--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Auth/Recur.ML Wed Dec 18 17:46:38 1996 +0100
@@ -0,0 +1,757 @@
+(* Title: HOL/Auth/Recur
+ ID: $Id$
+ Author: Lawrence C Paulson, Cambridge University Computer Laboratory
+ Copyright 1996 University of Cambridge
+
+Inductive relation "recur" for the Recursive Authentication protocol.
+*)
+
+open Recur;
+
+proof_timing:=true;
+HOL_quantifiers := false;
+Pretty.setdepth 25;
+
+
+(** Possibility properties: traces that reach the end
+ ONE theorem would be more elegant and faster!
+ By induction on a list of agents (no repetitions)
+**)
+
+(*Simplest case: Alice goes directly to the server*)
+goal thy
+ "!!A. A ~= Server \
+\ ==> EX K NA. EX evs: recur lost. \
+\ Says Server A {|Agent A, \
+\ Crypt (shrK A) {|Key K, Agent Server, Nonce NA|}, \
+\ Agent Server|} \
+\ : set_of_list evs";
+by (REPEAT (resolve_tac [exI,bexI] 1));
+by (rtac (recur.Nil RS recur.NA1 RS
+ (respond.One RSN (4,recur.NA3))) 2);
+by (ALLGOALS (simp_tac (!simpset setsolver safe_solver)));
+by (REPEAT_FIRST (eq_assume_tac ORELSE' resolve_tac [refl, conjI]));
+result();
+
+
+(*Case two: Alice, Bob and the server*)
+goal thy
+ "!!A B. [| A ~= B; A ~= Server; B ~= Server |] \
+\ ==> EX K. EX NA. EX evs: recur lost. \
+\ Says B A {|Agent A, Crypt (shrK A) {|Key K, Agent B, Nonce NA|}, \
+\ Agent Server|} \
+\ : set_of_list evs";
+by (REPEAT (resolve_tac [exI,bexI] 1));
+by (rtac (recur.Nil RS recur.NA1 RS recur.NA2 RS
+ (respond.One RS respond.Cons RSN (4,recur.NA3)) RS
+ recur.NA4) 2);
+by (REPEAT
+ (REPEAT_FIRST (eq_assume_tac ORELSE' resolve_tac [refl, conjI])
+ THEN
+ ALLGOALS (asm_simp_tac (!simpset setsolver safe_solver))));
+result();
+
+
+(*Case three: Alice, Bob, Charlie and the server*)
+goal thy
+ "!!A B. [| A ~= B; A ~= Server; B ~= Server |] \
+\ ==> EX K. EX NA. EX evs: recur lost. \
+\ Says B A {|Agent A, Crypt (shrK A) {|Key K, Agent B, Nonce NA|}, \
+\ Agent Server|} \
+\ : set_of_list evs";
+by (REPEAT (resolve_tac [exI,bexI] 1));
+by (rtac (recur.Nil RS recur.NA1 RS recur.NA2 RS recur.NA2 RS
+ (respond.One RS respond.Cons RS respond.Cons RSN
+ (4,recur.NA3)) RS recur.NA4 RS recur.NA4) 2);
+by (REPEAT (*SLOW: 37 seconds*)
+ (REPEAT_FIRST (eq_assume_tac ORELSE' resolve_tac [refl, conjI])
+ THEN
+ ALLGOALS (asm_simp_tac (!simpset setsolver safe_solver))));
+by (ALLGOALS
+ (SELECT_GOAL (DEPTH_SOLVE
+ (swap_res_tac [refl, conjI, disjI1, disjI2] 1 APPEND
+ etac not_sym 1))));
+result();
+
+
+
+(**** Inductive proofs about recur ****)
+
+(*Monotonicity*)
+goal thy "!!evs. lost' <= lost ==> recur lost' <= recur lost";
+by (rtac subsetI 1);
+by (etac recur.induct 1);
+by (REPEAT_FIRST
+ (best_tac (!claset addIs (impOfSubs (sees_mono RS analz_mono RS synth_mono)
+ :: recur.intrs))));
+qed "recur_mono";
+
+(*Nobody sends themselves messages*)
+goal thy "!!evs. evs : recur lost ==> ALL A X. Says A A X ~: set_of_list evs";
+by (etac recur.induct 1);
+by (Auto_tac());
+qed_spec_mp "not_Says_to_self";
+Addsimps [not_Says_to_self];
+AddSEs [not_Says_to_self RSN (2, rev_notE)];
+
+
+(*Simple inductive reasoning about responses*)
+goal thy "!!j. (j,PA,RB) : respond i ==> RB : responses i";
+by (etac respond.induct 1);
+by (REPEAT (ares_tac responses.intrs 1));
+qed "respond_imp_responses";
+
+
+(** For reasoning about the encrypted portion of messages **)
+
+val NA2_analz_sees_Spy = Says_imp_sees_Spy RS analz.Inj |> standard;
