avoid using real_mult_inverse_left; cleaned up
authorhuffman
Fri, 18 May 2007 16:13:07 +0200
changeset 23008 c4a259f3bbcc
parent 23007 e025695d9b0e
child 23009 01c295dd4a36
avoid using real_mult_inverse_left; cleaned up
src/HOL/Real/RComplete.thy
--- a/src/HOL/Real/RComplete.thy	Fri May 18 16:11:13 2007 +0200
+++ b/src/HOL/Real/RComplete.thy	Fri May 18 16:13:07 2007 +0200
@@ -373,11 +373,11 @@
   hence "inverse (real (Suc n)) * x < inverse x * x"
     using x_greater_zero by (rule mult_strict_right_mono)
   hence "inverse (real (Suc n)) * x < 1"
-    using x_greater_zero by (simp add: real_mult_inverse_left mult_commute)
+    using x_greater_zero by simp
   hence "real (Suc n) * (inverse (real (Suc n)) * x) < real (Suc n) * 1"
     by (rule mult_strict_left_mono) simp
   hence "x < real (Suc n)"
-    by (simp add: mult_commute ring_eq_simps real_mult_inverse_left)
+    by (simp add: ring_eq_simps)
   thus "\<exists>(n::nat). x < real n" ..
 qed
 
@@ -392,9 +392,9 @@
   hence "y * inverse x * x < real n * x"
     using x_greater_zero by (simp add: mult_strict_right_mono)
   hence "x * inverse x * y < x * real n"
-    by (simp add: mult_commute ring_eq_simps)
+    by (simp add: ring_eq_simps)
   hence "y < real (n::nat) * x"
-    using x_not_zero by (simp add: real_mult_inverse_left ring_eq_simps)
+    using x_not_zero by (simp add: ring_eq_simps)
   thus "\<exists>(n::nat). y < real n * x" ..
 qed