merged
authorwenzelm
Fri, 29 Oct 2010 23:15:01 +0200
changeset 40289 b89dae026bae
parent 40288 520199d8b66e (current diff)
parent 40287 4af3706bcd5d (diff)
child 40290 47f572aff50a
merged
--- a/CONTRIBUTORS	Fri Oct 29 21:41:14 2010 +0200
+++ b/CONTRIBUTORS	Fri Oct 29 23:15:01 2010 +0200
@@ -6,6 +6,9 @@
 Contributions to this Isabelle version
 --------------------------------------
 
+* October 2010: Dmitriy Traytel, TUM
+  Coercive subtyping via subtype constraints.
+
 * September 2010: Florian Haftmann, TUM
   Refined concepts for evaluation, i.e. normalisation of terms using different techniques.
 
--- a/src/HOL/IsaMakefile	Fri Oct 29 21:41:14 2010 +0200
+++ b/src/HOL/IsaMakefile	Fri Oct 29 23:15:01 2010 +0200
@@ -1012,8 +1012,8 @@
   Number_Theory/Primes.thy ex/Abstract_NAT.thy ex/Antiquote.thy		\
   ex/Arith_Examples.thy ex/Arithmetic_Series_Complex.thy ex/BT.thy	\
   ex/BinEx.thy ex/Binary.thy ex/CTL.thy ex/Chinese.thy			\
-  ex/Classical.thy ex/CodegenSML_Test.thy ex/Coherent.thy		\
-  ex/Dedekind_Real.thy ex/Efficient_Nat_examples.thy			\
+  ex/Classical.thy ex/CodegenSML_Test.thy ex/Coercion_Examples.thy	\
+  ex/Coherent.thy ex/Dedekind_Real.thy ex/Efficient_Nat_examples.thy	\
   ex/Eval_Examples.thy ex/Fundefs.thy ex/Gauge_Integration.thy		\
   ex/Groebner_Examples.thy ex/Guess.thy ex/HarmonicSeries.thy		\
   ex/Hebrew.thy ex/Hex_Bin_Examples.thy ex/Higher_Order_Logic.thy	\
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/ex/Coercion_Examples.thy	Fri Oct 29 23:15:01 2010 +0200
@@ -0,0 +1,180 @@
+(*  Title:      HOL/ex/Coercion_Examples.thy
+    Author:     Dmitriy Traytel, TU Muenchen
+
+Examples for coercive subtyping via subtype constraints.
+*)
+
+theory Coercion_Examples
+imports Main
+uses "~~/src/Tools/subtyping.ML"
+begin
+
+setup Subtyping.setup
+
+(* Coercion/type maps definitions*)
+
+consts func :: "(nat \<Rightarrow> int) \<Rightarrow> nat"
+consts arg :: "int \<Rightarrow> nat"
+(* Invariant arguments
+term "func arg"
+*)
+(* No subtype relation - constraint
+term "(1::nat)::int"
+*)
+consts func' :: "int \<Rightarrow> int"
+consts arg' :: "nat"
+(* No subtype relation - function application
+term "func' arg'"
+*)
+(* Uncomparable types in bound
+term "arg' = True"
+*)
+(* Unfullfilled type class requirement
+term "1 = True"
+*)
+(* Different constructors
+term "[1::int] = func"
+*)
+
+primrec nat_of_bool :: "bool \<Rightarrow> nat"
+where
+  "nat_of_bool False = 0"
+| "nat_of_bool True = 1"
+
+declare [[coercion nat_of_bool]]
+
+declare [[coercion int]]
+
+declare [[map_function map]]
+
+definition map_fun :: "('a \<Rightarrow> 'b) \<Rightarrow> ('c \<Rightarrow> 'd) \<Rightarrow> ('b \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'd)" where
+ "map_fun f g h = g o h o f"
+
+declare [[map_function "\<lambda> f g h . g o h o f"]]
+
+primrec map_pair :: "('a \<Rightarrow> 'c) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> ('a * 'b) \<Rightarrow> ('c * 'd)" where
+ "map_pair f g (x,y) = (f x, g y)"
+
+declare [[map_function map_pair]]
+
+(* Examples taken from the haskell draft implementation *)
+
+term "(1::nat) = True"
+
+term "True = (1::nat)"
+
+term "(1::nat) = (True = (1::nat))"
+
+term "op = (True = (1::nat))"
+
+term "[1::nat,True]"
+
+term "[True,1::nat]"
+
+term "[1::nat] = [True]"
+
+term "[True] = [1::nat]"
+
+term "[[True]] = [[1::nat]]"
+
+term "[[[[[[[[[[True]]]]]]]]]] = [[[[[[[[[[1::nat]]]]]]]]]]"
+
+term "[[True],[42::nat]] = rev [[True]]"
+
+term "rev [10000::nat] = [False, 420000::nat, True]"
+
+term "\<lambda> x . x = (3::nat)"
+
+term "(\<lambda> x . x = (3::nat)) True"
+
+term "map (\<lambda> x . x = (3::nat))"
+
+term "map (\<lambda> x . x = (3::nat)) [True,1::nat]"
+
+consts bnn :: "(bool \<Rightarrow> nat) \<Rightarrow> nat"
+consts nb :: "nat \<Rightarrow> bool"
+consts ab :: "'a \<Rightarrow> bool"
+
+term "bnn nb"
+
+term "bnn ab"
+
+term "\<lambda> x . x = (3::int)"
+
+term "map (\<lambda> x . x = (3::int)) [True]"
+
+term "map (\<lambda> x . x = (3::int)) [True,1::nat]"
+
+term "map (\<lambda> x . x = (3::int)) [True,1::nat,1::int]"
+
+term "[1::nat,True,1::int,False]"
+
+term "map (map (\<lambda> x . x = (3::int))) [[True],[1::nat],[True,1::int]]"
+
+consts cbool :: "'a \<Rightarrow> bool"
+consts cnat :: "'a \<Rightarrow> nat"
+consts cint :: "'a \<Rightarrow> int"
+
+term "[id, cbool, cnat, cint]"
+
+consts funfun :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b"