+
+goal thy "!!evs. Says C' B {|Agent B, X, Agent B, X', RA|} : set_of_list evs \
+\ ==> RA : analz (sees lost Spy evs)";
+by (fast_tac (!claset addSDs [Says_imp_sees_Spy RS analz.Inj]) 1);
+qed "NA4_analz_sees_Spy";
+
+(*NA2_analz... and NA4_analz... let us treat those cases using the same
+ argument as for the Fake case. This is possible for most, but not all,
+ proofs: Fake does not invent new nonces (as in NA2), and of course Fake
+ messages originate from the Spy. *)
+
+bind_thm ("NA2_parts_sees_Spy",
+ NA2_analz_sees_Spy RS (impOfSubs analz_subset_parts));
+bind_thm ("NA4_parts_sees_Spy",
+ NA4_analz_sees_Spy RS (impOfSubs analz_subset_parts));
+
+(*We instantiate the variable to "lost". Leaving it as a Var makes proofs
+ harder to complete, since simplification does less for us.*)
+val parts_Fake_tac =
+ let val tac = forw_inst_tac [("lost","lost")]
+ in tac NA2_parts_sees_Spy 4 THEN
+ forward_tac [respond_imp_responses] 5 THEN
+ tac NA4_parts_sees_Spy 6
+ end;
+
+(*For proving the easier theorems about X ~: parts (sees lost Spy evs) *)
+fun parts_induct_tac i = SELECT_GOAL
+ (DETERM (etac recur.induct 1 THEN parts_Fake_tac THEN
+ (*Fake message*)
+ TRY (best_tac (!claset addDs [impOfSubs analz_subset_parts,
+ impOfSubs Fake_parts_insert]
+ addss (!simpset)) 2)) THEN
+ (*Base case*)
+ fast_tac (!claset addss (!simpset)) 1 THEN
+ ALLGOALS Asm_simp_tac) i;
+
+(** Theorems of the form X ~: parts (sees lost Spy evs) imply that NOBODY
+ sends messages containing X! **)
+
+
+(** Spy never sees another agent's long-term key (unless initially lost) **)
+
+goal thy
+ "!!evs. (j,PB,RB) : respond i \
+\ ==> Key K : parts {RB} --> (EX j'. K = newK2(i,j') & j<=j')";
+be respond.induct 1;
+by (Auto_tac());
+by (best_tac (!claset addDs [Suc_leD]) 1);
+qed_spec_mp "Key_in_parts_respond";
+
+goal thy
+ "!!evs. evs : recur lost \
+\ ==> (Key (shrK A) : parts (sees lost Spy evs)) = (A : lost)";
+by (parts_induct_tac 1);
+(*NA2*)
+by (best_tac (!claset addSEs partsEs addSDs [parts_cut]
+ addss (!simpset)) 1);
+(*NA3*)
+by (fast_tac (!claset addDs [Key_in_parts_respond]
+ addss (!simpset addsimps [parts_insert_sees])) 1);
+qed "Spy_see_shrK";
+Addsimps [Spy_see_shrK];
+
+goal thy
+ "!!evs. evs : recur lost \
+\ ==> (Key (shrK A) : analz (sees lost Spy evs)) = (A : lost)";
+by (auto_tac(!claset addDs [impOfSubs analz_subset_parts], !simpset));
+qed "Spy_analz_shrK";
+Addsimps [Spy_analz_shrK];
+
+goal thy "!!A. [| Key (shrK A) : parts (sees lost Spy evs); \
+\ evs : recur lost |] ==> A:lost";
+by (fast_tac (!claset addDs [Spy_see_shrK]) 1);
+qed "Spy_see_shrK_D";
+
+bind_thm ("Spy_analz_shrK_D", analz_subset_parts RS subsetD RS Spy_see_shrK_D);
+AddSDs [Spy_see_shrK_D, Spy_analz_shrK_D];
+
+
+(*** Future keys can't be seen or used! ***)
+
+(*Nobody can have SEEN keys that will be generated in the future. *)
+goal thy "!!evs. evs : recur lost ==> \
+\ length evs <= i --> \
+\ Key (newK2(i,j)) ~: parts (sees lost Spy evs)";
+by (parts_induct_tac 1);
+(*NA2*)
+by (best_tac (!claset addSEs partsEs
+ addSDs [parts_cut]
+ addDs [Suc_leD]
+ addss (!simpset addsimps [parts_insert2])) 3);
+(*Fake*)
+by (best_tac (!claset addDs [impOfSubs analz_subset_parts,
+ impOfSubs parts_insert_subset_Un,
+ Suc_leD]
+ addss (!simpset)) 1);
+(*For NA3*)
+by (asm_simp_tac (!simpset addsimps [parts_insert_sees]) 2);
+(*NA1-NA4*)
