*** empty log message ***
authornipkow
Sat, 06 Jan 2001 12:39:05 +0100
changeset 10801 c00ac928fc6f
parent 10800 2d4c058749a7
child 10802 7fa042e28c43
*** empty log message ***
doc-src/TutorialI/CTL/CTL.thy
doc-src/TutorialI/CTL/PDL.thy
doc-src/TutorialI/CTL/document/CTL.tex
doc-src/TutorialI/CTL/document/PDL.tex
doc-src/TutorialI/appendix.tex
--- a/doc-src/TutorialI/CTL/CTL.thy	Sat Jan 06 11:27:09 2001 +0100
+++ b/doc-src/TutorialI/CTL/CTL.thy	Sat Jan 06 12:39:05 2001 +0100
@@ -39,7 +39,7 @@
 "s \<Turnstile> Neg f   = (~(s \<Turnstile> f))"
 "s \<Turnstile> And f g = (s \<Turnstile> f \<and> s \<Turnstile> g)"
 "s \<Turnstile> AX f    = (\<forall>t. (s,t) \<in> M \<longrightarrow> t \<Turnstile> f)"
-"s \<Turnstile> EF f    = (\<exists>t. (s,t) \<in> M^* \<and> t \<Turnstile> f)"
+"s \<Turnstile> EF f    = (\<exists>t. (s,t) \<in> M\<^sup>* \<and> t \<Turnstile> f)"
 (*>*)
 "s \<Turnstile> AF f    = (\<forall>p \<in> Paths s. \<exists>i. p i \<Turnstile> f)";
 
@@ -62,7 +62,7 @@
 "mc(Neg f)   = -mc f"
 "mc(And f g) = mc f \<inter> mc g"
 "mc(AX f)    = {s. \<forall>t. (s,t) \<in> M  \<longrightarrow> t \<in> mc f}"
-"mc(EF f)    = lfp(\<lambda>T. mc f \<union> M^-1 ``` T)"(*>*)
+"mc(EF f)    = lfp(\<lambda>T. mc f \<union> M\<inverse> ``` T)"(*>*)
 "mc(AF f)    = lfp(af(mc f))";
 
 text{*\noindent
@@ -75,12 +75,12 @@
 apply blast;
 done
 (*<*)
-lemma mono_ef: "mono(\<lambda>T. A \<union> M^-1 ``` T)";
+lemma mono_ef: "mono(\<lambda>T. A \<union> M\<inverse> ``` T)";
 apply(rule monoI);
 by(blast);
 
 lemma EF_lemma:
-  "lfp(\<lambda>T. A \<union> M^-1 ``` T) = {s. \<exists>t. (s,t) \<in> M^* \<and> t \<in> A}";
+  "lfp(\<lambda>T. A \<union> M\<inverse> ``` T) = {s. \<exists>t. (s,t) \<in> M\<^sup>* \<and> t \<in> A}";
 apply(rule equalityI);
  apply(rule subsetI);
  apply(simp);
@@ -366,7 +366,7 @@
 Note that @{term EU} is not definable in terms of the other operators!
 
 Model checking @{term EU} is again a least fixed point construction:
-@{text[display]"mc(EU f g) = lfp(\<lambda>T. mc g \<union> mc f \<inter> (M^-1 ``` T))"}
+@{text[display]"mc(EU f g) = lfp(\<lambda>T. mc g \<union> mc f \<inter> (M\<inverse> ``` T))"}
 
 \begin{exercise}
 Extend the datatype of formulae by the above until operator
@@ -382,7 +382,7 @@
 (*<*)
 constdefs
  eufix :: "state set \<Rightarrow> state set \<Rightarrow> state set \<Rightarrow> state set"
-"eufix A B T \<equiv> B \<union> A \<inter> (M^-1 ``` T)"
+"eufix A B T \<equiv> B \<union> A \<inter> (M\<inverse> ``` T)"
 
