangle-eq]: #1478
-#1480 := [unit-resolution #1479 #1466]: #741
-#699 := (<= #472 0::Int)
-#789 := (or #478 #699)
-#790 := [th-lemma arith triangle-eq]: #789
-#791 := [unit-resolution #790 #639]: #699
-#1546 := (or #481 #452)
-#668 := (not #65)
-#734 := (<= #733 0::Int)
-#811 := (<= #760 0::Int)
-#1449 := (or #452 #1179 #510 #481)
-#1450 := [unit-resolution #1184 #869]: #1449
-#1451 := [unit-resolution #1450 #1172 #1362 #891]: #510
-#1452 := [unit-resolution #680 #1451]: #677
-#831 := (or #830 #811)
-#832 := [th-lemma arith triangle-eq]: #831
-#1453 := [unit-resolution #832 #1452]: #811
-#870 := (not #811)
-#1454 := (or #481 #511 #870 #539)
-#1035 := (or #481 #511 #870 #539 #871)
-#1036 := [th-lemma arith assign-bounds 1 1 1 1]: #1035
-#1455 := [unit-resolution #1036 #816]: #1454
-#1456 := [unit-resolution #1455 #1453 #891 #1451]: #539
-#671 := (or #540 #669)
-#672 := [def-axiom]: #671
-#1457 := [unit-resolution #672 #1456]: #669
-#776 := (not #669)
-#777 := (or #776 #762)
-#778 := [th-lemma arith triangle-eq]: #777
-#1458 := [unit-resolution #778 #1457]: #762
-#844 := (not #762)
-#1459 := (or #568 #844 #870 #481)
-#676 := (>= #559 0::Int)
-#771 := (or #565 #676)
-#772 := [th-lemma arith triangle-eq]: #771
-#773 := [unit-resolution #772 #636]: #676
-#823 := (not #676)
-#1387 := (or #568 #823 #844 #870 #871 #481)
-#1388 := [th-lemma arith assign-bounds 1 1 1 1 1]: #1387
-#1460 := [unit-resolution #1388 #816 #773]: #1459
-#1461 := [unit-resolution #1460 #1458 #891 #1453]: #568
-#653 := (or #569 #655)
-#654 := [def-axiom]: #653
-#1462 := [unit-resolution #654 #1461]: #655
-#1263 := (not #655)
-#1463 := (or #1263 #1430)
-#1464 := [th-lemma arith triangle-eq]: #1463
-#1465 := [unit-resolution #1464 #1462]: #1430
-#1200 := (<= #743 0::Int)
-#1467 := [unit-resolution #1446 #1466]: #1356
-#1468 := (or #423 #1439 #481 #1015 #452)
-#1469 := [th-lemma arith assign-bounds 1 1 1 1]: #1468
-#1470 := [unit-resolution #1469 #891 #1013 #1362 #1467]: #423
-#1471 := [unit-resolution #704 #1470]: #701
-#1472 := [unit-resolution #911 #1471]: #750
-#1376 := (or #452 #365 #1268)
-#854 := (not #709)
-#1267 := (not #888)
-#1252 := [hypothesis]: #750
-#716 := (>= #414 0::Int)
-#641 := [not-or-elim #634]: #415
-#1215 := (or #420 #716)
-#1216 := [th-lemma arith triangle-eq]: #1215
-#1217 := [unit-resolution #1216 #641]: #716
-#1240 := (not #716)
-#1363 := (or #1267 #365 #1240 #1268 #1048 #452)
-#1364 := [th-lemma arith assign-bounds 1 1 1 1 1]: #1363
-#1365 := [unit-resolution #1364 #1362 #1217 #1202 #1252 #907]: #1267
-#1219 := (or #854 #888)
-#1358 := [hypothesis]: #1267
-#1359 := [hypothesis]: #709
-#1220 := [th-lemma arith triangle-eq]: #1219
-#1360 := [unit-resolution #1220 #1359 #1358]: false
-#1361 := [lemma #1360]: #1219
-#1366 := [unit-resolution #1361 #1365]: #854
-#711 := (or #395 #709)
-#712 := [def-axiom]: #711
-#1367 := [unit-resolution #712 #1366]: #395
-#1368 := [unit-resolution #714 #1367]: #710
-#753 := (<= #747 0::Int)
-#1227 := (not #753)
-#1369 := (or #748 #365 #1240 #1268 #1048 #452)
-#1370 := [th-lemma arith assign-bounds 1 1 1 1 1]: #1369
-#1371 := [unit-resolution #1370 #1362 #1217 #1202 #907 #1252]: #748
-#1372 := (or #916 #1227 #394)
-#1373 := [th-lemma arith assign-bounds 1 2]: #1372
-#1374 := [unit-resolution #1373 #1367 #1371]: #1227
-#1231 := (or #1230 #753)
-#1228 := [hypothesis]: #1227
-#1229 := [hypothesis]: #710
-#1232 := [th-lemma arith triangle-eq]: #1231
-#1233 := [unit-resolution #1232 #1229 #1228]: false
-#1234 := [lemma #1233]: #1231
-#1375 := [unit-resolution #1234 #1374 #1368]: false
-#1377 := [lemma #1375]: #1376
-#1473 := [unit-resolution #1377 #1472 #1362]: #365
-#719 := (or #366 #717)
-#720 := [def-axiom]: #719
-#1474 := [unit-resolution #720 #1473]: #717
-#860 := (not #717)
-#1475 := (or #860 #1200)
-#1476 := [th-lemma arith triangle-eq]: #1475
-#1477 := [unit-resolution #1476 #1474]: #1200
-#1481 := (or #394 #481 #1268)
-#1273 := (or #394 #481 #1014 #1015 #1268 #1048)
-#1274 := [th-lemma arith assign-bounds 1 1 1 1 1]: #1273
-#1482 := [unit-resolution #1274 #907 #1448 #1013]: #1481
-#1483 := [unit-resolution #1482 #1472 #891]: #394
-#1484 := [unit-resolution #712 #1483]: #709
-#1485 := [unit-resolution #1361 #1484]: #888
-#724 := (>= #385 0::Int)
-#642 := [not-or-elim #634]: #386
-#1492 := (or #391 #724)
-#1493 := [th-lemma arith triangle-eq]: #1492
-#1494 := [unit-resolution #1493 #642]: #724
-#933 := (>= #761 0::Int)
-#1495 := (or #776 #933)
-#1496 := [th-lemma arith triangle-eq]: #1495
-#1497 := [unit-resolution #1496 #1457]: #933
-#1504 := (not #675)
-#1503 := (not #933)
-#1050 := (not #699)
-#1502 := (not #741)
-#1501 := (not #724)
-#1500 := (not #1200)
-#1499 := (not #649)
-#1505 := (or #734 #1498 #1499 #1179 #1002 #1500 #1501 #1502 #1050 #1503 #1504 #1267 #1240)
-#1506 := [th-lemma arith assign-bounds 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1]: #1505
-#1507 := [unit-resolution #1506 #1497 #869 #791 #1217 #1494 #1491 #1488 #1172 #1485 #1480 #1477 #1465]: #734
-#1064 := (>= #1062 0::Int)
-#1095 := (or #1094 #1064)
-#1090 := (not #1064)
-#1065 := [hypothesis]: #1090
-#1093 := [hypothesis]: #686
-#1096 := [th-lemma arith triangle-eq]: #1095
-#1097 := [unit-resolution #1096 #1093 #1065]: false
-#1098 := [lemma #1097]: #1095
-#1208 := [unit-resolution #1098 #1169]: #1064
-#1264 := (or #1263 #986)
-#1265 := [th-lemma arith triangle-eq]: #1264
-#1508 := [unit-resolution #1265 #1462]: #986
-#855 := (or #854 #748)
-#856 := [th-lemma arith triangle-eq]: #855
-#1509 := [unit-resolution #856 #1484]: #748
-#650 := (>= #588 0::Int)
-#901 := (or #594 #650)
-#902 := [th-lemma arith triangle-eq]: #901
-#903 := [unit-resolution #902 #635]: #650
-#723 := (<= #385 0::Int)
-#780 := (or #391 #723)
-#781 := [th-lemma arith triangle-eq]: #780
-#782 := [unit-resolution #781 #642]: #723
-#715 := (<= #414 0::Int)
-#880 := (or #420 #715)
-#881 := [th-lemma arith triangle-eq]: #880
-#882 := [unit-resolution #881 #641]: #715
-#861 := (or #860 #745)
-#795 := (not #745)
-#1204 := [hypothesis]: #795
-#1205 := [hypothesis]: #717
-#862 := [th-lemma arith triangle-eq]: #861
-#1206 := [unit-resolution #862 #1205 #1204]: false
-#1207 := [lemma #1206]: #861
-#1510 := [unit-resolution #1207 #1474]: #745
-#947 := (not #715)
-#822 := (not #723)
-#1049 := (not #691)
-#948 := (not #650)
-#1511 := (or #735 #1269 #948 #1090 #1049 #795 #822 #1439 #1015 #844 #823 #916 #947)
-#1512 := [th-lemma arith assign-bounds 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1]: #1511
-#1513 := [unit-resolution #1512 #1510 #787 #1013 #882 #782 #903 #773 #1458 #1509 #1508 #1208 #1467]: #735
-#949 := (not #734)
-#1514 := (or #64 #949 #899)
-#1515 := [th-lemma arith triangle-eq]: #1514
-#1516 := [unit-resolution #1515 #1513 #1507]: #64
-#667 := (not #64)
-#647 := (or #667 #668)
-#644 := (not #66)
-#660 := (iff #644 #647)
-#648 := (not #647)
-#663 := (not #648)
-#662 := (iff #663 #647)
-#659 := [rewrite]: #662
-#664 := (iff #644 #663)
-#665 := (iff #66 #648)
-#666 := [rewrite]: #665
-#661 := [monotonicity #666]: #664
-#657 := [trans #661 #659]: #660
-#645 := [not-or-elim #634]: #644
-#658 := [mp #645 #657]: #647
-#1517 := [unit-resolution #658 #1516]: #668
-#736 := (* -1::Int f13)
-#737 := (+ f4 #736)
-#739 := (>= #737 0::Int)
-#1431 := (+ #235 #354)
-#1433 := (>= #1431 0::Int)
-#726 := (= #235 #343)
-#1518 := (or #337 #795 #822 #452 #1439 #481 #1015 #916 #947)
-#1519 := [th-lemma arith assign-bounds 1 1 1 1 1 1 1 1]: #1518
-#1520 := [unit-resolution #1519 #891 #1013 #882 #782 #1362 #1510 #1509 #1467]: #337
-#729 := (or #336 #726)
-#730 := [def-axiom]: #729
-#1521 := [unit-resolution #730 #1520]: #726
-#1522 := (not #726)
-#1523 := (or #1522 #1433)
-#1524 := [th-lemma arith triangle-eq]: #1523
-#1525 := [unit-resolution #1524 #1521]: #1433
-#731 := (<= #356 0::Int)
-#643 := [not-or-elim #634]: #357
-#767 := (or #362 #731)
-#768 := [th-lemma arith triangle-eq]: #767
-#769 := [unit-resolution #768 #643]: #731
-#824 := (not #731)
-#1526 := (not #1433)
-#1527 := (or #739 #1526 #1500 #1501 #1502 #1050 #1267 #1240 #824 #844 #823 #870 #871 #1268 #1048)
-#1528 := [th-lemma arith assign-bounds -1 1 -1 -1 1 2 -2 1 1 -1 1 -1 1 -1]: #1527
-#1529 := [unit-resolution #1528 #1458 #791 #907 #1217 #1494 #769 #773 #816 #1453 #1472 #1485 #1480 #1477 #1525]: #739
-#738 := (<= #737 0::Int)
-#1432 := (<= #1431 0::Int)
-#1530 := (or #1522 #1432)
-#1531 := [th-lemma arith triangle-eq]: #1530
-#1532 := [unit-resolution #1531 #1521]: #1432
-#1533 := [unit-resolution #959 #1452]: #756
-#1407 := (or #909 #751)
-#1408 := [th-lemma arith triangle-eq]: #1407
-#1534 := [unit-resolution #1408 #1471]: #751
-#732 := (>= #356 0::Int)
-#1535 := (or #362 #732)
-#1536 := [th-lemma arith triangle-eq]: #1535
-#1537 := [unit-resolution #1536 #643]: #732
-#838 := (not #751)
-#917 := (not #756)
-#1539 := (not #732)
-#1538 := (not #1432)
-#1540 := (or #738 #1538 #795 #822 #1439 #1015 #916 #947 #1539 #1503 #1504 #917 #1051 #838 #1178)
-#1541 := [th-lemma arith assign-bounds -1 1 -1 -1 1 2 -2 1 1 -1 1 -1 1 -1]: #1540
-#1542 := [unit-resolution #1541 #1510 #1013 #836 #882 #782 #1537 #1488 #897 #1534 #1509 #1533 #1497 #1467 #1532]: #738
-#765 := (not #739)
-#825 := (not #738)
-#1543 := (or #65 #825 #765)
-#1544 := [th-lemma arith triangle-eq]: #1543
-#1545 := [unit-resolution #1544 #1542 #1529 #1517]: false
-#1547 := [lemma #1545]: #1546
-#1572 := [unit-resolution #1547 #1362]: #481
-#1594 := (or #1027 #1502 #482 #1050 #1048 #394)
-#1595 := [th-lemma arith assign-bounds -1 -1 1 -1 1]: #1594
-#1596 := [unit-resolution #1595 #1480 #907 #1572 #1557 #791]: #394
-#1597 := [unit-resolution #712 #1596]: #709
-#1598 := [unit-resolution #1361 #1597]: #888
-#1573 := [unit-resolution #688 #1572]: #685
-#1574 := [unit-resolution #878 #1573]: #812
-#1680 := (or #1161 #482 #1001)
-#1681 := [th-lemma arith assign-bounds 2 -1]: #1680
-#1682 := [unit-resolution #1681 #1574 #1572]: #1161
-#1549 := [hypothesis]: #870
-#1558 := [hypothesis]: #677
-#1559 := [unit-resolution #832 #1558 #1549]: false
-#1560 := [lemma #1559]: #831
-#1561 := [unit-resolution #1560 #1549]: #830
-#1562 := [unit-resolution #680 #1561]: #511
-#1304 := (or #811 #510 #995)
-#1305 := [th-lemma arith assign-bounds 2 1]: #1304
-#1563 := [unit-resolution #1305 #1562 #1549]: #995
-#1564 := [unit-resolution #682 #1562]: #678
-#1565 := [unit-resolution #993 #1564 #1563]: false
-#1566 := [lemma #1565]: #811
-#1575 := (or #452 #1001 #870 #539)
-#1040 := (or #452 #1001 #1002 #870 #539 #871)
-#1041 := [th-lemma arith assign-bounds 1 1 1 1 1]: #1040
-#1576 := [unit-resolution #1041 #869 #816]: #1575
-#1577 := [unit-resolution #1576 #1574 #1566 #1362]: #539
-#1578 := [unit-resolution #672 #1577]: #669
-#1579 := [unit-resolution #1496 #1578]: #933
-#1636 := (or #423 #452)
-#886 := (+ #98 #586)
-#1570 := (>= #886 0::Int)
-#656 := (= #98 #575)
-#1580 := (or #452 #1001 #482 #540 #1079)
-#1581 := [unit-resolution #1109 #869 #897]: #1580
-#1582 := [unit-resolution #1581 #1577 #1572 #1362 #1574]: #1079
-#1548 := [hypothesis]: #1079
-#1567 := [hypothesis]: #678
-#1568 := [unit-resolution #1022 #1567 #1548]: false
-#1569 := [lemma #1568]: #1021
-#1583 := [unit-resolution #1569 #1582]: #991
-#1584 := [unit-resolution #682 #1583]: #510
-#1585 := [unit-resolution #680 #1584]: #677
-#1586 := [unit-resolution #959 #1585]: #756
-#1587 := (or #569 #1504 #917 #1051 #1503 #1439 #1015 #423 #452)
-#1588 := [th-lemma arith assign-bounds 1 1 1 1 1 1 1 1]: #1587
-#1589 := [unit-resolution #1588 #1066 #897 #1362 #1013 #1488 #1586 #1579 #1467]: #569
-#651 := (or #568 #656)
-#652 := [def-axiom]: #651
-#1590 := [unit-resolution #652 #1589]: #656
-#922 := (not #656)
-#1591 := (or #922 #1570)
-#1592 := [th-lemma arith triangle-eq]: #1591
-#1593 := [unit-resolution #1592 #1590]: #1570
-#1599 := [unit-resolution #778 #1578]: #762
-#1602 := (or #365 #1267 #1027 #423 #452)
-#1600 := (or #365 #1267 #1240 #1027 #1048 #423 #452)
-#1601 := [th-lemma arith assign-bounds 1 1 1 1 2 1]: #1600
-#1603 := [unit-resolution #1601 #907 #1217]: #1602
-#1604 := [unit-resolution #1603 #1066 #1557 #1362 #1598]: #365
-#1605 := [unit-resolution #720 #1604]: #717
-#1606 := [unit-resolution #1476 #1605]: #1200
-#1607 := (not #1570)
-#1608 := (or #734 #1499 #1500 #1501 #1502 #1050 #823 #1267 #1240 #1001 #1002 #844 #1607 #870 #871)
-#1609 := [th-lemma arith assign-bounds -1 -1 1 1 -1 1 -1 1 -1 1 -1 1 -2 2]: #1608
-#1610 := [unit-resolution #1609 #1606 #816 #869 #791 #1217 #1494 #1491 #1599 #1566 #1574 #1598 #773 #1480 #1593]: #734
-#1611 := [unit-resolution #856 #1597]: #748
-#887 := (<= #886 0::Int)
-#923 := (or #922 #887)
-#915 := (not #887)
-#920 := [hypothesis]: #915
-#921 := [hypothesis]: #656
-#924 := [th-lemma arith triangle-eq]: #923
-#925 := [unit-resolution #924 #921 #920]: false
-#926 := [lemma #925]: #923
-#1612 := [unit-resolution #926 #1590]: #887
-#940 := (or #876 #757)
-#941 := [th-lemma arith triangle-eq]: #940
-#1613 := [unit-resolution #941 #1573]: #757
-#1614 := [unit-resolution #1207 #1605]: #745
-#794 := (not #757)
-#1615 := (or #735 #948 #795 #822 #1439 #1015 #1504 #916 #947 #794 #1049 #1503 #915 #917 #1051)
-#1616 := [th-lemma arith assign-bounds -1 -1 1 1 -1 1 -1 1 -1 1 -1 1 -2 2]: #1615
-#1617 := [unit-resolution #1616 #1614 #897 #787 #1013 #882 #782 #903 #1488 #1613 #1612 #1611 #1586 #1579 #1467]: #735
-#1618 := [unit-resolution #1515 #1617 #1610]: #64
-#1619 := [unit-resolution #658 #1618]: #668
-#740 := (+ f12 #354)
-#1571 := (<= #740 0::Int)
-#725 := (= f12 #343)
-#1620 := (or #336 #1500 #1501 #1267 #1240 #423)
-#1621 := [th-lemma arith assign-bounds 1 1 1 1 1]: #1620
-#1622 := [unit-resolution #1621 #1066 #1494 #1217 #1598 #1606]: #336
-#727 := (or #337 #725)
-#728 := [def-axiom]: #727
-#1623 := [unit-resolution #728 #1622]: #725
-#1394 := (not #725)
-#1624 := (or #1394 #1571)
-#1625 := [th-lemma arith triangle-eq]: #1624
-#1626 := [unit-resolution #1625 #1623]: #1571
-#1627 := (not #1571)
-#1628 := (or #738 #1627 #1500 #1501 #1539 #1504 #917 #1051 #1503 #1439 #1015 #1177 #1178)
-#1629 := [th-lemma arith assign-bounds 1 1 -1 -1 1 -1 1 -1 1 -1 -1 1]: #1628
-#1630 := [unit-resolution #1629 #1175 #1013 #836 #1494 #1537 #1488 #1586 #1579 #897 #1467 #1606 #1626]: #738
-#742 := (>= #740 0::Int)
-#1395 := (or #1394 #742)
-#1396 := [th-lemma arith triangle-eq]: #1395
-#1631 := [unit-resolution #1396 #1623]: #742
-#796 := (not #742)
-#1632 := (or #739 #796 #795 #822 #824 #823 #870 #871 #844 #1502 #1050 #1027 #1048)
-#1633 := [th-lemma arith assign-bounds 1 1 -1 -1 1 -1 1 -1 1 -1 -1 1]: #1632
-#1634 := [unit-resolution #1633 #1614 #791 #907 #782 #769 #773 #816 #1631 #1599 #1566 #1557 #1480]: #739
-#1635 := [unit-resolution #1544 #1634 #1630 #1619]: false