+consts flip :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> 'c"
+
+term "flip funfun"
+
+term "map funfun [id,cnat,cint,cbool]"
+
+term "map (flip funfun True)"
+
+term "map (flip funfun True) [id,cnat,cint,cbool]"
+
+consts ii :: "int \<Rightarrow> int"
+consts aaa :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"
+consts nlist :: "nat list"
+consts ilil :: "int list \<Rightarrow> int list"
+
+term "ii (aaa (1::nat) True)"
+
+term "map ii nlist"
+
+term "ilil nlist"
+
+(***************************************************)
+
+(* Other examples *)
+
+definition xs :: "bool list" where "xs = [True]"
+
+term "(xs::nat list)"
+
+term "(1::nat) = True"
+
+term "True = (1::nat)"
+
+term "int (1::nat)"
+
+term "((True::nat)::int)"
+
+term "1::nat"
+
+term "nat 1"
+
+definition C :: nat
+where "C = 123"
+
+consts g :: "int \<Rightarrow> int"
+consts h :: "nat \<Rightarrow> nat"
+
+term "(g (1::nat)) + (h 2)"
+
+term "g 1"
+
+term "1+(1::nat)"
+
+term "((1::int) + (1::nat),(1::int))"
+
+definition ys :: "bool list list list list list" where "ys=[[[[[True]]]]]"
+
+term "ys=[[[[[1::nat]]]]]"
+
+end
--- a/src/HOL/ex/ROOT.ML	Fri Oct 29 21:41:14 2010 +0200
+++ b/src/HOL/ex/ROOT.ML	Fri Oct 29 23:15:01 2010 +0200
@@ -13,6 +13,7 @@
 
 use_thys [
   "Iff_Oracle",
+  "Coercion_Examples",
   "Numeral",
   "Higher_Order_Logic",
   "Abstract_NAT",
--- a/src/Pure/type_infer.ML	Fri Oct 29 21:41:14 2010 +0200
+++ b/src/Pure/type_infer.ML	Fri Oct 29 23:15:01 2010 +0200
@@ -9,6 +9,7 @@
   val is_param: indexname -> bool
   val is_paramT: typ -> bool
   val param: int -> string * sort -> typ
+  val mk_param: int -> sort -> typ
   val anyT: sort -> typ
   val paramify_vars: typ -> typ
   val paramify_dummies: typ -> int -> typ * int
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/Tools/subtyping.ML	Fri Oct 29 23:15:01 2010 +0200
@@ -0,0 +1,769 @@
+(*  Title:      Tools/subtyping.ML
+    Author:     Dmitriy Traytel, TU Muenchen
+
+Coercive subtyping via subtype constraints.
+*)
+
+signature SUBTYPING =
+sig
+  datatype variance = COVARIANT | CONTRAVARIANT | INVARIANT
+  val infer_types: Proof.context -> (string -> typ option) -> (indexname -> typ option) ->
+    term list -> term list
+  val add_type_map: term -> Context.generic -> Context.generic
+  val add_coercion: term -> Context.generic -> Context.generic
+  val setup: theory -> theory
+end;
+
+structure Subtyping: SUBTYPING =
+struct
+
+(** coercions data **)
+
+datatype variance = COVARIANT | CONTRAVARIANT | INVARIANT
+
+datatype data = Data of
+  {coes: term Symreltab.table,  (*coercions table*)
+   coes_graph: unit Graph.T,  (*coercions graph*)
+   tmaps: (term * variance list) Symtab.table};  (*map functions*)
+
+fun make_data (coes, coes_graph, tmaps) =
+  Data {coes = coes, coes_graph = coes_graph, tmaps = tmaps};
+
+structure Data = Generic_Data
+(
+  type T = data;
+  val empty = make_data (Symreltab.empty, Graph.empty, Symtab.empty);
+  val extend = I;
+  fun merge
+    (Data {coes = coes1, coes_graph = coes_graph1, tmaps = tmaps1},
+      Data {coes = coes2, coes_graph = coes_graph2, tmaps = tmaps2}) =
+    make_data (Symreltab.merge (op aconv) (coes1, coes2),
+      Graph.merge (op =) (coes_graph1, coes_graph2),
+      Symtab.merge (eq_pair (op aconv) (op =)) (tmaps1, tmaps2));
+);
+
+fun map_data f =
+  Data.map (fn Data {coes, coes_graph, tmaps} =>
+    make_data (f (coes, coes_graph, tmaps)));
+
+fun map_coes f =
+  map_data (fn (coes, coes_graph, tmaps) =>
+    (f coes, coes_graph, tmaps));
+
+fun map_coes_graph f =
+  map_data (fn (coes, coes_graph, tmaps) =>
+    (coes, f coes_graph, tmaps));
+
+fun map_coes_and_graph f =
+  map_data (fn (coes, coes_graph, tmaps) =>
+    let val (coes', coes_graph') = f (coes, coes_graph);
+    in (coes', coes_graph', tmaps) end);
+
+fun map_tmaps f =
+  map_data (fn (coes, coes_graph, tmaps) =>
+    (coes, coes_graph, f tmaps));
+
+val rep_data = (fn Data args => args) o Data.get o Context.Proof;
+
+val coes_of = #coes o rep_data;
+val coes_graph_of = #coes_graph o rep_data;
+val tmaps_of = #tmaps o rep_data;
+
+
+
+(** utils **)
+
+fun nameT (Type (s, [])) = s;
+fun t_of s = Type (s, []);
+
+fun sort_of (TFree (_, S)) = SOME S
+  | sort_of (TVar (_, S)) = SOME S
+  | sort_of _ = NONE;
+
+val is_typeT = fn (Type _) => true | _ => false;
+val is_compT = fn (Type (_, _ :: _)) => true | _ => false;
+val is_freeT = fn (TFree _) => true | _ => false;
+val is_fixedvarT = fn (TVar (xi, _)) => not (Type_Infer.is_param xi) | _ => false;