 lemma "lfp(eufix A B) \<subseteq> eusem A B"
 apply(rule lfp_lowerbound)
--- a/doc-src/TutorialI/CTL/PDL.thy	Sat Jan 06 11:27:09 2001 +0100
+++ b/doc-src/TutorialI/CTL/PDL.thy	Sat Jan 06 12:39:05 2001 +0100
@@ -38,13 +38,13 @@
 "s \<Turnstile> Neg f   = (\<not>(s \<Turnstile> f))"
 "s \<Turnstile> And f g = (s \<Turnstile> f \<and> s \<Turnstile> g)"
 "s \<Turnstile> AX f    = (\<forall>t. (s,t) \<in> M \<longrightarrow> t \<Turnstile> f)"
-"s \<Turnstile> EF f    = (\<exists>t. (s,t) \<in> M^* \<and> t \<Turnstile> f)";
+"s \<Turnstile> EF f    = (\<exists>t. (s,t) \<in> M\<^sup>* \<and> t \<Turnstile> f)";
 
 text{*\noindent
 The first three equations should be self-explanatory. The temporal formula
 @{term"AX f"} means that @{term f} is true in all next states whereas
 @{term"EF f"} means that there exists some future state in which @{term f} is
-true. The future is expressed via @{text"^*"}, the transitive reflexive
+true. The future is expressed via @{text"\<^sup>*"}, the transitive reflexive
 closure. Because of reflexivity, the future includes the present.
 
 Now we come to the model checker itself. It maps a formula into the set of
@@ -58,14 +58,14 @@
 "mc(Neg f)   = -mc f"
 "mc(And f g) = mc f \<inter> mc g"
 "mc(AX f)    = {s. \<forall>t. (s,t) \<in> M  \<longrightarrow> t \<in> mc f}"
-"mc(EF f)    = lfp(\<lambda>T. mc f \<union> M^-1 ``` T)"
+"mc(EF f)    = lfp(\<lambda>T. mc f \<union> M\<inverse> ``` T)"
 
 text{*\noindent
 Only the equation for @{term EF} deserves some comments. Remember that the
-postfix @{text"^-1"} and the infix @{text"```"} are predefined and denote the
+postfix @{text"\<inverse>"} and the infix @{text"```"} are predefined and denote the
 converse of a relation and the application of a relation to a set. Thus
-@{term "M^-1 ``` T"} is the set of all predecessors of @{term T} and the least
-fixed point (@{term lfp}) of @{term"\<lambda>T. mc f \<union> M^-1 ``` T"} is the least set
+@{term "M\<inverse> ``` T"} is the set of all predecessors of @{term T} and the least
+fixed point (@{term lfp}) of @{term"\<lambda>T. mc f \<union> M\<inverse> ``` T"} is the least set
 @{term T} containing @{term"mc f"} and all predecessors of @{term T}. If you
 find it hard to see that @{term"mc(EF f)"} contains exactly those states from
 which there is a path to a state where @{term f} is true, do not worry---that
@@ -74,7 +74,7 @@
 First we prove monotonicity of the function inside @{term lfp}
 *}
 
-lemma mono_ef: "mono(\<lambda>T. A \<union> M^-1 ``` T)"
+lemma mono_ef: "mono(\<lambda>T. A \<union> M\<inverse> ``` T)"
 apply(rule monoI)
 apply blast
 done
@@ -87,7 +87,7 @@
 *}
 
 lemma EF_lemma:
-  "lfp(\<lambda>T. A \<union> M^-1 ``` T) = {s. \<exists>t. (s,t) \<in> M^* \<and> t \<in> A}"
+  "lfp(\<lambda>T. A \<union> M\<inverse> ``` T) = {s. \<exists>t. (s,t) \<in> M\<^sup>* \<and> t \<in> A}"
 
 txt{*\noindent
 The equality is proved in the canonical fashion by proving that each set
@@ -112,11 +112,11 @@
 Having disposed of the monotonicity subgoal,
 simplification leaves us with the following main goal
 \begin{isabelle}
-\ \isadigit{1}{\isachardot}\ {\isasymAnd}s{\isachardot}\ s\ {\isasymin}\ A\ {\isasymor}\isanewline
-\ \ \ \ \ \ \ \ \ s\ {\isasymin}\ M{\isacharcircum}{\isacharminus}\isadigit{1}\ {\isacharcircum}{\isacharcircum}\ {\isacharparenleft}lfp\ {\isacharparenleft}{\dots}{\isacharparenright}\ {\isasyminter}\ {\isacharbraceleft}x{\isachardot}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}x{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M{\isacharcircum}{\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A{\isacharbraceright}{\isacharparenright}\isanewline
-\ \ \ \ \ \ \ \ \ {\isasymLongrightarrow}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M{\isacharcircum}{\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A
+\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}x{\isachardot}\ x\ {\isasymin}\ A\ {\isasymor}\isanewline
+\ \ \ \ \ \ \ \ \ x\ {\isasymin}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}{\isacharbackquote}\ {\isacharparenleft}lfp\ {\isacharparenleft}\dots{\isacharparenright}\ {\isasyminter}\ {\isacharbraceleft}x{\isachardot}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}x{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A{\isacharbraceright}{\isacharparenright}\isanewline
+\ \ \ \ \ \ \ \ {\isasymLongrightarrow}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}x{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A
 \end{isabelle}
-which is proved by @{text blast} with the help of transitivity of @{text"^*"}:
+which is proved by @{text blast} with the help of transitivity of @{text"\<^sup>*"}:
 *}
 
