--- a/CONTRIBUTORS Thu Apr 12 23:51:36 2012 +0200
+++ b/CONTRIBUTORS Fri Apr 13 09:17:01 2012 +0200
@@ -6,6 +6,9 @@
Contributions to this Isabelle version
--------------------------------------
+* March 2012: Christian Sternagel, Japan Advanced Institute of Science and Technology
+ Consolidated theory of relation composition.
+
* March 2012: Nik Sultana, University of Cambridge
HOL/TPTP parser and import facilities.
--- a/NEWS Thu Apr 12 23:51:36 2012 +0200
+++ b/NEWS Fri Apr 13 09:17:01 2012 +0200
@@ -294,6 +294,42 @@
INCOMPATIBILITY.
+* Theory Relation: Consolidated constant name for relation composition
+ and corresponding theorem names:
+ - Renamed constant rel_comp to relcomp
+ - Dropped abbreviation pred_comp. Use relcompp instead.
+ - Renamed theorems:
+ Relation:
+ rel_compI ~> relcompI
+ rel_compEpair ~> relcompEpair
+ rel_compE ~> relcompE
+ pred_comp_rel_comp_eq ~> relcompp_relcomp_eq
+ rel_comp_empty1 ~> relcomp_empty1
+ rel_comp_mono ~> relcomp_mono
+ rel_comp_subset_Sigma ~> relcomp_subset_Sigma
+ rel_comp_distrib ~> relcomp_distrib
+ rel_comp_distrib2 ~> relcomp_distrib2
+ rel_comp_UNION_distrib ~> relcomp_UNION_distrib
+ rel_comp_UNION_distrib2 ~> relcomp_UNION_distrib2
+ single_valued_rel_comp ~> single_valued_relcomp
+ rel_comp_unfold ~> relcomp_unfold
+ converse_rel_comp ~> converse_relcomp
+ pred_compI ~> relcomppI
+ pred_compE ~> relcomppE
+ pred_comp_bot1 ~> relcompp_bot1
+ pred_comp_bot2 ~> relcompp_bot2
+ transp_pred_comp_less_eq ~> transp_relcompp_less_eq
+ pred_comp_mono ~> relcompp_mono
+ pred_comp_distrib ~> relcompp_distrib
+ pred_comp_distrib2 ~> relcompp_distrib2
+ converse_pred_comp ~> converse_relcompp
+ Transitive_Closure:
+ finite_rel_comp ~> finite_relcomp
+ List:
+ set_rel_comp ~> set_relcomp
+
+INCOMPATIBILITY.
+
* New theory HOL/Library/DAList provides an abstract type for association
lists with distinct keys.