+
+
+(* unification *)  (* TODO dup? needed for weak unification *)
+
+exception NO_UNIFIER of string * typ Vartab.table;
+
+fun unify weak ctxt =
+  let
+    val thy = ProofContext.theory_of ctxt;
+    val pp = Syntax.pp ctxt;
+    val arity_sorts = Type.arity_sorts pp (Sign.tsig_of thy);
+
+
+    (* adjust sorts of parameters *)
+
+    fun not_of_sort x S' S =
+      "Variable " ^ x ^ "::" ^ Syntax.string_of_sort ctxt S' ^ " not of sort " ^
+        Syntax.string_of_sort ctxt S;
+
+    fun meet (_, []) tye_idx = tye_idx
+      | meet (Type (a, Ts), S) (tye_idx as (tye, _)) =
+          meets (Ts, arity_sorts a S handle ERROR msg => raise NO_UNIFIER (msg, tye)) tye_idx
+      | meet (TFree (x, S'), S) (tye_idx as (tye, _)) =
+          if Sign.subsort thy (S', S) then tye_idx
+          else raise NO_UNIFIER (not_of_sort x S' S, tye)
+      | meet (TVar (xi, S'), S) (tye_idx as (tye, idx)) =
+          if Sign.subsort thy (S', S) then tye_idx
+          else if Type_Infer.is_param xi then
+            (Vartab.update_new
+              (xi, Type_Infer.mk_param idx (Sign.inter_sort thy (S', S))) tye, idx + 1)
+          else raise NO_UNIFIER (not_of_sort (Term.string_of_vname xi) S' S, tye)
+    and meets (T :: Ts, S :: Ss) (tye_idx as (tye, _)) =
+          meets (Ts, Ss) (meet (Type_Infer.deref tye T, S) tye_idx)
+      | meets _ tye_idx = tye_idx;
+
+    val weak_meet = if weak then fn _ => I else meet
+
+
+    (* occurs check and assignment *)
+
+    fun occurs_check tye xi (TVar (xi', _)) =
+          if xi = xi' then raise NO_UNIFIER ("Occurs check!", tye)
+          else
+            (case Vartab.lookup tye xi' of
+              NONE => ()
+            | SOME T => occurs_check tye xi T)
+      | occurs_check tye xi (Type (_, Ts)) = List.app (occurs_check tye xi) Ts
+      | occurs_check _ _ _ = ();
+
+    fun assign xi (T as TVar (xi', _)) S env =
+          if xi = xi' then env
+          else env |> weak_meet (T, S) |>> Vartab.update_new (xi, T)
+      | assign xi T S (env as (tye, _)) =
+          (occurs_check tye xi T; env |> weak_meet (T, S) |>> Vartab.update_new (xi, T));
+
+
+    (* unification *)
+
+    fun show_tycon (a, Ts) =
+      quote (Syntax.string_of_typ ctxt (Type (a, replicate (length Ts) dummyT)));
+
+    fun unif (T1, T2) (env as (tye, _)) =
+      (case pairself (`Type_Infer.is_paramT o Type_Infer.deref tye) (T1, T2) of
+        ((true, TVar (xi, S)), (_, T)) => assign xi T S env
+      | ((_, T), (true, TVar (xi, S))) => assign xi T S env
+      | ((_, Type (a, Ts)), (_, Type (b, Us))) =>
+          if weak andalso null Ts andalso null Us then env
+          else if a <> b then
+            raise NO_UNIFIER
+              ("Clash of types " ^ show_tycon (a, Ts) ^ " and " ^ show_tycon (b, Us), tye)
+          else fold unif (Ts ~~ Us) env
+      | ((_, T), (_, U)) => if T = U then env else raise NO_UNIFIER ("", tye));
+
+  in unif end;
+
+val weak_unify = unify true;
+val strong_unify = unify false;
+
+
+(* Typ_Graph shortcuts *)
+
+val add_edge = Typ_Graph.add_edge_acyclic;
+fun get_preds G T = Typ_Graph.all_preds G [T];
+fun get_succs G T = Typ_Graph.all_succs G [T];
+fun maybe_new_typnode T G = perhaps (try (Typ_Graph.new_node (T, ()))) G;
+fun maybe_new_typnodes Ts G = fold maybe_new_typnode Ts G;
+fun new_imm_preds G Ts =
+  subtract (op =) Ts (distinct (op =) (maps (Typ_Graph.imm_preds G) Ts));
+fun new_imm_succs G Ts =
+  subtract op= Ts (distinct (op =) (maps (Typ_Graph.imm_succs G) Ts));
+
+
+(* Graph shortcuts *)
+
+fun maybe_new_node s G = perhaps (try (Graph.new_node (s, ()))) G
+fun maybe_new_nodes ss G = fold maybe_new_node ss G
+
+
+
+(** error messages **)
+
+fun prep_output ctxt tye bs ts Ts =
+  let
+    val (Ts_bTs', ts') = Type_Infer.finish ctxt tye (Ts @ map snd bs, ts);
+    val (Ts', Ts'') = chop (length Ts) Ts_bTs';
+    fun prep t =
+      let val xs = rev (Term.variant_frees t (rev (map fst bs ~~ Ts'')))
+      in Term.subst_bounds (map Syntax.mark_boundT xs, t) end;
+  in (map prep ts', Ts') end;
+
+fun err_loose i = error ("Loose bound variable: B." ^ string_of_int i);
+
+fun inf_failed msg =
+  "Subtype inference failed" ^ (if msg = "" then "" else ": " ^ msg) ^ "\n\n";
+
+fun err_appl ctxt msg tye bs t T u U =
+  let val ([t', u'], [T', U']) = prep_output ctxt tye bs [t, u] [T, U]
+  in error (inf_failed msg ^ Type.appl_error (Syntax.pp ctxt) t' T' u' U' ^ "\n") end;