-#1637 := [lemma #1635]: #1636
-#1683 := [unit-resolution #1637 #1362]: #423
-#1684 := [unit-resolution #704 #1683]: #701
-#1685 := [unit-resolution #911 #1684]: #750
-#1686 := [unit-resolution #1377 #1685 #1362]: #365
-#1687 := [unit-resolution #720 #1686]: #717
-#1688 := [unit-resolution #1476 #1687]: #1200
-#1689 := [unit-resolution #1207 #1687]: #745
-#1663 := (or #735 #844 #916 #795 #1439 #794 #917 #1503)
-#1652 := [hypothesis]: #1356
-#784 := [hypothesis]: #745
-#913 := [hypothesis]: #748
-#889 := [hypothesis]: #762
-#1653 := [hypothesis]: #933
-#898 := [hypothesis]: #756
-#788 := [hypothesis]: #757
-#1654 := [unit-resolution #1616 #900 #897 #787 #1013 #882 #782 #903 #1488 #788 #784 #913 #898 #1653 #1652]: #915
-#1655 := [unit-resolution #926 #1654]: #922
-#1656 := [unit-resolution #652 #1655]: #568
-#1657 := [unit-resolution #654 #1656]: #655
-#1658 := [unit-resolution #1265 #1657]: #986
-#1659 := (or #1064 #794 #1504 #569 #917 #1051 #1503)
-#1660 := [th-lemma arith assign-bounds -1 2 -2 -2 2 -2]: #1659
-#1661 := [unit-resolution #1660 #1656 #897 #788 #898 #1488 #1653]: #1064
-#1662 := [unit-resolution #1512 #1661 #1658 #787 #1013 #882 #782 #903 #773 #889 #913 #784 #900 #1652]: false
-#1664 := [lemma #1662]: #1663
-#1690 := [unit-resolution #1664 #1599 #1611 #1689 #1467 #1613 #1586 #1579]: #735
-#1650 := (or #739 #795 #844 #1502 #1500 #1268 #1267)
-#1642 := [hypothesis]: #741
-#766 := [hypothesis]: #765
-#1643 := [unit-resolution #1633 #766 #791 #907 #782 #769 #773 #816 #784 #889 #1566 #1557 #1642]: #796
-#1385 := [hypothesis]: #888
-#1644 := [hypothesis]: #1200
-#1645 := [unit-resolution #1528 #766 #791 #907 #1217 #1494 #769 #1644 #889 #1566 #1252 #1385 #1642 #816 #773]: #1526
-#1638 := [hypothesis]: #1526
-#1639 := [hypothesis]: #726
-#1640 := [unit-resolution #1524 #1639 #1638]: false
-#1641 := [lemma #1640]: #1523
-#1646 := [unit-resolution #1641 #1645]: #1522
-#1647 := [unit-resolution #730 #1646]: #336
-#1648 := [unit-resolution #728 #1647]: #725
-#1649 := [unit-resolution #1396 #1648 #1643]: false
-#1651 := [lemma #1649]: #1650
-#1691 := [unit-resolution #1651 #1689 #1599 #1480 #1688 #1685 #1598]: #739
-#1692 := [unit-resolution #1408 #1684]: #751
-#1675 := (or #738 #795 #916 #917 #1503 #1439 #838)
-#813 := [hypothesis]: #751
-#1668 := [hypothesis]: #825
-#1669 := [unit-resolution #1541 #1668 #1013 #836 #882 #782 #1537 #1652 #784 #813 #913 #898 #1653 #897 #1488]: #1538
-#1665 := [hypothesis]: #1538
-#1666 := [unit-resolution #1531 #1639 #1665]: false
-#1667 := [lemma #1666]: #1530
-#1670 := [unit-resolution #1667 #1669]: #1522
-#1671 := [unit-resolution #730 #1670]: #336
-#1672 := [unit-resolution #728 #1671]: #725
-#1673 := [unit-resolution #1625 #1672]: #1571
-#1674 := [th-lemma arith farkas 1/2 -1/2 1 -1 -1/2 1/2 -1/2 1/2 -1/2 1/2 -1/2 1/2 1/2 1/2 -1/2 1 #784 #782 #913 #882 #1488 #898 #897 #1653 #1652 #1013 #1673 #1537 #1668 #813 #836 #1671]: false
-#1676 := [lemma #1674]: #1675
-#1693 := [unit-resolution #1676 #1689 #1611 #1586 #1579 #1467 #1692]: #738
-#1694 := [unit-resolution #1544 #1693 #1691]: #65
-#1695 := [unit-resolution #658 #1694]: #667
-#1696 := [unit-resolution #1515 #1695 #1690]: #949
-#1697 := [unit-resolution #1506 #1696 #869 #791 #1217 #1494 #1688 #1579 #1682 #1598 #1480 #1488 #1491]: #1498
-#1698 := [unit-resolution #1609 #1696 #816 #869 #791 #1217 #1494 #1688 #1599 #1566 #1574 #1598 #773 #1480 #1491]: #1607
-#1677 := [hypothesis]: #1607
-#1678 := [unit-resolution #1592 #921 #1677]: false
-#1679 := [lemma #1678]: #1591
-#1699 := [unit-resolution #1679 #1698]: #922
-#1700 := [unit-resolution #652 #1699]: #568
-#1701 := [unit-resolution #654 #1700]: #655
-#1702 := [unit-resolution #1464 #1701 #1697]: false
-#1703 := [lemma #1702]: #452
-#1704 := [th-lemma arith farkas 1 1 1 1 1 #1703 #891 #1013 #1066 #1448]: false
-#1706 := [lemma #1704]: #1705
-#1714 := [unit-resolution #1706 #1066]: #481
-#1715 := [unit-resolution #688 #1714]: #685
-#1716 := [unit-resolution #941 #1715]: #757
-#1717 := [unit-resolution #696 #1703]: #693
-#1044 := (or #1007 #754)
-#1045 := [th-lemma arith triangle-eq]: #1044
-#1718 := [unit-resolution #1045 #1717]: #754
-#1076 := (or #838 #423 #1027)
-#1077 := [th-lemma arith assign-bounds 2 1]: #1076
-#1719 := [unit-resolution #1077 #1066 #1557]: #838
-#1720 := (or #750 #751)
-#1721 := [th-lemma arith farkas 1 1]: #1720
-#1722 := [unit-resolution #1721 #1719]: #750
-#1723 := [unit-resolution #1234 #1709]: #753
-#1726 := (or #1177 #1268 #394 #365 #1227)
-#1724 := (or #1177 #1268 #394 #365 #1227 #1240)
-#1725 := [th-lemma arith assign-bounds 1 2 2 2 2]: #1724
-#1727 := [unit-resolution #1725 #1217]: #1726
-#1728 := [unit-resolution #1727 #1723 #1722 #1122 #1175]: #365
-#1729 := [unit-resolution #720 #1728]: #717
-#1730 := [unit-resolution #1207 #1729]: #745
-#821 := (not #759)
-#1731 := (or #568 #823 #797 #1050 #794 #1049 #821 #394 #1048 #1027 #917 #1051)
-#1732 := [th-lemma arith assign-bounds 1 1 1 2 2 1 1 1 1 1 1]: #1731
-#1733 := [unit-resolution #1732 #1122 #897 #787 #791 #907 #773 #1716 #1718 #820 #1713 #1557]: #568
-#1734 := [unit-resolution #654 #1733]: #655
-#1735 := [unit-resolution #1265 #1734]: #986
-#1736 := [th-lemma arith assign-bounds 1 -1 -1 -1 1 1 -1 1 -3 3 1 -2 2 -2 2 -1 #1735 #903 #773 #1730 #782 #882 #1718 #791 #1716 #787 #820 #907 #1557 #1713 #897 #1712]: #735
-#1707 := (>= #758 0::Int)
-#1737 := (or #804 #1707)
-#1738 := [th-lemma arith triangle-eq]: #1737
-#1739 := [unit-resolution #1738 #819]: #1707
-#1740 := [unit-resolution #878 #1715]: #812
-#1741 := [unit-resolution #1476 #1729]: #1200
-#1742 := [unit-resolution #1464 #1734]: #1430
-#1743 := [th-lemma arith assign-bounds 1 -1 -1 -1 1 1 -1 1 -3 3 1 -2 2 -2 2 -1 #1742 #1491 #1488 #1741 #1494 #1217 #1448 #1013 #1740 #869 #1739 #836 #1175 #1566 #816 #1723]: #734
-#1744 := [unit-resolution #1515 #1743 #1736]: #64
-#1745 := [unit-resolution #1373 #1723 #1122]: #916
-#1746 := (or #888 #748)
-#1747 := [th-lemma arith farkas 1 1]: #1746
-#1748 := [unit-resolution #1747 #1745]: #888
-#1749 := [unit-resolution #1621 #1741 #1494 #1217 #1066 #1748]: #336
-#1750 := [unit-resolution #728 #1749]: #725
-#1751 := [unit-resolution #1396 #1750]: #742
-#1060 := (or #539 #795 #796 #739)
-#770 := [hypothesis]: #742
-#1025 := (or #510 #795 #796 #739 #539)
-#998 := [unit-resolution #997 #989 #816 #818 #994]: #481
-#999 := [unit-resolution #688 #998]: #685
-#1000 := [unit-resolution #878 #999]: #812
-#1005 := [unit-resolution #1004 #989 #816 #869 #818 #994 #1000]: #452
-#1006 := [unit-resolution #696 #1005]: #693
-#1010 := [unit-resolution #1009 #1006]: #988
-#1018 := [unit-resolution #1017 #989 #1013 #869 #1000 #1010]: #423
-#1019 := [unit-resolution #704 #1018]: #701
-#1020 := [unit-resolution #911 #1019]: #750
-#1024 := [th-lemma arith farkas -1 -1 1 1 -1 -1 1 1 -1 1 1 -1 1 #907 #784 #782 #820 #773 #770 #769 #766 #1023 #897 #1010 #1013 #1020]: false
-#1026 := [lemma #1024]: #1025
-#987 := [unit-resolution #1026 #818 #770 #766 #784]: #510
-#1032 := [unit-resolution #680 #987]: #677
-#1033 := [unit-resolution #959 #1032]: #756
-#1034 := [unit-resolution #832 #1032]: #811
-#1037 := [unit-resolution #1036 #987 #816 #818 #1034]: #481
-#1038 := [unit-resolution #688 #1037]: #685
-#1039 := [unit-resolution #878 #1038]: #812
-#1042 := [unit-resolution #1041 #818 #869 #816 #1034 #1039]: #452
-#1043 := [unit-resolution #696 #1042]: #693
-#1046 := [unit-resolution #1045 #1043]: #754
-#1047 := [unit-resolution #941 #1038]: #757
-#1052 := (or #1027 #1048 #796 #824 #739 #794 #1049 #797 #1050 #795 #822 #821 #823 #917 #1051)
-#1053 := [th-lemma arith assign-bounds -1 -1 1 1 -2 2 -1 1 -1 1 1 -1 -1 1]: #1052
-#1054 := [unit-resolution #1053 #1047 #787 #791 #907 #782 #769 #766 #770 #784 #897 #1046 #820 #1033 #773]: #1027
-#1055 := [unit-resolution #1031 #1054]: #954
-#1056 := [unit-resolution #706 #1055]: #423
-#1057 := [unit-resolution #704 #1056]: #701
-#1058 := [unit-resolution #911 #1057]: #750
-#1059 := [th-lemma arith farkas 1/2 -1/2 1 -1 -1/2 1/2 1/2 -1/2 -1/2 1/2 1/2 -1/2 -1/2 1/2 -1/2 1 #1046 #791 #1047 #787 #1058 #907 #784 #782 #820 #773 #770 #769 #766 #1033 #897 #1056]: false
-#1061 := [lemma #1059]: #1060
-#1752 := [unit-resolution #1061 #1751 #818 #1730]: #739
-#1753 := [unit-resolution #1625 #1750]: #1571
-#1754 := (not #1707)
-#1755 := (or #738 #1504 #1627 #1500 #1501 #1539 #1178 #1177 #1001 #1002 #1014 #1015 #870 #871 #1754)
-#1756 := [th-lemma arith assign-bounds 1 1 1 -1 -1 1 -1 2 -2 1 -1 1 -1 -1]: #1755
-#1757 := [unit-resolution #1756 #1741 #869 #1013 #836 #1494 #1537 #1488 #1566 #1740 #1448 #1175 #816 #1753 #1739]: #738
-#1758 := [unit-resolution #1544 #1757 #1752]: #65
-#1759 := [unit-resolution #658 #1758 #1744]: false
-#1761 := [lemma #1759]: #1760
-#1774 := [unit-resolution #1761 #818 #1066]: #394
-#1775 := [unit-resolution #712 #1774]: #709
-#1776 := [unit-resolution #1361 #1775]: #888
-#1779 := (or #1177 #1268 #1267 #365 #395)
-#1777 := (or #1177 #1268 #1267 #1240 #365 #395)
-#1778 := [th-lemma arith assign-bounds 1 2 2 2 2]: #1777
-#1780 := [unit-resolution #1778 #1217]: #1779
-#1781 := [unit-resolution #1780 #1776 #1722 #1774 #1175]: #365
-#1782 := [unit-resolution #720 #1781]: #717
-#1783 := [unit-resolution #1476 #1782]: #1200
-#1784 := [unit-resolution #1207 #1782]: #745
-#1785 := [unit-resolution #1621 #1783 #1494 #1217 #1066 #1776]: #336
-#1786 := [unit-resolution #728 #1785]: #725
-#1787 := [unit-resolution #1396 #1786]: #742
-#1788 := [unit-resolution #1061 #1787 #818 #1784]: #739
-#1789 := [unit-resolution #1625 #1786]: #1571
-#1790 := [unit-resolution #1756 #1789 #869 #1013 #836 #1494 #1537 #1783 #1566 #1740 #1448 #1175 #816 #1488 #1739]: #738
-#1791 := [unit-resolution #1544 #1790 #1788]: #65
-#1792 := [unit-resolution #658 #1791]: #667
-#1793 := [unit-resolution #856 #1775]: #748
-#1772 := (or #735 #795 #1001 #1754 #916)
-#1284 := [hypothesis]: #812
-#1762 := [hypothesis]: #1707
-#1764 := (or #915 #1001 #1754 #735 #795 #916)
-#904 := [hypothesis]: #887
-#1763 := [th-lemma arith farkas 1 1 -1 1 -1 -1 -1 1 -1 1 1 -1 1 #1488 #1448 #1013 #1284 #869 #1762 #903 #900 #784 #782 #882 #913 #904]: false
-#1765 := [lemma #1763]: #1764
-#1766 := [unit-resolution #1765 #900 #1762 #1284 #784 #913]: #915
-#1767 := [unit-resolution #926 #1766]: #922
-#1768 := [unit-resolution #652 #1767]: #568
-#1769 := [unit-resolution #654 #1768]: #655
-#1770 := [unit-resolution #1265 #1769]: #986
-#1771 := [th-lemma arith farkas -1 1 1 -1 1 1 1 -1 1 -1 -1 -1 -2 1 #903 #900 #1488 #784 #782 #882 #1448 #1013 #1284 #869 #1762 #913 #1768 #1770]: false
-#1773 := [lemma #1771]: #1772
-#1794 := [unit-resolution #1773 #1784 #1740 #1739 #1793]: #735
-#1795 := [unit-resolution #1515 #1794 #1792]: #949
-#1796 := (or #1607 #823 #797 #1050 #794 #1049 #821 #1499 #734 #1500 #1501 #1240 #1267)
-#1797 := [th-lemma arith assign-bounds 1 1 -1 1 -1 -1 -1 1 -1 1 1 -1]: #1796
-#1798 := [unit-resolution #1797 #1795 #787 #791 #1217 #1494 #773 #1716 #1718 #820 #1776 #1783 #1491]: #1607
-#1799 := [unit-resolution #1679 #1798]: #922
-#1800 := [unit-resolution #652 #1799]: #568
-#1801 := [unit-resolution #654 #1800]: #655
-#1802 := [unit-resolution #1464 #1801]: #1430
-#1803 := [th-lemma arith farkas -1/2 -1/2 1/2 -3/2 3/2 1/2 -1 1 -1 1 1/2 -1/2 1/2 -1/2 1/2 1/2 -1/2 1 #1488 #1448 #1013 #1740 #869 #1739 #836 #1175 #1566 #816 #1802 #1491 #1795 #1783 #1494 #1217 #1776 #1774]: false
-#1805 := [lemma #1803]: #1804
-#1806 := [unit-resolution #1805 #1066]: #539
-#1807 := (or #741 #797 #794 #1049 #917 #1051 #540)
-#1808 := [th-lemma arith assign-bounds -1 -2 2 -2 2 -2]: #1807
-#1809 := [unit-resolution #1808 #1716 #787 #897 #1718 #1713 #1806]: #741
-#1810 := (or #394 #794 #1049 #1048 #1027 #917 #1051 #423 #540)
-#1811 := [th-lemma arith assign-bounds 1 1 1 1 1 1 1 1]: #1810
-#1812 := [unit-resolution #1811 #1066 #787 #897 #907 #1806 #1716 #1713 #1557]: #394
-#1813 := [unit-resolution #712 #1812]: #709
-#1814 := [unit-resolution #1361 #1813]: #888
-#1815 := (or #1161 #1049 #453 #482 #511)
-#1816 := [th-lemma arith assign-bounds -1 1 1 1]: #1815
-#1817 := [unit-resolution #1816 #1714 #787 #1703 #1203]: #1161
-#1818 := [unit-resolution #1780 #1814 #1722 #1812 #1175]: #365
-#1819 := [unit-resolution #720 #1818]: #717
-#1820 := [unit-resolution #1476 #1819]: #1200
-#1821 := [unit-resolution #672 #1806]: #669
-#1822 := [unit-resolution #1496 #1821]: #933
-#1823 := [unit-resolution #1207 #1819]: #745
-#1826 := (or #1356 #453)
-#1824 := (or #1356 #453 #1014)
-#1825 := [th-lemma arith assign-bounds 2 -1]: #1824
-#1827 := [unit-resolution #1825 #1448]: #1826
-#1828 := [unit-resolution #1827 #1703]: #1356
-#1829 := [unit-resolution #778 #1821]: #762
-#1830 := [unit-resolution #856 #1813]: #748
-#1831 := [unit-resolution #1664 #1830 #1829 #1822 #1828 #1716 #1713 #1823]: #735
-#1832 := [unit-resolution #1651 #1820 #1829 #1809 #1823 #1722 #1814]: #739
-#1833 := [unit-resolution #1621 #1820 #1494 #1217 #1066 #1814]: #336
-#1834 := [unit-resolution #728 #1833]: #725
-#1835 := [unit-resolution #1625 #1834]: #1571
-#1836 := [unit-resolution #1629 #1835 #1013 #836 #1494 #1537 #1822 #1713 #1820 #1175 #1828 #897 #1488]: #738
-#1837 := [unit-resolution #1544 #1836 #1832]: #65
-#1838 := [unit-resolution #658 #1837]: #667
-#1839 := [unit-resolution #1515 #1838 #1831]: #949
-#1840 := [unit-resolution #1506 #1839 #869 #791 #1217 #1494 #1822 #1820 #1817 #1814 #1809 #1488 #1491]: #1498
-#1073 := (or #759 #540 #844)
-#1074 := [th-lemma arith assign-bounds 2 -1]: #1073
-#1841 := [unit-resolution #1074 #1829 #1806]: #759
-#1842 := [unit-resolution #1797 #1839 #787 #791 #1217 #1494 #773 #1716 #1718 #1841 #1814 #1820 #1491]: #1607
-#1843 := [unit-resolution #1679 #1842]: #922
-#1844 := [unit-resolution #652 #1843]: #568
-#1845 := [unit-resolution #654 #1844]: #655
-#1846 := [unit-resolution #1464 #1845 #1840]: false
-#1847 := [lemma #1846]: #423
-#1849 := [unit-resolution #704 #1847]: #701
-#1850 := [unit-resolution #1408 #1849]: #751
-#1354 := (or #539 #511 #365 #838)
-#1335 := [hypothesis]: #510
-#1336 := [unit-resolution #680 #1335]: #677
-#1337 := [unit-resolution #832 #1336]: #811
-#1338 := [unit-resolution #1036 #818 #816 #1335 #1337]: #481
-#1339 := [unit-resolution #688 #1338]: #685
-#1340 := [unit-resolution #878 #1339]: #812
-#1341 := [unit-resolution #1041 #1340 #869 #818 #1337 #816]: #452
-#1342 := [unit-resolution #696 #1341]: #693
-#1343 := [unit-resolution #1045 #1342]: #754
-#1344 := (or #983 #511 #870)
-#1345 := [th-lemma arith assign-bounds 2 -1]: #1344
-#1346 := [unit-resolution #1345 #1337 #1335]: #983
-#1347 := [unit-resolution #941 #1339]: #757
-#1289 := (or #539 #794 #1227 #995 #838 #365 #1001 #870)
