uniform naming
authornipkow
Mon, 14 Jan 2019 14:46:12 +0100
changeset 69654 bc758f4f09e5
parent 69649 e61b0b819d28
child 69655 2b56cbb02e8a
uniform naming
src/HOL/Analysis/Nonnegative_Lebesgue_Integration.thy
src/HOL/Groups_Big.thy
src/HOL/Hoare_Parallel/OG_Examples.thy
src/HOL/Library/FSet.thy
src/HOL/Number_Theory/Gauss.thy
src/HOL/Probability/Information.thy
src/HOL/Transcendental.thy
--- a/src/HOL/Analysis/Nonnegative_Lebesgue_Integration.thy	Sun Jan 13 20:25:41 2019 +0100
+++ b/src/HOL/Analysis/Nonnegative_Lebesgue_Integration.thy	Mon Jan 14 14:46:12 2019 +0100
@@ -900,10 +900,6 @@
   "(\<And>x. x \<in> space M =simp=> u x = v x) \<Longrightarrow> integral\<^sup>N M u = integral\<^sup>N M v"
   by (auto intro: nn_integral_cong simp: simp_implies_def)
 
-lemma nn_integral_cong_strong:
-  "M = N \<Longrightarrow> (\<And>x. x \<in> space M \<Longrightarrow> u x = v x) \<Longrightarrow> integral\<^sup>N M u = integral\<^sup>N N v"
-  by (auto intro: nn_integral_cong)
-
 lemma incseq_nn_integral:
   assumes "incseq f" shows "incseq (\<lambda>i. integral\<^sup>N M (f i))"
 proof -
--- a/src/HOL/Groups_Big.thy	Sun Jan 13 20:25:41 2019 +0100
+++ b/src/HOL/Groups_Big.thy	Mon Jan 14 14:46:12 2019 +0100
@@ -147,7 +147,7 @@
   using g_h unfolding \<open>A = B\<close>
   by (induct B rule: infinite_finite_induct) auto
 
-lemma cong_strong [cong]:
+lemma cong_simp [cong]:
   "\<lbrakk> A = B;  \<And>x. x \<in> B =simp=> g x = h x \<rbrakk> \<Longrightarrow> F (\<lambda>x. g x) A = F (\<lambda>x. h x) B"
 by (rule cong) (simp_all add: simp_implies_def)
 
--- a/src/HOL/Hoare_Parallel/OG_Examples.thy	Sun Jan 13 20:25:41 2019 +0100
+++ b/src/HOL/Hoare_Parallel/OG_Examples.thy	Mon Jan 14 14:46:12 2019 +0100
@@ -534,9 +534,9 @@
  COEND
  \<lbrace>\<acute>x=n\<rbrace>"
 apply oghoare
-apply (simp_all cong del: sum.cong_strong)
+apply (simp_all cong del: sum.cong_simp)
 apply (tactic \<open>ALLGOALS (clarify_tac \<^context>)\<close>)
-apply (simp_all cong del: sum.cong_strong)
+apply (simp_all cong del: sum.cong_simp)
    apply(erule (1) Example2_lemma2)
   apply(erule (1) Example2_lemma2)
  apply(erule (1) Example2_lemma2)
--- a/src/HOL/Library/FSet.thy	Sun Jan 13 20:25:41 2019 +0100
+++ b/src/HOL/Library/FSet.thy	Mon Jan 14 14:46:12 2019 +0100
@@ -755,7 +755,7 @@
 
 lemmas cong[fundef_cong] = set.cong[Transfer.transferred]
 
-lemma cong_strong[cong]:
+lemma cong_simp[cong]:
   "\<lbrakk> A = B;  \<And>x. x |\<in>| B =simp=> g x = h x \<rbrakk> \<Longrightarrow> F g A = F h B"
 unfolding simp_implies_def by (auto cong: cong)
 