  apply(blast intro: rtrancl_trans);
@@ -132,13 +132,13 @@
 txt{*\noindent
 After simplification and clarification we are left with
 @{subgoals[display,indent=0,goals_limit=1]}
-This goal is proved by induction on @{term"(s,t)\<in>M^*"}. But since the model
+This goal is proved by induction on @{term"(s,t)\<in>M\<^sup>*"}. But since the model
 checker works backwards (from @{term t} to @{term s}), we cannot use the
 induction theorem @{thm[source]rtrancl_induct} because it works in the
 forward direction. Fortunately the converse induction theorem
 @{thm[source]converse_rtrancl_induct} already exists:
 @{thm[display,margin=60]converse_rtrancl_induct[no_vars]}
-It says that if @{prop"(a,b):r^*"} and we know @{prop"P b"} then we can infer
+It says that if @{prop"(a,b):r\<^sup>*"} and we know @{prop"P b"} then we can infer
 @{prop"P a"} provided each step backwards from a predecessor @{term z} of
 @{term b} preserves @{term P}.
 *}
--- a/doc-src/TutorialI/CTL/document/CTL.tex	Sat Jan 06 11:27:09 2001 +0100
+++ b/doc-src/TutorialI/CTL/document/CTL.tex	Sat Jan 06 12:39:05 2001 +0100
@@ -300,7 +300,7 @@
 
 Model checking \isa{EU} is again a least fixed point construction:
 \begin{isabelle}%
-\ \ \ \ \ mc{\isacharparenleft}EU\ f\ g{\isacharparenright}\ {\isacharequal}\ lfp{\isacharparenleft}{\isasymlambda}T{\isachardot}\ mc\ g\ {\isasymunion}\ mc\ f\ {\isasyminter}\ {\isacharparenleft}M{\isacharcircum}{\isacharminus}{\isadigit{1}}\ {\isacharbackquote}{\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}{\isacharparenright}%
+\ \ \ \ \ mc{\isacharparenleft}EU\ f\ g{\isacharparenright}\ {\isacharequal}\ lfp{\isacharparenleft}{\isasymlambda}T{\isachardot}\ mc\ g\ {\isasymunion}\ mc\ f\ {\isasyminter}\ {\isacharparenleft}M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}{\isacharparenright}%
 \end{isabelle}
 
 \begin{exercise}
--- a/doc-src/TutorialI/CTL/document/PDL.tex	Sat Jan 06 11:27:09 2001 +0100
+++ b/doc-src/TutorialI/CTL/document/PDL.tex	Sat Jan 06 12:39:05 2001 +0100
@@ -39,13 +39,13 @@
 {\isachardoublequote}s\ {\isasymTurnstile}\ Neg\ f\ \ \ {\isacharequal}\ {\isacharparenleft}{\isasymnot}{\isacharparenleft}s\ {\isasymTurnstile}\ f{\isacharparenright}{\isacharparenright}{\isachardoublequote}\isanewline
 {\isachardoublequote}s\ {\isasymTurnstile}\ And\ f\ g\ {\isacharequal}\ {\isacharparenleft}s\ {\isasymTurnstile}\ f\ {\isasymand}\ s\ {\isasymTurnstile}\ g{\isacharparenright}{\isachardoublequote}\isanewline
 {\isachardoublequote}s\ {\isasymTurnstile}\ AX\ f\ \ \ \ {\isacharequal}\ {\isacharparenleft}{\isasymforall}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}t{\isacharparenright}\ {\isasymin}\ M\ {\isasymlongrightarrow}\ t\ {\isasymTurnstile}\ f{\isacharparenright}{\isachardoublequote}\isanewline
-{\isachardoublequote}s\ {\isasymTurnstile}\ EF\ f\ \ \ \ {\isacharequal}\ {\isacharparenleft}{\isasymexists}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}t{\isacharparenright}\ {\isasymin}\ M{\isacharcircum}{\isacharasterisk}\ {\isasymand}\ t\ {\isasymTurnstile}\ f{\isacharparenright}{\isachardoublequote}%
+{\isachardoublequote}s\ {\isasymTurnstile}\ EF\ f\ \ \ \ {\isacharequal}\ {\isacharparenleft}{\isasymexists}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}\ {\isasymand}\ t\ {\isasymTurnstile}\ f{\isacharparenright}{\isachardoublequote}%
 \begin{isamarkuptext}%
 \noindent
 The first three equations should be self-explanatory. The temporal formula
 \isa{AX\ f} means that \isa{f} is true in all next states whereas
 \isa{EF\ f} means that there exists some future state in which \isa{f} is
-true. The future is expressed via \isa{{\isacharcircum}{\isacharasterisk}}, the transitive reflexive
+true. The future is expressed via \isa{\isactrlsup {\isacharasterisk}}, the transitive reflexive
 closure. Because of reflexivity, the future includes the present.
 
