--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/Tools/subtyping.ML Fri Oct 29 23:15:01 2010 +0200
@@ -0,0 +1,769 @@
+(* Title: Tools/subtyping.ML
+ Author: Dmitriy Traytel, TU Muenchen
+
+Coercive subtyping via subtype constraints.
+*)
+
+signature SUBTYPING =
+sig
+ datatype variance = COVARIANT | CONTRAVARIANT | INVARIANT
+ val infer_types: Proof.context -> (string -> typ option) -> (indexname -> typ option) ->
+ term list -> term list
+ val add_type_map: term -> Context.generic -> Context.generic
+ val add_coercion: term -> Context.generic -> Context.generic
+ val setup: theory -> theory
+end;
+
+structure Subtyping: SUBTYPING =
+struct
+
+(** coercions data **)
+
+datatype variance = COVARIANT | CONTRAVARIANT | INVARIANT
+
+datatype data = Data of
+ {coes: term Symreltab.table, (*coercions table*)
+ coes_graph: unit Graph.T, (*coercions graph*)
+ tmaps: (term * variance list) Symtab.table}; (*map functions*)
+
+fun make_data (coes, coes_graph, tmaps) =
+ Data {coes = coes, coes_graph = coes_graph, tmaps = tmaps};
+
+structure Data = Generic_Data
+(
+ type T = data;
+ val empty = make_data (Symreltab.empty, Graph.empty, Symtab.empty);
+ val extend = I;
+ fun merge
+ (Data {coes = coes1, coes_graph = coes_graph1, tmaps = tmaps1},
+ Data {coes = coes2, coes_graph = coes_graph2, tmaps = tmaps2}) =
+ make_data (Symreltab.merge (op aconv) (coes1, coes2),
+ Graph.merge (op =) (coes_graph1, coes_graph2),
+ Symtab.merge (eq_pair (op aconv) (op =)) (tmaps1, tmaps2));
+);
+
+fun map_data f =
+ Data.map (fn Data {coes, coes_graph, tmaps} =>
+ make_data (f (coes, coes_graph, tmaps)));
+
+fun map_coes f =
+ map_data (fn (coes, coes_graph, tmaps) =>
+ (f coes, coes_graph, tmaps));
+
+fun map_coes_graph f =
+ map_data (fn (coes, coes_graph, tmaps) =>
+ (coes, f coes_graph, tmaps));
+
+fun map_coes_and_graph f =
+ map_data (fn (coes, coes_graph, tmaps) =>
+ let val (coes', coes_graph') = f (coes, coes_graph);
+ in (coes', coes_graph', tmaps) end);
+
+fun map_tmaps f =
+ map_data (fn (coes, coes_graph, tmaps) =>
+ (coes, coes_graph, f tmaps));
+
+val rep_data = (fn Data args => args) o Data.get o Context.Proof;
+
+val coes_of = #coes o rep_data;
+val coes_graph_of = #coes_graph o rep_data;
+val tmaps_of = #tmaps o rep_data;
+
+
+
+(** utils **)
+
+fun nameT (Type (s, [])) = s;
+fun t_of s = Type (s, []);
+
+fun sort_of (TFree (_, S)) = SOME S
+ | sort_of (TVar (_, S)) = SOME S
+ | sort_of _ = NONE;
+
+val is_typeT = fn (Type _) => true | _ => false;
+val is_compT = fn (Type (_, _ :: _)) => true | _ => false;
+val is_freeT = fn (TFree _) => true | _ => false;
+val is_fixedvarT = fn (TVar (xi, _)) => not (Type_Infer.is_param xi) | _ => false;
+
+
+(* unification *) (* TODO dup? needed for weak unification *)
+
+exception NO_UNIFIER of string * typ Vartab.table;
+
+fun unify weak ctxt =
+ let
+ val thy = ProofContext.theory_of ctxt;
+ val pp = Syntax.pp ctxt;
