tuned induct syntax;
authorwenzelm
Sat, 19 Nov 2005 14:21:01 +0100
changeset 18204 c3caf13f621d
parent 18203 9bd26bda96ef
child 18205 744803a2d5a5
tuned induct syntax;
src/HOL/Isar_examples/Puzzle.thy
--- a/src/HOL/Isar_examples/Puzzle.thy	Sat Nov 19 14:21:00 2005 +0100
+++ b/src/HOL/Isar_examples/Puzzle.thy	Sat Nov 19 14:21:01 2005 +0100
@@ -16,13 +16,12 @@
 *}
 
 theorem
-  fixes n :: nat
   assumes f_ax: "\<And>n. f (f n) < f (Suc n)"
   shows "f n = n"
 proof (rule order_antisym)
   {
     fix n show "n \<le> f n"
-    proof (induct k \<equiv> "f n" rule: less_induct fixing: n)
+    proof (induct k \<equiv> "f n" fixing: n rule: less_induct)
       case (less k n)
       then have hyp: "\<And>m. f m < f n \<Longrightarrow> m \<le> f m" by (simp only:)
       show "n \<le> f n"