+by (REPEAT (best_tac (!claset addDs [Key_in_parts_respond, Suc_leD]
+ addss (!simpset)) 1));
+qed_spec_mp "new_keys_not_seen";
+Addsimps [new_keys_not_seen];
+
+(*Variant: old messages must contain old keys!*)
+goal thy
+ "!!evs. [| Says A B X : set_of_list evs; \
+\ Key (newK2(i,j)) : parts {X}; \
+\ evs : recur lost \
+\ |] ==> i < length evs";
+by (rtac ccontr 1);
+by (dtac leI 1);
+by (fast_tac (!claset addSDs [new_keys_not_seen, Says_imp_sees_Spy]
+ addIs [impOfSubs parts_mono]) 1);
+qed "Says_imp_old_keys";
+
+
+(*** Future nonces can't be seen or used! ***)
+
+goal thy
+ "!!evs. (j, PB, RB) : respond i \
+\ ==> Nonce N : parts {RB} --> Nonce N : parts {PB}";
+be respond.induct 1;
+by (Auto_tac());
+qed_spec_mp "Nonce_in_parts_respond";
+
+
+goal thy "!!i. evs : recur lost ==> \
+\ length evs <= i --> Nonce(newN i) ~: parts (sees lost Spy evs)";
+by (parts_induct_tac 1);
+(*For NA3*)
+by (asm_simp_tac (!simpset addsimps [parts_insert_sees]) 4);
+by (deepen_tac (!claset addSDs [Says_imp_sees_Spy RS parts.Inj]
+ addDs [Nonce_in_parts_respond, parts_cut, Suc_leD]
+ addss (!simpset)) 0 4);
+(*Fake*)
+by (fast_tac (!claset addDs [impOfSubs analz_subset_parts,
+ impOfSubs parts_insert_subset_Un,
+ Suc_leD]
+ addss (!simpset)) 1);
+(*NA1, NA2, NA4*)
+by (REPEAT_FIRST (fast_tac (!claset
+ addSEs partsEs
+ addEs [leD RS notE]
+ addDs [Suc_leD]
+ addss (!simpset))));
+qed_spec_mp "new_nonces_not_seen";
+Addsimps [new_nonces_not_seen];
+
+(*Variant: old messages must contain old nonces!*)
+goal thy "!!evs. [| Says A B X : set_of_list evs; \
+\ Nonce (newN i) : parts {X}; \
+\ evs : recur lost \
+\ |] ==> i < length evs";
+by (rtac ccontr 1);
+by (dtac leI 1);
+by (fast_tac (!claset addSDs [new_nonces_not_seen, Says_imp_sees_Spy]
+ addIs [impOfSubs parts_mono]) 1);
+qed "Says_imp_old_nonces";
+
+
+(** Nobody can have USED keys that will be generated in the future. **)
+
+goal thy
+ "!!evs. (j,PB,RB) : respond i \
+\ ==> K : keysFor (parts {RB}) --> (EX A. K = shrK A)";
+be (respond_imp_responses RS responses.induct) 1;
+by (Auto_tac());
+qed_spec_mp "Key_in_keysFor_parts_respond";
+
+
+goal thy "!!i. evs : recur lost ==> \
+\ length evs <= i --> newK2(i,j) ~: keysFor (parts (sees lost Spy evs))";
+by (parts_induct_tac 1);
+(*NA3*)
+by (fast_tac (!claset addDs [Key_in_keysFor_parts_respond, Suc_leD]
+ addss (!simpset addsimps [parts_insert_sees])) 4);
+(*NA2*)
+by (fast_tac (!claset addSEs partsEs
+ addDs [Suc_leD] addss (!simpset)) 3);
+(*Fake, NA1, NA4*)
+by (REPEAT
+ (best_tac
+ (!claset addDs [impOfSubs (analz_subset_parts RS keysFor_mono),
+ impOfSubs (parts_insert_subset_Un RS keysFor_mono),
+ Suc_leD]
+ addEs [new_keys_not_seen RS not_parts_not_analz RSN(2,rev_notE)]
+ addss (!simpset)) 1));
+qed_spec_mp "new_keys_not_used";
+
+
+bind_thm ("new_keys_not_analzd",
+ [analz_subset_parts RS keysFor_mono,
+ new_keys_not_used] MRS contra_subsetD);
+
+Addsimps [new_keys_not_used, new_keys_not_analzd];
+
+
+
+(*** Proofs involving analz ***)
+
+(*For proofs involving analz. We again instantiate the variable to "lost".*)
+val analz_Fake_tac =
+ dres_inst_tac [("lost","lost")] NA2_analz_sees_Spy 4 THEN
+ forward_tac [respond_imp_responses] 5 THEN
+ dres_inst_tac [("lost","lost")] NA4_analz_sees_Spy 6;
+
+
+(** Session keys are not used to encrypt other session keys **)
+
+(*Version for "responses" relation. Handles case NA3 in the theorem below.