+ val arity_sorts = Type.arity_sorts pp (Sign.tsig_of thy);
+
+
+ (* adjust sorts of parameters *)
+
+ fun not_of_sort x S' S =
+ "Variable " ^ x ^ "::" ^ Syntax.string_of_sort ctxt S' ^ " not of sort " ^
+ Syntax.string_of_sort ctxt S;
+
+ fun meet (_, []) tye_idx = tye_idx
+ | meet (Type (a, Ts), S) (tye_idx as (tye, _)) =
+ meets (Ts, arity_sorts a S handle ERROR msg => raise NO_UNIFIER (msg, tye)) tye_idx
+ | meet (TFree (x, S'), S) (tye_idx as (tye, _)) =
+ if Sign.subsort thy (S', S) then tye_idx
+ else raise NO_UNIFIER (not_of_sort x S' S, tye)
+ | meet (TVar (xi, S'), S) (tye_idx as (tye, idx)) =
+ if Sign.subsort thy (S', S) then tye_idx
+ else if Type_Infer.is_param xi then
+ (Vartab.update_new
+ (xi, Type_Infer.mk_param idx (Sign.inter_sort thy (S', S))) tye, idx + 1)
+ else raise NO_UNIFIER (not_of_sort (Term.string_of_vname xi) S' S, tye)
+ and meets (T :: Ts, S :: Ss) (tye_idx as (tye, _)) =
+ meets (Ts, Ss) (meet (Type_Infer.deref tye T, S) tye_idx)
+ | meets _ tye_idx = tye_idx;
+
+ val weak_meet = if weak then fn _ => I else meet
+
+
+ (* occurs check and assignment *)
+
+ fun occurs_check tye xi (TVar (xi', _)) =
+ if xi = xi' then raise NO_UNIFIER ("Occurs check!", tye)
+ else
+ (case Vartab.lookup tye xi' of
+ NONE => ()
+ | SOME T => occurs_check tye xi T)
+ | occurs_check tye xi (Type (_, Ts)) = List.app (occurs_check tye xi) Ts
+ | occurs_check _ _ _ = ();
+
+ fun assign xi (T as TVar (xi', _)) S env =
+ if xi = xi' then env
+ else env |> weak_meet (T, S) |>> Vartab.update_new (xi, T)
+ | assign xi T S (env as (tye, _)) =
+ (occurs_check tye xi T; env |> weak_meet (T, S) |>> Vartab.update_new (xi, T));
+
+
+ (* unification *)
+
+ fun show_tycon (a, Ts) =
+ quote (Syntax.string_of_typ ctxt (Type (a, replicate (length Ts) dummyT)));
+
+ fun unif (T1, T2) (env as (tye, _)) =
+ (case pairself (`Type_Infer.is_paramT o Type_Infer.deref tye) (T1, T2) of
+ ((true, TVar (xi, S)), (_, T)) => assign xi T S env
+ | ((_, T), (true, TVar (xi, S))) => assign xi T S env
+ | ((_, Type (a, Ts)), (_, Type (b, Us))) =>
+ if weak andalso null Ts andalso null Us then env
+ else if a <> b then
+ raise NO_UNIFIER
+ ("Clash of types " ^ show_tycon (a, Ts) ^ " and " ^ show_tycon (b, Us), tye)
+ else fold unif (Ts ~~ Us) env
+ | ((_, T), (_, U)) => if T = U then env else raise NO_UNIFIER ("", tye));
+
+ in unif end;
+
+val weak_unify = unify true;
+val strong_unify = unify false;
+
+
+(* Typ_Graph shortcuts *)
+
+val add_edge = Typ_Graph.add_edge_acyclic;
+fun get_preds G T = Typ_Graph.all_preds G [T];
+fun get_succs G T = Typ_Graph.all_succs G [T];
+fun maybe_new_typnode T G = perhaps (try (Typ_Graph.new_node (T, ()))) G;
+fun maybe_new_typnodes Ts G = fold maybe_new_typnode Ts G;
+fun new_imm_preds G Ts =
+ subtract (op =) Ts (distinct (op =) (maps (Typ_Graph.imm_preds G) Ts));
+fun new_imm_succs G Ts =
+ subtract op= Ts (distinct (op =) (maps (Typ_Graph.imm_succs G) Ts));
+
+
+(* Graph shortcuts *)
+