-#1282 := [hypothesis]: #983
-#1283 := [hypothesis]: #753
-#890 := [hypothesis]: #811
-#1285 := [unit-resolution #1041 #818 #869 #1284 #890 #816]: #452
-#1286 := [unit-resolution #696 #1285]: #693
-#1287 := [unit-resolution #1045 #1286]: #754
-#1288 := [th-lemma arith farkas 2 2 1 1 1 1 1 1 1 1 1 1 #1287 #791 #788 #1283 #1217 #787 #816 #818 #1282 #813 #836 #1202]: false
-#1290 := [lemma #1288]: #1289
-#1348 := [unit-resolution #1290 #1347 #818 #1346 #813 #1202 #1340 #1337]: #1227
-#1349 := [unit-resolution #1234 #1348]: #1230
-#1350 := [unit-resolution #714 #1349]: #394
-#1351 := [unit-resolution #712 #1350]: #709
-#1352 := [unit-resolution #1220 #1351]: #888
-#1353 := [th-lemma arith farkas 1 -1 -1 1 -1 -1 -1 1 1 #1352 #1347 #1217 #787 #1335 #1350 #1343 #791 #1202]: false
-#1355 := [lemma #1353]: #1354
-#1851 := [unit-resolution #1355 #818 #1850 #1202]: #511
-#1852 := [unit-resolution #911 #1849]: #750
-#1199 := (+ #218 #383)
-#1201 := (>= #1199 0::Int)
-#718 := (= #218 #372)
-#721 := (or #365 #718)
-#722 := [def-axiom]: #721
-#1226 := [unit-resolution #722 #1202]: #718
-#1235 := (not #718)
-#1236 := (or #1235 #1201)
-#1237 := [th-lemma arith triangle-eq]: #1236
-#1238 := [unit-resolution #1237 #1226]: #1201
-#1223 := (not #1201)
-#1278 := (or #481 #1268 #735 #1223 #510)
-#1214 := [hypothesis]: #1201
-#1253 := [unit-resolution #1184 #1172 #869 #989 #891]: #452
-#1254 := [unit-resolution #696 #1253]: #693
-#1255 := [unit-resolution #1070 #1254]: #988
-#1256 := [unit-resolution #997 #891 #816 #989 #994]: #539
-#1257 := [unit-resolution #672 #1256]: #669
-#1258 := [unit-resolution #778 #1257]: #762
-#1259 := (or #568 #540 #844 #823 #510)
-#1260 := [th-lemma arith assign-bounds 1 1 1 1]: #1259
-#1261 := [unit-resolution #1260 #1258 #773 #989 #1256]: #568
-#1262 := [unit-resolution #654 #1261]: #655
-#1266 := [unit-resolution #1265 #1262]: #986
-#1270 := (or #1267 #1240 #1268 #1048 #844 #1049 #823 #1090 #1014 #1015 #1223 #822 #1269 #948 #735)
-#1271 := [th-lemma arith assign-bounds -1 2 -2 1 1 -1 -1 1 -1 -1 1 1 -1 1]: #1270
-#1272 := [unit-resolution #1271 #1258 #787 #1013 #907 #1217 #782 #900 #773 #1266 #1255 #1252 #1208 #903 #1214]: #1267
-#1275 := [unit-resolution #1274 #891 #907 #1013 #1255 #1252]: #394
-#1276 := [unit-resolution #712 #1275]: #709
-#1277 := [unit-resolution #1220 #1276 #1272]: false
-#1279 := [lemma #1277]: #1278
-#1853 := [unit-resolution #1279 #1851 #900 #1238 #1852]: #481
-#1854 := [unit-resolution #688 #1853]: #685
-#1855 := [unit-resolution #878 #1854]: #812
-#1311 := (or #539 #510 #395 #838 #1001)
-#1306 := [unit-resolution #1305 #994 #989]: #811
-#1307 := [unit-resolution #1041 #818 #869 #1284 #1306 #816]: #452
-#1308 := [unit-resolution #696 #1307]: #693
-#1309 := [unit-resolution #1045 #1308]: #754
-#783 := [hypothesis]: #394
-#1310 := [th-lemma arith farkas 1 1 1 1 1 1 1 1 1 #989 #783 #791 #816 #818 #994 #813 #836 #1309]: false
-#1312 := [lemma #1310]: #1311
-#1856 := [unit-resolution #1312 #1855 #1850 #818 #1851]: #395
-#1857 := [unit-resolution #941 #1854]: #757
-#1858 := [unit-resolution #682 #1851]: #678
-#1859 := [unit-resolution #993 #1858]: #983
-#1860 := [unit-resolution #1290 #1859 #1566 #1850 #818 #1202 #1855 #1857]: #1227
-#1861 := [unit-resolution #1234 #1860]: #1230
-#1862 := [unit-resolution #714 #1861 #1856]: false
-#1864 := [lemma #1862]: #1863
-#1865 := [unit-resolution #1864 #1202 #900]: #539
-#1866 := [unit-resolution #672 #1865]: #669
-#1867 := [unit-resolution #778 #1866]: #762
-#1868 := [unit-resolution #1482 #1122 #1852]: #481
-#1869 := [unit-resolution #688 #1868]: #685
-#1870 := [unit-resolution #941 #1869]: #757
-#1871 := (or #511 #797 #1050 #794 #1049 #1227 #365 #1240 #394)
-#1872 := [th-lemma arith assign-bounds 1 1 1 1 1 1 1 1]: #1871
-#1873 := [unit-resolution #1872 #1122 #791 #787 #1217 #1202 #1870 #1718 #1723]: #511
-#1874 := (or #568 #540 #844 #510)
-#1875 := [unit-resolution #1260 #773]: #1874
-#1876 := [unit-resolution #1875 #1873 #1865 #1867]: #568
-#1877 := [unit-resolution #654 #1876]: #655
-#1878 := [unit-resolution #1265 #1877]: #986
-#1879 := [th-lemma arith farkas -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 1 #903 #900 #1867 #773 #782 #1238 #1718 #791 #1870 #787 #1723 #1217 #1878]: false
-#1881 := [lemma #1879]: #1880
-#1882 := [unit-resolution #1881 #1202 #900]: #394
-#1883 := [unit-resolution #712 #1882]: #709
-#1884 := [unit-resolution #1361 #1883]: #888
-#1885 := (or #481 #735 #844 #1267 #1268 #1223 #870)
-#1392 := (or #481 #735 #844 #1267 #1014 #1268 #1223 #870)
-#1378 := [hypothesis]: #988
-#1386 := [unit-resolution #1271 #1208 #787 #1013 #907 #1217 #782 #900 #889 #1385 #1378 #1252 #773 #903 #1214]: #1269
-#1389 := [unit-resolution #1388 #891 #816 #890 #889 #773]: #568
-#1390 := [unit-resolution #654 #1389]: #655
-#1391 := [unit-resolution #1265 #1390 #1386]: false
-#1393 := [lemma #1391]: #1392
-#1886 := [unit-resolution #1393 #1448]: #1885
-#1887 := [unit-resolution #1886 #1884 #900 #1566 #1852 #1238 #1867]: #481
-#1888 := [unit-resolution #688 #1887]: #685
-#1889 := [unit-resolution #941 #1888]: #757
-#1890 := (or #1064 #797 #1050 #838 #395 #1178 #794)
-#1891 := [th-lemma arith assign-bounds -2 2 -2 -2 2 -1]: #1890
-#1892 := [unit-resolution #1891 #1882 #836 #1889 #1718 #1850 #791]: #1064
-#1893 := (or #1267 #1268 #844 #1090 #1223 #1269 #735)
-#1894 := [unit-resolution #1271 #787 #1013 #907 #1217 #782 #1448 #773 #903]: #1893
-#1895 := [unit-resolution #1894 #1892 #900 #1238 #1867 #1852 #1884]: #1269
-#1896 := [unit-resolution #878 #1888]: #812
-#1897 := (or #1090 #1001 #823 #568 #870 #871 #844)
-#1898 := [th-lemma arith assign-bounds 1 2 2 2 2 2]: #1897
-#1899 := [unit-resolution #1898 #1892 #816 #1867 #1566 #1896 #773]: #568
-#1900 := [unit-resolution #654 #1899]: #655
-#1901 := [unit-resolution #1265 #1900 #1895]: false
-#1903 := [lemma #1901]: #1902
-#1924 := [unit-resolution #1903 #900]: #365
-#1925 := [unit-resolution #720 #1924]: #717
-#2127 := [unit-resolution #1207 #1925]: #745
-#1967 := (or #394 #481)
-#1968 := [unit-resolution #1482 #1852]: #1967
-#2032 := [unit-resolution #1968 #891]: #394
-#2033 := [unit-resolution #712 #2032]: #709
-#2034 := [unit-resolution #856 #2033]: #748
-#1998 := (or #394 #539)
-#1969 := [unit-resolution #1968 #1122]: #481
-#1970 := [unit-resolution #688 #1969]: #685
-#1971 := [unit-resolution #941 #1970]: #757
-#1225 := (or #365 #539 #1227 #794)
-#1218 := (or #539 #794 #1227 #995 #365)
-#1931 := [hypothesis]: #1001
-#1935 := (or #812 #757)
-#1936 := [th-lemma arith farkas 1 1]: #1935
-#1937 := [unit-resolution #1936 #1931]: #757
-#1932 := [hypothesis]: #685
-#1933 := [unit-resolution #878 #1932 #1931]: false
-#1934 := [lemma #1933]: #877
-#1938 := [unit-resolution #1934 #1931]: #876
-#1939 := [unit-resolution #688 #1938]: #482
-#1940 := (or #794 #481 #1179)
-#1941 := [th-lemma arith assign-bounds 2 1]: #1940
-#1942 := [unit-resolution #1941 #1939 #1937]: #1179
-#1943 := [unit-resolution #690 #1939]: #686
-#1944 := [unit-resolution #1171 #1943 #1942]: false
-#1945 := [lemma #1944]: #812
-#1221 := [unit-resolution #1290 #1566 #1850 #1945]: #1218
-#1210 := [unit-resolution #1221 #1202 #818 #1283 #788]: #995
-#1211 := (or #539 #511 #365)
-#1212 := [unit-resolution #1355 #1850]: #1211
-#1213 := [unit-resolution #1212 #1202 #818]: #511
-#1222 := [unit-resolution #682 #1213]: #678
-#1224 := [unit-resolution #993 #1222 #1210]: false
-#1946 := [lemma #1224]: #1225
-#1972 := [unit-resolution #1946 #1723 #818 #1971]: #365
-#1973 := [unit-resolution #720 #1972]: #717
-#1974 := [unit-resolution #1476 #1973]: #1200
-#1913 := (or #568 #394 #539)
-#1904 := [hypothesis]: #569
-#1905 := [unit-resolution #1732 #1904 #897 #787 #791 #907 #773 #1122 #1718 #820 #1870 #1557]: #917
-#1908 := (or #568 #821 #539 #510)
-#1906 := (or #568 #821 #539 #823 #510)
-#1907 := [th-lemma arith assign-bounds 1 1 1 1]: #1906
-#1909 := [unit-resolution #1907 #773]: #1908
-#1910 := [unit-resolution #1909 #1904 #818 #820]: #510
-#1911 := [unit-resolution #680 #1910]: #677
-#1912 := [unit-resolution #959 #1911 #1905]: false
-#1914 := [lemma #1912]: #1913
-#1915 := [unit-resolution #1914 #1122 #818]: #568
-#1916 := [unit-resolution #654 #1915]: #655
-#1975 := [unit-resolution #1464 #1916]: #1430
-#1929 := (or #394 #735 #539)
-#1917 := [unit-resolution #1265 #1916]: #986
-#934 := (or #735 #734)
-#964 := [th-lemma arith farkas 1 1]: #934
-#965 := [unit-resolution #964 #900]: #734
-#1918 := (or #336 #1269 #948 #949 #539 #823 #821 #797 #1050 #794 #1049 #424)
-#1919 := [th-lemma arith assign-bounds 1 1 1 2 1 1 1 1 1 1 1]: #1918
-#1920 := [unit-resolution #1919 #1870 #773 #787 #791 #1847 #903 #965 #818 #1718 #820 #1917]: #336
-#1921 := [unit-resolution #728 #1920]: #725
-#1922 := [unit-resolution #1625 #1921]: #1571
-#1923 := [unit-resolution #878 #1869]: #812
-#1926 := [unit-resolution #1476 #1925]: #1200
-#1428 := (or #337 #735 #739)
-#1239 := [hypothesis]: #336
-#1357 := [unit-resolution #728 #1239]: #725
-#1397 := [unit-resolution #1396 #1357]: #742
-#1150 := (or #795 #796 #739 #735)
-#980 := (or #395 #795 #796 #739 #735)
-#853 := [unit-resolution #712 #783]: #709
-#857 := [unit-resolution #856 #853]: #748
-#763 := (or #739 #738)
-#800 := [th-lemma arith farkas 1 1]: #763
-#801 := [unit-resolution #800 #766]: #738
-#962 := (or #539 #795 #949 #796 #739 #395)
-#826 := (or #510 #821 #539 #795 #395 #822 #823 #796 #824 #825)
-#827 := [th-lemma arith assign-bounds 1 1 1 1 1 1 1 1 1]: #826
-#935 := [unit-resolution #827 #820 #818 #783 #782 #769 #801 #770 #784 #773]: #510
-#936 := [unit-resolution #680 #935]: #677
-#937 := [unit-resolution #832 #936]: #811
-#872 := (or #481 #870 #539 #871 #821 #795 #395 #822 #823 #796 #824 #825)
-#873 := [th-lemma arith assign-bounds 1 2 1 1 1 1 1 1 1 1 1]: #872
-#938 := [unit-resolution #873 #937 #816 #818 #783 #782 #769 #801 #770 #784 #820 #773]: #481
-#939 := [unit-resolution #688 #938]: #685
-#942 := [unit-resolution #941 #939]: #757
-#931 := (or #569 #795 #395 #796 #739)
-#929 := [hypothesis]: #568
-#930 := [th-lemma arith farkas 1 1 -1 1 -1 -1 1 #784 #783 #782 #770 #769 #766 #929]: false
-#932 := [lemma #930]: #931
-#943 := [unit-resolution #932 #783 #784 #770 #766]: #569
-#944 := [unit-resolution #652 #943]: #656
-#945 := [unit-resolution #926 #944]: #887
-#946 := [hypothesis]: #734
-#950 := (or #424 #395 #916 #947 #539 #795 #822 #948 #949 #915 #796 #824 #825)
-#951 := [th-lemma arith assign-bounds 1 1 1 1 2 2 1 1 1 1 1 1]: #950
-#952 := [unit-resolution #951 #818 #903 #783 #882 #782 #769 #946 #801 #770 #784 #857 #945]: #424
-#953 := [unit-resolution #706 #952]: #702
-#957 := [unit-resolution #956 #953]: #928
-#960 := [unit-resolution #959 #936]: #756
-#961 := [th-lemma arith farkas 1 1 1 1 1 1 2 2 1 1 -1 1 -1 -1 1 1 #787 #960 #897 #957 #857 #882 #784 #782 #903 #946 #945 #770 #769 #766 #907 #942]: false
-#963 := [lemma #961]: #962
-#966 := [unit-resolution #963 #783 #965 #770 #766 #784]: #539
-#967 := [unit-resolution #672 #966]: #669
-#968 := [unit-resolution #778 #967]: #762
-#845 := (or #510 #540 #844 #795 #395 #822 #823 #796 #824 #825)
-#846 := [th-lemma arith assign-bounds 1 1 1 1 1 1 1 1 1]: #845
-#969 := [unit-resolution #846 #968 #966 #783 #782 #769 #801 #770 #784 #773]: #510
-#970 := [unit-resolution #680 #969]: #677
-#971 := [unit-resolution #959 #970]: #756
-#972 := [unit-resolution #832 #970]: #811
-#893 := (or #481 #395 #870 #795 #796 #825 #844)
-#817 := [hypothesis]: #738
-#892 := [th-lemma arith farkas 1 1 1 1 1 1 1 1 1 -1 1 #891 #783 #890 #784 #782 #773 #770 #769 #817 #816 #889]: false
-#894 := [lemma #892]: #893
-#973 := [unit-resolution #894 #972 #968 #784 #770 #801 #783]: #481
-#974 := [unit-resolution #688 #973]: #685
-#975 := [unit-resolution #941 #974]: #757
-#918 := (or #915 #916 #794 #795 #796 #739 #735 #917 #424)
-#792 := [hypothesis]: #423
-#908 := [unit-resolution #704 #792]: #701
-#912 := [unit-resolution #911 #908]: #750
-#914 := [th-lemma arith farkas 1/2 -1/2 -1/2 1/2 1/2 -1/2 -1/2 1 -1 1/2 -1/2 -1/2 1/2 -1/2 1/2 -1/2 1 #913 #882 #912 #907 #788 #787 #904 #784 #782 #770 #769 #766 #903 #900 #898 #897 #792]: false
-#919 := [lemma #914]: #918
-#976 := [unit-resolution #919 #975 #945 #784 #770 #766 #900 #971 #857]: #424
-#977 := [unit-resolution #706 #976]: #702
-#978 := [unit-resolution #956 #977]: #928
-#979 := [th-lemma arith farkas 1 1 2 2 1 1 1 -1 1 1 -1 -1 1 -1 1 1 #857 #882 #784 #782 #903 #965 #945 #770 #769 #766 #907 #975 #787 #971 #897 #978]: false
-#981 := [lemma #979]: #980
-#1063 := [unit-resolution #981 #784 #770 #766 #900]: #395
-#1099 := [unit-resolution #1061 #784 #770 #766]: #539
-#1135 := (or #423 #394 #739 #796 #795)
-#1101 := [unit-resolution #672 #1099]: #669
-#1102 := [unit-resolution #778 #1101]: #762
-#1118 := [unit-resolution #1074 #1102 #1099]: #759
-#1116 := (or #510 #795 #796 #739)
-#1086 := (or #423 #510 #795 #796 #825 #540)
-#774 := [hypothesis]: #539
-#775 := [unit-resolution #672 #774]: #669
-#779 := [unit-resolution #778 #775]: #762
-#1075 := [unit-resolution #1074 #779 #774]: #759
-#1078 := [unit-resolution #1077 #1066 #1072]: #838
-#1080 := (or #751 #1048 #795 #822 #821 #823 #796 #824 #825 #1079 #1051 #1014 #1015)
-#1081 := [th-lemma arith assign-bounds 1 1 1 1 1 1 1 1 -1 1 1 -1]: #1080
-#1082 := [unit-resolution #1081 #1078 #1013 #907 #782 #769 #817 #770 #784 #1075 #1023 #897 #773]: #1014
-#1083 := [unit-resolution #1070 #1082]: #1007
-#1084 := [unit-resolution #696 #1083]: #453
-#1085 := [th-lemma arith farkas 1 1 1 1 1 1 1 1 1 1 1 1 1 #989 #1084 #1072 #907 #1066 #773 #784 #782 #770 #769 #817 #779 #774]: false
-#1087 := [lemma #1085]: #1086
-#1100 := [unit-resolution #1087 #989 #784 #770 #801 #1099]: #423
-#1091 := (or #1090 #795 #796 #825 #844 #510 #424)
-#1088 := [hypothesis]: #1064
-#1089 := [th-lemma arith farkas 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 1 #1088 #907 #773 #784 #782 #770 #769 #817 #816 #994 #889 #989 #787 #912 #792]: false
-#1092 := [lemma #1089]: #1091
-#1103 := [unit-resolution #1092 #989 #770 #801 #1102 #784 #1100]: #1090
-#1104 := [unit-resolution #1098 #1103]: #1094
-#1105 := [unit-resolution #690 #1104]: #481
-#1106 := [unit-resolution #688 #1105]: #685
-#1107 := [unit-resolution #878 #1106]: #812
-#1110 := [unit-resolution #1109 #1105 #897 #869 #1099 #1107 #1023]: #452
-#1111 := [unit-resolution #696 #1110]: #693
-#1112 := [unit-resolution #1070 #1111]: #988
-#1113 := [unit-resolution #704 #1100]: #701
-#1114 := [unit-resolution #911 #1113]: #750
-#1115 := [th-lemma arith farkas -1 -1 -1 1 -1 1 1 -1 1 1 -2 1 -1 1 #907 #773 #784 #782 #770 #769 #897 #1023 #1102 #1114 #1099 #1112 #1013 #766]: false
-#1117 := [lemma #1115]: #1116
-#1119 := [unit-resolution #1117 #784 #770 #766]: #510