 Now we come to the model checker itself. It maps a formula into the set of
@@ -58,11 +58,11 @@
 {\isachardoublequote}mc{\isacharparenleft}Neg\ f{\isacharparenright}\ \ \ {\isacharequal}\ {\isacharminus}mc\ f{\isachardoublequote}\isanewline
 {\isachardoublequote}mc{\isacharparenleft}And\ f\ g{\isacharparenright}\ {\isacharequal}\ mc\ f\ {\isasyminter}\ mc\ g{\isachardoublequote}\isanewline
 {\isachardoublequote}mc{\isacharparenleft}AX\ f{\isacharparenright}\ \ \ \ {\isacharequal}\ {\isacharbraceleft}s{\isachardot}\ {\isasymforall}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}t{\isacharparenright}\ {\isasymin}\ M\ \ {\isasymlongrightarrow}\ t\ {\isasymin}\ mc\ f{\isacharbraceright}{\isachardoublequote}\isanewline
-{\isachardoublequote}mc{\isacharparenleft}EF\ f{\isacharparenright}\ \ \ \ {\isacharequal}\ lfp{\isacharparenleft}{\isasymlambda}T{\isachardot}\ mc\ f\ {\isasymunion}\ M{\isacharcircum}{\isacharminus}{\isadigit{1}}\ {\isacharbackquote}{\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}{\isachardoublequote}%
+{\isachardoublequote}mc{\isacharparenleft}EF\ f{\isacharparenright}\ \ \ \ {\isacharequal}\ lfp{\isacharparenleft}{\isasymlambda}T{\isachardot}\ mc\ f\ {\isasymunion}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}{\isachardoublequote}%
 \begin{isamarkuptext}%
 \noindent
 Only the equation for \isa{EF} deserves some comments. Remember that the
-postfix \isa{{\isacharcircum}{\isacharminus}{\isadigit{1}}} and the infix \isa{{\isacharbackquote}{\isacharbackquote}{\isacharbackquote}} are predefined and denote the
+postfix \isa{{\isasyminverse}} and the infix \isa{{\isacharbackquote}{\isacharbackquote}{\isacharbackquote}} are predefined and denote the
 converse of a relation and the application of a relation to a set. Thus
 \isa{M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}{\isacharbackquote}\ T} is the set of all predecessors of \isa{T} and the least
 fixed point (\isa{lfp}) of \isa{{\isasymlambda}T{\isachardot}\ mc\ f\ {\isasymunion}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}{\isacharbackquote}\ T} is the least set
@@ -73,7 +73,7 @@
 