+fun maybe_new_node s G = perhaps (try (Graph.new_node (s, ()))) G
+fun maybe_new_nodes ss G = fold maybe_new_node ss G
+
+
+
+(** error messages **)
+
+fun prep_output ctxt tye bs ts Ts =
+ let
+ val (Ts_bTs', ts') = Type_Infer.finish ctxt tye (Ts @ map snd bs, ts);
+ val (Ts', Ts'') = chop (length Ts) Ts_bTs';
+ fun prep t =
+ let val xs = rev (Term.variant_frees t (rev (map fst bs ~~ Ts'')))
+ in Term.subst_bounds (map Syntax.mark_boundT xs, t) end;
+ in (map prep ts', Ts') end;
+
+fun err_loose i = error ("Loose bound variable: B." ^ string_of_int i);
+
+fun inf_failed msg =
+ "Subtype inference failed" ^ (if msg = "" then "" else ": " ^ msg) ^ "\n\n";
+
+fun err_appl ctxt msg tye bs t T u U =
+ let val ([t', u'], [T', U']) = prep_output ctxt tye bs [t, u] [T, U]
+ in error (inf_failed msg ^ Type.appl_error (Syntax.pp ctxt) t' T' u' U' ^ "\n") end;
+
+fun err_subtype ctxt msg tye (bs, t $ u, U, V, U') =
+ err_appl ctxt msg tye bs t (U --> V) u U';
+
+fun err_list ctxt msg tye Ts =
+ let
+ val (_, Ts') = prep_output ctxt tye [] [] Ts;
+ val text = cat_lines ([inf_failed msg,
+ "Cannot unify a list of types that should be the same,",
+ "according to suptype dependencies:",
+ (Pretty.string_of (Pretty.list "[" "]" (map (Pretty.typ (Syntax.pp ctxt)) Ts')))]);
+ in
+ error text
+ end;
+
+fun err_bound ctxt msg tye packs =
+ let
+ val pp = Syntax.pp ctxt;
+ val (ts, Ts) = fold
+ (fn (bs, t $ u, U, _, U') => fn (ts, Ts) =>
+ let val (t', T') = prep_output ctxt tye bs [t, u] [U, U']
+ in (t' :: ts, T' :: Ts) end)
+ packs ([], []);
+ val text = cat_lines ([inf_failed msg, "Cannot fullfill subtype constraints:"] @
+ (map2 (fn [t, u] => fn [T, U] => Pretty.string_of (
+ Pretty.block [
+ Pretty.typ pp T, Pretty.brk 2, Pretty.str "<:", Pretty.brk 2, Pretty.typ pp U,
+ Pretty.brk 3, Pretty.str "from function application", Pretty.brk 2,
+ Pretty.block [Pretty.term pp t, Pretty.brk 1, Pretty.term pp u]]))
+ ts Ts))
+ in
+ error text
+ end;
+
+
+
+(** constraint generation **)
+
+fun generate_constraints ctxt =
+ let
+ fun gen cs _ (Const (_, T)) tye_idx = (T, tye_idx, cs)
+ | gen cs _ (Free (_, T)) tye_idx = (T, tye_idx, cs)
+ | gen cs _ (Var (_, T)) tye_idx = (T, tye_idx, cs)
+ | gen cs bs (Bound i) tye_idx =
+ (snd (nth bs i handle Subscript => err_loose i), tye_idx, cs)
+ | gen cs bs (Abs (x, T, t)) tye_idx =
+ let val (U, tye_idx', cs') = gen cs ((x, T) :: bs) t tye_idx
+ in (T --> U, tye_idx', cs') end
+ | gen cs bs (t $ u) tye_idx =
+ let
+ val (T, tye_idx', cs') = gen cs bs t tye_idx;
+ val (U', (tye, idx), cs'') = gen cs' bs u tye_idx';
+ val U = Type_Infer.mk_param idx [];
+ val V = Type_Infer.mk_param (idx + 1) [];
+ val tye_idx''= strong_unify ctxt (U --> V, T) (tye, idx + 2)
+ handle NO_UNIFIER (msg, tye') => err_appl ctxt msg tye' bs t T u U;
+ val error_pack = (bs, t $ u, U, V, U');
+ in (V, tye_idx'', ((U', U), error_pack) :: cs'') end;
+ in
+ gen [] []
+ end;
+
+
+
+(** constraint resolution **)