-#1120 := [unit-resolution #680 #1119]: #677
-#1121 := [unit-resolution #959 #1120]: #756
-#1125 := [unit-resolution #1124 #1066 #907 #1122 #1072]: #452
-#1126 := [unit-resolution #696 #1125]: #693
-#1127 := [unit-resolution #1045 #1126]: #754
-#1128 := [unit-resolution #1053 #1127 #787 #791 #907 #782 #769 #766 #770 #784 #1121 #1072 #1118 #897 #773]: #794
-#1129 := [unit-resolution #1070 #1126]: #988
-#1132 := [unit-resolution #1131 #1066 #1013 #907 #1122 #1072 #1129]: #481
-#1133 := [unit-resolution #688 #1132]: #685
-#1134 := [unit-resolution #941 #1133 #1128]: false
-#1136 := [lemma #1134]: #1135
-#1137 := [unit-resolution #1136 #1063 #766 #770 #784]: #423
-#1140 := (or #1090 #424 #795 #796 #739)
-#1138 := [unit-resolution #832 #1120]: #811
-#1139 := [th-lemma arith farkas -1 -1 1 -1 -1 -1 -1 1 -1 1 1 1 1 -1 1 #792 #1088 #787 #907 #1119 #773 #784 #782 #770 #769 #766 #1102 #1138 #816 #912]: false
-#1141 := [lemma #1139]: #1140
-#1142 := [unit-resolution #1141 #1137 #784 #770 #766]: #1090
-#1143 := [unit-resolution #1098 #1142]: #1094
-#1144 := [unit-resolution #690 #1143]: #481
-#1145 := [unit-resolution #688 #1144]: #685
-#1146 := [unit-resolution #941 #1145]: #757
-#1147 := [unit-resolution #704 #1137]: #701
-#1148 := [unit-resolution #911 #1147]: #750
-#1149 := [th-lemma arith farkas -1 1 -1 1 1 -1 -1 -1 1 #1121 #897 #1137 #1148 #787 #907 #1146 #1099 #1063]: false
-#1151 := [lemma #1149]: #1150
-#1398 := [unit-resolution #1151 #1397 #766 #900]: #795
-#1399 := [unit-resolution #1207 #1398]: #860
-#1400 := [unit-resolution #720 #1399]: #366
-#1249 := (or #423 #365 #337)
-#1241 := (or #1227 #1240 #337 #1223 #423 #822)
-#1242 := [th-lemma arith assign-bounds -1 -1 -1 1 1]: #1241
-#1243 := [unit-resolution #1242 #1066 #782 #1239 #1217 #1238]: #1227
-#1244 := [unit-resolution #1234 #1243]: #1230
-#1245 := [unit-resolution #714 #1244]: #394
-#1246 := [unit-resolution #712 #1245]: #709
-#1247 := [unit-resolution #1220 #1246]: #888
-#1248 := [th-lemma arith farkas 1 1 1 1 1 #1202 #1247 #1217 #1066 #1245]: false
-#1250 := [lemma #1248]: #1249
-#1401 := [unit-resolution #1250 #1400 #1239]: #423
-#1402 := [unit-resolution #704 #1401]: #701
-#1403 := [unit-resolution #911 #1402]: #750
-#1404 := [unit-resolution #1377 #1400 #1403]: #452
-#1405 := [unit-resolution #696 #1404]: #693
-#1406 := [unit-resolution #1070 #1405]: #988
-#1409 := [unit-resolution #1408 #1402]: #751
-#1333 := (or #510 #796 #838 #739 #735 #1268)
-#1280 := [unit-resolution #1151 #770 #766 #900]: #795
-#1313 := [unit-resolution #1207 #1280]: #860
-#1314 := [unit-resolution #720 #1313]: #366
-#1315 := [unit-resolution #722 #1314]: #718
-#1316 := [unit-resolution #1237 #1315]: #1201
-#1317 := [unit-resolution #1279 #989 #900 #1316 #1252]: #481
-#1318 := [unit-resolution #688 #1317]: #685
-#1319 := [unit-resolution #878 #1318]: #812
-#1302 := (or #1227 #796 #995 #838 #739 #1079 #482 #365 #870)
-#1281 := [hypothesis]: #481
-#1291 := [unit-resolution #688 #1281]: #685
-#1292 := [unit-resolution #878 #1291]: #812
-#1293 := [hypothesis]: #984
-#1294 := [unit-resolution #941 #1291]: #757
-#1295 := [unit-resolution #1290 #1283 #1294 #1282 #813 #1202 #1292 #890]: #539
-#1296 := [unit-resolution #1109 #1295 #1293 #869 #1281 #1292 #897]: #452
-#1297 := [unit-resolution #696 #1296]: #693
-#1298 := [unit-resolution #1045 #1297]: #754
-#1299 := [unit-resolution #672 #1295]: #669
-#1300 := [unit-resolution #778 #1299]: #762
-#1301 := [th-lemma arith farkas -1 1 -1 1 1 -1 -2 2 -2 2 -1 1 -1 1 -3 3 1 #770 #769 #1238 #782 #1300 #773 #1294 #1283 #1217 #787 #816 #1282 #813 #836 #1298 #791 #766]: false
-#1303 := [lemma #1301]: #1302
-#1320 := [unit-resolution #1303 #994 #770 #813 #766 #1023 #1317 #1314 #1306]: #1227
-#1321 := [unit-resolution #1234 #1320]: #1230
-#1322 := [unit-resolution #714 #1321]: #394
-#1323 := [unit-resolution #1312 #989 #1322 #813 #1319]: #539
-#1324 := [unit-resolution #672 #1323]: #669
-#1325 := [unit-resolution #778 #1324]: #762
-#1326 := [unit-resolution #1109 #1323 #1023 #869 #1317 #1319 #897]: #452
-#1327 := [unit-resolution #696 #1326]: #693
-#1328 := [unit-resolution #1045 #1327]: #754
-#1329 := [unit-resolution #941 #1318]: #757
-#1330 := [unit-resolution #712 #1322]: #709
-#1331 := [unit-resolution #1220 #1330]: #888
-#1332 := [th-lemma arith farkas -1 1 -1 1 -4 2 -2 -2 2 -3 3 1 -1 -1 1 -1 1 1 #770 #769 #1316 #782 #1322 #1331 #1329 #1217 #787 #1328 #791 #1325 #773 #816 #994 #813 #836 #766]: false
-#1334 := [lemma #1332]: #1333
-#1410 := [unit-resolution #1334 #1397 #1409 #766 #900 #1403]: #510
-#1411 := [unit-resolution #1355 #1410 #1400 #1409]: #539
-#1412 := [unit-resolution #680 #1410]: #677
-#1413 := [unit-resolution #959 #1412]: #756
-#1383 := (or #394 #917 #540 #424 #1014)
-#1379 := [unit-resolution #1274 #1122 #907 #1378 #1013 #912]: #481
-#1380 := [unit-resolution #688 #1379]: #685
-#1381 := [unit-resolution #941 #1380]: #757
-#1382 := [th-lemma arith farkas -1 1 -1 1 1 -1 -1 1 1 #787 #898 #897 #774 #792 #1122 #912 #907 #1381]: false
-#1384 := [lemma #1382]: #1383
-#1414 := [unit-resolution #1384 #1413 #1411 #1401 #1406]: #394
-#1415 := [unit-resolution #712 #1414]: #709
-#1416 := [unit-resolution #1361 #1415]: #888
-#1417 := (or #794 #1049 #917 #1051 #540 #1268 #1048 #1267 #1240 #365)
-#1418 := [th-lemma arith assign-bounds -1 1 -1 1 -1 1 -1 1 -1]: #1417
-#1419 := [unit-resolution #1418 #1400 #787 #907 #1217 #897 #1411 #1413 #1403 #1416]: #794
-#1420 := [unit-resolution #832 #1412]: #811
-#1421 := [unit-resolution #722 #1400]: #718
-#1422 := [unit-resolution #1237 #1421]: #1201
-#1423 := [unit-resolution #672 #1411]: #669
-#1424 := [unit-resolution #778 #1423]: #762
-#1425 := [unit-resolution #1393 #1424 #900 #1416 #1406 #1403 #1422 #1420]: #481
-#1426 := [unit-resolution #688 #1425]: #685
-#1427 := [unit-resolution #941 #1426 #1419]: false
-#1429 := [lemma #1427]: #1428
-#1927 := [unit-resolution #1429 #1920 #900]: #739
-#1928 := [th-lemma arith farkas -1 -1 1/2 -1/2 1/2 1/2 1/2 -1/2 -1/2 1/2 -1/2 1/2 -1/2 -1/2 1/2 1 #1537 #1927 #1917 #903 #900 #1926 #1488 #1494 #1739 #1448 #1013 #1923 #869 #1712 #882 #1922]: false
-#1930 := [lemma #1928]: #1929
-#1976 := [unit-resolution #1930 #1122 #818]: #735
-#1965 := (or #510 #539 #899 #794 #1227 #1498)
-#1947 := [unit-resolution #1946 #1283 #818 #788]: #365
-#1948 := [unit-resolution #720 #1947]: #717
-#1949 := [unit-resolution #1476 #1948]: #1200
-#1950 := (or #336 #1240 #1500 #1501 #1227 #510 #797 #1050 #794 #1049 #995 #871 #838 #1178 #539)
-#1951 := [th-lemma arith assign-bounds 1 1 1 1 1 3 3 1 1 2 2 2 2 2]: #1950
-#1952 := [unit-resolution #1951 #989 #816 #787 #791 #836 #1217 #1494 #818 #788 #1718 #1850 #1283 #994 #1949]: #336
-#1953 := [unit-resolution #728 #1952]: #725
-#1954 := [unit-resolution #1625 #1953]: #1571
-#1955 := [hypothesis]: #735
-#1956 := [hypothesis]: #1430
-#1957 := [th-lemma arith assign-bounds 1 -1 1 -1 -1 1 1 3 -3 1 -1 -1 -2 2 2 -2 #1217 #1949 #1956 #1491 #1488 #1494 #1739 #1718 #791 #788 #787 #1283 #994 #816 #1850 #836]: #734
-#1958 := [unit-resolution #1515 #1957 #1955]: #64
-#1959 := [unit-resolution #658 #1958]: #668
-#1960 := [unit-resolution #1207 #1948]: #745
-#1961 := [unit-resolution #1396 #1953]: #742
-#1962 := [unit-resolution #1061 #1961 #818 #1960]: #739
-#1963 := [unit-resolution #1544 #1962 #1959]: #825
-#1964 := [th-lemma arith farkas -1 -1 1 1 -1 -1 1 -1 -1 1 -1 1 1 #1537 #1963 #1949 #1488 #1494 #1739 #994 #816 #1718 #791 #1850 #836 #1954]: false
-#1966 := [lemma #1964]: #1965
-#1977 := [unit-resolution #1966 #1976 #818 #1971 #1723 #1975]: #510
-#1978 := (or #744 #838 #511 #797 #1050 #794 #1049)
-#1979 := [th-lemma arith assign-bounds -1 -2 -2 2 -2 2]: #1978
-#1980 := [unit-resolution #1979 #1971 #791 #787 #1718 #1850 #1977]: #744
-#1983 := (or #1177 #1500 #336 #1267)
-#1981 := (or #1177 #1268 #1500 #336 #1501 #1267 #1240)
-#1982 := [th-lemma arith assign-bounds 1 2 2 2 2 2]: #1981
-#1984 := [unit-resolution #1982 #1494 #1852 #1217]: #1983
-#1985 := [unit-resolution #1984 #1980 #1974 #1748]: #336
-#1986 := [unit-resolution #728 #1985]: #725
-#1987 := [unit-resolution #1396 #1986]: #742
-#1988 := [unit-resolution #1625 #1986]: #1571
-#1989 := (or #738 #1627 #1500 #1177 #1754)
-#1990 := [unit-resolution #1756 #869 #1013 #836 #1494 #1537 #1566 #1945 #1448 #816 #1488]: #1989
-#1991 := [unit-resolution #1990 #1988 #1739 #1980 #1974]: #738
-#1992 := [unit-resolution #1207 #1973]: #745
-#1993 := [unit-resolution #1061 #1987 #818 #1992]: #739
-#1994 := [unit-resolution #1544 #1993 #1991]: #65
-#1995 := [unit-resolution #658 #1994]: #667
-#1996 := [unit-resolution #1515 #1995 #1976]: #949
-#1997 := [th-lemma arith farkas -1 -1 1/2 1/2 -1/2 -1/2 1/2 -1/2 1/2 1/2 -1/2 1/2 1/2 -1/2 -1/2 1 #769 #1991 #1992 #773 #782 #820 #1718 #791 #1217 #1975 #1491 #1996 #1971 #787 #1723 #1987]: false
-#1999 := [lemma #1997]: #1998
-#2000 := [unit-resolution #1999 #818]: #394
-#2001 := (or #539 #510 #395)
-#2002 := [unit-resolution #1312 #1850 #1945]: #2001
-#2003 := [unit-resolution #2002 #2000 #818]: #510
-#2008 := (or #1090 #511 #539)
-#2006 := (or #1090 #1001 #870 #511 #539)
-#2004 := (or #1090 #1001 #870 #871 #511 #539)
-#2005 := [th-lemma arith assign-bounds 1 2 2 2 2]: #2004
-#2007 := [unit-resolution #2005 #816]: #2006
-#2009 := [unit-resolution #2007 #1566 #1945]: #2008
-#2010 := [unit-resolution #2009 #2003 #818]: #1090
-#2011 := (or #1064 #395 #794)
-#2012 := [unit-resolution #1891 #836 #1718 #1850 #791]: #2011
-#2013 := [unit-resolution #2012 #2010 #2000]: #794
-#2014 := (or #481 #511 #539)
-#2015 := [unit-resolution #1455 #1566]: #2014
-#2016 := [unit-resolution #2015 #2003 #818]: #481
-#2017 := [unit-resolution #688 #2016]: #685
-#2018 := [unit-resolution #941 #2017 #2013]: false
-#2019 := [lemma #2018]: #539
-#2023 := [unit-resolution #672 #2019]: #669
-#2024 := [unit-resolution #778 #2023]: #762
-#2035 := (or #568 #844 #481)
-#2036 := [unit-resolution #1460 #1566]: #2035
-#2037 := [unit-resolution #2036 #891 #2024]: #568
-#2038 := [unit-resolution #654 #2037]: #655
-#2039 := [unit-resolution #1265 #2038]: #986
-#2030 := (or #735 #1090 #1269 #916)
-#2025 := [hypothesis]: #986
-#2026 := (or #735 #1269 #1090 #795 #844 #916)
-#2027 := [unit-resolution #1512 #787 #1013 #882 #782 #903 #773 #1828]: #2026
-#2028 := [unit-resolution #2027 #900 #1088 #2025 #2024 #913]: #795
-#2029 := [unit-resolution #1207 #1925 #2028]: false
-#2031 := [lemma #2029]: #2030
-#2040 := [unit-resolution #2031 #1208 #2039 #2034]: #735
-#2041 := [unit-resolution #1464 #2038]: #1430
-#2068 := (or #510 #481)
-#2042 := [unit-resolution #1496 #2023]: #933
-#1848 := (<= #1199 0::Int)
-#2043 := (or #366 #947 #838 #1178 #916 #1179 #481 #510 #1002)
-#2044 := [th-lemma arith assign-bounds 1 1 1 1 1 1 1 1]: #2043
-#2045 := [unit-resolution #2044 #989 #869 #836 #882 #891 #1850 #2034 #1172]: #366
-#2046 := [unit-resolution #722 #2045]: #718
-#2047 := (or #1235 #1848)
-#2048 := [th-lemma arith triangle-eq]: #2047
-#2049 := [unit-resolution #2048 #2046]: #1848
-#2050 := (not #1848)
-#2051 := (or #734 #1503 #797 #1050 #947 #1498 #1499 #1504 #1501 #916 #1179 #1002 #2050 #838 #1178)
-#2052 := [th-lemma arith assign-bounds 1 1 -1 -1 1 -1 -1 1 1 -1 1 -1 2 -2]: #2051
-#2053 := [unit-resolution #2052 #2049 #869 #791 #836 #882 #1494 #1491 #1718 #1850 #2034 #2042 #1172 #2041 #1488]: #734
-#2054 := [unit-resolution #1515 #2053 #2040]: #64
-#2055 := [unit-resolution #658 #2054]: #668
-#2056 := [unit-resolution #1569 #990]: #984
-#2057 := (or #336 #797 #1050 #947 #1501 #916 #1179 #510 #1002 #2050 #838 #1178)
-#2058 := [th-lemma arith assign-bounds 1 1 1 1 1 1 1 1 1 2 2]: #2057
-#2059 := [unit-resolution #2058 #989 #791 #836 #882 #1494 #869 #1718 #1850 #2034 #1172 #2049]: #336
-#2060 := [unit-resolution #728 #2059]: #725
-#2061 := [unit-resolution #1625 #2060]: #1571
-#2062 := [th-lemma arith assign-bounds 1 -1 -1 -1 1 -3 3 -1 1 -1 1 1 2 -2 2 -2 #2061 #1537 #1494 #1718 #791 #1850 #836 #2042 #1488 #2056 #897 #2049 #882 #2034 #1172 #869]: #738
-#2063 := [unit-resolution #1361 #2033]: #888
-#2064 := [unit-resolution #1237 #2046]: #1201
-#2065 := [unit-resolution #1396 #2060]: #742
-#2066 := [th-lemma arith assign-bounds 1 -1 -1 -1 1 -3 3 -1 1 -1 1 1 2 -2 2 -2 #2065 #769 #782 #1448 #1013 #1852 #907 #2024 #773 #994 #816 #2064 #1217 #2063 #1208 #787]: #739
-#2067 := [unit-resolution #1544 #2066 #2062 #2055]: false
-#2069 := [lemma #2067]: #2068
-#2103 := [unit-resolution #2069 #891]: #510
-#2101 := (or #1235 #1090 #1267 #511 #899 #916 #1179 #1498)
-#2083 := [hypothesis]: #718
-#2084 := [unit-resolution #1237 #2083]: #1201
-#2085 := [unit-resolution #959 #1336]: #756
-#2086 := [hypothesis]: #1161
-#2087 := [unit-resolution #2048 #2083]: #1848
-#2088 := [unit-resolution #2052 #2087 #869 #791 #836 #882 #1494 #1491 #1718 #1850 #913 #2042 #2086 #1956 #1488]: #734
-#2089 := [unit-resolution #1515 #2088 #1955]: #64
-#2090 := [unit-resolution #658 #2089]: #668
-#2081 := (or #739 #1267 #1090 #1223 #511 #2050)
-#2071 := [hypothesis]: #1848
-#2073 := (or #1526 #739 #2050)
-#2070 := [hypothesis]: #1433
-#2072 := [th-lemma arith farkas -1 -1 -1 -1 1 1 1 -1 1 -1 1 -1 1 #769 #766 #1566 #2024 #773 #816 #1850 #836 #1718 #791 #1494 #2071 #2070]: false
-#2074 := [lemma #2072]: #2073
-#2075 := [unit-resolution #2074 #766 #2071]: #1526
-#2076 := [unit-resolution #1641 #2075]: #1522
-#2077 := [unit-resolution #730 #2076]: #336
-#2078 := [unit-resolution #728 #2077]: #725
-#2079 := [unit-resolution #1396 #2078]: #742
-#2080 := [th-lemma arith farkas -1/2 1/2 1 -1/2 -1 1 -1 1/2 -3/2 3/2 1/2 -1/2 -1/2 -1/2 -1/2 1/2 1/2 1 #1448 #1013 #1217 #782 #1385 #1088 #787 #1214 #1852 #907 #2079 #769 #766 #1566 #2024 #773 #816 #1335]: false
-#2082 := [lemma #2080]: #2081
-#2091 := [unit-resolution #2082 #2084 #1088 #1385 #1335 #2087]: #739
-#2092 := [unit-resolution #1544 #2091 #2090]: #825
-#2093 := (or #1538 #1539 #738 #917 #1503 #1504 #1051 #1268 #1048 #1014 #1015 #822 #1223)
-#2094 := [th-lemma arith assign-bounds -1 -1 -1 -1 1 1 1 -1 1 -1 1 -1]: #2093
-#2095 := [unit-resolution #2094 #2092 #1013 #907 #782 #1537 #897 #2085 #1448 #1852 #2042 #2084 #1488]: #1538
-#2096 := [unit-resolution #1667 #2095]: #1522
-#2097 := [unit-resolution #730 #2096]: #336
-#2098 := [unit-resolution #728 #2097]: #725
-#2099 := [unit-resolution #1625 #2098]: #1571
-#2100 := [th-lemma arith farkas -1 -1 -2 -1 -1 1 1 1 -1 1 -1 1 -1 1 #1537 #2092 #2097 #2085 #2042 #1488 #897 #1852 #907 #1448 #1013 #782 #2084 #2099]: false
-#2102 := [lemma #2100]: #2101
-#2104 := [unit-resolution #2102 #1208 #2063 #2103 #2040 #2034 #1172 #2041]: #1235
-#2105 := [unit-resolution #722 #2104]: #365
-#2106 := (or #741 #797 #947 #916 #838 #1178 #366)
