--- a/src/HOL/Induct/Com.thy Tue Apr 06 16:19:45 2004 +0200
+++ b/src/HOL/Induct/Com.thy Wed Apr 07 14:25:48 2004 +0200
@@ -6,6 +6,8 @@
Example of Mutual Induction via Iteratived Inductive Definitions: Commands
*)
+header{*Mutual Induction via Iteratived Inductive Definitions*}
+
theory Com = Main:
typedecl loc
@@ -27,6 +29,9 @@
| Cond exp com com ("IF _ THEN _ ELSE _" 60)
| While exp com ("WHILE _ DO _" 60)
+
+subsection {* Commands *}
+
text{* Execution of commands *}
consts exec :: "((exp*state) * (nat*state)) set => ((com*state)*state)set"
"@exec" :: "((exp*state) * (nat*state)) set =>
@@ -97,7 +102,7 @@
done
-section {* Expressions *}
+subsection {* Expressions *}
text{* Evaluation of arithmetic expressions *}
consts eval :: "((exp*state) * (nat*state)) set"
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Induct/QuoDataType.thy Wed Apr 07 14:25:48 2004 +0200
@@ -0,0 +1,375 @@
+(* Title: HOL/Induct/QuoDataType
+ ID: $Id$
+ Author: Lawrence C Paulson, Cambridge University Computer Laboratory
+ Copyright 2004 University of Cambridge
+
+*)
+
+header{*Defining an Initial Algebra by Quotienting a Free Algebra*}
+
+theory QuoDataType = Main:
+
+subsection{*Defining the Free Algebra*}
+
+text{*Messages with encryption and decryption as free constructors.*}
+datatype
+ freemsg = NONCE nat
+ | MPAIR freemsg freemsg
+ | CRYPT nat freemsg
+ | DECRYPT nat freemsg
+
+text{*The equivalence relation, which makes encryption and decryption inverses
+provided the keys are the same.*}
+consts msgrel :: "(freemsg * freemsg) set"
+
+syntax
+ "_msgrel" :: "[freemsg, freemsg] => bool" (infixl "~~" 50)
+syntax (xsymbols)
+ "_msgrel" :: "[freemsg, freemsg] => bool" (infixl "\<sim>" 50)
+translations
+ "X \<sim> Y" == "(X,Y) \<in> msgrel"
+
+text{*The first two rules are the desired equations. The next four rules
+make the equations applicable to subterms. The last two rules are symmetry
+and transitivity.*}
+inductive "msgrel"
+ intros
+ CD: "CRYPT K (DECRYPT K X) \<sim> X"
+ DC: "DECRYPT K (CRYPT K X) \<sim> X"
+ NONCE: "NONCE N \<sim> NONCE N"
+ MPAIR: "\<lbrakk>X \<sim> X'; Y \<sim> Y'\<rbrakk> \<Longrightarrow> MPAIR X Y \<sim> MPAIR X' Y'"
+ CRYPT: "X \<sim> X' \<Longrightarrow> CRYPT K X \<sim> CRYPT K X'"
+ DECRYPT: "X \<sim> X' \<Longrightarrow> DECRYPT K X \<sim> DECRYPT K X'"
+ SYM: "X \<sim> Y \<Longrightarrow> Y \<sim> X"
+ TRANS: "\<lbrakk>X \<sim> Y; Y \<sim> Z\<rbrakk> \<Longrightarrow> X \<sim> Z"
+
+
+text{*Proving that it is an equivalence relation*}
+
+lemma msgrel_refl: "X \<sim> X"
+by (induct X, (blast intro: msgrel.intros)+)
+
+theorem equiv_msgrel: "equiv UNIV msgrel"
+proof (simp add: equiv_def, intro conjI)
+ show "reflexive msgrel" by (simp add: refl_def msgrel_refl)
+ show "sym msgrel" by (simp add: sym_def, blast intro: msgrel.SYM)
+ show "trans msgrel" by (simp add: trans_def, blast intro: msgrel.TRANS)
+qed
+
+
+subsection{*Some Functions on the Free Algebra*}
+
+subsubsection{*The Set of Nonces*}
+
+text{*A function to return the set of nonces present in a message. It will
+be lifted to the initial algrebra, to serve as an example of that process.*}
+consts
+ freenonces :: "freemsg \<Rightarrow> nat set"
+
+primrec
+ "freenonces (NONCE N) = {N}"
+ "freenonces (MPAIR X Y) = freenonces X \<union> freenonces Y"
+ "freenonces (CRYPT K X) = freenonces X"