+
+exception BOUND_ERROR of string;
+
+fun process_constraints ctxt cs tye_idx =
+ let
+ val coes_graph = coes_graph_of ctxt;
+ val tmaps = tmaps_of ctxt;
+ val tsig = Sign.tsig_of (ProofContext.theory_of ctxt);
+ val pp = Syntax.pp ctxt;
+ val arity_sorts = Type.arity_sorts pp tsig;
+ val subsort = Type.subsort tsig;
+
+ fun split_cs _ [] = ([], [])
+ | split_cs f (c :: cs) =
+ (case pairself f (fst c) of
+ (false, false) => apsnd (cons c) (split_cs f cs)
+ | _ => apfst (cons c) (split_cs f cs));
+
+
+ (* check whether constraint simplification will terminate using weak unification *)
+
+ val _ = fold (fn (TU, error_pack) => fn tye_idx =>
+ (weak_unify ctxt TU tye_idx handle NO_UNIFIER (msg, tye) =>
+ err_subtype ctxt ("Weak unification of subtype constraints fails:\n" ^ msg)
+ tye error_pack)) cs tye_idx;
+
+
+ (* simplify constraints *)
+
+ fun simplify_constraints cs tye_idx =
+ let
+ fun contract a Ts Us error_pack done todo tye idx =
+ let
+ val arg_var =
+ (case Symtab.lookup tmaps a of
+ (*everything is invariant for unknown constructors*)
+ NONE => replicate (length Ts) INVARIANT
+ | SOME av => snd av);
+ fun new_constraints (variance, constraint) (cs, tye_idx) =
+ (case variance of
+ COVARIANT => (constraint :: cs, tye_idx)
+ | CONTRAVARIANT => (swap constraint :: cs, tye_idx)
+ | INVARIANT => (cs, strong_unify ctxt constraint tye_idx
+ handle NO_UNIFIER (msg, tye) => err_subtype ctxt msg tye error_pack));
+ val (new, (tye', idx')) = apfst (fn cs => (cs ~~ replicate (length cs) error_pack))
+ (fold new_constraints (arg_var ~~ (Ts ~~ Us)) ([], (tye, idx)));
+ val test_update = is_compT orf is_freeT orf is_fixedvarT;
+ val (ch, done') =
+ if not (null new) then ([], done)
+ else split_cs (test_update o Type_Infer.deref tye') done;
+ val todo' = ch @ todo;
+ in
+ simplify done' (new @ todo') (tye', idx')
+ end
+ (*xi is definitely a parameter*)
+ and expand varleq xi S a Ts error_pack done todo tye idx =
+ let
+ val n = length Ts;
+ val args = map2 Type_Infer.mk_param (idx upto idx + n - 1) (arity_sorts a S);
+ val tye' = Vartab.update_new (xi, Type(a, args)) tye;
+ val (ch, done') = split_cs (is_compT o Type_Infer.deref tye') done;
+ val todo' = ch @ todo;
+ val new =
+ if varleq then (Type(a, args), Type (a, Ts))
+ else (Type (a, Ts), Type (a, args));
+ in
+ simplify done' ((new, error_pack) :: todo') (tye', idx + n)
+ end
+ (*TU is a pair of a parameter and a free/fixed variable*)
+ and eliminate TU error_pack done todo tye idx =
+ let
+ val [TVar (xi, S)] = filter Type_Infer.is_paramT TU;
+ val [T] = filter_out Type_Infer.is_paramT TU;
+ val SOME S' = sort_of T;
+ val test_update = if is_freeT T then is_freeT else is_fixedvarT;
+ val tye' = Vartab.update_new (xi, T) tye;
+ val (ch, done') = split_cs (test_update o Type_Infer.deref tye') done;
+ val todo' = ch @ todo;
+ in
+ if subsort (S', S) (*TODO check this*)
+ then simplify done' todo' (tye', idx)