-#2107 := [th-lemma arith assign-bounds -1 2 -2 -2 2 -2]: #2106
-#2108 := [unit-resolution #2107 #2105 #882 #1718 #1850 #2034 #836]: #741
-#2109 := [unit-resolution #720 #2105]: #717
-#2110 := [unit-resolution #1476 #2109]: #1200
-#2111 := (or #734 #1498 #1179 #1500 #1502 #1503 #1267)
-#2112 := [unit-resolution #1506 #869 #791 #1217 #1494 #1488 #1491]: #2111
-#2113 := [unit-resolution #2112 #2110 #2042 #2041 #1172 #2063 #2108]: #734
-#2114 := [unit-resolution #1515 #2113 #2040]: #64
-#2115 := [unit-resolution #680 #2103]: #677
-#2116 := [unit-resolution #959 #2115]: #756
-#2117 := [unit-resolution #1207 #2109]: #745
-#2118 := (or #738 #795 #916 #917 #1503)
-#2119 := [unit-resolution #1676 #1850 #1828]: #2118
-#2120 := [unit-resolution #2119 #2117 #2042 #2116 #2034]: #738
-#2121 := (or #739 #795 #844 #1502 #1500 #1267)
-#2122 := [unit-resolution #1651 #1852]: #2121
-#2123 := [unit-resolution #2122 #2108 #2117 #2024 #2110 #2063]: #739
-#2124 := [unit-resolution #1544 #2123 #2120]: #65
-#2125 := [unit-resolution #658 #2124 #2114]: false
-#2126 := [lemma #2125]: #481
-#2149 := [unit-resolution #688 #2126]: #685
-#2020 := [hypothesis]: #794
-#2021 := [unit-resolution #941 #1932 #2020]: false
-#2022 := [lemma #2021]: #940
-#2150 := [unit-resolution #2022 #2149]: #757
-#2147 := (or #510 #735)
-#2136 := (or #916 #1001 #482 #947 #510 #1002 #838 #1178 #366)
-#2137 := [th-lemma arith assign-bounds -1 1 -1 -1 1 1 -1 1]: #2136
-#2138 := [unit-resolution #2137 #989 #869 #836 #882 #1924 #1850 #2126 #1945]: #916
-#2130 := (not #1708)
-#2139 := [unit-resolution #1875 #989 #2019 #2024]: #568
-#2140 := [unit-resolution #654 #2139]: #655
-#2141 := [unit-resolution #1265 #2140]: #986
-#2131 := (or #2130 #1079 #1269 #735)
-#2128 := [hypothesis]: #1708
-#2129 := [th-lemma arith farkas 1 -1 -1 1 -3/2 3/2 1/2 -1/2 -1/2 1/2 1/2 -1/2 -1/2 1/2 -1/2 1/2 -1/2 1 #1293 #897 #1852 #907 #1448 #1013 #2128 #1945 #882 #869 #2127 #2024 #2025 #903 #900 #773 #782 #2019]: false
-#2132 := [lemma #2129]: #2131
-#2142 := [unit-resolution #2132 #2056 #2141 #900]: #2130
-#2133 := [hypothesis]: #2130
-#2134 := [unit-resolution #1711 #1229 #2133]: false
-#2135 := [lemma #2134]: #1710
-#2143 := [unit-resolution #2135 #2142]: #1230
-#2144 := [unit-resolution #714 #2143]: #394
-#2145 := [unit-resolution #712 #2144]: #709
-#2146 := [unit-resolution #856 #2145 #2138]: false
-#2148 := [lemma #2146]: #2147
-#2151 := [unit-resolution #2148 #900]: #510
-#2152 := [unit-resolution #680 #2151]: #677
-#2153 := [unit-resolution #959 #2152]: #756
-#2154 := (or #735 #844 #916 #795 #794 #917 #1503)
-#2155 := [unit-resolution #1664 #1828]: #2154
-#2156 := [unit-resolution #2155 #2153 #2042 #2024 #2150 #900 #2127]: #916
-#2159 := (or #394 #917 #540)
-#2157 := (or #394 #917 #540 #424)
-#2158 := [unit-resolution #1384 #1448]: #2157
-#2160 := [unit-resolution #2158 #1847]: #2159
-#2161 := [unit-resolution #2160 #2153 #2019]: #394
-#2162 := [unit-resolution #712 #2161]: #709
-#2163 := [unit-resolution #856 #2162 #2156]: false
-#2164 := [lemma #2163]: #735
-#2208 := (or #365 #510)
-#2187 := [unit-resolution #1464 #2140]: #1430
-#2188 := (or #1161 #482)
-#2189 := [unit-resolution #1681 #1945]: #2188
-#2190 := [unit-resolution #2189 #2126]: #1161
-#2165 := [unit-resolution #2048 #1226]: #1848
-#2185 := (or #394 #1079 #1269 #1498 #365 #995)
-#2168 := (or #336 #365 #2050 #394)
-#2166 := (or #336 #1501 #365 #2050 #394)
-#2167 := [th-lemma arith assign-bounds 1 1 1 1]: #2166
-#2169 := [unit-resolution #2167 #1494]: #2168
-#2170 := [unit-resolution #2169 #1122 #1202 #2165]: #336
-#2171 := [unit-resolution #728 #2170]: #725
-#2172 := [unit-resolution #1396 #2171]: #742
-#2173 := (or #1227 #796 #995 #739 #1079 #482 #365)
-#2174 := [unit-resolution #1303 #1566 #1850]: #2173
-#2175 := [unit-resolution #2174 #2172 #2126 #1293 #1202 #1282 #1723]: #739
-#2176 := [unit-resolution #2135 #1709]: #1708
-#2177 := (or #734 #2130 #1014 #1015 #1001 #947 #1002 #1503 #1498 #1499 #1504 #1501 #2050)
-#2178 := [th-lemma arith assign-bounds 1 -1 1 -1 -1 1 1 1 -1 -1 1 -1]: #2177
-#2179 := [unit-resolution #2178 #2176 #869 #1013 #882 #1494 #1491 #1945 #1448 #2042 #1956 #2165 #1488]: #734
-#2180 := [unit-resolution #1515 #2179 #2164]: #64
-#2181 := [unit-resolution #658 #2180]: #668
-#2182 := [unit-resolution #1544 #2181 #2175]: #825
-#2183 := [unit-resolution #1625 #2171]: #1571
-#2184 := [th-lemma arith farkas -1 1 1 -1 -2 2 -2 -1 1 -1 1 -1 1 -1 1 1 #2183 #1537 #1293 #897 #2025 #903 #2179 #1448 #1013 #1852 #907 #2024 #773 #782 #1238 #2182]: false
-#2186 := [lemma #2184]: #2185
-#2191 := [unit-resolution #2186 #1202 #2141 #2187 #2056 #994]: #394
-#2192 := [unit-resolution #712 #2191]: #709
-#2193 := [unit-resolution #856 #2192]: #748
-#2194 := [unit-resolution #2052 #2193 #869 #791 #836 #882 #1494 #1491 #1718 #1850 #2165 #2042 #2190 #2187 #1488]: #734
-#2195 := [unit-resolution #1515 #2194 #2164]: #64
-#2196 := [unit-resolution #658 #2195]: #668
-#2197 := [unit-resolution #1361 #2192]: #888
-#2198 := (or #753 #395 #1267)
-#2199 := [th-lemma arith assign-bounds 2 -1]: #2198
-#2200 := [unit-resolution #2199 #2197 #2191]: #753
-#2201 := [unit-resolution #2058 #2193 #791 #836 #882 #1494 #869 #1718 #1850 #989 #2190 #2165]: #336
-#2202 := [unit-resolution #728 #2201]: #725
-#2203 := [unit-resolution #1396 #2202]: #742
-#2204 := [unit-resolution #2174 #2203 #2126 #2056 #1202 #994 #2200]: #739
-#2205 := [unit-resolution #1544 #2204 #2196]: #825
-#2206 := [unit-resolution #1625 #2202]: #1571
-#2207 := [th-lemma arith farkas -1 1 1 -1 -2 2 -2 -1 1 -1 1 -1 1 -1 1 1 #2206 #1537 #2056 #897 #2141 #903 #2194 #1448 #1013 #1852 #907 #2024 #773 #782 #1238 #2205]: false
-#2209 := [lemma #2207]: #2208
-#2210 := [unit-resolution #2209 #989]: #365
-#2231 := [unit-resolution #2137 #2210 #869 #836 #882 #989 #1850 #2126 #1945]: #916
-#2229 := (or #2130 #510)
-#2211 := [unit-resolution #720 #2210]: #717
-#2212 := [unit-resolution #1476 #2211]: #1200
-#2213 := (or #1848 #1500 #366)
-#2214 := [th-lemma arith assign-bounds 1 -2]: #2213
-#2215 := [unit-resolution #2214 #2212 #2210]: #1848
-#2216 := [unit-resolution #2178 #2128 #869 #1013 #882 #1494 #1491 #1945 #1448 #2042 #2187 #2215 #1488]: #734
-#2217 := [unit-resolution #1515 #2216 #2164]: #64
-#2218 := [unit-resolution #658 #2217]: #668
-#2219 := [unit-resolution #1207 #2211]: #745
-#2220 := (or #336 #844 #1269 #948 #949 #823 #510)
-#2221 := [th-lemma arith assign-bounds 1 1 1 1 1 1]: #2220
-#2222 := [unit-resolution #2221 #2216 #773 #903 #989 #2024 #2141]: #336
-#2223 := [unit-resolution #728 #2222]: #725
-#2224 := [unit-resolution #1396 #2223]: #742
-#2225 := [unit-resolution #1117 #2224 #2219 #989]: #739
-#2226 := [unit-resolution #1544 #2225 #2218]: #825
-#2227 := [unit-resolution #1625 #2223]: #1571
-#2228 := [th-lemma arith farkas -2 2 -1 -1 1 -1 1 -1 -1 1 1 1 -1 -1 1 1 #1448 #1013 #1945 #882 #869 #2141 #903 #2216 #2227 #1537 #2226 #2056 #897 #1852 #907 #2128]: false
-#2230 := [lemma #2228]: #2229
-#2232 := [unit-resolution #2230 #989]: #2130
-#2233 := [unit-resolution #2135 #2232]: #1230
-#2234 := [unit-resolution #714 #2233]: #394
-#2235 := [unit-resolution #712 #2234]: #709
-#2236 := [unit-resolution #856 #2235 #2231]: false
-#2237 := [lemma #2236]: #510
-#2238 := [unit-resolution #680 #2237]: #677
-#2239 := [unit-resolution #959 #2238]: #756
-#2240 := [unit-resolution #2160 #2239 #2019]: #394
-#2241 := [unit-resolution #1979 #2237 #791 #787 #1718 #1850 #2150]: #744
-#2242 := [unit-resolution #712 #2240]: #709
-#2243 := [unit-resolution #1361 #2242]: #888
-#2244 := (or #1177 #1267 #365 #395)
-#2245 := [unit-resolution #1780 #1852]: #2244
-#2246 := [unit-resolution #2245 #2243 #2241 #2240]: #365
-#2247 := [unit-resolution #720 #2246]: #717
-#2248 := [unit-resolution #1476 #2247]: #1200
-#2249 := (or #741 #794 #917 #540)
-#2250 := [unit-resolution #1808 #787 #897 #1718]: #2249
-#2251 := [unit-resolution #2250 #2239 #2019 #2150]: #741
-#2252 := [unit-resolution #2012 #2240 #2150]: #1064
-#2253 := (or #1090 #568 #844)
-#2254 := [unit-resolution #1898 #816 #1945 #1566 #773]: #2253
-#2255 := [unit-resolution #2254 #2252 #2024]: #568
-#2256 := [unit-resolution #654 #2255]: #655
-#2257 := [unit-resolution #1464 #2256]: #1430
-#2258 := [unit-resolution #2112 #2257 #2042 #2251 #2190 #2243 #2248]: #734
-#2259 := [unit-resolution #1515 #2258 #2164]: #64
-#2260 := [unit-resolution #1207 #2247]: #745
-#2261 := [unit-resolution #856 #2242]: #748
-#2262 := [unit-resolution #2119 #2261 #2042 #2260 #2239]: #738
-#2263 := [unit-resolution #2122 #2248 #2251 #2024 #2260 #2243]: #739
-#2264 := [unit-resolution #1544 #2263 #2262]: #65
-[unit-resolution #658 #2264 #2259]: false
-unsat
-70bd6436662c1fd4b8c8a6f696914593051990e6 52 0
-#2 := false
-#11 := 1::Real
-decl f3 :: Real
-#7 := f3
-#9 := 2::Real
-#10 := (* 2::Real f3)
-#12 := (+ #10 1::Real)
-#8 := (+ f3 f3)
-#13 := (< #8 #12)
-#14 := (or false #13)
-#15 := (or #13 #14)
-#16 := (not #15)
-#72 := (iff #16 false)
-#40 := (+ 1::Real #10)
-#43 := (< #10 #40)
-#60 := (not #43)
-#70 := (iff #60 false)
-#1 := true
-#65 := (not true)
-#68 := (iff #65 false)
-#69 := [rewrite]: #68
-#66 := (iff #60 #65)
-#63 := (iff #43 true)
-#64 := [rewrite]: #63
-#67 := [monotonicity #64]: #66
-#71 := [trans #67 #69]: #70
-#61 := (iff #16 #60)
-#58 := (iff #15 #43)
-#53 := (or #43 #43)
-#56 := (iff #53 #43)
-#57 := [rewrite]: #56
-#54 := (iff #15 #53)
-#51 := (iff #14 #43)
-#46 := (or false #43)
-#49 := (iff #46 #43)
-#50 := [rewrite]: #49
-#47 := (iff #14 #46)
-#44 := (iff #13 #43)
-#41 := (= #12 #40)
-#42 := [rewrite]: #41
-#38 := (= #8 #10)
-#39 := [rewrite]: #38
-#45 := [monotonicity #39 #42]: #44
-#48 := [monotonicity #45]: #47
-#52 := [trans #48 #50]: #51
-#55 := [monotonicity #45 #52]: #54
-#59 := [trans #55 #57]: #58
-#62 := [monotonicity #59]: #61
-#73 := [trans #62 #71]: #72
-#37 := [asserted]: #16
-[mp #37 #73]: false
-unsat
+#2 := false
+decl f12 :: Int
+#52 := f12
+decl f5 :: Int
+#13 := f5
+#64 := (= f5 f12)
+#9 := 0::Int
+#97 := -1::Int
+#235 := (* -1::Int f12)
+#733 := (+ f5 #235)
+#735 := (>= #733 0::Int)
+decl f10 :: Int
+#40 := f10
+#201 := (* -1::Int f10)
+#394 := (>= f10 0::Int)
+#401 := (if #394 f10 #201)
+#412 := (* -1::Int #401)
+#746 := (+ f10 #412)
+#748 := (>= #746 0::Int)
+#916 := (not #748)
+decl f11 :: Int
+#46 := f11
+#218 := (* -1::Int f11)
+#365 := (>= f11 0::Int)
+#372 := (if #365 f11 #218)
+#383 := (* -1::Int #372)
+#743 := (+ f11 #383)
+#745 := (>= #743 0::Int)
+#717 := (= f11 #372)
+#899 := (not #735)
+#900 := [hypothesis]: #899
+#1902 := (or #365 #735)
+decl f4 :: Int
+#8 := f4
+#98 := (* -1::Int f4)
+#568 := (>= f4 0::Int)
+#575 := (if #568 f4 #98)
+#586 := (* -1::Int #575)
+#985 := (+ f4 #586)
+#986 := (<= #985 0::Int)
+#1269 := (not #986)
+#888 := (<= #746 0::Int)
+#709 := (= f10 #401)
+#366 := (not #365)
+#1202 := [hypothesis]: #366
+#1880 := (or #394 #735 #365)
+#655 := (= f4 #575)
+decl f3 :: Int
+#7 := f3
+#116 := (* -1::Int f3)
+#539 := (>= f3 0::Int)
+#546 := (if #539 f3 #116)
+#557 := (* -1::Int #546)
+#761 := (+ f3 #557)
+#762 := (<= #761 0::Int)
+#669 := (= f3 #546)
+#1863 := (or #539 #365 #735)
+#395 := (not #394)
+decl f6 :: Int
+#16 := f6
+#510 := (>= f6 0::Int)
+#511 := (not #510)
+decl f9 :: Int
+#34 := f9
+#184 := (* -1::Int f9)
+#423 := (>= f9 0::Int)
+#430 := (if #423 f9 #184)
+#441 := (* -1::Int #430)
+#749 := (+ f9 #441)
+#751 := (>= #749 0::Int)
+#701 := (= f9 #430)
+#1430 := (>= #985 0::Int)
+#1498 := (not #1430)
+#587 := (+ f5 #586)
+#588 := (+ f3 #587)
+#649 := (<= #588 0::Int)
+#589 := (= #588 0::Int)
+decl f13 :: Int
+#58 := f13
+#65 := (= f4 f13)
+#66 := (and #64 #65)
+#336 := (>= f12 0::Int)
+#343 := (if #336 f12 #235)
+#354 := (* -1::Int #343)
+#355 := (+ f13 #354)
+#356 := (+ f11 #355)
+#357 := (= #356 0::Int)
+#362 := (not #357)
+#384 := (+ f12 #383)
+#385 := (+ f10 #384)
+#386 := (= #385 0::Int)
+#391 := (not #386)
+#413 := (+ f11 #412)
+#414 := (+ f9 #413)
+#415 := (= #414 0::Int)
+#420 := (not #415)
+#442 := (+ f10 #441)
+decl f8 :: Int
+#28 := f8
+#443 := (+ f8 #442)
+#444 := (= #443 0::Int)
+#449 := (not #444)
+#167 := (* -1::Int f8)
+#452 := (>= f8 0::Int)
+#459 := (if #452 f8 #167)
+#470 := (* -1::Int #459)
+#471 := (+ f9 #470)
+decl f7 :: Int
+#22 := f7
+#472 := (+ f7 #471)
+#473 := (= #472 0::Int)
+#478 := (not #473)
+#150 := (* -1::Int f7)
+#481 := (>= f7 0::Int)
+#488 := (if #481 f7 #150)
+#499 := (* -1::Int #488)
+#500 := (+ f8 #499)
+#501 := (+ f6 #500)
+#502 := (= #501 0::Int)
+#507 := (not #502)
+#133 := (* -1::Int f6)
+#517 := (if #510 f6 #133)
+#528 := (* -1::Int #517)
+#529 := (+ f7 #528)
+#530 := (+ f3 #529)
+#531 := (= #530 0::Int)
+#536 := (not #531)
+#558 := (+ f6 #557)
+#559 := (+ f4 #558)
+#560 := (= #559 0::Int)
+#565 := (not #560)
+#594 := (not #589)
+#624 := (or #594 #565 #536 #507 #478 #449 #420 #391 #362 #66)
+#629 := (not #624)
+#60 := (- f12)
+#59 := (< f12 0::Int)
+#61 := (if #59 #60 f12)
+#62 := (- #61 f11)
+#63 := (= f13 #62)
+#67 := (implies #63 #66)
+#54 := (- f11)
+#53 := (< f11 0::Int)
+#55 := (if #53 #54 f11)
+#56 := (- #55 f10)
+#57 := (= f12 #56)
+#68 := (implies #57 #67)
+#48 := (- f10)
+#47 := (< f10 0::Int)
+#49 := (if #47 #48 f10)
+#50 := (- #49 f9)
+#51 := (= f11 #50)
+#69 := (implies #51 #68)
+#42 := (- f9)
+#41 := (< f9 0::Int)
+#43 := (if #41 #42 f9)
+#44 := (- #43 f8)
+#45 := (= f10 #44)
+#70 := (implies #45 #69)
+#36 := (- f8)
+#35 := (< f8 0::Int)
+#37 := (if #35 #36 f8)
+#38 := (- #37 f7)
+#39 := (= f9 #38)
+#71 := (implies #39 #70)
+#30 := (- f7)
+#29 := (< f7 0::Int)
+#31 := (if #29 #30 f7)
+#32 := (- #31 f6)
+#33 := (= f8 #32)
+#72 := (implies #33 #71)
+#24 := (- f6)
+#23 := (< f6 0::Int)
+#25 := (if #23 #24 f6)
+#26 := (- #25 f3)
+#27 := (= f7 #26)
+#73 := (implies #27 #72)
+#18 := (- f3)
+#17 := (< f3 0::Int)
+#19 := (if #17 #18 f3)
+#20 := (- #19 f4)
+#21 := (= f6 #20)
+#74 := (implies #21 #73)
+#11 := (- f4)
+#10 := (< f4 0::Int)
+#12 := (if #10 #11 f4)
+#14 := (- #12 f5)
+#15 := (= f3 #14)
+#75 := (implies #15 #74)
+#76 := (not #75)
+#632 := (iff #76 #629)
+#238 := (if #59 #235 f12)
+#244 := (+ #218 #238)
+#249 := (= f13 #244)
+#255 := (not #249)
+#256 := (or #255 #66)
+#221 := (if #53 #218 f11)
+#227 := (+ #201 #221)
+#232 := (= f12 #227)
+#264 := (not #232)
+#265 := (or #264 #256)
+#204 := (if #47 #201 f10)
+#210 := (+ #184 #204)
+#215 := (= f11 #210)
+#273 := (not #215)
+#274 := (or #273 #265)
+#187 := (if #41 #184 f9)
+#193 := (+ #167 #187)
+#198 := (= f10 #193)
+#282 := (not #198)
+#283 := (or #282 #274)
+#170 := (if #35 #167 f8)
+#176 := (+ #150 #170)
+#181 := (= f9 #176)
+#291 := (not #181)
+#292 := (or #291 #283)
+#153 := (if #29 #150 f7)
+#159 := (+ #133 #153)
+#164 := (= f8 #159)
+#300 := (not #164)
+#301 := (or #300 #292)