+
+fun err_subtype ctxt msg tye (bs, t $ u, U, V, U') =
+  err_appl ctxt msg tye bs t (U --> V) u U';
+
+fun err_list ctxt msg tye Ts =
+  let
+    val (_, Ts') = prep_output ctxt tye [] [] Ts;
+    val text = cat_lines ([inf_failed msg,
+      "Cannot unify a list of types that should be the same,",
+      "according to suptype dependencies:",
+      (Pretty.string_of (Pretty.list "[" "]" (map (Pretty.typ (Syntax.pp ctxt)) Ts')))]);
+  in
+    error text
+  end;
+
+fun err_bound ctxt msg tye packs =
+  let
+    val pp = Syntax.pp ctxt;
+    val (ts, Ts) = fold
+      (fn (bs, t $ u, U, _, U') => fn (ts, Ts) =>
+        let val (t', T') = prep_output ctxt tye bs [t, u] [U, U']
+        in (t' :: ts, T' :: Ts) end)
+      packs ([], []);
+    val text = cat_lines ([inf_failed msg, "Cannot fullfill subtype constraints:"] @
+        (map2 (fn [t, u] => fn [T, U] => Pretty.string_of (
+          Pretty.block [
+            Pretty.typ pp T, Pretty.brk 2, Pretty.str "<:", Pretty.brk 2, Pretty.typ pp U,
+            Pretty.brk 3, Pretty.str "from function application", Pretty.brk 2,
+            Pretty.block [Pretty.term pp t, Pretty.brk 1, Pretty.term pp u]]))
+        ts Ts))
+  in
+    error text
+  end;
+
+
+
+(** constraint generation **)
+
+fun generate_constraints ctxt =
+  let
+    fun gen cs _ (Const (_, T)) tye_idx = (T, tye_idx, cs)
+      | gen cs _ (Free (_, T)) tye_idx = (T, tye_idx, cs)
+      | gen cs _ (Var (_, T)) tye_idx = (T, tye_idx, cs)
+      | gen cs bs (Bound i) tye_idx =
+          (snd (nth bs i handle Subscript => err_loose i), tye_idx, cs)
+      | gen cs bs (Abs (x, T, t)) tye_idx =
+          let val (U, tye_idx', cs') = gen cs ((x, T) :: bs) t tye_idx
+          in (T --> U, tye_idx', cs') end
+      | gen cs bs (t $ u) tye_idx =
+          let
+            val (T, tye_idx', cs') = gen cs bs t tye_idx;
+            val (U', (tye, idx), cs'') = gen cs' bs u tye_idx';
+            val U = Type_Infer.mk_param idx [];
+            val V = Type_Infer.mk_param (idx + 1) [];
+            val tye_idx''= strong_unify ctxt (U --> V, T) (tye, idx + 2)
+              handle NO_UNIFIER (msg, tye') => err_appl ctxt msg tye' bs t T u U;
+            val error_pack = (bs, t $ u, U, V, U');
+          in (V, tye_idx'', ((U', U), error_pack) :: cs'') end;
+  in
+    gen [] []
+  end;
+
+
+
+(** constraint resolution **)
+
+exception BOUND_ERROR of string;
+
+fun process_constraints ctxt cs tye_idx =
+  let
+    val coes_graph = coes_graph_of ctxt;
+    val tmaps = tmaps_of ctxt;
+    val tsig = Sign.tsig_of (ProofContext.theory_of ctxt);
+    val pp = Syntax.pp ctxt;
+    val arity_sorts = Type.arity_sorts pp tsig;
+    val subsort = Type.subsort tsig;
+
+    fun split_cs _ [] = ([], [])
+      | split_cs f (c :: cs) =
+          (case pairself f (fst c) of
+            (false, false) => apsnd (cons c) (split_cs f cs)
+          | _ => apfst (cons c) (split_cs f cs));
+
+
+    (* check whether constraint simplification will terminate using weak unification *)
+
+    val _ = fold (fn (TU, error_pack) => fn tye_idx =>
+      (weak_unify ctxt TU tye_idx handle NO_UNIFIER (msg, tye) =>
+        err_subtype ctxt ("Weak unification of subtype constraints fails:\n" ^ msg)
+          tye error_pack)) cs tye_idx;
+
+
+    (* simplify constraints *)
+
+    fun simplify_constraints cs tye_idx =
+      let
+        fun contract a Ts Us error_pack done todo tye idx =
+          let
+            val arg_var =
+              (case Symtab.lookup tmaps a of
+                (*everything is invariant for unknown constructors*)
+                NONE => replicate (length Ts) INVARIANT
+              | SOME av => snd av);
+            fun new_constraints (variance, constraint) (cs, tye_idx) =
+              (case variance of
+                COVARIANT => (constraint :: cs, tye_idx)
+              | CONTRAVARIANT => (swap constraint :: cs, tye_idx)
+              | INVARIANT => (cs, strong_unify ctxt constraint tye_idx
+                  handle NO_UNIFIER (msg, tye) => err_subtype ctxt msg tye error_pack));
+            val (new, (tye', idx')) = apfst (fn cs => (cs ~~ replicate (length cs) error_pack))
+              (fold new_constraints (arg_var ~~ (Ts ~~ Us)) ([], (tye, idx)));
+            val test_update = is_compT orf is_freeT orf is_fixedvarT;
+            val (ch, done') =
+              if not (null new) then ([], done)
+              else split_cs (test_update o Type_Infer.deref tye') done;