+ else err_subtype ctxt "Sort mismatch" tye error_pack
+ end
+ and simplify done [] tye_idx = (done, tye_idx)
+ | simplify done (((T, U), error_pack) :: todo) (tye_idx as (tye, idx)) =
+ (case (Type_Infer.deref tye T, Type_Infer.deref tye U) of
+ (Type (a, []), Type (b, [])) =>
+ if a = b then simplify done todo tye_idx
+ else if Graph.is_edge coes_graph (a, b) then simplify done todo tye_idx
+ else err_subtype ctxt (a ^ " is not a subtype of " ^ b) (fst tye_idx) error_pack
+ | (Type (a, Ts), Type (b, Us)) =>
+ if a <> b then err_subtype ctxt "Different constructors" (fst tye_idx) error_pack
+ else contract a Ts Us error_pack done todo tye idx
+ | (TVar (xi, S), Type (a, Ts as (_ :: _))) =>
+ expand true xi S a Ts error_pack done todo tye idx
+ | (Type (a, Ts as (_ :: _)), TVar (xi, S)) =>
+ expand false xi S a Ts error_pack done todo tye idx
+ | (T, U) =>
+ if T = U then simplify done todo tye_idx
+ else if exists (is_freeT orf is_fixedvarT) [T, U] andalso
+ exists Type_Infer.is_paramT [T, U]
+ then eliminate [T, U] error_pack done todo tye idx
+ else if exists (is_freeT orf is_fixedvarT) [T, U]
+ then err_subtype ctxt "Not eliminated free/fixed variables"
+ (fst tye_idx) error_pack
+ else simplify (((T, U), error_pack) :: done) todo tye_idx);
+ in
+ simplify [] cs tye_idx
+ end;
+
+
+ (* do simplification *)
+
+ val (cs', tye_idx') = simplify_constraints cs tye_idx;
+
+ fun find_error_pack lower T' =
+ map snd (filter (fn ((T, U), _) => if lower then T' = U else T' = T) cs');
+
+ fun unify_list (T :: Ts) tye_idx =
+ fold (fn U => fn tye_idx => strong_unify ctxt (T, U) tye_idx
+ handle NO_UNIFIER (msg, tye) => err_list ctxt msg tye (T :: Ts))
+ Ts tye_idx;
+
+ (*styps stands either for supertypes or for subtypes of a type T
+ in terms of the subtype-relation (excluding T itself)*)
+ fun styps super T =
+ (if super then Graph.imm_succs else Graph.imm_preds) coes_graph T
+ handle Graph.UNDEF _ => [];
+
+ fun minmax sup (T :: Ts) =
+ let
+ fun adjust T U = if sup then (T, U) else (U, T);
+ fun extract T [] = T
+ | extract T (U :: Us) =
+ if Graph.is_edge coes_graph (adjust T U) then extract T Us
+ else if Graph.is_edge coes_graph (adjust U T) then extract U Us
+ else raise BOUND_ERROR "Uncomparable types in type list";
+ in
+ t_of (extract T Ts)
+ end;
+
+ fun ex_styp_of_sort super T styps_and_sorts =
+ let
+ fun adjust T U = if super then (T, U) else (U, T);
+ fun styp_test U Ts = forall
+ (fn T => T = U orelse Graph.is_edge coes_graph (adjust U T)) Ts;
+ fun fitting Ts S U = Type.of_sort tsig (t_of U, S) andalso styp_test U Ts
+ in
+ forall (fn (Ts, S) => exists (fitting Ts S) (T :: styps super T)) styps_and_sorts
+ end;
+
+ (* computes the tightest possible, correct assignment for 'a::S
+ e.g. in the supremum case (sup = true):
+ ------- 'a::S---
+ / / \ \
+ / / \ \
+ 'b::C1 'c::C2 ... T1 T2 ...
+
+ sorts - list of sorts [C1, C2, ...]
+ T::Ts - non-empty list of base types [T1, T2, ...]