+#136 := (if #23 #133 f6)
+#142 := (+ #116 #136)
+#147 := (= f7 #142)
+#309 := (not #147)
+#310 := (or #309 #301)
+#119 := (if #17 #116 f3)
+#125 := (+ #98 #119)
+#130 := (= f6 #125)
+#318 := (not #130)
+#319 := (or #318 #310)
+#101 := (if #10 #98 f4)
+#107 := (* -1::Int f5)
+#108 := (+ #107 #101)
+#113 := (= f3 #108)
+#327 := (not #113)
+#328 := (or #327 #319)
+#333 := (not #328)
+#630 := (iff #333 #629)
+#627 := (iff #328 #624)
+#597 := (or #362 #66)
+#600 := (or #391 #597)
+#603 := (or #420 #600)
+#606 := (or #449 #603)
+#609 := (or #478 #606)
+#612 := (or #507 #609)
+#615 := (or #536 #612)
+#618 := (or #565 #615)
+#621 := (or #594 #618)
+#625 := (iff #621 #624)
+#626 := [rewrite]: #625
+#622 := (iff #328 #621)
+#619 := (iff #319 #618)
+#616 := (iff #310 #615)
+#613 := (iff #301 #612)
+#610 := (iff #292 #609)
+#607 := (iff #283 #606)
+#604 := (iff #274 #603)
+#601 := (iff #265 #600)
+#598 := (iff #256 #597)
+#363 := (iff #255 #362)
+#360 := (iff #249 #357)
+#348 := (+ #218 #343)
+#351 := (= f13 #348)
+#358 := (iff #351 #357)
+#359 := [rewrite]: #358
+#352 := (iff #249 #351)
+#349 := (= #244 #348)
+#346 := (= #238 #343)
+#337 := (not #336)
+#340 := (if #337 #235 f12)
+#344 := (= #340 #343)
+#345 := [rewrite]: #344
+#341 := (= #238 #340)
+#338 := (iff #59 #337)
+#339 := [rewrite]: #338
+#342 := [monotonicity #339]: #341
+#347 := [trans #342 #345]: #346
+#350 := [monotonicity #347]: #349
+#353 := [monotonicity #350]: #352
+#361 := [trans #353 #359]: #360
+#364 := [monotonicity #361]: #363
+#599 := [monotonicity #364]: #598
+#392 := (iff #264 #391)
+#389 := (iff #232 #386)
+#377 := (+ #201 #372)
+#380 := (= f12 #377)
+#387 := (iff #380 #386)
+#388 := [rewrite]: #387
+#381 := (iff #232 #380)
+#378 := (= #227 #377)
+#375 := (= #221 #372)
+#369 := (if #366 #218 f11)
+#373 := (= #369 #372)
+#374 := [rewrite]: #373
+#370 := (= #221 #369)
+#367 := (iff #53 #366)
+#368 := [rewrite]: #367
+#371 := [monotonicity #368]: #370
+#376 := [trans #371 #374]: #375
+#379 := [monotonicity #376]: #378
+#382 := [monotonicity #379]: #381
+#390 := [trans #382 #388]: #389
+#393 := [monotonicity #390]: #392
+#602 := [monotonicity #393 #599]: #601
+#421 := (iff #273 #420)
+#418 := (iff #215 #415)
+#406 := (+ #184 #401)
+#409 := (= f11 #406)
+#416 := (iff #409 #415)
+#417 := [rewrite]: #416
+#410 := (iff #215 #409)
+#407 := (= #210 #406)
+#404 := (= #204 #401)
+#398 := (if #395 #201 f10)
+#402 := (= #398 #401)
+#403 := [rewrite]: #402
+#399 := (= #204 #398)
+#396 := (iff #47 #395)
+#397 := [rewrite]: #396
+#400 := [monotonicity #397]: #399
+#405 := [trans #400 #403]: #404
+#408 := [monotonicity #405]: #407
+#411 := [monotonicity #408]: #410
+#419 := [trans #411 #417]: #418
+#422 := [monotonicity #419]: #421
+#605 := [monotonicity #422 #602]: #604
+#450 := (iff #282 #449)
+#447 := (iff #198 #444)
+#435 := (+ #167 #430)
+#438 := (= f10 #435)
+#445 := (iff #438 #444)
+#446 := [rewrite]: #445
+#439 := (iff #198 #438)
+#436 := (= #193 #435)
+#433 := (= #187 #430)
+#424 := (not #423)
+#427 := (if #424 #184 f9)
+#431 := (= #427 #430)
+#432 := [rewrite]: #431
+#428 := (= #187 #427)
+#425 := (iff #41 #424)
+#426 := [rewrite]: #425
+#429 := [monotonicity #426]: #428
+#434 := [trans #429 #432]: #433
+#437 := [monotonicity #434]: #436
+#440 := [monotonicity #437]: #439
+#448 := [trans #440 #446]: #447
+#451 := [monotonicity #448]: #450
+#608 := [monotonicity #451 #605]: #607
+#479 := (iff #291 #478)
+#476 := (iff #181 #473)
+#464 := (+ #150 #459)
+#467 := (= f9 #464)
+#474 := (iff #467 #473)
+#475 := [rewrite]: #474
+#468 := (iff #181 #467)
+#465 := (= #176 #464)
+#462 := (= #170 #459)
+#453 := (not #452)
+#456 := (if #453 #167 f8)
+#460 := (= #456 #459)
+#461 := [rewrite]: #460
+#457 := (= #170 #456)
+#454 := (iff #35 #453)
+#455 := [rewrite]: #454
+#458 := [monotonicity #455]: #457
+#463 := [trans #458 #461]: #462
+#466 := [monotonicity #463]: #465
+#469 := [monotonicity #466]: #468
+#477 := [trans #469 #475]: #476
+#480 := [monotonicity #477]: #479
+#611 := [monotonicity #480 #608]: #610
+#508 := (iff #300 #507)
+#505 := (iff #164 #502)
+#493 := (+ #133 #488)
+#496 := (= f8 #493)
+#503 := (iff #496 #502)
+#504 := [rewrite]: #503
+#497 := (iff #164 #496)
+#494 := (= #159 #493)
+#491 := (= #153 #488)
+#482 := (not #481)
+#485 := (if #482 #150 f7)
+#489 := (= #485 #488)
+#490 := [rewrite]: #489
+#486 := (= #153 #485)
+#483 := (iff #29 #482)
+#484 := [rewrite]: #483
+#487 := [monotonicity #484]: #486
+#492 := [trans #487 #490]: #491
+#495 := [monotonicity #492]: #494
+#498 := [monotonicity #495]: #497
+#506 := [trans #498 #504]: #505
+#509 := [monotonicity #506]: #508
+#614 := [monotonicity #509 #611]: #613
+#537 := (iff #309 #536)
+#534 := (iff #147 #531)
+#522 := (+ #116 #517)
+#525 := (= f7 #522)
+#532 := (iff #525 #531)
+#533 := [rewrite]: #532
+#526 := (iff #147 #525)
+#523 := (= #142 #522)
+#520 := (= #136 #517)
+#514 := (if #511 #133 f6)
+#518 := (= #514 #517)
+#519 := [rewrite]: #518
+#515 := (= #136 #514)
+#512 := (iff #23 #511)
+#513 := [rewrite]: #512
+#516 := [monotonicity #513]: #515
+#521 := [trans #516 #519]: #520
+#524 := [monotonicity #521]: #523
+#527 := [monotonicity #524]: #526
+#535 := [trans #527 #533]: #534
+#538 := [monotonicity #535]: #537
+#617 := [monotonicity #538 #614]: #616
+#566 := (iff #318 #565)
+#563 := (iff #130 #560)
+#551 := (+ #98 #546)
+#554 := (= f6 #551)
+#561 := (iff #554 #560)
+#562 := [rewrite]: #561
+#555 := (iff #130 #554)
+#552 := (= #125 #551)
+#549 := (= #119 #546)
+#540 := (not #539)
+#543 := (if #540 #116 f3)
+#547 := (= #543 #546)
+#548 := [rewrite]: #547
+#544 := (= #119 #543)
+#541 := (iff #17 #540)
+#542 := [rewrite]: #541
+#545 := [monotonicity #542]: #544
+#550 := [trans #545 #548]: #549
+#553 := [monotonicity #550]: #552
+#556 := [monotonicity #553]: #555
+#564 := [trans #556 #562]: #563
+#567 := [monotonicity #564]: #566
+#620 := [monotonicity #567 #617]: #619
+#595 := (iff #327 #594)
+#592 := (iff #113 #589)
+#580 := (+ #107 #575)
+#583 := (= f3 #580)
+#590 := (iff #583 #589)
+#591 := [rewrite]: #590
+#584 := (iff #113 #583)
+#581 := (= #108 #580)
+#578 := (= #101 #575)
+#569 := (not #568)
+#572 := (if #569 #98 f4)
+#576 := (= #572 #575)
+#577 := [rewrite]: #576
+#573 := (= #101 #572)
+#570 := (iff #10 #569)
+#571 := [rewrite]: #570
+#574 := [monotonicity #571]: #573
+#579 := [trans #574 #577]: #578
+#582 := [monotonicity #579]: #581
+#585 := [monotonicity #582]: #584
+#593 := [trans #585 #591]: #592
+#596 := [monotonicity #593]: #595
+#623 := [monotonicity #596 #620]: #622
+#628 := [trans #623 #626]: #627
+#631 := [monotonicity #628]: #630
+#334 := (iff #76 #333)
+#331 := (iff #75 #328)
+#324 := (implies #113 #319)
+#329 := (iff #324 #328)
+#330 := [rewrite]: #329
+#325 := (iff #75 #324)
+#322 := (iff #74 #319)
+#315 := (implies #130 #310)
+#320 := (iff #315 #319)
+#321 := [rewrite]: #320
+#316 := (iff #74 #315)
+#313 := (iff #73 #310)
+#306 := (implies #147 #301)
+#311 := (iff #306 #310)
+#312 := [rewrite]: #311
+#307 := (iff #73 #306)
+#304 := (iff #72 #301)
+#297 := (implies #164 #292)
+#302 := (iff #297 #301)
+#303 := [rewrite]: #302
+#298 := (iff #72 #297)
+#295 := (iff #71 #292)
+#288 := (implies #181 #283)
+#293 := (iff #288 #292)
+#294 := [rewrite]: #293
+#289 := (iff #71 #288)
+#286 := (iff #70 #283)
+#279 := (implies #198 #274)
+#284 := (iff #279 #283)
+#285 := [rewrite]: #284
+#280 := (iff #70 #279)
+#277 := (iff #69 #274)
+#270 := (implies #215 #265)
+#275 := (iff #270 #274)
+#276 := [rewrite]: #275
+#271 := (iff #69 #270)
+#268 := (iff #68 #265)
+#261 := (implies #232 #256)
+#266 := (iff #261 #265)
+#267 := [rewrite]: #266
+#262 := (iff #68 #261)
+#259 := (iff #67 #256)
+#252 := (implies #249 #66)
+#257 := (iff #252 #256)
+#258 := [rewrite]: #257
+#253 := (iff #67 #252)
+#250 := (iff #63 #249)
+#247 := (= #62 #244)
+#241 := (- #238 f11)
+#245 := (= #241 #244)
+#246 := [rewrite]: #245
+#242 := (= #62 #241)
+#239 := (= #61 #238)
+#236 := (= #60 #235)
+#237 := [rewrite]: #236
+#240 := [monotonicity #237]: #239
+#243 := [monotonicity #240]: #242
+#248 := [trans #243 #246]: #247
+#251 := [monotonicity #248]: #250
+#254 := [monotonicity #251]: #253
+#260 := [trans #254 #258]: #259
+#233 := (iff #57 #232)
+#230 := (= #56 #227)
+#224 := (- #221 f10)
+#228 := (= #224 #227)
+#229 := [rewrite]: #228
+#225 := (= #56 #224)
+#222 := (= #55 #221)
+#219 := (= #54 #218)
+#220 := [rewrite]: #219
+#223 := [monotonicity #220]: #222
+#226 := [monotonicity #223]: #225
+#231 := [trans #226 #229]: #230
+#234 := [monotonicity #231]: #233
+#263 := [monotonicity #234 #260]: #262
+#269 := [trans #263 #267]: #268
+#216 := (iff #51 #215)
+#213 := (= #50 #210)
+#207 := (- #204 f9)
+#211 := (= #207 #210)
+#212 := [rewrite]: #211
+#208 := (= #50 #207)
+#205 := (= #49 #204)
+#202 := (= #48 #201)
+#203 := [rewrite]: #202
+#206 := [monotonicity #203]: #205
+#209 := [monotonicity #206]: #208
+#214 := [trans #209 #212]: #213
+#217 := [monotonicity #214]: #216
+#272 := [monotonicity #217 #269]: #271
+#278 := [trans #272 #276]: #277
+#199 := (iff #45 #198)
+#196 := (= #44 #193)
+#190 := (- #187 f8)
+#194 := (= #190 #193)
+#195 := [rewrite]: #194
+#191 := (= #44 #190)
+#188 := (= #43 #187)
+#185 := (= #42 #184)
+#186 := [rewrite]: #185
+#189 := [monotonicity #186]: #188
+#192 := [monotonicity #189]: #191
+#197 := [trans #192 #195]: #196
+#200 := [monotonicity #197]: #199
+#281 := [monotonicity #200 #278]: #280
+#287 := [trans #281 #285]: #286
+#182 := (iff #39 #181)
+#179 := (= #38 #176)
+#173 := (- #170 f7)
+#177 := (= #173 #176)
+#178 := [rewrite]: #177
+#174 := (= #38 #173)
+#171 := (= #37 #170)
+#168 := (= #36 #167)
+#169 := [rewrite]: #168
+#172 := [monotonicity #169]: #171
+#175 := [monotonicity #172]: #174
+#180 := [trans #175 #178]: #179
+#183 := [monotonicity #180]: #182
+#290 := [monotonicity #183 #287]: #289
+#296 := [trans #290 #294]: #295
+#165 := (iff #33 #164)
+#162 := (= #32 #159)
+#156 := (- #153 f6)
+#160 := (= #156 #159)
+#161 := [rewrite]: #160
+#157 := (= #32 #156)
+#154 := (= #31 #153)
+#151 := (= #30 #150)
+#152 := [rewrite]: #151
+#155 := [monotonicity #152]: #154
+#158 := [monotonicity #155]: #157
+#163 := [trans #158 #161]: #162
+#166 := [monotonicity #163]: #165
+#299 := [monotonicity #166 #296]: #298
+#305 := [trans #299 #303]: #304
+#148 := (iff #27 #147)
+#145 := (= #26 #142)
+#139 := (- #136 f3)
+#143 := (= #139 #142)
+#144 := [rewrite]: #143
+#140 := (= #26 #139)
+#137 := (= #25 #136)
+#134 := (= #24 #133)
+#135 := [rewrite]: #134
+#138 := [monotonicity #135]: #137
+#141 := [monotonicity #138]: #140
+#146 := [trans #141 #144]: #145
+#149 := [monotonicity #146]: #148
+#308 := [monotonicity #149 #305]: #307
+#314 := [trans #308 #312]: #313
+#131 := (iff #21 #130)
+#128 := (= #20 #125)
+#122 := (- #119 f4)
+#126 := (= #122 #125)
+#127 := [rewrite]: #126
+#123 := (= #20 #122)
+#120 := (= #19 #119)
+#117 := (= #18 #116)
+#118 := [rewrite]: #117
+#121 := [monotonicity #118]: #120
+#124 := [monotonicity #121]: #123
+#129 := [trans #124 #127]: #128
+#132 := [monotonicity #129]: #131
+#317 := [monotonicity #132 #314]: #316
+#323 := [trans #317 #321]: #322
+#114 := (iff #15 #113)
+#111 := (= #14 #108)
+#104 := (- #101 f5)
+#109 := (= #104 #108)
+#110 := [rewrite]: #109
+#105 := (= #14 #104)
+#102 := (= #12 #101)
+#99 := (= #11 #98)
+#100 := [rewrite]: #99
+#103 := [monotonicity #100]: #102
+#106 := [monotonicity #103]: #105
+#112 := [trans #106 #110]: #111
+#115 := [monotonicity #112]: #114
+#326 := [monotonicity #115 #323]: #325
+#332 := [trans #326 #330]: #331
+#335 := [monotonicity #332]: #334
+#633 := [trans #335 #631]: #632
+#96 := [asserted]: #76
+#634 := [mp #96 #633]: #629
+#635 := [not-or-elim #634]: #589
+#1489 := (or #594 #649)
+#1490 := [th-lemma arith triangle-eq]: #1489
+#1491 := [unit-resolution #1490 #635]: #649
+#675 := (<= #559 0::Int)
+#636 := [not-or-elim #634]: #560
+#1486 := (or #565 #675)
+#1487 := [th-lemma arith triangle-eq]: #1486
+#1488 := [unit-resolution #1487 #636]: #675
+#1251 := (+ #167 #470)
+#741 := (>= #1251 0::Int)
+#1066 := [hypothesis]: #424
+#1804 := (or #539 #423)
+#818 := [hypothesis]: #540
+#1760 := (or #394 #539 #423)
+#747 := (+ #201 #412)
+#1708 := (>= #747 0::Int)
+#710 := (= #201 #401)
+#1122 := [hypothesis]: #395
+#713 := (or #394 #710)
+#714 := [def-axiom]: #713
+#1709 := [unit-resolution #714 #1122]: #710
+#1230 := (not #710)
+#1710 := (or #1230 #1708)
+#1711 := [th-lemma arith triangle-eq]: #1710
+#1712 := [unit-resolution #1711 #1709]: #1708
+#683 := (<= #530 0::Int)
+#637 := [not-or-elim #634]: #531
+#895 := (or #536 #683)
+#896 := [th-lemma arith triangle-eq]: #895
+#897 := [unit-resolution #896 #637]: #683
+#760 := (+ f6 #528)
+#756 := (>= #760 0::Int)
+#677 := (= f6 #517)
+#1197 := (or #510 #423)
+#989 := [hypothesis]: #511
+#1188 := (or #481 #510 #423)
+#752 := (+ f8 #470)
+#988 := (<= #752 0::Int)
+#1014 := (not #988)
+#1062 := (+ #150 #499)
+#1161 := (<= #1062 0::Int)
+#686 := (= #150 #488)
+#891 := [hypothesis]: #482
+#689 := (or #481 #686)
+#690 := [def-axiom]: #689
+#1169 := [unit-resolution #690 #891]: #686
+#1094 := (not #686)
+#1170 := (or #1094 #1161)
+#1171 := [th-lemma arith triangle-eq]: #1170
+#1172 := [unit-resolution #1171 #1169]: #1161
+#927 := (+ #184 #441)
+#744 := (>= #927 0::Int)
+#702 := (= #184 #430)
+#705 := (or #423 #702)
+#706 := [def-axiom]: #705
+#1071 := [unit-resolution #706 #1066]: #702
+#954 := (not #702)
+#1173 := (or #954 #744)
+#1174 := [th-lemma arith triangle-eq]: #1173
+#1175 := [unit-resolution #1174 #1071]: #744
+#1166 := (or #394 #423 #481)
+#700 := (>= #472 0::Int)
+#639 := [not-or-elim #634]: #473
+#1011 := (or #478 #700)
+#1012 := [th-lemma arith triangle-eq]: #1011
+#1013 := [unit-resolution #1012 #639]: #700
+#928 := (<= #927 0::Int)
+#955 := (or #954 #928)
+#1027 := (not #928)
+#1028 := [hypothesis]: #1027
+#1029 := [hypothesis]: #702
+#956 := [th-lemma arith triangle-eq]: #955
+#1030 := [unit-resolution #956 #1029 #1028]: false
+#1031 := [lemma #1030]: #955
+#1072 := [unit-resolution #1031 #1071]: #928
+#708 := (>= #443 0::Int)
+#640 := [not-or-elim #634]: #444
+#905 := (or #449 #708)
+#906 := [th-lemma arith triangle-eq]: #905
+#907 := [unit-resolution #906 #640]: #708
+#1015 := (not #700)
+#1048 := (not #708)
+#1130 := (or #481 #394 #1048 #1014 #1015 #423 #1027)
+#1131 := [th-lemma arith assign-bounds 1 1 1 1 2 1]: #1130
+#1162 := [unit-resolution #1131 #1122 #1066 #907 #891 #1072 #1013]: #1014
+#693 := (= f8 #459)
+#1123 := (or #452 #423 #394 #1048 #1027)
+#1124 := [th-lemma arith assign-bounds 1 1 1 1]: #1123
+#1163 := [unit-resolution #1124 #1122 #907 #1072 #1066]: #452
+#695 := (or #453 #693)
+#696 := [def-axiom]: #695
+#1164 := [unit-resolution #696 #1163]: #693
