--- a/src/HOL/Analysis/ex/Circle_Area.thy Sat Jan 14 20:33:55 2017 +0100
+++ b/src/HOL/Analysis/ex/Circle_Area.thy Sat Jan 14 20:39:16 2017 +0100
@@ -1,10 +1,11 @@
-(*
- File: Circle_Area.thy
- Author: Manuel Eberl <eberlm@in.tum.de>
+(* Title: HOL/Analysis/ex/Circle_Area.thy
+ Author: Manuel Eberl, TU Muenchen
- An proof that the area of a circle with radius R is R²\<pi>.
+A proof that the area of a circle with radius R is R\<^sup>²\<pi>.
*)
+
section {* The area of a circle *}
+
theory Circle_Area
imports Complex_Main Interval_Integral
begin
@@ -34,7 +35,7 @@
also have "... = LBINT x=-pi/2..pi/2. cos x *\<^sub>R (2 * sqrt (1 - (sin x)\<^sup>2))"
by (rule interval_integral_substitution_finite[symmetric])
(auto intro: DERIV_subset[OF DERIV_sin] intro!: continuous_intros)
- also have "... = LBINT x=-pi/2..pi/2. 2 * cos x * sqrt ((cos x)^2)"
+ also have "... = LBINT x=-pi/2..pi/2. 2 * cos x * sqrt ((cos x)^2)"
by (simp add: cos_squared_eq field_simps)
also {
fix x assume "x \<in> {-pi/2<..<pi/2}"
@@ -49,30 +50,30 @@
have "(?F has_real_derivative 1 - (sin x)^2 + (cos x)^2) (at x)"
by (auto simp: power2_eq_square intro!: derivative_eq_intros)
also have "1 - (sin x)^2 + (cos x)^2 = 2 * (cos x)^2" by (simp add: cos_squared_eq)
- finally have "(?F has_real_derivative 2 * (cos x)^2) (at x within A)"
+ finally have "(?F has_real_derivative 2 * (cos x)^2) (at x within A)"
by (rule DERIV_subset) simp
}
hence "LBINT x=-pi/2..pi/2. 2 * (cos x)^2 = ?F (pi/2) - ?F (-pi/2)"
- by (intro interval_integral_FTC_finite)
+ by (intro interval_integral_FTC_finite)
(auto simp: has_field_derivative_iff_has_vector_derivative intro!: continuous_intros)
also have "... = pi" by simp
finally show ?thesis .
qed
-
+
lemma unit_circle_area:
"emeasure lborel {z::real\<times>real. norm z \<le> 1} = pi" (is "emeasure _ ?A = _")
proof-
let ?A1 = "{(x,y)\<in>?A. y \<ge> 0}" and ?A2 = "{(x,y)\<in>?A. y \<le> 0}"
have [measurable]: "(\<lambda>x. snd (x :: real \<times> real)) \<in> measurable borel borel"
by (simp add: borel_prod[symmetric])
-
+
have "?A1 = ?A \<inter> {x\<in>space lborel. snd x \<ge> 0}" by auto
also have "?A \<inter> {x\<in>space lborel. snd x \<ge> 0} \<in> sets borel"
by (intro sets.Int pred_Collect_borel) simp_all
finally have A1_in_sets: "?A1 \<in> sets lborel" by (subst sets_lborel)
have "?A2 = ?A \<inter> {x\<in>space lborel. snd x \<le> 0}" by auto
- also have "... \<in> sets borel"
+ also have "... \<in> sets borel"
by (intro sets.Int pred_Collect_borel) simp_all
finally have A2_in_sets: "?A2 \<in> sets lborel" by (subst sets_lborel)
@@ -86,10 +87,10 @@
by (subst A12, rule plus_emeasure'[OF A1_in_sets A2_in_sets, symmetric])
also have "emeasure lborel ?A1 = \<integral>\<^sup>+x. \<integral>\<^sup>+y. indicator ?A1 (x,y) \<partial>lborel \<partial>lborel"
- by (subst lborel_prod[symmetric], subst lborel.emeasure_pair_measure)
+ by (subst lborel_prod[symmetric], subst lborel.emeasure_pair_measure)
(simp_all only: lborel_prod A1_in_sets)
also have "emeasure lborel ?A2 = \<integral>\<^sup>+x. \<integral>\<^sup>+y. indicator ?A2 (x,y) \<partial>lborel \<partial>lborel"
- by (subst lborel_prod[symmetric], subst lborel.emeasure_pair_measure)
+ by (subst lborel_prod[symmetric], subst lborel.emeasure_pair_measure)
(simp_all only: lborel_prod A2_in_sets)
also have "distr lborel lborel uminus = (lborel :: real measure)"
by (subst (3) lborel_real_affine[of "-1" 0])
@@ -123,7 +124,7 @@
by (intro nn_integral_cong) (auto split: split_indicator)
also from x have "... = sqrt (1-x\<^sup>2)" using x by simp
finally have "(\<integral>\<^sup>+y. indicator ?A1 (x,y) \<partial>lborel) = sqrt (1-x\<^sup>2)" .
- }
+ }
hence "(\<integral>\<^sup>+x. 2 * (\<integral>\<^sup>+y. indicator ?A1 (x,y) \<partial>lborel) * indicator {-1..1} x \<partial>lborel) =
\<integral>\<^sup>+x. 2 * sqrt (1-x\<^sup>2) * indicator {-1..1} x \<partial>lborel"
by (intro nn_integral_cong) (simp split: split_indicator add: ennreal_mult')
@@ -131,9 +132,9 @@
by (subst not_less, subst sq_le_1_iff) (simp add: abs_real_def)
have "integrable lborel (\<lambda>x. 2 * sqrt (1-x\<^sup>2) * indicator {-1..1::real} x)"
by (intro borel_integrable_atLeastAtMost continuous_intros)
- hence "(\<integral>\<^sup>+x. 2 * sqrt (1-x\<^sup>2) * indicator {-1..1} x \<partial>lborel) =
+ hence "(\<integral>\<^sup>+x. 2 * sqrt (1-x\<^sup>2) * indicator {-1..1} x \<partial>lborel) =
ennreal (\<integral>x. 2 * sqrt (1-x\<^sup>2) * indicator {-1..1} x \<partial>lborel)"
- by (intro nn_integral_eq_integral AE_I2)
+ by (intro nn_integral_eq_integral AE_I2)
(auto split: split_indicator simp: field_simps sq_le_1_iff)
also have "(\<integral>x. 2 * sqrt (1-x\<^sup>2) * indicator {-1..1} x \<partial>lborel) =
LBINT x:{-1..1}. 2 * sqrt (1-x\<^sup>2)" by (simp add: field_simps)
@@ -173,10 +174,10 @@
\<integral>\<^sup>+x. \<integral>\<^sup>+y. indicator ?A' (x,y) \<partial>lborel \<partial>lborel"
by (intro nn_integral_cong) (simp split: split_indicator)
also have "... = emeasure lborel ?A'"
- by (subst lborel_prod[symmetric], subst lborel.emeasure_pair_measure, subst lborel_prod)
- simp_all
+ by (subst lborel_prod[symmetric], subst lborel.emeasure_pair_measure, subst lborel_prod)
+ simp_all
also have "... = pi" by (rule unit_circle_area)
finally show ?thesis using assms by (simp add: power2_eq_square ennreal_mult mult_ac)
qed simp
-end
\ No newline at end of file
+end