+            val todo' = ch @ todo;
+          in
+            simplify done' (new @ todo') (tye', idx')
+          end
+        (*xi is definitely a parameter*)
+        and expand varleq xi S a Ts error_pack done todo tye idx =
+          let
+            val n = length Ts;
+            val args = map2 Type_Infer.mk_param (idx upto idx + n - 1) (arity_sorts a S);
+            val tye' = Vartab.update_new (xi, Type(a, args)) tye;
+            val (ch, done') = split_cs (is_compT o Type_Infer.deref tye') done;
+            val todo' = ch @ todo;
+            val new =
+              if varleq then (Type(a, args), Type (a, Ts))
+              else (Type (a, Ts), Type (a, args));
+          in
+            simplify done' ((new, error_pack) :: todo') (tye', idx + n)
+          end
+        (*TU is a pair of a parameter and a free/fixed variable*)
+        and eliminate TU error_pack done todo tye idx =
+          let
+            val [TVar (xi, S)] = filter Type_Infer.is_paramT TU;
+            val [T] = filter_out Type_Infer.is_paramT TU;
+            val SOME S' = sort_of T;
+            val test_update = if is_freeT T then is_freeT else is_fixedvarT;
+            val tye' = Vartab.update_new (xi, T) tye;
+            val (ch, done') = split_cs (test_update o Type_Infer.deref tye') done;
+            val todo' = ch @ todo;
+          in
+            if subsort (S', S) (*TODO check this*)
+            then simplify done' todo' (tye', idx)
+            else err_subtype ctxt "Sort mismatch" tye error_pack
+          end
+        and simplify done [] tye_idx = (done, tye_idx)
+          | simplify done (((T, U), error_pack) :: todo) (tye_idx as (tye, idx)) =
+              (case (Type_Infer.deref tye T, Type_Infer.deref tye U) of
+                (Type (a, []), Type (b, [])) =>
+                  if a = b then simplify done todo tye_idx
+                  else if Graph.is_edge coes_graph (a, b) then simplify done todo tye_idx
+                  else err_subtype ctxt (a ^ " is not a subtype of " ^ b) (fst tye_idx) error_pack
+              | (Type (a, Ts), Type (b, Us)) =>
+                  if a <> b then err_subtype ctxt "Different constructors" (fst tye_idx) error_pack
+                  else contract a Ts Us error_pack done todo tye idx
+              | (TVar (xi, S), Type (a, Ts as (_ :: _))) =>
+                  expand true xi S a Ts error_pack done todo tye idx
+              | (Type (a, Ts as (_ :: _)), TVar (xi, S)) =>
+                  expand false xi S a Ts error_pack done todo tye idx
+              | (T, U) =>
+                  if T = U then simplify done todo tye_idx
+                  else if exists (is_freeT orf is_fixedvarT) [T, U] andalso
+                    exists Type_Infer.is_paramT [T, U]
+                  then eliminate [T, U] error_pack done todo tye idx
+                  else if exists (is_freeT orf is_fixedvarT) [T, U]
+                  then err_subtype ctxt "Not eliminated free/fixed variables"
+                        (fst tye_idx) error_pack
+                  else simplify (((T, U), error_pack) :: done) todo tye_idx);
+      in
+        simplify [] cs tye_idx
+      end;
+
+
+    (* do simplification *)
+
+    val (cs', tye_idx') = simplify_constraints cs tye_idx;
+
+    fun find_error_pack lower T' =
+      map snd (filter (fn ((T, U), _) => if lower then T' = U else T' = T) cs');
+
+    fun unify_list (T :: Ts) tye_idx =
+      fold (fn U => fn tye_idx => strong_unify ctxt (T, U) tye_idx
+        handle NO_UNIFIER (msg, tye) => err_list ctxt msg tye (T :: Ts))
+      Ts tye_idx;
+
+    (*styps stands either for supertypes or for subtypes of a type T
+      in terms of the subtype-relation (excluding T itself)*)
+    fun styps super T =
+      (if super then Graph.imm_succs else Graph.imm_preds) coes_graph T
+        handle Graph.UNDEF _ => [];
+
+    fun minmax sup (T :: Ts) =
+      let
+        fun adjust T U = if sup then (T, U) else (U, T);
+        fun extract T [] = T
+          | extract T (U :: Us) =
+              if Graph.is_edge coes_graph (adjust T U) then extract T Us
+              else if Graph.is_edge coes_graph (adjust U T) then extract U Us
+              else raise BOUND_ERROR "Uncomparable types in type list";
+      in
+        t_of (extract T Ts)
+      end;
+
+    fun ex_styp_of_sort super T styps_and_sorts =
+      let
+        fun adjust T U = if super then (T, U) else (U, T);