+ *)
+ fun tightest sup S styps_and_sorts (T :: Ts) =
+ let
+ fun restriction T = Type.of_sort tsig (t_of T, S)
+ andalso ex_styp_of_sort (not sup) T styps_and_sorts;
+ fun candidates T = inter (op =) (filter restriction (T :: styps sup T));
+ in
+ (case fold candidates Ts (filter restriction (T :: styps sup T)) of
+ [] => raise BOUND_ERROR ("No " ^ (if sup then "supremum" else "infimum"))
+ | [T] => t_of T
+ | Ts => minmax sup Ts)
+ end;
+
+ fun build_graph G [] tye_idx = (G, tye_idx)
+ | build_graph G ((T, U) :: cs) tye_idx =
+ if T = U then build_graph G cs tye_idx
+ else
+ let
+ val G' = maybe_new_typnodes [T, U] G;
+ val (G'', tye_idx') = (add_edge (T, U) G', tye_idx)
+ handle Typ_Graph.CYCLES cycles =>
+ let
+ val (tye, idx) = fold unify_list cycles tye_idx
+ in
+ (*all cycles collapse to one node,
+ because all of them share at least the nodes x and y*)
+ collapse (tye, idx) (distinct (op =) (flat cycles)) G
+ end;
+ in
+ build_graph G'' cs tye_idx'
+ end
+ and collapse (tye, idx) nodes G = (*nodes non-empty list*)
+ let
+ val T = hd nodes;
+ val P = new_imm_preds G nodes;
+ val S = new_imm_succs G nodes;
+ val G' = Typ_Graph.del_nodes (tl nodes) G;
+ in
+ build_graph G' (map (fn x => (x, T)) P @ map (fn x => (T, x)) S) (tye, idx)
+ end;
+
+ fun assign_bound lower G key (tye_idx as (tye, _)) =
+ if Type_Infer.is_paramT (Type_Infer.deref tye key) then
+ let
+ val TVar (xi, S) = Type_Infer.deref tye key;
+ val get_bound = if lower then get_preds else get_succs;
+ val raw_bound = get_bound G key;
+ val bound = map (Type_Infer.deref tye) raw_bound;
+ val not_params = filter_out Type_Infer.is_paramT bound;
+ fun to_fulfil T =
+ (case sort_of T of
+ NONE => NONE
+ | SOME S =>
+ SOME
+ (map nameT
+ (filter_out Type_Infer.is_paramT (map (Type_Infer.deref tye) (get_bound G T))),
+ S));
+ val styps_and_sorts = distinct (op =) (map_filter to_fulfil raw_bound);
+ val assignment =
+ if null bound orelse null not_params then NONE
+ else SOME (tightest lower S styps_and_sorts (map nameT not_params)
+ handle BOUND_ERROR msg => err_bound ctxt msg tye (find_error_pack lower key))
+ in
+ (case assignment of
+ NONE => tye_idx
+ | SOME T =>
+ if Type_Infer.is_paramT T then tye_idx
+ else if lower then (*upper bound check*)
+ let
+ val other_bound = map (Type_Infer.deref tye) (get_succs G key);
+ val s = nameT T;
+ in
+ if subset (op = o apfst nameT) (filter is_typeT other_bound, s :: styps true s)
+ then apfst (Vartab.update (xi, T)) tye_idx
+ else err_bound ctxt ("Assigned simple type " ^ s ^
+ " clashes with the upper bound of variable " ^
+ Syntax.string_of_typ ctxt (TVar(xi, S))) tye (find_error_pack (not lower) key)
+ end
+ else apfst (Vartab.update (xi, T)) tye_idx)
+ end
+ else tye_idx;
+
+ val assign_lb = assign_bound true;
+ val assign_ub = assign_bound false;
+
+ fun assign_alternating ts' ts G tye_idx =
+ if ts' = ts then tye_idx
+ else
+ let
+ val (tye_idx' as (tye, _)) = fold (assign_lb G) ts tye_idx
+ |> fold (assign_ub G) ts;
+ in
+ assign_alternating ts (filter (Type_Infer.is_paramT o Type_Infer.deref tye) ts) G tye_idx'
+ end;
+
+ (*Unify all weakly connected components of the constraint forest,
+ that contain only params. These are the only WCCs that contain
+ params anyway.*)
+ fun unify_params G (tye_idx as (tye, _)) =
+ let
+ val max_params =
+ filter (Type_Infer.is_paramT o Type_Infer.deref tye) (Typ_Graph.maximals G);
+ val to_unify = map (fn T => T :: get_preds G T) max_params;
+ in
+ fold unify_list to_unify tye_idx