+ Note that it holds for *any* set H (not just "sees lost Spy evs")
+ satisfying the inductive hypothesis.*)
+goal thy
+ "!!evs. [| RB : responses i; \
+\ ALL K I. (Key K : analz (Key``(newK``I) Un H)) = \
+\ (K : newK``I | Key K : analz H) |] \
+\ ==> ALL K I. (Key K : analz (insert RB (Key``(newK``I) Un H))) = \
+\ (K : newK``I | Key K : analz (insert RB H))";
+be responses.induct 1;
+by (ALLGOALS
+ (asm_simp_tac
+ (!simpset addsimps [insert_Key_singleton, insert_Key_image,
+ Un_assoc RS sym, pushKey_newK]
+ setloop split_tac [expand_if])));
+by (fast_tac (!claset addIs [image_eqI] addss (!simpset)) 1);
+qed "resp_analz_image_newK_lemma";
+
+(*Version for the protocol. Proof is almost trivial, thanks to the lemma.*)
+goal thy
+ "!!evs. evs : recur lost ==> \
+\ ALL K I. (Key K : analz (Key``(newK``I) Un (sees lost Spy evs))) = \
+\ (K : newK``I | Key K : analz (sees lost Spy evs))";
+by (etac recur.induct 1);
+by analz_Fake_tac;
+be ssubst 4; (*NA2: DELETE needless definition of PA!*)
+by (REPEAT_FIRST (ares_tac [allI, analz_image_newK_lemma]));
+by (ALLGOALS (asm_simp_tac (!simpset addsimps [resp_analz_image_newK_lemma])));
+(*Base*)
+by (fast_tac (!claset addIs [image_eqI] addss (!simpset)) 1);
+(*NA4, NA2, Fake*)
+by (REPEAT (spy_analz_tac 1));
+val raw_analz_image_newK = result();
+qed_spec_mp "analz_image_newK";
+
+
+(*Instance of the lemma with H replaced by (sees lost Spy evs):
+ [| RB : responses i; evs : recur lost |]
+ ==> Key xa : analz (insert RB (Key``newK``x Un sees lost Spy evs)) =
+ (xa : newK``x | Key xa : analz (insert RB (sees lost Spy evs)))
+*)
+bind_thm ("resp_analz_image_newK",
+ raw_analz_image_newK RSN
+ (2, resp_analz_image_newK_lemma) RS spec RS spec);
+
+goal thy
+ "!!evs. evs : recur lost ==> \
+\ Key K : analz (insert (Key (newK x)) (sees lost Spy evs)) = \
+\ (K = newK x | Key K : analz (sees lost Spy evs))";
+by (asm_simp_tac (HOL_ss addsimps [pushKey_newK, analz_image_newK,
+ insert_Key_singleton]) 1);
+by (Fast_tac 1);
+qed "analz_insert_Key_newK";
+
+
+(** Nonces cannot appear before their time, even hashed!
+ One is tempted to add the rule
+ "Hash X : parts H ==> X : parts H"
+ but we'd then lose theorems like Spy_see_shrK
+***)
+
+goal thy "!!i. evs : recur lost ==> \
+\ length evs <= i --> \
+\ (Nonce (newN i) : parts {X} --> \
+\ Hash X ~: parts (sees lost Spy evs))";
+be recur.induct 1;
+be ssubst 4; (*NA2: DELETE needless definition of PA!*)
+by parts_Fake_tac;
+(*NA3 requires a further induction*)
+be responses.induct 5;
+by (ALLGOALS Asm_simp_tac);
+(*NA2*)
+by (best_tac (!claset addDs [Suc_leD, parts_cut]
+ addEs [leD RS notE,
+ new_nonces_not_seen RSN(2,rev_notE)]
+ addss (!simpset)) 4);
+(*Fake*)
+by (best_tac (!claset addSDs [impOfSubs analz_subset_parts,
+ impOfSubs parts_insert_subset_Un,
+ Suc_leD]
+ addss (!simpset)) 2);
+(*Five others!*)
+by (REPEAT (fast_tac (!claset addEs [leD RS notE]
+ addDs [Suc_leD]
+ addss (!simpset)) 1));
+bind_thm ("Hash_new_nonces_not_seen",
+ result() RS mp RS mp RSN (2, rev_notE));
+
+
+(** The Nonce NA uniquely identifies A's message.
+ This theorem applies to rounds NA1 and NA2!
+**)
+
+goal thy
+ "!!evs. [| evs : recur lost; A ~: lost |] \
+\ ==> EX B' P'. ALL B P. \
+\ Hash {|Key(shrK A), Agent A, Agent B, Nonce NA, P|} \
+\ : parts (sees lost Spy evs) --> B=B' & P=P'";
+be recur.induct 1;
+be ssubst 4; (*NA2: DELETE needless definition of PA!*)
+(*For better simplification of NA2*)
+by (res_inst_tac [("x1","XA")] (insert_commute RS ssubst) 4);
+by parts_Fake_tac;
+(*NA3 requires a further induction*)
+be responses.induct 5;
+by (ALLGOALS Asm_simp_tac);
+by (step_tac (!claset addSEs partsEs) 1);
+(*NA3: inductive case*)
+by (best_tac (!claset addss (!simpset)) 5);
+(*Fake*)
+by (best_tac (!claset addSIs [exI]
+ addDs [impOfSubs analz_subset_parts,
+ impOfSubs Fake_parts_insert]
+ addss (!simpset)) 2);
+(*Base*)
+by (fast_tac (!claset addss (!simpset)) 1);
+
+by (ALLGOALS (simp_tac (!simpset addsimps [all_conj_distrib])));
+(*NA1: creation of new Nonce. Move assertion into global context*)
+by (expand_case_tac "NA = ?y" 1);