+#1007 := (not #693)
+#1008 := (or #1007 #988)
+#1067 := [hypothesis]: #1014
+#1068 := [hypothesis]: #693
+#1009 := [th-lemma arith triangle-eq]: #1008
+#1069 := [unit-resolution #1009 #1068 #1067]: false
+#1070 := [lemma #1069]: #1008
+#1165 := [unit-resolution #1070 #1164 #1162]: false
+#1167 := [lemma #1165]: #1166
+#1176 := [unit-resolution #1167 #891 #1066]: #394
+#707 := (<= #443 0::Int)
+#834 := (or #449 #707)
+#835 := [th-lemma arith triangle-eq]: #834
+#836 := [unit-resolution #835 #640]: #707
+#692 := (>= #501 0::Int)
+#638 := [not-or-elim #634]: #502
+#867 := (or #507 #692)
+#868 := [th-lemma arith triangle-eq]: #867
+#869 := [unit-resolution #868 #638]: #692
+#1002 := (not #692)
+#1179 := (not #1161)
+#1178 := (not #707)
+#1177 := (not #744)
+#1180 := (or #1014 #1015 #1177 #1178 #481 #395 #1179 #1002 #510)
+#1181 := [th-lemma arith assign-bounds 1 1 1 3 1 2 2 2]: #1180
+#1182 := [unit-resolution #1181 #891 #869 #1013 #836 #1176 #989 #1175 #1172]: #1014
+#1183 := (or #452 #1179 #1002 #510 #481)
+#1184 := [th-lemma arith assign-bounds 1 1 1 1]: #1183
+#1185 := [unit-resolution #1184 #891 #869 #989 #1172]: #452
+#1186 := [unit-resolution #696 #1185]: #693
+#1187 := [unit-resolution #1070 #1186 #1182]: false
+#1189 := [lemma #1187]: #1188
+#1168 := [unit-resolution #1189 #989 #1066]: #481
+#1159 := (or #539 #423 #510)
+#755 := (+ f7 #499)
+#812 := (<= #755 0::Int)
+#685 := (= f7 #488)
+#982 := (+ #133 #528)
+#983 := (<= #982 0::Int)
+#678 := (= #133 #517)
+#681 := (or #510 #678)
+#682 := [def-axiom]: #681
+#990 := [unit-resolution #682 #989]: #678
+#991 := (not #678)
+#992 := (or #991 #983)
+#993 := [th-lemma arith triangle-eq]: #992
+#994 := [unit-resolution #993 #990]: #983
+#684 := (>= #530 0::Int)
+#814 := (or #536 #684)
+#815 := [th-lemma arith triangle-eq]: #814
+#816 := [unit-resolution #815 #637]: #684
+#871 := (not #684)
+#995 := (not #983)
+#996 := (or #481 #995 #510 #539 #871)
+#997 := [th-lemma arith assign-bounds 1 1 1 1]: #996
+#1152 := [unit-resolution #997 #818 #816 #994 #989]: #481
+#687 := (or #482 #685)
+#688 := [def-axiom]: #687
+#1153 := [unit-resolution #688 #1152]: #685
+#876 := (not #685)
+#877 := (or #876 #812)
+#878 := [th-lemma arith triangle-eq]: #877
+#1154 := [unit-resolution #878 #1153]: #812
+#1001 := (not #812)
+#1016 := (or #423 #510 #1014 #1015 #1001 #1002)
+#1017 := [th-lemma arith assign-bounds 1 1 1 1 1]: #1016
+#1155 := [unit-resolution #1017 #1154 #1013 #1066 #989 #869]: #1014
+#1003 := (or #452 #1001 #1002 #510 #995 #539 #871)
+#1004 := [th-lemma arith assign-bounds 1 1 2 1 1 1]: #1003
+#1156 := [unit-resolution #1004 #1154 #816 #869 #818 #994 #989]: #452
+#1157 := [unit-resolution #696 #1156]: #693
+#1158 := [unit-resolution #1070 #1157 #1155]: false
+#1160 := [lemma #1158]: #1159
+#1190 := [unit-resolution #1160 #989 #1066]: #539
+#984 := (>= #982 0::Int)
+#1021 := (or #991 #984)
+#1022 := [th-lemma arith triangle-eq]: #1021
+#1023 := [unit-resolution #1022 #990]: #984
+#1191 := [unit-resolution #688 #1168]: #685
+#1192 := [unit-resolution #878 #1191]: #812
+#1079 := (not #984)
+#1051 := (not #683)
+#1108 := (or #452 #1001 #1002 #482 #540 #1051 #1079)
+#1109 := [th-lemma arith assign-bounds -1/2 1/2 1 1/2 -1/2 1/2]: #1108
+#1193 := [unit-resolution #1109 #1192 #1023 #869 #1190 #1168 #897]: #452
+#1194 := [unit-resolution #1017 #1192 #1013 #1066 #989 #869]: #1014
+#1195 := [unit-resolution #1070 #1194]: #1007
+#1196 := [unit-resolution #696 #1195 #1193]: false
+#1198 := [lemma #1196]: #1197
+#1203 := [unit-resolution #1198 #1066]: #510
+#679 := (or #511 #677)
+#680 := [def-axiom]: #679
+#1209 := [unit-resolution #680 #1203]: #677
+#830 := (not #677)
+#958 := (or #830 #756)
+#959 := [th-lemma arith triangle-eq]: #958
+#1713 := [unit-resolution #959 #1209]: #756
+#750 := (<= #749 0::Int)
+#1268 := (not #750)
+#1550 := [unit-resolution #1031 #1028]: #954
+#1551 := [unit-resolution #706 #1550]: #423
+#1552 := (or #928 #1268 #424)
+#1553 := [th-lemma arith assign-bounds 1 -2]: #1552
+#1554 := [unit-resolution #1553 #1551 #1028]: #1268
+#703 := (or #424 #701)
+#704 := [def-axiom]: #703
+#1555 := [unit-resolution #704 #1551]: #701
+#909 := (not #701)
+#910 := (or #909 #750)
+#911 := [th-lemma arith triangle-eq]: #910
+#1556 := [unit-resolution #911 #1555 #1554]: false
+#1557 := [lemma #1556]: #928
+#758 := (+ #116 #557)
+#759 := (<= #758 0::Int)
+#670 := (= #116 #546)
+#673 := (or #539 #670)
+#674 := [def-axiom]: #673
+#819 := [unit-resolution #674 #818]: #670
+#804 := (not #670)
+#805 := (or #804 #759)
+#806 := [th-lemma arith triangle-eq]: #805
+#820 := [unit-resolution #806 #819]: #759
+#691 := (<= #501 0::Int)
+#785 := (or #507 #691)
+#786 := [th-lemma arith triangle-eq]: #785
+#787 := [unit-resolution #786 #638]: #691
+#757 := (>= #755 0::Int)
+#1705 := (or #481 #423)
+#1356 := (<= #1251 0::Int)
+#1439 := (not #1356)
+#754 := (>= #752 0::Int)
+#1434 := (or #988 #754)
+#1435 := [th-lemma arith farkas 1 1]: #1434
+#1436 := [unit-resolution #1435 #1067]: #754
+#1437 := [unit-resolution #1070 #1067]: #1007
+#1438 := [unit-resolution #696 #1437]: #453
+#797 := (not #754)
+#1440 := (or #797 #1439 #452)
+#1441 := [th-lemma arith assign-bounds 1 2]: #1440
+#1442 := [unit-resolution #1441 #1438 #1436]: #1439
+#694 := (= #167 #459)
+#697 := (or #452 #694)
+#698 := [def-axiom]: #697
+#1443 := [unit-resolution #698 #1438]: #694
+#1444 := (not #694)
+#1445 := (or #1444 #1356)
+#1446 := [th-lemma arith triangle-eq]: #1445
+#1447 := [unit-resolution #1446 #1443 #1442]: false
+#1448 := [lemma #1447]: #988
+#1362 := [hypothesis]: #453
+#1466 := [unit-resolution #698 #1362]: #694
+#1478 := (or #1444 #741)
+#1479 := [th-lemma arith triangle-eq]: #1478
+#1480 := [unit-resolution #1479 #1466]: #741
+#699 := (<= #472 0::Int)
+#789 := (or #478 #699)
+#790 := [th-lemma arith triangle-eq]: #789
+#791 := [unit-resolution #790 #639]: #699
+#1546 := (or #481 #452)
+#668 := (not #65)
+#734 := (<= #733 0::Int)
+#811 := (<= #760 0::Int)
+#1449 := (or #452 #1179 #510 #481)
+#1450 := [unit-resolution #1184 #869]: #1449
+#1451 := [unit-resolution #1450 #1172 #1362 #891]: #510
+#1452 := [unit-resolution #680 #1451]: #677
+#831 := (or #830 #811)
+#832 := [th-lemma arith triangle-eq]: #831
+#1453 := [unit-resolution #832 #1452]: #811
+#870 := (not #811)
+#1454 := (or #481 #511 #870 #539)
+#1035 := (or #481 #511 #870 #539 #871)
+#1036 := [th-lemma arith assign-bounds 1 1 1 1]: #1035
+#1455 := [unit-resolution #1036 #816]: #1454
+#1456 := [unit-resolution #1455 #1453 #891 #1451]: #539
+#671 := (or #540 #669)
+#672 := [def-axiom]: #671
+#1457 := [unit-resolution #672 #1456]: #669
+#776 := (not #669)
+#777 := (or #776 #762)
+#778 := [th-lemma arith triangle-eq]: #777
+#1458 := [unit-resolution #778 #1457]: #762
+#844 := (not #762)
+#1459 := (or #568 #844 #870 #481)
+#676 := (>= #559 0::Int)
+#771 := (or #565 #676)
+#772 := [th-lemma arith triangle-eq]: #771
+#773 := [unit-resolution #772 #636]: #676
+#823 := (not #676)
+#1387 := (or #568 #823 #844 #870 #871 #481)
+#1388 := [th-lemma arith assign-bounds 1 1 1 1 1]: #1387
+#1460 := [unit-resolution #1388 #816 #773]: #1459
+#1461 := [unit-resolution #1460 #1458 #891 #1453]: #568
+#653 := (or #569 #655)
+#654 := [def-axiom]: #653
+#1462 := [unit-resolution #654 #1461]: #655
+#1263 := (not #655)
+#1463 := (or #1263 #1430)
+#1464 := [th-lemma arith triangle-eq]: #1463
+#1465 := [unit-resolution #1464 #1462]: #1430
+#1200 := (<= #743 0::Int)
+#1467 := [unit-resolution #1446 #1466]: #1356
+#1468 := (or #423 #1439 #481 #1015 #452)
+#1469 := [th-lemma arith assign-bounds 1 1 1 1]: #1468
+#1470 := [unit-resolution #1469 #891 #1013 #1362 #1467]: #423
+#1471 := [unit-resolution #704 #1470]: #701
+#1472 := [unit-resolution #911 #1471]: #750
+#1376 := (or #452 #365 #1268)
+#854 := (not #709)
+#1267 := (not #888)
+#1252 := [hypothesis]: #750
+#716 := (>= #414 0::Int)
+#641 := [not-or-elim #634]: #415
+#1215 := (or #420 #716)
+#1216 := [th-lemma arith triangle-eq]: #1215
+#1217 := [unit-resolution #1216 #641]: #716
+#1240 := (not #716)
+#1363 := (or #1267 #365 #1240 #1268 #1048 #452)
+#1364 := [th-lemma arith assign-bounds 1 1 1 1 1]: #1363
+#1365 := [unit-resolution #1364 #1362 #1217 #1202 #1252 #907]: #1267
+#1219 := (or #854 #888)
+#1358 := [hypothesis]: #1267
+#1359 := [hypothesis]: #709
+#1220 := [th-lemma arith triangle-eq]: #1219
+#1360 := [unit-resolution #1220 #1359 #1358]: false
+#1361 := [lemma #1360]: #1219
+#1366 := [unit-resolution #1361 #1365]: #854
+#711 := (or #395 #709)
+#712 := [def-axiom]: #711
+#1367 := [unit-resolution #712 #1366]: #395
+#1368 := [unit-resolution #714 #1367]: #710
+#753 := (<= #747 0::Int)
+#1227 := (not #753)
+#1369 := (or #748 #365 #1240 #1268 #1048 #452)
+#1370 := [th-lemma arith assign-bounds 1 1 1 1 1]: #1369
+#1371 := [unit-resolution #1370 #1362 #1217 #1202 #907 #1252]: #748
+#1372 := (or #916 #1227 #394)
+#1373 := [th-lemma arith assign-bounds 1 2]: #1372
+#1374 := [unit-resolution #1373 #1367 #1371]: #1227
+#1231 := (or #1230 #753)
+#1228 := [hypothesis]: #1227
+#1229 := [hypothesis]: #710
+#1232 := [th-lemma arith triangle-eq]: #1231
+#1233 := [unit-resolution #1232 #1229 #1228]: false
+#1234 := [lemma #1233]: #1231
+#1375 := [unit-resolution #1234 #1374 #1368]: false
+#1377 := [lemma #1375]: #1376
+#1473 := [unit-resolution #1377 #1472 #1362]: #365
+#719 := (or #366 #717)
+#720 := [def-axiom]: #719
+#1474 := [unit-resolution #720 #1473]: #717
+#860 := (not #717)
+#1475 := (or #860 #1200)
+#1476 := [th-lemma arith triangle-eq]: #1475
+#1477 := [unit-resolution #1476 #1474]: #1200
+#1481 := (or #394 #481 #1268)
+#1273 := (or #394 #481 #1014 #1015 #1268 #1048)
+#1274 := [th-lemma arith assign-bounds 1 1 1 1 1]: #1273
+#1482 := [unit-resolution #1274 #907 #1448 #1013]: #1481
+#1483 := [unit-resolution #1482 #1472 #891]: #394
+#1484 := [unit-resolution #712 #1483]: #709
+#1485 := [unit-resolution #1361 #1484]: #888
+#724 := (>= #385 0::Int)
+#642 := [not-or-elim #634]: #386
+#1492 := (or #391 #724)
+#1493 := [th-lemma arith triangle-eq]: #1492
+#1494 := [unit-resolution #1493 #642]: #724
+#933 := (>= #761 0::Int)
+#1495 := (or #776 #933)
+#1496 := [th-lemma arith triangle-eq]: #1495
+#1497 := [unit-resolution #1496 #1457]: #933
+#1504 := (not #675)
+#1503 := (not #933)
+#1050 := (not #699)
+#1502 := (not #741)
+#1501 := (not #724)
+#1500 := (not #1200)
+#1499 := (not #649)
+#1505 := (or #734 #1498 #1499 #1179 #1002 #1500 #1501 #1502 #1050 #1503 #1504 #1267 #1240)
+#1506 := [th-lemma arith assign-bounds 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1]: #1505
+#1507 := [unit-resolution #1506 #1497 #869 #791 #1217 #1494 #1491 #1488 #1172 #1485 #1480 #1477 #1465]: #734
+#1064 := (>= #1062 0::Int)
+#1095 := (or #1094 #1064)
+#1090 := (not #1064)
+#1065 := [hypothesis]: #1090
+#1093 := [hypothesis]: #686
+#1096 := [th-lemma arith triangle-eq]: #1095
+#1097 := [unit-resolution #1096 #1093 #1065]: false
+#1098 := [lemma #1097]: #1095
+#1208 := [unit-resolution #1098 #1169]: #1064
+#1264 := (or #1263 #986)
+#1265 := [th-lemma arith triangle-eq]: #1264
+#1508 := [unit-resolution #1265 #1462]: #986
+#855 := (or #854 #748)
+#856 := [th-lemma arith triangle-eq]: #855
+#1509 := [unit-resolution #856 #1484]: #748
+#650 := (>= #588 0::Int)
+#901 := (or #594 #650)
+#902 := [th-lemma arith triangle-eq]: #901
+#903 := [unit-resolution #902 #635]: #650
+#723 := (<= #385 0::Int)
+#780 := (or #391 #723)
+#781 := [th-lemma arith triangle-eq]: #780
+#782 := [unit-resolution #781 #642]: #723
+#715 := (<= #414 0::Int)
+#880 := (or #420 #715)
+#881 := [th-lemma arith triangle-eq]: #880
+#882 := [unit-resolution #881 #641]: #715
+#861 := (or #860 #745)
+#795 := (not #745)
+#1204 := [hypothesis]: #795
+#1205 := [hypothesis]: #717
+#862 := [th-lemma arith triangle-eq]: #861
+#1206 := [unit-resolution #862 #1205 #1204]: false
+#1207 := [lemma #1206]: #861
+#1510 := [unit-resolution #1207 #1474]: #745
+#947 := (not #715)
+#822 := (not #723)
+#1049 := (not #691)
+#948 := (not #650)
+#1511 := (or #735 #1269 #948 #1090 #1049 #795 #822 #1439 #1015 #844 #823 #916 #947)
+#1512 := [th-lemma arith assign-bounds 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1]: #1511
+#1513 := [unit-resolution #1512 #1510 #787 #1013 #882 #782 #903 #773 #1458 #1509 #1508 #1208 #1467]: #735
+#949 := (not #734)
+#1514 := (or #64 #949 #899)
+#1515 := [th-lemma arith triangle-eq]: #1514
+#1516 := [unit-resolution #1515 #1513 #1507]: #64
+#667 := (not #64)
+#647 := (or #667 #668)
+#644 := (not #66)
+#660 := (iff #644 #647)
+#648 := (not #647)
+#663 := (not #648)
+#662 := (iff #663 #647)
+#659 := [rewrite]: #662
+#664 := (iff #644 #663)
+#665 := (iff #66 #648)
+#666 := [rewrite]: #665
+#661 := [monotonicity #666]: #664
+#657 := [trans #661 #659]: #660
+#645 := [not-or-elim #634]: #644
+#658 := [mp #645 #657]: #647
+#1517 := [unit-resolution #658 #1516]: #668
+#736 := (* -1::Int f13)
+#737 := (+ f4 #736)
+#739 := (>= #737 0::Int)
+#1431 := (+ #235 #354)
+#1433 := (>= #1431 0::Int)
+#726 := (= #235 #343)
+#1518 := (or #337 #795 #822 #452 #1439 #481 #1015 #916 #947)
+#1519 := [th-lemma arith assign-bounds 1 1 1 1 1 1 1 1]: #1518
+#1520 := [unit-resolution #1519 #891 #1013 #882 #782 #1362 #1510 #1509 #1467]: #337
+#729 := (or #336 #726)
+#730 := [def-axiom]: #729
+#1521 := [unit-resolution #730 #1520]: #726
+#1522 := (not #726)
+#1523 := (or #1522 #1433)
+#1524 := [th-lemma arith triangle-eq]: #1523
+#1525 := [unit-resolution #1524 #1521]: #1433
+#731 := (<= #356 0::Int)
+#643 := [not-or-elim #634]: #357
+#767 := (or #362 #731)
+#768 := [th-lemma arith triangle-eq]: #767
+#769 := [unit-resolution #768 #643]: #731
+#824 := (not #731)
+#1526 := (not #1433)
+#1527 := (or #739 #1526 #1500 #1501 #1502 #1050 #1267 #1240 #824 #844 #823 #870 #871 #1268 #1048)
+#1528 := [th-lemma arith assign-bounds -1 1 -1 -1 1 2 -2 1 1 -1 1 -1 1 -1]: #1527
+#1529 := [unit-resolution #1528 #1458 #791 #907 #1217 #1494 #769 #773 #816 #1453 #1472 #1485 #1480 #1477 #1525]: #739
+#738 := (<= #737 0::Int)
+#1432 := (<= #1431 0::Int)
+#1530 := (or #1522 #1432)
+#1531 := [th-lemma arith triangle-eq]: #1530
+#1532 := [unit-resolution #1531 #1521]: #1432
+#1533 := [unit-resolution #959 #1452]: #756
+#1407 := (or #909 #751)
+#1408 := [th-lemma arith triangle-eq]: #1407
+#1534 := [unit-resolution #1408 #1471]: #751
+#732 := (>= #356 0::Int)
+#1535 := (or #362 #732)
+#1536 := [th-lemma arith triangle-eq]: #1535
+#1537 := [unit-resolution #1536 #643]: #732
+#838 := (not #751)
+#917 := (not #756)
+#1539 := (not #732)
+#1538 := (not #1432)
+#1540 := (or #738 #1538 #795 #822 #1439 #1015 #916 #947 #1539 #1503 #1504 #917 #1051 #838 #1178)
