--- a/src/HOL/Analysis/Cartesian_Euclidean_Space.thy Wed Jan 16 10:27:57 2019 +0100
+++ b/src/HOL/Analysis/Cartesian_Euclidean_Space.thy Wed Jan 16 11:48:06 2019 +0100
@@ -187,31 +187,6 @@
shows "A ** transpose A = (\<chi> i j. inner (row i A) (row j A))"
by (simp add: matrix_matrix_mult_def vec_eq_iff transpose_def row_def inner_vec_def)
-text\<open>Two sometimes fruitful ways of looking at matrix-vector multiplication.\<close>
-
-lemma%important matrix_mult_dot: "A *v x = (\<chi> i. inner (A$i) x)"
- by (simp add: matrix_vector_mult_def inner_vec_def)
-
-lemma%unimportant adjoint_matrix: "adjoint(\<lambda>x. (A::real^'n^'m) *v x) = (\<lambda>x. transpose A *v x)"
- apply (rule adjoint_unique)
- apply (simp add: transpose_def inner_vec_def matrix_vector_mult_def
- sum_distrib_right sum_distrib_left)
- apply (subst sum.swap)
- apply (simp add: ac_simps)
- done
-
-lemma%important matrix_adjoint: assumes lf: "linear (f :: real^'n \<Rightarrow> real ^'m)"
- shows "matrix(adjoint f) = transpose(matrix f)"
-proof%unimportant -
- have "matrix(adjoint f) = matrix(adjoint ((*v) (matrix f)))"
- by (simp add: lf)
- also have "\<dots> = transpose(matrix f)"
- unfolding adjoint_matrix matrix_of_matrix_vector_mul
- apply rule
- done
- finally show ?thesis .
-qed
-
lemma%unimportant matrix_vector_mul_bounded_linear[intro, simp]: "bounded_linear ((*v) A)" for A :: "'a::{euclidean_space,real_algebra_1}^'n^'m"
using matrix_vector_mul_linear[of A]
by (simp add: linear_conv_bounded_linear linear_matrix_vector_mul_eq)
@@ -703,16 +678,6 @@
then show "?A \<subseteq> vec.span ?B" by auto
qed (simp add: card_image inj_on_def axis_eq_axis)
-lemma%unimportant dim_subset_UNIV_cart_gen:
- fixes S :: "('a::field^'n) set"
- shows "vec.dim S \<le> CARD('n)"
- by (metis vec.dim_eq_full vec.dim_subset_UNIV vec.span_UNIV vec_dim_card)
-
-lemma%unimportant dim_subset_UNIV_cart:
- fixes S :: "(real^'n) set"
- shows "dim S \<le> CARD('n)"
- using dim_subset_UNIV_cart_gen[of S] by (simp add: dim_vec_eq)
-
lemma%unimportant affinity_inverses:
assumes m0: "m \<noteq> (0::'a::field)"
shows "(\<lambda>x. m *s x + c) \<circ> (\<lambda>x. inverse(m) *s x + (-(inverse(m) *s c))) = id"
@@ -813,13 +778,7 @@
vector_cart[of "\<lambda>j. frechet_derivative f (at x) j $ k"]
by (simp add: Basis_vec_def axis_eq_axis inner_axis jacobian_def matrix_def)
-subsection%unimportant \<open>Lemmas for working on \<^typ>\<open>real^1\<close>\<close>
-
-lemma forall_1[simp]: "(\<forall>i::1. P i) \<longleftrightarrow> P 1"
- by (metis (full_types) num1_eq_iff)
-
-lemma ex_1[simp]: "(\<exists>x::1. P x) \<longleftrightarrow> P 1"
- by auto (metis (full_types) num1_eq_iff)
+subsection%unimportant \<open>Lemmas for working on \<open>real^1/2/3\<close>\<close>
lemma exhaust_2:
fixes x :: 2
@@ -865,24 +824,6 @@
lemma sum_3: "sum f (UNIV::3 set) = f 1 + f 2 + f 3"
unfolding UNIV_3 by (simp add: ac_simps)
-lemma num1_eqI:
- fixes a::num1 shows "a = b"
- by (metis (full_types) UNIV_1 UNIV_I empty_iff insert_iff)
-
-lemma num1_eq1 [simp]:
- fixes a::num1 shows "a = 1"
- by (rule num1_eqI)
-
-instantiation num1 :: linorder begin
-definition "a < b \<longleftrightarrow> Rep_num1 a < Rep_num1 b"
-definition "a \<le> b \<longleftrightarrow> Rep_num1 a \<le> Rep_num1 b"
-instance
- by intro_classes (auto simp: less_eq_num1_def less_num1_def intro: num1_eqI)
-end
-
-instance num1 :: wellorder
- by intro_classes (auto simp: less_eq_num1_def less_num1_def)
-
subsection%unimportant\<open>The collapse of the general concepts to dimension one\<close>
lemma vector_one: "(x::'a ^1) = (\<chi> i. (x$1))"
@@ -908,171 +849,6 @@
lemma dist_real: "dist(x::real ^ 1) y = \<bar>(x$1) - (y$1)\<bar>"
by (auto simp add: norm_real dist_norm)
-subsection%important\<open> Rank of a matrix\<close>
-
-text\<open>Equivalence of row and column rank is taken from George Mackiw's paper, Mathematics Magazine 1995, p. 285.\<close>
-
-lemma%unimportant matrix_vector_mult_in_columnspace_gen:
- fixes A :: "'a::field^'n^'m"
- shows "(A *v x) \<in> vec.span(columns A)"
- apply (simp add: matrix_vector_column columns_def transpose_def column_def)
- apply (intro vec.span_sum vec.span_scale)
- apply (force intro: vec.span_base)
- done
-
-lemma%unimportant matrix_vector_mult_in_columnspace:
- fixes A :: "real^'n^'m"
- shows "(A *v x) \<in> span(columns A)"