+by (best_tac (!claset addSIs [exI]
+ addEs [Hash_new_nonces_not_seen]
+ addss (!simpset)) 1);
+by (best_tac (!claset addss (!simpset)) 1);
+(*NA2: creation of new Nonce*)
+by (expand_case_tac "NA = ?y" 1);
+by (best_tac (!claset addSIs [exI]
+ addDs [parts_cut]
+ addEs [Hash_new_nonces_not_seen]
+ addss (!simpset)) 1);
+by (best_tac (!claset addss (!simpset)) 1);
+val lemma = result();
+
+goal thy
+ "!!evs.[| Hash {|Key(shrK A), Agent A, Agent B, Nonce NA, P|} \
+\ : parts (sees lost Spy evs); \
+\ Hash {|Key(shrK A), Agent A, Agent B', Nonce NA, P'|} \
+\ : parts (sees lost Spy evs); \
+\ evs : recur lost; A ~: lost |] \
+\ ==> B=B' & P=P'";
+by (prove_unique_tac lemma 1);
+qed "unique_NA";
+
+
+(*** Lemmas concerning the Server's response
+ (relations "respond" and "responses")
+***)
+
+(*The response never contains Hashes*)
+goal thy
+ "!!evs. (j,PB,RB) : respond i \
+\ ==> Hash {|Key (shrK B), M|} : parts (insert RB H) --> \
+\ Hash {|Key (shrK B), M|} : parts H";
+be (respond_imp_responses RS responses.induct) 1;
+by (Auto_tac());
+bind_thm ("Hash_in_parts_respond", result() RSN (2, rev_mp));
+
+
+goal thy
+ "!!evs. [| RB : responses i; evs : recur lost |] \
+\ ==> (Key (shrK B) : analz (insert RB (sees lost Spy evs))) = (B:lost)";
+be responses.induct 1;
+by (ALLGOALS
+ (asm_simp_tac
+ (!simpset addsimps [resp_analz_image_newK, insert_Key_singleton]
+ setloop split_tac [expand_if])));
+qed "shrK_in_analz_respond";
+Addsimps [shrK_in_analz_respond];
+
+
+goal thy
+ "!!evs. [| RB : responses i; \
+\ ALL K I. (Key K : analz (Key``(newK``I) Un H)) = \
+\ (K : newK``I | Key K : analz H) |] \
+\ ==> (Key K : analz (insert RB H)) --> \
+\ (Key K : parts{RB} | Key K : analz H)";
+be responses.induct 1;
+by (ALLGOALS
+ (asm_simp_tac
+ (!simpset addsimps [read_instantiate [("H", "?ff``?xx")] parts_insert,
+ resp_analz_image_newK_lemma,
+ insert_Key_singleton, insert_Key_image,
+ Un_assoc RS sym, pushKey_newK]
+ setloop split_tac [expand_if])));
+(*The "Message" simpset gives the standard treatment of "image"*)
+by (simp_tac (simpset_of "Message") 1);
+by (fast_tac (!claset delrules [allE]) 1);
+qed "resp_analz_insert_lemma";
+
+bind_thm ("resp_analz_insert",
+ raw_analz_image_newK RSN
+ (2, resp_analz_insert_lemma) RSN(2, rev_mp));
+
+
+(*The Server does not send such messages. This theorem lets us avoid
+ assuming B~=Server in NA4.*)
+goal thy
+ "!!evs. evs : recur lost \
+\ ==> ALL C X Y P. Says Server C {|X, Agent Server, Agent C, Y, P|} \
+\ ~: set_of_list evs";
+by (etac recur.induct 1);
+be (respond.induct) 5;
+by (Auto_tac());
+qed_spec_mp "Says_Server_not";
+AddSEs [Says_Server_not RSN (2,rev_notE)];
+
+
+goal thy
+ "!!i. (j,PB,RB) : respond i \
+\ ==> EX A' B'. ALL A B N. \
+\ Crypt (shrK A) {|Key K, Agent B, N|} : parts {RB} \
+\ --> (A'=A & B'=B) | (A'=B & B'=A)";
+be respond.induct 1;
+by (ALLGOALS (asm_full_simp_tac (!simpset addsimps [all_conj_distrib])));
+(*Base case*)
+by (Fast_tac 1);
+by (Step_tac 1);
+by (expand_case_tac "K = ?y" 1);
+by (best_tac (!claset addSIs [exI]
+ addSEs partsEs
+ addDs [Key_in_parts_respond]
+ addss (!simpset)) 1);
+by (expand_case_tac "K = ?y" 1);
+by (REPEAT (ares_tac [exI] 2));
+by (ex_strip_tac 1);
+be respond.elim 1;
+by (REPEAT_FIRST (etac Pair_inject ORELSE' hyp_subst_tac));
+by (ALLGOALS (asm_full_simp_tac
+ (!simpset addsimps [all_conj_distrib, ex_disj_distrib])));
+by (Fast_tac 1);
+by (Fast_tac 1);
+val lemma = result();
+
+goal thy
+ "!!RB. [| Crypt (shrK A) {|Key K, Agent B, N|} : parts {RB}; \
+\ Crypt (shrK A') {|Key K, Agent B', N'|} : parts {RB}; \
+\ (j,PB,RB) : respond i |] \
+\ ==> (A'=A & B'=B) | (A'=B & B'=A)";
+by (prove_unique_tac lemma 1); (*33 seconds, due to the disjunctions*)
+qed "unique_session_keys";
+
+
+(** Crucial secrecy property: Spy does not see the keys sent in msg NA3
+ Does not in itself guarantee security: an attack could violate
+ the premises, e.g. by having A=Spy **)
+
+goal thy
+ "!!j. (j, {|Hash {|Key(shrK A), Agent A, B, NA, P|}, X|}, RA) : respond i \
+\ ==> Crypt (shrK A) {|Key (newK2 (i,j)), B, NA|} : parts {RA}";