+ end;
+
+ fun solve_constraints G tye_idx = tye_idx
+ |> assign_alternating [] (Typ_Graph.keys G) G
+ |> unify_params G;
+ in
+ build_graph Typ_Graph.empty (map fst cs') tye_idx'
+ |-> solve_constraints
+ end;
+
+
+
+(** coercion insertion **)
+
+fun insert_coercions ctxt tye ts =
+ let
+ fun deep_deref T =
+ (case Type_Infer.deref tye T of
+ Type (a, Ts) => Type (a, map deep_deref Ts)
+ | U => U);
+
+ fun gen_coercion ((Type (a, [])), (Type (b, []))) =
+ if a = b
+ then Abs (Name.uu, Type (a, []), Bound 0)
+ else
+ (case Symreltab.lookup (coes_of ctxt) (a, b) of
+ NONE => raise Fail (a ^ " is not a subtype of " ^ b)
+ | SOME co => co)
+ | gen_coercion ((Type (a, Ts)), (Type (b, Us))) =
+ if a <> b
+ then raise raise Fail ("Different constructors: " ^ a ^ " and " ^ b)
+ else
+ let
+ fun inst t Ts =
+ Term.subst_vars
+ (((Term.add_tvar_namesT (fastype_of t) []) ~~ rev Ts), []) t;
+ fun sub_co (COVARIANT, TU) = gen_coercion TU
+ | sub_co (CONTRAVARIANT, TU) = gen_coercion (swap TU);
+ fun ts_of [] = []
+ | ts_of (Type ("fun", [x1, x2]) :: xs) = x1 :: x2 :: (ts_of xs);
+ in
+ (case Symtab.lookup (tmaps_of ctxt) a of
+ NONE => raise Fail ("No map function for " ^ a ^ " known")
+ | SOME tmap =>
+ let
+ val used_coes = map sub_co ((snd tmap) ~~ (Ts ~~ Us));
+ in
+ Term.list_comb
+ (inst (fst tmap) (ts_of (map fastype_of used_coes)), used_coes)
+ end)
+ end
+ | gen_coercion (T, U) =
+ if Type.could_unify (T, U)
+ then Abs (Name.uu, T, Bound 0)
+ else raise Fail ("Cannot generate coercion from "
+ ^ Syntax.string_of_typ ctxt T ^ " to " ^ Syntax.string_of_typ ctxt U);
+
+ fun insert _ (Const (c, T)) =
+ let val T' = deep_deref T;
+ in (Const (c, T'), T') end
+ | insert _ (Free (x, T)) =
+ let val T' = deep_deref T;
+ in (Free (x, T'), T') end
+ | insert _ (Var (xi, T)) =
+ let val T' = deep_deref T;
+ in (Var (xi, T'), T') end
+ | insert bs (Bound i) =
+ let val T = nth bs i handle Subscript =>
+ raise TYPE ("Loose bound variable: B." ^ string_of_int i, [], []);
+ in (Bound i, T) end
+ | insert bs (Abs (x, T, t)) =
+ let
+ val T' = deep_deref T;
+ val (t', T'') = insert (T' :: bs) t;
+ in
+ (Abs (x, T', t'), T' --> T'')
+ end
+ | insert bs (t $ u) =
+ let
+ val (t', Type ("fun", [U, T])) = insert bs t;
+ val (u', U') = insert bs u;
+ in
+ if U <> U'
+ then (t' $ (gen_coercion (U', U) $ u'), T)
+ else (t' $ u', T)
+ end
+ in
+ map (fst o insert []) ts
+ end;
+
+
+
+(** assembling the pipeline **)
+
+fun infer_types ctxt const_type var_type raw_ts =
+ let
+ val (idx, ts) = Type_Infer.prepare ctxt const_type var_type raw_ts;
+
+ fun gen_all t (tye_idx, constraints) =
+ let
+ val (_, tye_idx', constraints') = generate_constraints ctxt t tye_idx
+ in (tye_idx', constraints' @ constraints) end;
+
+ val (tye_idx, constraints) = fold gen_all ts ((Vartab.empty, idx), []);
+ val (tye, _) = process_constraints ctxt constraints tye_idx;
+ val ts' = insert_coercions ctxt tye ts;
+
+ val (_, ts'') = Type_Infer.finish ctxt tye ([], ts');
+ in ts'' end;
+
+
+
+(** installation **)
+
+(* term check *)
+
+fun coercion_infer_types ctxt =
+ infer_types ctxt
+ (try (Consts.the_constraint (ProofContext.consts_of ctxt)))
+ (ProofContext.def_type ctxt);
+
+val add_term_check =
+ Syntax.add_term_check ~100 "coercions"
+ (fn xs => fn ctxt =>
+ let val xs' = coercion_infer_types ctxt xs
+ in if eq_list (op aconv) (xs, xs') then NONE else SOME (xs', ctxt) end);
+
+
+(* declarations *)
+
+fun add_type_map raw_t context =
+ let
+ val ctxt = Context.proof_of context;