+        fun styp_test U Ts = forall
+          (fn T => T = U orelse Graph.is_edge coes_graph (adjust U T)) Ts;
+        fun fitting Ts S U = Type.of_sort tsig (t_of U, S) andalso styp_test U Ts
+      in
+        forall (fn (Ts, S) => exists (fitting Ts S) (T :: styps super T)) styps_and_sorts
+      end;
+
+    (* computes the tightest possible, correct assignment for 'a::S
+       e.g. in the supremum case (sup = true):
+               ------- 'a::S---
+              /        /    \  \
+             /        /      \  \
+        'b::C1   'c::C2 ...  T1 T2 ...
+
+       sorts - list of sorts [C1, C2, ...]
+       T::Ts - non-empty list of base types [T1, T2, ...]
+    *)
+    fun tightest sup S styps_and_sorts (T :: Ts) =
+      let
+        fun restriction T = Type.of_sort tsig (t_of T, S)
+          andalso ex_styp_of_sort (not sup) T styps_and_sorts;
+        fun candidates T = inter (op =) (filter restriction (T :: styps sup T));
+      in
+        (case fold candidates Ts (filter restriction (T :: styps sup T)) of
+          [] => raise BOUND_ERROR ("No " ^ (if sup then "supremum" else "infimum"))
+        | [T] => t_of T
+        | Ts => minmax sup Ts)
+      end;
+
+    fun build_graph G [] tye_idx = (G, tye_idx)
+      | build_graph G ((T, U) :: cs) tye_idx =
+        if T = U then build_graph G cs tye_idx
+        else
+          let
+            val G' = maybe_new_typnodes [T, U] G;
+            val (G'', tye_idx') = (add_edge (T, U) G', tye_idx)
+              handle Typ_Graph.CYCLES cycles =>
+                let
+                  val (tye, idx) = fold unify_list cycles tye_idx
+                in
+                  (*all cycles collapse to one node,
+                    because all of them share at least the nodes x and y*)
+                  collapse (tye, idx) (distinct (op =) (flat cycles)) G
+                end;
+          in
+            build_graph G'' cs tye_idx'
+          end
+    and collapse (tye, idx) nodes G = (*nodes non-empty list*)
+      let
+        val T = hd nodes;
+        val P = new_imm_preds G nodes;
+        val S = new_imm_succs G nodes;
+        val G' = Typ_Graph.del_nodes (tl nodes) G;
+      in
+        build_graph G' (map (fn x => (x, T)) P @ map (fn x => (T, x)) S) (tye, idx)
+      end;
+
+    fun assign_bound lower G key (tye_idx as (tye, _)) =
+      if Type_Infer.is_paramT (Type_Infer.deref tye key) then
+        let
+          val TVar (xi, S) = Type_Infer.deref tye key;
+          val get_bound = if lower then get_preds else get_succs;
+          val raw_bound = get_bound G key;
+          val bound = map (Type_Infer.deref tye) raw_bound;
+          val not_params = filter_out Type_Infer.is_paramT bound;
+          fun to_fulfil T =
+            (case sort_of T of
+              NONE => NONE
+            | SOME S =>
+                SOME
+                  (map nameT
+                    (filter_out Type_Infer.is_paramT (map (Type_Infer.deref tye) (get_bound G T))),
+                      S));
+          val styps_and_sorts = distinct (op =) (map_filter to_fulfil raw_bound);
+          val assignment =
+            if null bound orelse null not_params then NONE
+            else SOME (tightest lower S styps_and_sorts (map nameT not_params)
+                handle BOUND_ERROR msg => err_bound ctxt msg tye (find_error_pack lower key))
+        in
+          (case assignment of
+            NONE => tye_idx
+          | SOME T =>
+              if Type_Infer.is_paramT T then tye_idx
+              else if lower then (*upper bound check*)
+                let
+                  val other_bound = map (Type_Infer.deref tye) (get_succs G key);
+                  val s = nameT T;
+                in
+                  if subset (op = o apfst nameT) (filter is_typeT other_bound, s :: styps true s)
+                  then apfst (Vartab.update (xi, T)) tye_idx
+                  else err_bound ctxt ("Assigned simple type " ^ s ^
+                    " clashes with the upper bound of variable " ^
+                    Syntax.string_of_typ ctxt (TVar(xi, S))) tye (find_error_pack (not lower) key)
+                end
+              else apfst (Vartab.update (xi, T)) tye_idx)
+        end
+      else tye_idx;
+
+    val assign_lb = assign_bound true;
+    val assign_ub = assign_bound false;
+
+    fun assign_alternating ts' ts G tye_idx =
+      if ts' = ts then tye_idx
+      else
+        let