+be respond.elim 1;
+by (ALLGOALS Asm_full_simp_tac);
+qed "newK2_respond_lemma";
+
+
+goal thy
+ "!!evs. [| (j,PB,RB) : respond (length evs); evs : recur lost |] \
+\ ==> ALL A A' N. A ~: lost & A' ~: lost --> \
+\ Crypt (shrK A) {|Key K, Agent A', N|} : parts{RB} --> \
+\ Key K ~: analz (insert RB (sees lost Spy evs))";
+be respond.induct 1;
+by (forward_tac [respond_imp_responses] 2);
+by (ALLGOALS
+ (asm_simp_tac
+ (!simpset addsimps
+ ([analz_image_newK, not_parts_not_analz,
+ read_instantiate [("H", "?ff``?xx")] parts_insert,
+ Un_assoc RS sym, resp_analz_image_newK,
+ insert_Key_singleton, analz_insert_Key_newK])
+ setloop split_tac [expand_if])));
+by (ALLGOALS (simp_tac (simpset_of "Message")));
+by (Fast_tac 1);
+by (step_tac (!claset addSEs [MPair_parts]) 1);
+(** LEVEL 6 **)
+by (fast_tac (!claset addDs [resp_analz_insert, Key_in_parts_respond]
+ addSEs [new_keys_not_seen RS not_parts_not_analz
+ RSN(2,rev_notE)]
+ addss (!simpset)) 4);
+by (fast_tac (!claset addSDs [newK2_respond_lemma]) 3);
+by (best_tac (!claset addSEs partsEs
+ addDs [Key_in_parts_respond]
+ addss (!simpset)) 2);
+by (thin_tac "ALL x.?P(x)" 1);
+be respond.elim 1;
+by (fast_tac (!claset addss (!simpset)) 1);
+by (step_tac (!claset addss (!simpset)) 1);
+by (best_tac (!claset addSEs partsEs
+ addDs [Key_in_parts_respond]
+ addss (!simpset)) 1);
+qed_spec_mp "respond_Spy_not_see_encrypted_key";
+
+
+goal thy
+ "!!evs. [| A ~: lost; A' ~: lost; \
+\ evs : recur lost |] \
+\ ==> Says Server B RB : set_of_list evs --> \
+\ Crypt (shrK A) {|Key K, Agent A', N|} : parts{RB} --> \
+\ Key K ~: analz (sees lost Spy evs)";
+by (etac recur.induct 1);
+by analz_Fake_tac;
+be ssubst 4; (*NA2: DELETE needless definition of PA!*)
+by (ALLGOALS
+ (asm_simp_tac
+ (!simpset addsimps [not_parts_not_analz, analz_insert_Key_newK]
+ setloop split_tac [expand_if])));
+(*NA4*)
+by (spy_analz_tac 4);
+(*Fake*)
+by (spy_analz_tac 1);
+by (step_tac (!claset delrules [impCE]) 1);
+(*NA2*)
+by (spy_analz_tac 1);
+(*NA3, case 2: K is an old key*)
+by (fast_tac (!claset addSDs [resp_analz_insert]
+ addSEs partsEs
+ addDs [Key_in_parts_respond]
+ addEs [Says_imp_old_keys RS less_irrefl]) 2);
+(*NA3, case 1: use lemma previously proved by induction*)
+by (fast_tac (!claset addSEs [respond_Spy_not_see_encrypted_key RSN
+ (2,rev_notE)]) 1);
+bind_thm ("Spy_not_see_encrypted_key", result() RS mp RSN (2, rev_mp));
+
+
+goal thy
+ "!!evs. [| Says Server B RB : set_of_list evs; \
+\ Crypt (shrK A) {|Key K, Agent A', N|} : parts{RB}; \
+\ C ~: {A,A',Server}; \
+\ A ~: lost; A' ~: lost; evs : recur lost |] \
+\ ==> Key K ~: analz (sees lost C evs)";
+by (rtac (subset_insertI RS sees_mono RS analz_mono RS contra_subsetD) 1);
+by (rtac (sees_lost_agent_subset_sees_Spy RS analz_mono RS contra_subsetD) 1);
+by (FIRSTGOAL (rtac Spy_not_see_encrypted_key));
+by (REPEAT_FIRST (fast_tac (!claset addIs [recur_mono RS subsetD])));
+qed "Agent_not_see_encrypted_key";
+
+
+(**** Authenticity properties for Agents ****)
+
+(*Only NA1 or NA2 can have caused such a part of a message to appear.*)
+goal thy
+ "!!evs. [| Hash {|Key(shrK A), Agent A, Agent B, NA, P|} \
+\ : parts (sees lost Spy evs); \
+\ A ~: lost; evs : recur lost |] \
+\ ==> Says A B {|Hash{|Key(shrK A), Agent A, Agent B, NA, P|}, \
+\ Agent A, Agent B, NA, P|} \
+\ : set_of_list evs";
+be rev_mp 1;
+by (parts_induct_tac 1);
+(*NA3*)
+by (fast_tac (!claset addSDs [Hash_in_parts_respond]) 2);
+(*NA2*)
+by ((REPEAT o CHANGED) (*Push in XA*)
+ (res_inst_tac [("x1","XA")] (insert_commute RS ssubst) 1));
+by (best_tac (!claset addSEs partsEs
+ addDs [parts_cut]
+ addss (!simpset)) 1);
+qed_spec_mp "Hash_auth_sender";
+
+
+goal thy "!!i. {|Hash {|Key (shrK Server), M|}, M|} : responses i ==> R";
+be setup_induction 1;
+be responses.induct 1;
+by (ALLGOALS Asm_simp_tac);
+qed "responses_no_Hash_Server";
+
+
+val nonce_not_seen_now = le_refl RSN (2, new_nonces_not_seen) RSN (2,rev_notE);
+
+
+(** These two results should subsume (for all agents) the guarantees proved
+ separately for A and B in the Otway-Rees protocol.