+ "freenonces (DECRYPT K X) = freenonces X"
+
+text{*This theorem lets us prove that the nonces function respects the
+equivalence relation. It also helps us prove that Nonce
+ (the abstract constructor) is injective*}
+theorem msgrel_imp_eq_freenonces: "U \<sim> V \<Longrightarrow> freenonces U = freenonces V"
+by (erule msgrel.induct, auto)
+
+
+subsubsection{*The Left Projection*}
+
+text{*A function to return the left part of the top pair in a message. It will
+be lifted to the initial algrebra, to serve as an example of that process.*}
+consts free_left :: "freemsg \<Rightarrow> freemsg"
+primrec
+ "free_left (NONCE N) = NONCE N"
+ "free_left (MPAIR X Y) = X"
+ "free_left (CRYPT K X) = free_left X"
+ "free_left (DECRYPT K X) = free_left X"
+
+text{*This theorem lets us prove that the left function respects the
+equivalence relation. It also helps us prove that MPair
+ (the abstract constructor) is injective*}
+theorem msgrel_imp_eqv_free_left:
+ "U \<sim> V \<Longrightarrow> free_left U \<sim> free_left V"
+by (erule msgrel.induct, auto intro: msgrel.intros)
+
+
+subsubsection{*The Right Projection*}
+
+text{*A function to return the right part of the top pair in a message.*}
+consts free_right :: "freemsg \<Rightarrow> freemsg"
+primrec
+ "free_right (NONCE N) = NONCE N"
+ "free_right (MPAIR X Y) = Y"
+ "free_right (CRYPT K X) = free_right X"
+ "free_right (DECRYPT K X) = free_right X"
+
+text{*This theorem lets us prove that the right function respects the
+equivalence relation. It also helps us prove that MPair
+ (the abstract constructor) is injective*}
+theorem msgrel_imp_eqv_free_right:
+ "U \<sim> V \<Longrightarrow> free_right U \<sim> free_right V"
+by (erule msgrel.induct, auto intro: msgrel.intros)
+
+
+subsubsection{*The Discriminator for Nonces*}
+
+text{*A function to identify nonces*}
+consts isNONCE :: "freemsg \<Rightarrow> bool"
+primrec
+ "isNONCE (NONCE N) = True"
+ "isNONCE (MPAIR X Y) = False"
+ "isNONCE (CRYPT K X) = isNONCE X"
+ "isNONCE (DECRYPT K X) = isNONCE X"
+
+text{*This theorem helps us prove @{term "Nonce N \<noteq> MPair X Y"}*}
+theorem msgrel_imp_eq_isNONCE:
+ "U \<sim> V \<Longrightarrow> isNONCE U = isNONCE V"
+by (erule msgrel.induct, auto)
+
+
+subsection{*The Initial Algebra: A Quotiented Message Type*}
+
+typedef (Msg) msg = "UNIV//msgrel"
+ by (auto simp add: quotient_def)
+
+
+text{*The abstract message constructors*}
+constdefs
+ Nonce :: "nat \<Rightarrow> msg"
+ "Nonce N == Abs_Msg(msgrel``{NONCE N})"
+
+ MPair :: "[msg,msg] \<Rightarrow> msg"
+ "MPair X Y ==
+ Abs_Msg (\<Union>U \<in> Rep_Msg(X). \<Union>V \<in> Rep_Msg(Y). msgrel``{MPAIR U V})"
+
+ Crypt :: "[nat,msg] \<Rightarrow> msg"
+ "Crypt K X ==
+ Abs_Msg (\<Union>U \<in> Rep_Msg(X). msgrel``{CRYPT K U})"
+
+ Decrypt :: "[nat,msg] \<Rightarrow> msg"
+ "Decrypt K X ==
+ Abs_Msg (\<Union>U \<in> Rep_Msg(X). msgrel``{DECRYPT K U})"
+
+
+text{*Reduces equality of equivalence classes to the @{term msgrel} relation:
+ @{term "(msgrel `` {x} = msgrel `` {y}) = ((x,y) \<in> msgrel)"} *}
+lemmas equiv_msgrel_iff = eq_equiv_class_iff [OF equiv_msgrel UNIV_I UNIV_I]
+
+declare equiv_msgrel_iff [simp]
+
+
+text{*All equivalence classes belong to set of representatives*}
+lemma msgrel_in_integ [simp]: "msgrel``{U} \<in> Msg"
+by (auto simp add: Msg_def quotient_def intro: msgrel_refl)
+