+#1541 := [th-lemma arith assign-bounds -1 1 -1 -1 1 2 -2 1 1 -1 1 -1 1 -1]: #1540
+#1542 := [unit-resolution #1541 #1510 #1013 #836 #882 #782 #1537 #1488 #897 #1534 #1509 #1533 #1497 #1467 #1532]: #738
+#765 := (not #739)
+#825 := (not #738)
+#1543 := (or #65 #825 #765)
+#1544 := [th-lemma arith triangle-eq]: #1543
+#1545 := [unit-resolution #1544 #1542 #1529 #1517]: false
+#1547 := [lemma #1545]: #1546
+#1572 := [unit-resolution #1547 #1362]: #481
+#1594 := (or #1027 #1502 #482 #1050 #1048 #394)
+#1595 := [th-lemma arith assign-bounds -1 -1 1 -1 1]: #1594
+#1596 := [unit-resolution #1595 #1480 #907 #1572 #1557 #791]: #394
+#1597 := [unit-resolution #712 #1596]: #709
+#1598 := [unit-resolution #1361 #1597]: #888
+#1573 := [unit-resolution #688 #1572]: #685
+#1574 := [unit-resolution #878 #1573]: #812
+#1680 := (or #1161 #482 #1001)
+#1681 := [th-lemma arith assign-bounds 2 -1]: #1680
+#1682 := [unit-resolution #1681 #1574 #1572]: #1161
+#1549 := [hypothesis]: #870
+#1558 := [hypothesis]: #677
+#1559 := [unit-resolution #832 #1558 #1549]: false
+#1560 := [lemma #1559]: #831
+#1561 := [unit-resolution #1560 #1549]: #830
+#1562 := [unit-resolution #680 #1561]: #511
+#1304 := (or #811 #510 #995)
+#1305 := [th-lemma arith assign-bounds 2 1]: #1304
+#1563 := [unit-resolution #1305 #1562 #1549]: #995
+#1564 := [unit-resolution #682 #1562]: #678
+#1565 := [unit-resolution #993 #1564 #1563]: false
+#1566 := [lemma #1565]: #811
+#1575 := (or #452 #1001 #870 #539)
+#1040 := (or #452 #1001 #1002 #870 #539 #871)
+#1041 := [th-lemma arith assign-bounds 1 1 1 1 1]: #1040
+#1576 := [unit-resolution #1041 #869 #816]: #1575
+#1577 := [unit-resolution #1576 #1574 #1566 #1362]: #539
+#1578 := [unit-resolution #672 #1577]: #669
+#1579 := [unit-resolution #1496 #1578]: #933
+#1636 := (or #423 #452)
+#886 := (+ #98 #586)
+#1570 := (>= #886 0::Int)
+#656 := (= #98 #575)
+#1580 := (or #452 #1001 #482 #540 #1079)
+#1581 := [unit-resolution #1109 #869 #897]: #1580
+#1582 := [unit-resolution #1581 #1577 #1572 #1362 #1574]: #1079
+#1548 := [hypothesis]: #1079
+#1567 := [hypothesis]: #678
+#1568 := [unit-resolution #1022 #1567 #1548]: false
+#1569 := [lemma #1568]: #1021
+#1583 := [unit-resolution #1569 #1582]: #991
+#1584 := [unit-resolution #682 #1583]: #510
+#1585 := [unit-resolution #680 #1584]: #677
+#1586 := [unit-resolution #959 #1585]: #756
+#1587 := (or #569 #1504 #917 #1051 #1503 #1439 #1015 #423 #452)
+#1588 := [th-lemma arith assign-bounds 1 1 1 1 1 1 1 1]: #1587
+#1589 := [unit-resolution #1588 #1066 #897 #1362 #1013 #1488 #1586 #1579 #1467]: #569
+#651 := (or #568 #656)
+#652 := [def-axiom]: #651
+#1590 := [unit-resolution #652 #1589]: #656
+#922 := (not #656)
+#1591 := (or #922 #1570)
+#1592 := [th-lemma arith triangle-eq]: #1591
+#1593 := [unit-resolution #1592 #1590]: #1570
+#1599 := [unit-resolution #778 #1578]: #762
+#1602 := (or #365 #1267 #1027 #423 #452)
+#1600 := (or #365 #1267 #1240 #1027 #1048 #423 #452)
+#1601 := [th-lemma arith assign-bounds 1 1 1 1 2 1]: #1600
+#1603 := [unit-resolution #1601 #907 #1217]: #1602
+#1604 := [unit-resolution #1603 #1066 #1557 #1362 #1598]: #365
+#1605 := [unit-resolution #720 #1604]: #717
+#1606 := [unit-resolution #1476 #1605]: #1200
+#1607 := (not #1570)
+#1608 := (or #734 #1499 #1500 #1501 #1502 #1050 #823 #1267 #1240 #1001 #1002 #844 #1607 #870 #871)
+#1609 := [th-lemma arith assign-bounds -1 -1 1 1 -1 1 -1 1 -1 1 -1 1 -2 2]: #1608
+#1610 := [unit-resolution #1609 #1606 #816 #869 #791 #1217 #1494 #1491 #1599 #1566 #1574 #1598 #773 #1480 #1593]: #734
+#1611 := [unit-resolution #856 #1597]: #748
+#887 := (<= #886 0::Int)
+#923 := (or #922 #887)
+#915 := (not #887)
+#920 := [hypothesis]: #915
+#921 := [hypothesis]: #656
+#924 := [th-lemma arith triangle-eq]: #923
+#925 := [unit-resolution #924 #921 #920]: false
+#926 := [lemma #925]: #923
+#1612 := [unit-resolution #926 #1590]: #887
+#940 := (or #876 #757)
+#941 := [th-lemma arith triangle-eq]: #940
+#1613 := [unit-resolution #941 #1573]: #757
+#1614 := [unit-resolution #1207 #1605]: #745
+#794 := (not #757)
+#1615 := (or #735 #948 #795 #822 #1439 #1015 #1504 #916 #947 #794 #1049 #1503 #915 #917 #1051)
+#1616 := [th-lemma arith assign-bounds -1 -1 1 1 -1 1 -1 1 -1 1 -1 1 -2 2]: #1615
+#1617 := [unit-resolution #1616 #1614 #897 #787 #1013 #882 #782 #903 #1488 #1613 #1612 #1611 #1586 #1579 #1467]: #735
+#1618 := [unit-resolution #1515 #1617 #1610]: #64
+#1619 := [unit-resolution #658 #1618]: #668
+#740 := (+ f12 #354)
+#1571 := (<= #740 0::Int)
+#725 := (= f12 #343)
+#1620 := (or #336 #1500 #1501 #1267 #1240 #423)
+#1621 := [th-lemma arith assign-bounds 1 1 1 1 1]: #1620
+#1622 := [unit-resolution #1621 #1066 #1494 #1217 #1598 #1606]: #336
+#727 := (or #337 #725)
+#728 := [def-axiom]: #727
+#1623 := [unit-resolution #728 #1622]: #725
+#1394 := (not #725)
+#1624 := (or #1394 #1571)
+#1625 := [th-lemma arith triangle-eq]: #1624
+#1626 := [unit-resolution #1625 #1623]: #1571
+#1627 := (not #1571)
+#1628 := (or #738 #1627 #1500 #1501 #1539 #1504 #917 #1051 #1503 #1439 #1015 #1177 #1178)
+#1629 := [th-lemma arith assign-bounds 1 1 -1 -1 1 -1 1 -1 1 -1 -1 1]: #1628
+#1630 := [unit-resolution #1629 #1175 #1013 #836 #1494 #1537 #1488 #1586 #1579 #897 #1467 #1606 #1626]: #738
+#742 := (>= #740 0::Int)
+#1395 := (or #1394 #742)
+#1396 := [th-lemma arith triangle-eq]: #1395
+#1631 := [unit-resolution #1396 #1623]: #742
+#796 := (not #742)
+#1632 := (or #739 #796 #795 #822 #824 #823 #870 #871 #844 #1502 #1050 #1027 #1048)
+#1633 := [th-lemma arith assign-bounds 1 1 -1 -1 1 -1 1 -1 1 -1 -1 1]: #1632
+#1634 := [unit-resolution #1633 #1614 #791 #907 #782 #769 #773 #816 #1631 #1599 #1566 #1557 #1480]: #739
+#1635 := [unit-resolution #1544 #1634 #1630 #1619]: false
+#1637 := [lemma #1635]: #1636
+#1683 := [unit-resolution #1637 #1362]: #423
+#1684 := [unit-resolution #704 #1683]: #701
+#1685 := [unit-resolution #911 #1684]: #750
+#1686 := [unit-resolution #1377 #1685 #1362]: #365
+#1687 := [unit-resolution #720 #1686]: #717
+#1688 := [unit-resolution #1476 #1687]: #1200
+#1689 := [unit-resolution #1207 #1687]: #745
+#1663 := (or #735 #844 #916 #795 #1439 #794 #917 #1503)
+#1652 := [hypothesis]: #1356
+#784 := [hypothesis]: #745
+#913 := [hypothesis]: #748
+#889 := [hypothesis]: #762
+#1653 := [hypothesis]: #933
+#898 := [hypothesis]: #756
+#788 := [hypothesis]: #757
+#1654 := [unit-resolution #1616 #900 #897 #787 #1013 #882 #782 #903 #1488 #788 #784 #913 #898 #1653 #1652]: #915
+#1655 := [unit-resolution #926 #1654]: #922
+#1656 := [unit-resolution #652 #1655]: #568
+#1657 := [unit-resolution #654 #1656]: #655
+#1658 := [unit-resolution #1265 #1657]: #986
+#1659 := (or #1064 #794 #1504 #569 #917 #1051 #1503)
+#1660 := [th-lemma arith assign-bounds -1 2 -2 -2 2 -2]: #1659
+#1661 := [unit-resolution #1660 #1656 #897 #788 #898 #1488 #1653]: #1064
+#1662 := [unit-resolution #1512 #1661 #1658 #787 #1013 #882 #782 #903 #773 #889 #913 #784 #900 #1652]: false
+#1664 := [lemma #1662]: #1663
+#1690 := [unit-resolution #1664 #1599 #1611 #1689 #1467 #1613 #1586 #1579]: #735
+#1650 := (or #739 #795 #844 #1502 #1500 #1268 #1267)
+#1642 := [hypothesis]: #741
+#766 := [hypothesis]: #765
+#1643 := [unit-resolution #1633 #766 #791 #907 #782 #769 #773 #816 #784 #889 #1566 #1557 #1642]: #796
+#1385 := [hypothesis]: #888
+#1644 := [hypothesis]: #1200
+#1645 := [unit-resolution #1528 #766 #791 #907 #1217 #1494 #769 #1644 #889 #1566 #1252 #1385 #1642 #816 #773]: #1526
+#1638 := [hypothesis]: #1526
+#1639 := [hypothesis]: #726
+#1640 := [unit-resolution #1524 #1639 #1638]: false
+#1641 := [lemma #1640]: #1523
+#1646 := [unit-resolution #1641 #1645]: #1522
+#1647 := [unit-resolution #730 #1646]: #336
+#1648 := [unit-resolution #728 #1647]: #725
+#1649 := [unit-resolution #1396 #1648 #1643]: false
+#1651 := [lemma #1649]: #1650
+#1691 := [unit-resolution #1651 #1689 #1599 #1480 #1688 #1685 #1598]: #739
+#1692 := [unit-resolution #1408 #1684]: #751
+#1675 := (or #738 #795 #916 #917 #1503 #1439 #838)
+#813 := [hypothesis]: #751
+#1668 := [hypothesis]: #825
+#1669 := [unit-resolution #1541 #1668 #1013 #836 #882 #782 #1537 #1652 #784 #813 #913 #898 #1653 #897 #1488]: #1538
+#1665 := [hypothesis]: #1538
+#1666 := [unit-resolution #1531 #1639 #1665]: false
+#1667 := [lemma #1666]: #1530
+#1670 := [unit-resolution #1667 #1669]: #1522
+#1671 := [unit-resolution #730 #1670]: #336
+#1672 := [unit-resolution #728 #1671]: #725
+#1673 := [unit-resolution #1625 #1672]: #1571
+#1674 := [th-lemma arith farkas 1/2 -1/2 1 -1 -1/2 1/2 -1/2 1/2 -1/2 1/2 -1/2 1/2 1/2 1/2 -1/2 1 #784 #782 #913 #882 #1488 #898 #897 #1653 #1652 #1013 #1673 #1537 #1668 #813 #836 #1671]: false
+#1676 := [lemma #1674]: #1675
+#1693 := [unit-resolution #1676 #1689 #1611 #1586 #1579 #1467 #1692]: #738
+#1694 := [unit-resolution #1544 #1693 #1691]: #65
+#1695 := [unit-resolution #658 #1694]: #667
+#1696 := [unit-resolution #1515 #1695 #1690]: #949
+#1697 := [unit-resolution #1506 #1696 #869 #791 #1217 #1494 #1688 #1579 #1682 #1598 #1480 #1488 #1491]: #1498
+#1698 := [unit-resolution #1609 #1696 #816 #869 #791 #1217 #1494 #1688 #1599 #1566 #1574 #1598 #773 #1480 #1491]: #1607
+#1677 := [hypothesis]: #1607
+#1678 := [unit-resolution #1592 #921 #1677]: false
+#1679 := [lemma #1678]: #1591
+#1699 := [unit-resolution #1679 #1698]: #922
+#1700 := [unit-resolution #652 #1699]: #568
+#1701 := [unit-resolution #654 #1700]: #655
+#1702 := [unit-resolution #1464 #1701 #1697]: false
+#1703 := [lemma #1702]: #452
+#1704 := [th-lemma arith farkas 1 1 1 1 1 #1703 #891 #1013 #1066 #1448]: false
+#1706 := [lemma #1704]: #1705
+#1714 := [unit-resolution #1706 #1066]: #481
+#1715 := [unit-resolution #688 #1714]: #685
+#1716 := [unit-resolution #941 #1715]: #757
+#1717 := [unit-resolution #696 #1703]: #693
+#1044 := (or #1007 #754)
+#1045 := [th-lemma arith triangle-eq]: #1044
+#1718 := [unit-resolution #1045 #1717]: #754
+#1076 := (or #838 #423 #1027)
+#1077 := [th-lemma arith assign-bounds 2 1]: #1076
+#1719 := [unit-resolution #1077 #1066 #1557]: #838
+#1720 := (or #750 #751)
+#1721 := [th-lemma arith farkas 1 1]: #1720
+#1722 := [unit-resolution #1721 #1719]: #750
+#1723 := [unit-resolution #1234 #1709]: #753
+#1726 := (or #1177 #1268 #394 #365 #1227)
+#1724 := (or #1177 #1268 #394 #365 #1227 #1240)
+#1725 := [th-lemma arith assign-bounds 1 2 2 2 2]: #1724
+#1727 := [unit-resolution #1725 #1217]: #1726
+#1728 := [unit-resolution #1727 #1723 #1722 #1122 #1175]: #365
+#1729 := [unit-resolution #720 #1728]: #717
+#1730 := [unit-resolution #1207 #1729]: #745
+#821 := (not #759)
+#1731 := (or #568 #823 #797 #1050 #794 #1049 #821 #394 #1048 #1027 #917 #1051)
+#1732 := [th-lemma arith assign-bounds 1 1 1 2 2 1 1 1 1 1 1]: #1731
+#1733 := [unit-resolution #1732 #1122 #897 #787 #791 #907 #773 #1716 #1718 #820 #1713 #1557]: #568
+#1734 := [unit-resolution #654 #1733]: #655
+#1735 := [unit-resolution #1265 #1734]: #986
+#1736 := [th-lemma arith assign-bounds 1 -1 -1 -1 1 1 -1 1 -3 3 1 -2 2 -2 2 -1 #1735 #903 #773 #1730 #782 #882 #1718 #791 #1716 #787 #820 #907 #1557 #1713 #897 #1712]: #735
+#1707 := (>= #758 0::Int)
+#1737 := (or #804 #1707)
+#1738 := [th-lemma arith triangle-eq]: #1737
+#1739 := [unit-resolution #1738 #819]: #1707
+#1740 := [unit-resolution #878 #1715]: #812
+#1741 := [unit-resolution #1476 #1729]: #1200
+#1742 := [unit-resolution #1464 #1734]: #1430
+#1743 := [th-lemma arith assign-bounds 1 -1 -1 -1 1 1 -1 1 -3 3 1 -2 2 -2 2 -1 #1742 #1491 #1488 #1741 #1494 #1217 #1448 #1013 #1740 #869 #1739 #836 #1175 #1566 #816 #1723]: #734
+#1744 := [unit-resolution #1515 #1743 #1736]: #64
+#1745 := [unit-resolution #1373 #1723 #1122]: #916
+#1746 := (or #888 #748)
+#1747 := [th-lemma arith farkas 1 1]: #1746
+#1748 := [unit-resolution #1747 #1745]: #888
+#1749 := [unit-resolution #1621 #1741 #1494 #1217 #1066 #1748]: #336
+#1750 := [unit-resolution #728 #1749]: #725
+#1751 := [unit-resolution #1396 #1750]: #742
+#1060 := (or #539 #795 #796 #739)
+#770 := [hypothesis]: #742
+#1025 := (or #510 #795 #796 #739 #539)
+#998 := [unit-resolution #997 #989 #816 #818 #994]: #481
+#999 := [unit-resolution #688 #998]: #685
+#1000 := [unit-resolution #878 #999]: #812
+#1005 := [unit-resolution #1004 #989 #816 #869 #818 #994 #1000]: #452
+#1006 := [unit-resolution #696 #1005]: #693
+#1010 := [unit-resolution #1009 #1006]: #988
+#1018 := [unit-resolution #1017 #989 #1013 #869 #1000 #1010]: #423
+#1019 := [unit-resolution #704 #1018]: #701
+#1020 := [unit-resolution #911 #1019]: #750
+#1024 := [th-lemma arith farkas -1 -1 1 1 -1 -1 1 1 -1 1 1 -1 1 #907 #784 #782 #820 #773 #770 #769 #766 #1023 #897 #1010 #1013 #1020]: false
+#1026 := [lemma #1024]: #1025
+#987 := [unit-resolution #1026 #818 #770 #766 #784]: #510
+#1032 := [unit-resolution #680 #987]: #677
+#1033 := [unit-resolution #959 #1032]: #756
+#1034 := [unit-resolution #832 #1032]: #811
+#1037 := [unit-resolution #1036 #987 #816 #818 #1034]: #481
+#1038 := [unit-resolution #688 #1037]: #685
+#1039 := [unit-resolution #878 #1038]: #812
+#1042 := [unit-resolution #1041 #818 #869 #816 #1034 #1039]: #452
+#1043 := [unit-resolution #696 #1042]: #693
+#1046 := [unit-resolution #1045 #1043]: #754
+#1047 := [unit-resolution #941 #1038]: #757
+#1052 := (or #1027 #1048 #796 #824 #739 #794 #1049 #797 #1050 #795 #822 #821 #823 #917 #1051)
+#1053 := [th-lemma arith assign-bounds -1 -1 1 1 -2 2 -1 1 -1 1 1 -1 -1 1]: #1052
+#1054 := [unit-resolution #1053 #1047 #787 #791 #907 #782 #769 #766 #770 #784 #897 #1046 #820 #1033 #773]: #1027
+#1055 := [unit-resolution #1031 #1054]: #954
+#1056 := [unit-resolution #706 #1055]: #423
+#1057 := [unit-resolution #704 #1056]: #701
+#1058 := [unit-resolution #911 #1057]: #750
+#1059 := [th-lemma arith farkas 1/2 -1/2 1 -1 -1/2 1/2 1/2 -1/2 -1/2 1/2 1/2 -1/2 -1/2 1/2 -1/2 1 #1046 #791 #1047 #787 #1058 #907 #784 #782 #820 #773 #770 #769 #766 #1033 #897 #1056]: false
+#1061 := [lemma #1059]: #1060
+#1752 := [unit-resolution #1061 #1751 #818 #1730]: #739
+#1753 := [unit-resolution #1625 #1750]: #1571
+#1754 := (not #1707)
+#1755 := (or #738 #1504 #1627 #1500 #1501 #1539 #1178 #1177 #1001 #1002 #1014 #1015 #870 #871 #1754)
+#1756 := [th-lemma arith assign-bounds 1 1 1 -1 -1 1 -1 2 -2 1 -1 1 -1 -1]: #1755
+#1757 := [unit-resolution #1756 #1741 #869 #1013 #836 #1494 #1537 #1488 #1566 #1740 #1448 #1175 #816 #1753 #1739]: #738
+#1758 := [unit-resolution #1544 #1757 #1752]: #65
+#1759 := [unit-resolution #658 #1758 #1744]: false
+#1761 := [lemma #1759]: #1760
+#1774 := [unit-resolution #1761 #818 #1066]: #394
+#1775 := [unit-resolution #712 #1774]: #709
+#1776 := [unit-resolution #1361 #1775]: #888
+#1779 := (or #1177 #1268 #1267 #365 #395)
+#1777 := (or #1177 #1268 #1267 #1240 #365 #395)