actual use of (sos remote_csdp) via ISABELLE_FULL_TEST;
authorwenzelm
Sun, 19 Aug 2012 17:45:07 +0200
changeset 48932 c6e679443adc
parent 48931 5787fbb89979
child 48933 d25e47e32bc0
actual use of (sos remote_csdp) via ISABELLE_FULL_TEST;
src/HOL/Library/Sum_of_Squares_Remote.thy
src/HOL/ROOT
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/Sum_of_Squares_Remote.thy	Sun Aug 19 17:45:07 2012 +0200
@@ -0,0 +1,134 @@
+(*  Title:      HOL/Library/Sum_of_Squares_Remote.thy
+    Author:     Amine Chaieb, University of Cambridge
+    Author:     Philipp Meyer, TU Muenchen
+*)
+
+header {* Examples with remote CSDP *}
+
+theory Sum_of_Squares_Remote
+imports Sum_of_Squares
+begin
+
+lemma "(3::real) * x + 7 * a < 4 & 3 < 2 * x \<Longrightarrow> a < 0"
+  by (sos remote_csdp)
+
+lemma "a1 >= 0 & a2 >= 0 \<and> (a1 * a1 + a2 * a2 = b1 * b1 + b2 * b2 + 2) \<and> (a1 * b1 + a2 * b2 = 0) --> a1 * a2 - b1 * b2 >= (0::real)"
+  by (sos remote_csdp)
+
+lemma "(3::real) * x + 7 * a < 4 & 3 < 2 * x --> a < 0"
+  by (sos remote_csdp)
+
+lemma "(0::real) <= x & x <= 1 & 0 <= y & y <= 1  --> x^2 + y^2 < 1 |(x - 1)^2 + y^2 < 1 | x^2 + (y - 1)^2 < 1 | (x - 1)^2 + (y - 1)^2 < 1"
+  by (sos remote_csdp)
+
+lemma "(0::real) <= x & 0 <= y & 0 <= z & x + y + z <= 3 --> x * y + x * z + y * z >= 3 * x * y * z"
+  by (sos remote_csdp)
+
+lemma "((x::real)^2 + y^2 + z^2 = 1) --> (x + y + z)^2 <= 3"
+  by (sos remote_csdp)
+
+lemma "(w^2 + x^2 + y^2 + z^2 = 1) --> (w + x + y + z)^2 <= (4::real)"
+  by (sos remote_csdp)
+
+lemma "(x::real) >= 1 & y >= 1 --> x * y >= x + y - 1"
+  by (sos remote_csdp)
+
+lemma "(x::real) > 1 & y > 1 --> x * y > x + y - 1"
+  by (sos remote_csdp)
+
+lemma "abs(x) <= 1 --> abs(64 * x^7 - 112 * x^5 + 56 * x^3 - 7 * x) <= (1::real)"
+  by (sos remote_csdp)
+
+(* ------------------------------------------------------------------------- *)
+(* One component of denominator in dodecahedral example.                     *)
+(* ------------------------------------------------------------------------- *)
+
+lemma "2 <= x & x <= 125841 / 50000 & 2 <= y & y <= 125841 / 50000 & 2 <= z & z <= 125841 / 50000 --> 2 * (x * z + x * y + y * z) - (x * x + y * y + z * z) >= (0::real)"
+  by (sos remote_csdp)
+
+(* ------------------------------------------------------------------------- *)
+(* Over a larger but simpler interval.                                       *)
+(* ------------------------------------------------------------------------- *)
+
+lemma "(2::real) <= x & x <= 4 & 2 <= y & y <= 4 & 2 <= z & z <= 4 --> 0 <= 2 * (x * z + x * y + y * z) - (x * x + y * y + z * z)"
+  by (sos remote_csdp)
+
+(* ------------------------------------------------------------------------- *)
+(* We can do 12. I think 12 is a sharp bound; see PP's certificate.          *)
+(* ------------------------------------------------------------------------- *)
+
+lemma "2 <= (x::real) & x <= 4 & 2 <= y & y <= 4 & 2 <= z & z <= 4 --> 12 <= 2 * (x * z + x * y + y * z) - (x * x + y * y + z * z)"