 First we prove monotonicity of the function inside \isa{lfp}%
 \end{isamarkuptext}%
-\isacommand{lemma}\ mono{\isacharunderscore}ef{\isacharcolon}\ {\isachardoublequote}mono{\isacharparenleft}{\isasymlambda}T{\isachardot}\ A\ {\isasymunion}\ M{\isacharcircum}{\isacharminus}{\isadigit{1}}\ {\isacharbackquote}{\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}{\isachardoublequote}\isanewline
+\isacommand{lemma}\ mono{\isacharunderscore}ef{\isacharcolon}\ {\isachardoublequote}mono{\isacharparenleft}{\isasymlambda}T{\isachardot}\ A\ {\isasymunion}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}{\isachardoublequote}\isanewline
 \isacommand{apply}{\isacharparenleft}rule\ monoI{\isacharparenright}\isanewline
 \isacommand{apply}\ blast\isanewline
 \isacommand{done}%
@@ -85,7 +85,7 @@
 a separate lemma:%
 \end{isamarkuptext}%
 \isacommand{lemma}\ EF{\isacharunderscore}lemma{\isacharcolon}\isanewline
-\ \ {\isachardoublequote}lfp{\isacharparenleft}{\isasymlambda}T{\isachardot}\ A\ {\isasymunion}\ M{\isacharcircum}{\isacharminus}{\isadigit{1}}\ {\isacharbackquote}{\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}\ {\isacharequal}\ {\isacharbraceleft}s{\isachardot}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}t{\isacharparenright}\ {\isasymin}\ M{\isacharcircum}{\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A{\isacharbraceright}{\isachardoublequote}%
+\ \ {\isachardoublequote}lfp{\isacharparenleft}{\isasymlambda}T{\isachardot}\ A\ {\isasymunion}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}\ {\isacharequal}\ {\isacharbraceleft}s{\isachardot}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A{\isacharbraceright}{\isachardoublequote}%
 \begin{isamarkuptxt}%
 \noindent
 The equality is proved in the canonical fashion by proving that each set
@@ -110,11 +110,11 @@
 Having disposed of the monotonicity subgoal,
 simplification leaves us with the following main goal
 \begin{isabelle}
-\ \isadigit{1}{\isachardot}\ {\isasymAnd}s{\isachardot}\ s\ {\isasymin}\ A\ {\isasymor}\isanewline
-\ \ \ \ \ \ \ \ \ s\ {\isasymin}\ M{\isacharcircum}{\isacharminus}\isadigit{1}\ {\isacharcircum}{\isacharcircum}\ {\isacharparenleft}lfp\ {\isacharparenleft}{\dots}{\isacharparenright}\ {\isasyminter}\ {\isacharbraceleft}x{\isachardot}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}x{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M{\isacharcircum}{\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A{\isacharbraceright}{\isacharparenright}\isanewline
-\ \ \ \ \ \ \ \ \ {\isasymLongrightarrow}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M{\isacharcircum}{\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A
+\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}x{\isachardot}\ x\ {\isasymin}\ A\ {\isasymor}\isanewline
+\ \ \ \ \ \ \ \ \ x\ {\isasymin}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}{\isacharbackquote}\ {\isacharparenleft}lfp\ {\isacharparenleft}\dots{\isacharparenright}\ {\isasyminter}\ {\isacharbraceleft}x{\isachardot}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}x{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A{\isacharbraceright}{\isacharparenright}\isanewline
+\ \ \ \ \ \ \ \ {\isasymLongrightarrow}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}x{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A
 \end{isabelle}
-which is proved by \isa{blast} with the help of transitivity of \isa{{\isacharcircum}{\isacharasterisk}}:%
+which is proved by \isa{blast} with the help of transitivity of \isa{\isactrlsup {\isacharasterisk}}:%
 \end{isamarkuptxt}%
 \ \isacommand{apply}{\isacharparenleft}blast\ intro{\isacharcolon}\ rtrancl{\isacharunderscore}trans{\isacharparenright}%
 \begin{isamarkuptxt}%
--- a/doc-src/TutorialI/appendix.tex	Sat Jan 06 11:27:09 2001 +0100
+++ b/doc-src/TutorialI/appendix.tex	Sat Jan 06 12:39:05 2001 +0100
@@ -89,6 +89,12 @@
 \isasymInter\index{$HOL3Set2@\isasymInter|bold}&
 \ttindexbold{INT}, \ttindexbold{Inter} &
 \verb$\<Inter>$\\
+\isactrlsup{\isacharasterisk}\index{$HOL4star@\isactrlsup{\isacharasterisk}|bold}&
+\verb$^*$\index{$HOL4star@\verb$^$\texttt{*}|bold} &
+\verb$\<^sup>*$\\
+\isasyminverse\index{$HOL4inv@\isasyminverse|bold}&
+\verb$^-1$\index{$HOL4inv@\verb$^-1$|bold} &
+\verb$\<inverse>$\\
 \hline
 \end{tabular}
 \end{center}