+          val (tye_idx' as (tye, _)) = fold (assign_lb G) ts tye_idx
+            |> fold (assign_ub G) ts;
+        in
+          assign_alternating ts (filter (Type_Infer.is_paramT o Type_Infer.deref tye) ts) G tye_idx'
+        end;
+
+    (*Unify all weakly connected components of the constraint forest,
+      that contain only params. These are the only WCCs that contain
+      params anyway.*)
+    fun unify_params G (tye_idx as (tye, _)) =
+      let
+        val max_params =
+          filter (Type_Infer.is_paramT o Type_Infer.deref tye) (Typ_Graph.maximals G);
+        val to_unify = map (fn T => T :: get_preds G T) max_params;
+      in
+        fold unify_list to_unify tye_idx
+      end;
+
+    fun solve_constraints G tye_idx = tye_idx
+      |> assign_alternating [] (Typ_Graph.keys G) G
+      |> unify_params G;
+  in
+    build_graph Typ_Graph.empty (map fst cs') tye_idx'
+      |-> solve_constraints
+  end;
+
+
+
+(** coercion insertion **)
+
+fun insert_coercions ctxt tye ts =
+  let
+    fun deep_deref T =
+      (case Type_Infer.deref tye T of
+        Type (a, Ts) => Type (a, map deep_deref Ts)
+      | U => U);
+
+    fun gen_coercion ((Type (a, [])), (Type (b, []))) =
+          if a = b
+          then Abs (Name.uu, Type (a, []), Bound 0)
+          else
+            (case Symreltab.lookup (coes_of ctxt) (a, b) of
+              NONE => raise Fail (a ^ " is not a subtype of " ^ b)
+            | SOME co => co)
+      | gen_coercion ((Type (a, Ts)), (Type (b, Us))) =
+          if a <> b
+          then raise raise Fail ("Different constructors: " ^ a ^ " and " ^ b)
+          else
+            let
+              fun inst t Ts =
+                Term.subst_vars
+                  (((Term.add_tvar_namesT (fastype_of t) []) ~~ rev Ts), []) t;
+              fun sub_co (COVARIANT, TU) = gen_coercion TU
+                | sub_co (CONTRAVARIANT, TU) = gen_coercion (swap TU);
+              fun ts_of [] = []
+                | ts_of (Type ("fun", [x1, x2]) :: xs) = x1 :: x2 :: (ts_of xs);
+            in
+              (case Symtab.lookup (tmaps_of ctxt) a of
+                NONE => raise Fail ("No map function for " ^ a ^ " known")
+              | SOME tmap =>
+                  let
+                    val used_coes = map sub_co ((snd tmap) ~~ (Ts ~~ Us));
+                  in
+                    Term.list_comb
+                      (inst (fst tmap) (ts_of (map fastype_of used_coes)), used_coes)
+                  end)
+            end
+      | gen_coercion (T, U) =
+          if Type.could_unify (T, U)
+          then Abs (Name.uu, T, Bound 0)
+          else raise Fail ("Cannot generate coercion from "
+            ^ Syntax.string_of_typ ctxt T ^ " to " ^ Syntax.string_of_typ ctxt U);
+
+    fun insert _ (Const (c, T)) =
+          let val T' = deep_deref T;
+          in (Const (c, T'), T') end
+      | insert _ (Free (x, T)) =
+          let val T' = deep_deref T;
+          in (Free (x, T'), T') end
+      | insert _ (Var (xi, T)) =
+          let val T' = deep_deref T;
+          in (Var (xi, T'), T') end
+      | insert bs (Bound i) =
+          let val T = nth bs i handle Subscript =>
+            raise TYPE ("Loose bound variable: B." ^ string_of_int i, [], []);
+          in (Bound i, T) end
+      | insert bs (Abs (x, T, t)) =
+          let
+            val T' = deep_deref T;
+            val (t', T'') = insert (T' :: bs) t;
+          in
+            (Abs (x, T', t'), T' --> T'')
+          end
+      | insert bs (t $ u) =
+          let
+            val (t', Type ("fun", [U, T])) = insert bs t;
+            val (u', U') = insert bs u;
+          in
+            if U <> U'
+            then (t' $ (gen_coercion (U', U) $ u'), T)
+            else (t' $ u', T)
+          end
+  in
+    map (fst o insert []) ts
+  end;
+
+
+
+(** assembling the pipeline **)
+
+fun infer_types ctxt const_type var_type raw_ts =
+  let
+    val (idx, ts) = Type_Infer.prepare ctxt const_type var_type raw_ts;
+
+    fun gen_all t (tye_idx, constraints) =
+      let
+        val (_, tye_idx', constraints') = generate_constraints ctxt t tye_idx
+      in (tye_idx', constraints' @ constraints) end;
+
+    val (tye_idx, constraints) = fold gen_all ts ((Vartab.empty, idx), []);
+    val (tye, _) = process_constraints ctxt constraints tye_idx;
+    val ts' = insert_coercions ctxt tye ts;
+
+    val (_, ts'') = Type_Infer.finish ctxt tye ([], ts');
+  in ts'' end;
+
+
+
+(** installation **)