+lemma inj_on_Abs_Msg: "inj_on Abs_Msg Msg"
+apply (rule inj_on_inverseI)
+apply (erule Abs_Msg_inverse)
+done
+
+text{*Reduces equality on abstractions to equality on representatives*}
+declare inj_on_Abs_Msg [THEN inj_on_iff, simp]
+
+declare Abs_Msg_inverse [simp]
+
+
+subsubsection{*Characteristic Equations for the Abstract Constructors*}
+
+lemma MPair: "MPair (Abs_Msg(msgrel``{U})) (Abs_Msg(msgrel``{V})) =
+ Abs_Msg (msgrel``{MPAIR U V})"
+proof -
+ have "congruent2 msgrel (\<lambda>U V. msgrel `` {MPAIR U V})"
+ by (simp add: congruent2_def msgrel.MPAIR)
+ thus ?thesis
+ by (simp add: MPair_def UN_equiv_class2 [OF equiv_msgrel])
+qed
+
+lemma Crypt: "Crypt K (Abs_Msg(msgrel``{U})) = Abs_Msg (msgrel``{CRYPT K U})"
+proof -
+ have "congruent msgrel (\<lambda>U. msgrel `` {CRYPT K U})"
+ by (simp add: congruent_def msgrel.CRYPT)
+ thus ?thesis
+ by (simp add: Crypt_def UN_equiv_class [OF equiv_msgrel])
+qed
+
+lemma Decrypt:
+ "Decrypt K (Abs_Msg(msgrel``{U})) = Abs_Msg (msgrel``{DECRYPT K U})"
+proof -
+ have "congruent msgrel (\<lambda>U. msgrel `` {DECRYPT K U})"
+ by (simp add: congruent_def msgrel.DECRYPT)
+ thus ?thesis
+ by (simp add: Decrypt_def UN_equiv_class [OF equiv_msgrel])
+qed
+
+text{*Case analysis on the representation of a msg as an equivalence class.*}
+lemma eq_Abs_Msg [case_names Abs_Msg, cases type: msg]:
+ "(!!U. z = Abs_Msg(msgrel``{U}) ==> P) ==> P"
+apply (rule Rep_Msg [of z, unfolded Msg_def, THEN quotientE])
+apply (drule arg_cong [where f=Abs_Msg])
+apply (auto simp add: Rep_Msg_inverse intro: msgrel_refl)
+done
+
+text{*Establishing these two equations is the point of the whole exercise*}
+theorem CD_eq: "Crypt K (Decrypt K X) = X"
+by (cases X, simp add: Crypt Decrypt CD)
+
+theorem DC_eq: "Decrypt K (Crypt K X) = X"
+by (cases X, simp add: Crypt Decrypt DC)
+
+
+subsection{*The Abstract Function to Return the Set of Nonces*}
+
+constdefs
+ nonces :: "msg \<Rightarrow> nat set"
+ "nonces X == \<Union>U \<in> Rep_Msg(X). freenonces U"
+
+lemma nonces_congruent: "congruent msgrel (\<lambda>x. freenonces x)"
+by (simp add: congruent_def msgrel_imp_eq_freenonces)
+
+
+text{*Now prove the four equations for @{term nonces}*}
+
+lemma nonces_Nonce [simp]: "nonces (Nonce N) = {N}"
+by (simp add: nonces_def Nonce_def
+ UN_equiv_class [OF equiv_msgrel nonces_congruent])
+
+lemma nonces_MPair [simp]: "nonces (MPair X Y) = nonces X \<union> nonces Y"
+apply (cases X, cases Y)
+apply (simp add: nonces_def MPair
+ UN_equiv_class [OF equiv_msgrel nonces_congruent])
+done
+
+lemma nonces_Crypt [simp]: "nonces (Crypt K X) = nonces X"
+apply (cases X)
+apply (simp add: nonces_def Crypt
+ UN_equiv_class [OF equiv_msgrel nonces_congruent])
+done
+
+lemma nonces_Decrypt [simp]: "nonces (Decrypt K X) = nonces X"
+apply (cases X)
+apply (simp add: nonces_def Decrypt
+ UN_equiv_class [OF equiv_msgrel nonces_congruent])
+done
+
+
+subsection{*The Abstract Function to Return the Left Part*}
+
+constdefs
+ left :: "msg \<Rightarrow> msg"
+ "left X == Abs_Msg (\<Union>U \<in> Rep_Msg(X). msgrel``{free_left U})"
+
+lemma left_congruent: "congruent msgrel (\<lambda>U. msgrel `` {free_left U})"
+by (simp add: congruent_def msgrel_imp_eqv_free_left)
+
+text{*Now prove the four equations for @{term left}*}
+
+lemma left_Nonce [simp]: "left (Nonce N) = Nonce N"
+by (simp add: left_def Nonce_def