+**)
+
+
+(*Crucial property: If the encrypted message appears, and A has used NA
+ in a run, then it originated with the Server!*)
+goal thy
+ "!!evs. [| A ~: lost; A ~= Spy; evs : recur lost |] \
+\ ==> Crypt (shrK A) {|Key K, Agent B, NA|} : parts (sees lost Spy evs) \
+\ --> Says A B {|Hash{|Key(shrK A), Agent A, Agent B, NA, P|}, \
+\ Agent A, Agent B, NA, P|} \
+\ : set_of_list evs \
+\ --> (EX C RC. Says Server C RC : set_of_list evs & \
+\ Crypt (shrK A) {|Key K, Agent B, NA|} : parts {RC})";
+by (parts_induct_tac 1);
+(*NA4*)
+by (best_tac (!claset addSEs [MPair_parts]
+ addSDs [Hash_auth_sender]
+ addSIs [disjI2]) 4);
+(*NA1: it cannot be a new Nonce, contradiction.*)
+by (fast_tac (!claset delrules [impCE]
+ addSEs [nonce_not_seen_now, MPair_parts]
+ addDs [parts.Body]) 1);
+(*NA2: it cannot be a new Nonce, contradiction.*)
+by ((REPEAT o CHANGED) (*Push in XA*)
+ (res_inst_tac [("x1","XA")] (insert_commute RS ssubst) 1));
+by (deepen_tac (!claset delrules [impCE]
+ addSIs [disjI2]
+ addSEs [MPair_parts]
+ addDs [parts_cut, parts.Body]
+ addss (!simpset)) 0 1);
+(*NA3*) (** LEVEL 5 **)
+by (REPEAT (safe_step_tac (!claset addSEs [responses_no_Hash_Server]
+ delrules [impCE]) 1));
+by (full_simp_tac (!simpset addsimps [parts_insert_sees]) 1);
+by (Fast_tac 1);
+qed_spec_mp "Crypt_imp_Server_msg";
+
+
+(*Corollary: if A receives B's message and the nonce NA agrees
+ then the key really did come from the Server!*)
+goal thy
+ "!!evs. [| Says B' A RA : set_of_list evs; \
+\ Crypt (shrK A) {|Key K, Agent B, NA|} : parts {RA}; \
+\ Says A B {|Hash{|Key(shrK A), Agent A, Agent B, NA, P|}, \
+\ Agent A, Agent B, NA, P|} \
+\ : set_of_list evs; \
+\ A ~: lost; A ~= Spy; evs : recur lost |] \
+\ ==> EX C RC. Says Server C RC : set_of_list evs & \
+\ Crypt (shrK A) {|Key K, Agent B, NA|} : parts {RC}";
+by (best_tac (!claset addSIs [Crypt_imp_Server_msg]
+ addDs [Says_imp_sees_Spy RS parts.Inj RSN (2,parts_cut)]
+ addss (!simpset)) 1);
+qed "Agent_trust";
+
+
+(*Overall guarantee: if A receives B's message and the nonce NA agrees
+ then the only other agent who knows the key is B.*)
+goal thy
+ "!!evs. [| Says B' A RA : set_of_list evs; \
+\ Crypt (shrK A) {|Key K, Agent B, NA|} : parts {RA}; \
+\ Says A B {|Hash{|Key(shrK A), Agent A, Agent B, NA, P|}, \
+\ Agent A, Agent B, NA, P|} \
+\ : set_of_list evs; \
+\ C ~: {A,B,Server}; \
+\ A ~: lost; B ~: lost; A ~= Spy; evs : recur lost |] \
+\ ==> Key K ~: analz (sees lost C evs)";
+by (dtac Agent_trust 1 THEN REPEAT_FIRST assume_tac);
+by (fast_tac (!claset addSEs [Agent_not_see_encrypted_key RSN(2,rev_notE)]) 1);
+qed "Agent_secrecy";
+
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Auth/Recur.thy Wed Dec 18 17:46:38 1996 +0100
@@ -0,0 +1,117 @@
+(* Title: HOL/Auth/Recur
+ ID: $Id$
+ Author: Lawrence C Paulson, Cambridge University Computer Laboratory
+ Copyright 1996 University of Cambridge
+
+Inductive relation "recur" for the Recursive Authentication protocol.