--- a/src/HOL/Number_Theory/Gauss.thy	Sun Jan 13 20:25:41 2019 +0100
+++ b/src/HOL/Number_Theory/Gauss.thy	Mon Jan 14 14:46:12 2019 +0100
@@ -339,7 +339,7 @@
 theorem pre_gauss_lemma: "[a ^ nat((int p - 1) div 2) = (-1) ^ (card E)] (mod p)"
 proof -
   have "[prod id A = prod id F * prod id D](mod p)"
-    by (auto simp: prod_D_F_eq_prod_A mult.commute cong del: prod.cong_strong)
+    by (auto simp: prod_D_F_eq_prod_A mult.commute cong del: prod.cong_simp)
   then have "[prod id A = ((-1)^(card E) * prod id E) * prod id D] (mod p)"
     by (rule cong_trans) (metis cong_scalar_right prod_F_zcong)
   then have "[prod id A = ((-1)^(card E) * prod id C)] (mod p)"
@@ -364,7 +364,7 @@
       (-1)^(card E) * a^(card A) * (-1)^(card E)](mod p)"
     by (rule cong_trans) (simp add: a ac_simps)
   then have "[prod id A * (-1)^(card E) = prod id A * a^(card A)](mod p)"
-    by (rule cong_trans) (simp add: aux cong del: prod.cong_strong)
+    by (rule cong_trans) (simp add: aux cong del: prod.cong_simp)
   with A_prod_relprime have "[(- 1) ^ card E = a ^ card A](mod p)"
     by (metis cong_mult_lcancel)
   then show ?thesis
--- a/src/HOL/Probability/Information.thy	Sun Jan 13 20:25:41 2019 +0100
+++ b/src/HOL/Probability/Information.thy	Mon Jan 14 14:46:12 2019 +0100
@@ -1913,7 +1913,7 @@
   also have "\<dots> = entropy b (count_space (Y ` space M) \<Otimes>\<^sub>M count_space (X ` space M)) (\<lambda>x. (Y x, X x))"
     by (subst entropy_distr[OF simple_distributed_joint[OF YX]])
        (auto simp: pair_measure_count_space sigma_finite_measure_count_space_finite lebesgue_integral_count_space_finite
-             cong del: sum.cong_strong intro!: sum.mono_neutral_left measure_nonneg)
+             cong del: sum.cong_simp intro!: sum.mono_neutral_left measure_nonneg)
   finally have "\<H>(\<lambda>x. (X x, Y x)) = entropy b (count_space (Y ` space M) \<Otimes>\<^sub>M count_space (X ` space M)) (\<lambda>x. (Y x, X x))" .
   then show ?thesis
     unfolding conditional_entropy_eq_entropy_simple[OF Y X] by simp
--- a/src/HOL/Transcendental.thy	Sun Jan 13 20:25:41 2019 +0100
+++ b/src/HOL/Transcendental.thy	Mon Jan 14 14:46:12 2019 +0100
@@ -6088,7 +6088,7 @@
   also have "\<dots> = (\<Sum>(i,j) \<in> (SIGMA i : atMost n. lessThan i). a i * (x - y) * (y^(i - Suc j) * x^j))"
     by (simp add: sum.Sigma)
   also have "\<dots> = (\<Sum>(j,i) \<in> (SIGMA j : lessThan n. {Suc j..n}). a i * (x - y) * (y^(i - Suc j) * x^j))"
-    by (auto simp: sum.reindex_bij_betw [OF h, symmetric] intro: sum.cong_strong)
+    by (auto simp: sum.reindex_bij_betw [OF h, symmetric] intro: sum.cong_simp)
   also have "\<dots> = (\<Sum>j<n. \<Sum>i=Suc j..n. a i * (x - y) * (y^(i - Suc j) * x^j))"
     by (simp add: sum.Sigma)
   also have "\<dots> = (x - y) * (\<Sum>j<n. (\<Sum>i=Suc j..n. a i * y^(i - j - 1)) * x^j)"
@@ -6110,7 +6110,7 @@
       apply (rule_tac x="x + Suc j" in image_eqI, auto)
       done
     then show ?thesis
-      by (auto simp: sum.reindex_bij_betw [OF h, symmetric] intro: sum.cong_strong)
+      by (auto simp: sum.reindex_bij_betw [OF h, symmetric] intro: sum.cong_simp)
   qed
   then show ?thesis
     by (simp add: polyfun_diff [OF assms] sum_distrib_right)