+ val t = singleton (Variable.polymorphic ctxt) raw_t;
+
+ fun err_str () = "\n\nthe general type signature for a map function is" ^
+ "\nf1 => f2 => ... => fn => C [x1, ..., xn] => C [x1, ..., xn]" ^
+ "\nwhere C is a constructor and fi is of type (xi => yi) or (yi => xi)";
+
+ fun gen_arg_var ([], []) = []
+ | gen_arg_var ((T, T') :: Ts, (U, U') :: Us) =
+ if T = U andalso T' = U' then COVARIANT :: gen_arg_var (Ts, Us)
+ else if T = U' andalso T' = U then CONTRAVARIANT :: gen_arg_var (Ts, Us)
+ else error ("Functions do not apply to arguments correctly:" ^ err_str ())
+ | gen_arg_var (_, _) =
+ error ("Different numbers of functions and arguments\n" ^ err_str ());
+
+ (* TODO: This function is only needed to introde the fun type map
+ function: "% f g h . g o h o f". There must be a better solution. *)
+ fun balanced (Type (_, [])) (Type (_, [])) = true
+ | balanced (Type (a, Ts)) (Type (b, Us)) =
+ a = b andalso forall I (map2 balanced Ts Us)
+ | balanced (TFree _) (TFree _) = true
+ | balanced (TVar _) (TVar _) = true
+ | balanced _ _ = false;
+
+ fun check_map_fun (pairs, []) (Type ("fun", [T as Type (C, Ts), U as Type (_, Us)])) =
+ if balanced T U
+ then ((pairs, Ts ~~ Us), C)
+ else if C = "fun"
+ then check_map_fun (pairs @ [(hd Ts, hd (tl Ts))], []) U
+ else error ("Not a proper map function:" ^ err_str ())
+ | check_map_fun _ _ = error ("Not a proper map function:" ^ err_str ());
+
+ val res = check_map_fun ([], []) (fastype_of t);
+ val res_av = gen_arg_var (fst res);
+ in
+ map_tmaps (Symtab.update (snd res, (t, res_av))) context
+ end;
+
+fun add_coercion raw_t context =
+ let
+ val ctxt = Context.proof_of context;
+ val t = singleton (Variable.polymorphic ctxt) raw_t;
+
+ fun err_coercion () = error ("Bad type for coercion " ^
+ Syntax.string_of_term ctxt t ^ ":\n" ^
+ Syntax.string_of_typ ctxt (fastype_of t));
+
+ val (Type ("fun", [T1, T2])) = fastype_of t
+ handle Bind => err_coercion ();
+
+ val a =
+ (case T1 of
+ Type (x, []) => x
+ | _ => err_coercion ());
+
+ val b =
+ (case T2 of
+ Type (x, []) => x
+ | _ => err_coercion ());
+
+ fun coercion_data_update (tab, G) =
+ let
+ val G' = maybe_new_nodes [a, b] G
+ val G'' = Graph.add_edge_trans_acyclic (a, b) G'
+ handle Graph.CYCLES _ => error (a ^ " is already a subtype of " ^ b ^
+ "!\n\nCannot add coercion of type: " ^ a ^ " => " ^ b);
+ val new_edges =
+ flat (Graph.dest G'' |> map (fn (x, ys) => ys |> map_filter (fn y =>
+ if Graph.is_edge G' (x, y) then NONE else SOME (x, y))));
+ val G_and_new = Graph.add_edge (a, b) G';
+
+ fun complex_coercion tab G (a, b) =
+ let
+ val path = hd (Graph.irreducible_paths G (a, b))
+ val path' = (fst (split_last path)) ~~ tl path
+ in Abs (Name.uu, Type (a, []),
+ fold (fn t => fn u => t $ u) (map (the o Symreltab.lookup tab) path') (Bound 0))
+ end;
+
+ val tab' = fold
+ (fn pair => fn tab => Symreltab.update (pair, complex_coercion tab G_and_new pair) tab)
+ (filter (fn pair => pair <> (a, b)) new_edges)
+ (Symreltab.update ((a, b), t) tab);
+ in
+ (tab', G'')
+ end;
+ in
+ map_coes_and_graph coercion_data_update context
+ end;
+
+
+(* theory setup *)
+
+val setup =
+ Context.theory_map add_term_check #>
+ Attrib.setup @{binding coercion}
+ (Args.term >> (fn t => Thm.declaration_attribute (K (add_coercion t))))
+ "declaration of new coercions" #>
+ Attrib.setup @{binding map_function}
+ (Args.term >> (fn t => Thm.declaration_attribute (K (add_type_map t))))
+ "declaration of new map functions";
+
+end;