+*)
+
+Recur = Shared +
+
+syntax
+ newK2 :: "nat*nat => key"
+
+translations
+ "newK2 x" == "newK(nPair x)"
+
+(*Two session keys are distributed to each agent except for the initiator,
+ who receives one.
+ Perhaps the two session keys could be bundled into a single message.
+*)
+consts respond :: "nat => (nat*msg*msg)set"
+inductive "respond i" (*Server's response to the nested message*)
+ intrs
+ (*The message "Agent Server" marks the end of a list.*)
+
+ One "[| A ~= Server;
+ MA = {|Agent A, Agent B, Nonce NA, Agent Server|} |]
+ ==> (j, {|Hash{|Key(shrK A), MA|}, MA|},
+ {|Agent A,
+ Crypt (shrK A) {|Key(newK2(i,j)), Agent B, Nonce NA|},
+ Agent Server|})
+ : respond i"
+
+ (*newK2(i,Suc j) is the key for A & B; newK2(i,j) is the key for B & C*)
+ Cons "[| (Suc j, PA, RA) : respond i;
+ B ~= Server;
+ MB = {|Agent B, Agent C, Nonce NB, PA|};
+ PA = {|Hash{|Key(shrK A), MA|}, MA|};
+ MA = {|Agent A, Agent B, Nonce NA, P|} |]
+ ==> (j, {|Hash{|Key(shrK B), MB|}, MB|},
+ {|Agent B,
+ Crypt (shrK B) {|Key(newK2(i,Suc j)), Agent A, Nonce NB|},
+ Agent B,
+ Crypt (shrK B) {|Key(newK2(i,j)), Agent C, Nonce NB|},
+ RA|})
+ : respond i"
+
+
+(*Induction over "respond" can be difficult, due to the complexity of the
+ subgoals. The "responses" relation formalizes the general form of its
+ third component.
+*)
+consts responses :: nat => msg set
+inductive "responses i"
+ intrs
+ (*Server terminates lists*)
+ Nil "Agent Server : responses i"
+
+ Cons "RA : responses i
+ ==> {|Agent B,
+ Crypt (shrK B) {|Key(newK2(i,k)), Agent A, Nonce NB|},
+ RA|} : responses i"
+
+
+consts recur :: agent set => event list set
+inductive "recur lost"
+ intrs
+ (*Initial trace is empty*)
+ Nil "[]: recur lost"
+
+ (*The spy MAY say anything he CAN say. We do not expect him to
+ invent new nonces here, but he can also use NS1. Common to
+ all similar protocols.*)
+ Fake "[| evs: recur lost; B ~= Spy;
+ X: synth (analz (sees lost Spy evs)) |]
+ ==> Says Spy B X # evs : recur lost"
+
+ (*Alice initiates a protocol run.
+ "Agent Server" is just a placeholder, to terminate the nesting.*)
+ NA1 "[| evs: recur lost; A ~= B; A ~= Server;
+ MA = {|Agent A, Agent B, Nonce(newN(length evs)), Agent Server|}|]
+ ==> Says A B {|Hash{|Key(shrK A),MA|}, MA|} # evs : recur lost"
+
+ (*Bob's response to Alice's message. C might be the Server.
+ XA should be the Hash of the remaining components with KA, but
+ Bob cannot check that.
+ P is the previous recur message from Alice's caller.*)
+ NA2 "[| evs: recur lost; B ~= C; B ~= Server;
+ Says A' B PA : set_of_list evs;
+ PA = {|XA, Agent A, Agent B, Nonce NA, P|};
+ MB = {|Agent B, Agent C, Nonce (newN(length evs)), PA|} |]
+ ==> Says B C {|Hash{|Key(shrK B),MB|}, MB|} # evs : recur lost"
+
+ (*The Server receives and decodes Bob's message. Then he generates
+ a new session key and a response.*)
+ NA3 "[| evs: recur lost; B ~= Server;
+ Says B' Server PB : set_of_list evs;
+ (0,PB,RB) : respond (length evs) |]
+ ==> Says Server B RB # evs : recur lost"
+
+ (*Bob receives the returned message and compares the Nonces with
+ those in the message he previously sent the Server.*)
+ NA4 "[| evs: recur lost; A ~= B;
+ Says C' B {|Agent B,
+ Crypt (shrK B) {|Key KAB, Agent A, Nonce NB|},
+ Agent B,
+ Crypt (shrK B) {|Key KAC, Agent C, Nonce NB|}, RA|}
+ : set_of_list evs;
+ Says B C {|XH, Agent B, Agent C, Nonce NB,
+ XA, Agent A, Agent B, Nonce NA, P|}
+ : set_of_list evs |]
+ ==> Says B A RA # evs : recur lost"
+
+(**No "oops" message can readily be expressed, since each session key is
+ associated--in two separate messages--with two nonces.
+***)
+end