+
+(* term check *)
+
+fun coercion_infer_types ctxt =
+  infer_types ctxt
+    (try (Consts.the_constraint (ProofContext.consts_of ctxt)))
+    (ProofContext.def_type ctxt);
+
+val add_term_check =
+  Syntax.add_term_check ~100 "coercions"
+    (fn xs => fn ctxt =>
+      let val xs' = coercion_infer_types ctxt xs
+      in if eq_list (op aconv) (xs, xs') then NONE else SOME (xs', ctxt) end);
+
+
+(* declarations *)
+
+fun add_type_map raw_t context =
+  let
+    val ctxt = Context.proof_of context;
+    val t = singleton (Variable.polymorphic ctxt) raw_t;
+
+    fun err_str () = "\n\nthe general type signature for a map function is" ^
+      "\nf1 => f2 => ... => fn => C [x1, ..., xn] => C [x1, ..., xn]" ^
+      "\nwhere C is a constructor and fi is of type (xi => yi) or (yi => xi)";
+
+    fun gen_arg_var ([], []) = []
+      | gen_arg_var ((T, T') :: Ts, (U, U') :: Us) =
+          if T = U andalso T' = U' then COVARIANT :: gen_arg_var (Ts, Us)
+          else if T = U' andalso T' = U then CONTRAVARIANT :: gen_arg_var (Ts, Us)
+          else error ("Functions do not apply to arguments correctly:" ^ err_str ())
+      | gen_arg_var (_, _) =
+          error ("Different numbers of functions and arguments\n" ^ err_str ());
+
+    (* TODO: This function is only needed to introde the fun type map
+      function: "% f g h . g o h o f". There must be a better solution. *)
+    fun balanced (Type (_, [])) (Type (_, [])) = true
+      | balanced (Type (a, Ts)) (Type (b, Us)) =
+          a = b andalso forall I (map2 balanced Ts Us)
+      | balanced (TFree _) (TFree _) = true
+      | balanced (TVar _) (TVar _) = true
+      | balanced _ _ = false;
+
+    fun check_map_fun (pairs, []) (Type ("fun", [T as Type (C, Ts), U as Type (_, Us)])) =
+          if balanced T U
+          then ((pairs, Ts ~~ Us), C)
+          else if C = "fun"
+            then check_map_fun (pairs @ [(hd Ts, hd (tl Ts))], []) U
+            else error ("Not a proper map function:" ^ err_str ())
+      | check_map_fun _ _ = error ("Not a proper map function:" ^ err_str ());
+
+    val res = check_map_fun ([], []) (fastype_of t);
+    val res_av = gen_arg_var (fst res);
+  in
+    map_tmaps (Symtab.update (snd res, (t, res_av))) context
+  end;
+
+fun add_coercion raw_t context =
+  let
+    val ctxt = Context.proof_of context;
+    val t = singleton (Variable.polymorphic ctxt) raw_t;
+
+    fun err_coercion () = error ("Bad type for coercion " ^
+        Syntax.string_of_term ctxt t ^ ":\n" ^
+        Syntax.string_of_typ ctxt (fastype_of t));
+
+    val (Type ("fun", [T1, T2])) = fastype_of t
+      handle Bind => err_coercion ();
+
+    val a =
+      (case T1 of
+        Type (x, []) => x
+      | _ => err_coercion ());
+
+    val b =
+      (case T2 of
+        Type (x, []) => x
+      | _ => err_coercion ());
+
+    fun coercion_data_update (tab, G) =
+      let
+        val G' = maybe_new_nodes [a, b] G
+        val G'' = Graph.add_edge_trans_acyclic (a, b) G'
+          handle Graph.CYCLES _ => error (a ^ " is already a subtype of " ^ b ^
+            "!\n\nCannot add coercion of type: " ^ a ^ " => " ^ b);
+        val new_edges =
+          flat (Graph.dest G'' |> map (fn (x, ys) => ys |> map_filter (fn y =>
+            if Graph.is_edge G' (x, y) then NONE else SOME (x, y))));
+        val G_and_new = Graph.add_edge (a, b) G';
+
+        fun complex_coercion tab G (a, b) =
+          let
+            val path = hd (Graph.irreducible_paths G (a, b))
+            val path' = (fst (split_last path)) ~~ tl path
+          in Abs (Name.uu, Type (a, []),
+              fold (fn t => fn u => t $ u) (map (the o Symreltab.lookup tab) path') (Bound 0))
+          end;
+
+        val tab' = fold
+          (fn pair => fn tab => Symreltab.update (pair, complex_coercion tab G_and_new pair) tab)
+          (filter (fn pair => pair <> (a, b)) new_edges)
+          (Symreltab.update ((a, b), t) tab);
+      in
+        (tab', G'')
+      end;
+  in
+    map_coes_and_graph coercion_data_update context
+  end;
+
+
+(* theory setup *)
+
+val setup =
+  Context.theory_map add_term_check #>
+  Attrib.setup @{binding coercion}
+    (Args.term >> (fn t => Thm.declaration_attribute (K (add_coercion t))))
+    "declaration of new coercions" #>
+  Attrib.setup @{binding map_function}
+    (Args.term >> (fn t => Thm.declaration_attribute (K (add_type_map t))))
+    "declaration of new map functions";
+
+end;