+  by (sos remote_csdp)
+
+(* ------------------------------------------------------------------------- *)
+(* Inequality from sci.math (see "Leon-Sotelo, por favor").                  *)
+(* ------------------------------------------------------------------------- *)
+
+lemma "0 <= (x::real) & 0 <= y & (x * y = 1) --> x + y <= x^2 + y^2"
+  by (sos remote_csdp)
+
+lemma "0 <= (x::real) & 0 <= y & (x * y = 1) --> x * y * (x + y) <= x^2 + y^2"
+  by (sos remote_csdp)
+
+lemma "0 <= (x::real) & 0 <= y --> x * y * (x + y)^2 <= (x^2 + y^2)^2"
+  by (sos remote_csdp)
+
+lemma "(0::real) <= a & 0 <= b & 0 <= c & c * (2 * a + b)^3/ 27 <= x \<longrightarrow> c * a^2 * b <= x"
+  by (sos remote_csdp)
+
+lemma "(0::real) < x --> 0 < 1 + x + x^2"
+  by (sos remote_csdp)
+
+lemma "(0::real) <= x --> 0 < 1 + x + x^2"
+  by (sos remote_csdp)
+
+lemma "(0::real) < 1 + x^2"
+  by (sos remote_csdp)
+
+lemma "(0::real) <= 1 + 2 * x + x^2"
+  by (sos remote_csdp)
+
+lemma "(0::real) < 1 + abs x"
+  by (sos remote_csdp)
+
+lemma "(0::real) < 1 + (1 + x)^2 * (abs x)"
+  by (sos remote_csdp)
+
+
+
+lemma "abs ((1::real) + x^2) = (1::real) + x^2"
+  by (sos remote_csdp)
+lemma "(3::real) * x + 7 * a < 4 \<and> 3 < 2 * x \<longrightarrow> a < 0"
+  by (sos remote_csdp)
+
+lemma "(0::real) < x --> 1 < y --> y * x <= z --> x < z"
+  by (sos remote_csdp)
+lemma "(1::real) < x --> x^2 < y --> 1 < y"
+  by (sos remote_csdp)
+lemma "(b::real)^2 < 4 * a * c --> ~(a * x^2 + b * x + c = 0)"
+  by (sos remote_csdp)
+lemma "(b::real)^2 < 4 * a * c --> ~(a * x^2 + b * x + c = 0)"
+  by (sos remote_csdp)
+lemma "((a::real) * x^2 + b * x + c = 0) --> b^2 >= 4 * a * c"
+  by (sos remote_csdp)
+lemma "(0::real) <= b & 0 <= c & 0 <= x & 0 <= y & (x^2 = c) & (y^2 = a^2 * c + b) --> a * c <= y * x"
+  by (sos remote_csdp)
+lemma "abs(x - z) <= e & abs(y - z) <= e & 0 <= u & 0 <= v & (u + v = 1) --> abs((u * x + v * y) - z) <= (e::real)"
+  by (sos remote_csdp)
+
+
+(* lemma "((x::real) - y - 2 * x^4 = 0) & 0 <= x & x <= 2 & 0 <= y & y <= 3 --> y^2 - 7 * y - 12 * x + 17 >= 0" by sos *) (* Too hard?*)
+
+lemma "(0::real) <= x --> (1 + x + x^2)/(1 + x^2) <= 1 + x"
+  by (sos remote_csdp)
+
+lemma "(0::real) <= x --> 1 - x <= 1 / (1 + x + x^2)"
+  by (sos remote_csdp)
+
+lemma "(x::real) <= 1 / 2 --> - x - 2 * x^2 <= - x / (1 - x)"
+  by (sos remote_csdp)
+
+lemma "4*r^2 = p^2 - 4*q & r >= (0::real) & x^2 + p*x + q = 0 --> 2*(x::real) = - p + 2*r | 2*x = -p - 2*r"
+  by (sos remote_csdp)
+
+end
--- a/src/HOL/ROOT	Mon Aug 27 11:41:54 2012 +0200
+++ b/src/HOL/ROOT	Sun Aug 19 17:45:07 2012 +0200
@@ -49,6 +49,8 @@
     (* Code_Prolog  FIXME cf. 76965c356d2a *)
     Code_Real_Approx_By_Float
     Target_Numeral
+  theories [condition = ISABELLE_FULL_TEST]
+    Sum_of_Squares_Remote
   files "document/root.bib" "document/root.tex"
 
 session "HOL-Hahn_Banach" in Hahn_Banach = HOL +