+ UN_equiv_class [OF equiv_msgrel left_congruent])
+
+lemma left_MPair [simp]: "left (MPair X Y) = X"
+apply (cases X, cases Y)
+apply (simp add: left_def MPair
+ UN_equiv_class [OF equiv_msgrel left_congruent])
+done
+
+lemma left_Crypt [simp]: "left (Crypt K X) = left X"
+apply (cases X)
+apply (simp add: left_def Crypt
+ UN_equiv_class [OF equiv_msgrel left_congruent])
+done
+
+lemma left_Decrypt [simp]: "left (Decrypt K X) = left X"
+apply (cases X)
+apply (simp add: left_def Decrypt
+ UN_equiv_class [OF equiv_msgrel left_congruent])
+done
+
+
+subsection{*The Abstract Function to Return the Right Part*}
+
+constdefs
+ right :: "msg \<Rightarrow> msg"
+ "right X == Abs_Msg (\<Union>U \<in> Rep_Msg(X). msgrel``{free_right U})"
+
+lemma right_congruent: "congruent msgrel (\<lambda>U. msgrel `` {free_right U})"
+by (simp add: congruent_def msgrel_imp_eqv_free_right)
+
+text{*Now prove the four equations for @{term right}*}
+
+lemma right_Nonce [simp]: "right (Nonce N) = Nonce N"
+by (simp add: right_def Nonce_def
+ UN_equiv_class [OF equiv_msgrel right_congruent])
+
+lemma right_MPair [simp]: "right (MPair X Y) = Y"
+apply (cases X, cases Y)
+apply (simp add: right_def MPair
+ UN_equiv_class [OF equiv_msgrel right_congruent])
+done
+
+lemma right_Crypt [simp]: "right (Crypt K X) = right X"
+apply (cases X)
+apply (simp add: right_def Crypt
+ UN_equiv_class [OF equiv_msgrel right_congruent])
+done
+
+lemma right_Decrypt [simp]: "right (Decrypt K X) = right X"
+apply (cases X)
+apply (simp add: right_def Decrypt
+ UN_equiv_class [OF equiv_msgrel right_congruent])
+done
+
+
+subsection{*Injectivity Properties of Some Constructors*}
+
+lemma NONCE_imp_eq: "NONCE m \<sim> NONCE n \<Longrightarrow> m = n"
+by (drule msgrel_imp_eq_freenonces, simp)
+
+text{*Can also be proved using the function @{term nonces}*}
+lemma Nonce_Nonce_eq [iff]: "(Nonce m = Nonce n) = (m = n)"
+by (auto simp add: Nonce_def msgrel_refl dest: NONCE_imp_eq)
+
+lemma MPAIR_imp_eqv_left: "MPAIR X Y \<sim> MPAIR X' Y' \<Longrightarrow> X \<sim> X'"
+apply (drule msgrel_imp_eqv_free_left)
+apply (simp add: );
+done
+
+lemma MPair_imp_eq_left:
+ assumes eq: "MPair X Y = MPair X' Y'" shows "X = X'"
+proof -
+ from eq
+ have "left (MPair X Y) = left (MPair X' Y')" by simp
+ thus ?thesis by simp
+qed
+
+lemma MPAIR_imp_eqv_right: "MPAIR X Y \<sim> MPAIR X' Y' \<Longrightarrow> Y \<sim> Y'"
+apply (drule msgrel_imp_eqv_free_right)
+apply (simp add: );
+done
+
+lemma MPair_imp_eq_right: "MPair X Y = MPair X' Y' \<Longrightarrow> Y = Y'"
+apply (cases X, cases X', cases Y, cases Y')
+apply (simp add: MPair)
+apply (erule MPAIR_imp_eqv_right)
+done
+
+theorem MPair_MPair_eq [iff]: "(MPair X Y = MPair X' Y') = (X=X' & Y=Y')"
+apply (blast dest: MPair_imp_eq_left MPair_imp_eq_right)
+done
+
+lemma NONCE_neqv_MPAIR: "NONCE m \<sim> MPAIR X Y \<Longrightarrow> False"
+by (drule msgrel_imp_eq_isNONCE, simp)
+
+theorem Nonce_neq_MPair [iff]: "Nonce N \<noteq> MPair X Y"
+apply (cases X, cases Y)
+apply (simp add: Nonce_def MPair)
+apply (blast dest: NONCE_neqv_MPAIR)
+done
+
+end
+
--- a/src/HOL/Induct/ROOT.ML Tue Apr 06 16:19:45 2004 +0200
+++ b/src/HOL/Induct/ROOT.ML Wed Apr 07 14:25:48 2004 +0200
@@ -1,5 +1,6 @@
time_use_thy "Mutil";
+time_use_thy "QuoDataType";
time_use_thy "Term";
time_use_thy "ABexp";
time_use_thy "Tree";