- using matrix_vector_mult_in_columnspace_gen[of A x] by (simp add: span_vec_eq)
-
-lemma%important orthogonal_nullspace_rowspace:
- fixes A :: "real^'n^'m"
- assumes 0: "A *v x = 0" and y: "y \<in> span(rows A)"
- shows "orthogonal x y"
- using y
-proof%unimportant (induction rule: span_induct)
- case base
- then show ?case
- by (simp add: subspace_orthogonal_to_vector)
-next
- case (step v)
- then obtain i where "v = row i A"
- by (auto simp: rows_def)
- with 0 show ?case
- unfolding orthogonal_def inner_vec_def matrix_vector_mult_def row_def
- by (simp add: mult.commute) (metis (no_types) vec_lambda_beta zero_index)
-qed
-
-lemma%unimportant nullspace_inter_rowspace:
- fixes A :: "real^'n^'m"
- shows "A *v x = 0 \<and> x \<in> span(rows A) \<longleftrightarrow> x = 0"
- using orthogonal_nullspace_rowspace orthogonal_self span_zero matrix_vector_mult_0_right
- by blast
-
-lemma%unimportant matrix_vector_mul_injective_on_rowspace:
- fixes A :: "real^'n^'m"
- shows "\<lbrakk>A *v x = A *v y; x \<in> span(rows A); y \<in> span(rows A)\<rbrakk> \<Longrightarrow> x = y"
- using nullspace_inter_rowspace [of A "x-y"]
- by (metis diff_eq_diff_eq diff_self matrix_vector_mult_diff_distrib span_diff)
-
-definition%important rank :: "'a::field^'n^'m=>nat"
- where row_rank_def_gen: "rank A \<equiv> vec.dim(rows A)"
-
-lemma%important row_rank_def: "rank A = dim (rows A)" for A::"real^'n^'m"
- by%unimportant (auto simp: row_rank_def_gen dim_vec_eq)
-
-lemma%important dim_rows_le_dim_columns:
- fixes A :: "real^'n^'m"
- shows "dim(rows A) \<le> dim(columns A)"
-proof%unimportant -
- have "dim (span (rows A)) \<le> dim (span (columns A))"
- proof -
- obtain B where "independent B" "span(rows A) \<subseteq> span B"
- and B: "B \<subseteq> span(rows A)""card B = dim (span(rows A))"
- using basis_exists [of "span(rows A)"] by metis
- with span_subspace have eq: "span B = span(rows A)"
- by auto
- then have inj: "inj_on ((*v) A) (span B)"
- by (simp add: inj_on_def matrix_vector_mul_injective_on_rowspace)
- then have ind: "independent ((*v) A ` B)"
- by (rule linear_independent_injective_image [OF Finite_Cartesian_Product.matrix_vector_mul_linear \<open>independent B\<close>])
- have "dim (span (rows A)) \<le> card ((*v) A ` B)"
- unfolding B(2)[symmetric]
- using inj
- by (auto simp: card_image inj_on_subset span_superset)
- also have "\<dots> \<le> dim (span (columns A))"
- using _ ind
- by (rule independent_card_le_dim) (auto intro!: matrix_vector_mult_in_columnspace)
- finally show ?thesis .
- qed
- then show ?thesis
- by (simp add: dim_span)
-qed
-
-lemma%unimportant column_rank_def:
- fixes A :: "real^'n^'m"
- shows "rank A = dim(columns A)"
- unfolding row_rank_def
- by (metis columns_transpose dim_rows_le_dim_columns le_antisym rows_transpose)
-
-lemma%unimportant rank_transpose:
- fixes A :: "real^'n^'m"
- shows "rank(transpose A) = rank A"
- by (metis column_rank_def row_rank_def rows_transpose)
-
-lemma%unimportant matrix_vector_mult_basis:
- fixes A :: "real^'n^'m"
- shows "A *v (axis k 1) = column k A"
- by (simp add: cart_eq_inner_axis column_def matrix_mult_dot)
-
-lemma%unimportant columns_image_basis:
- fixes A :: "real^'n^'m"
- shows "columns A = (*v) A ` (range (\<lambda>i. axis i 1))"
- by (force simp: columns_def matrix_vector_mult_basis [symmetric])
-
-lemma%important rank_dim_range:
- fixes A :: "real^'n^'m"
- shows "rank A = dim(range (\<lambda>x. A *v x))"
- unfolding column_rank_def
-proof%unimportant (rule span_eq_dim)
- have "span (columns A) \<subseteq> span (range ((*v) A))" (is "?l \<subseteq> ?r")
- by (simp add: columns_image_basis image_subsetI span_mono)
- then show "?l = ?r"
- by (metis (no_types, lifting) image_subset_iff matrix_vector_mult_in_columnspace
- span_eq span_span)
-qed
-
-lemma%unimportant rank_bound:
- fixes A :: "real^'n^'m"
- shows "rank A \<le> min CARD('m) (CARD('n))"
- by (metis (mono_tags, lifting) dim_subset_UNIV_cart min.bounded_iff
- column_rank_def row_rank_def)
-
-lemma%unimportant full_rank_injective:
- fixes A :: "real^'n^'m"
- shows "rank A = CARD('n) \<longleftrightarrow> inj ((*v) A)"
- by (simp add: matrix_left_invertible_injective [symmetric] matrix_left_invertible_span_rows row_rank_def
- dim_eq_full [symmetric] card_cart_basis vec.dimension_def)
-
-lemma%unimportant full_rank_surjective:
- fixes A :: "real^'n^'m"
- shows "rank A = CARD('m) \<longleftrightarrow> surj ((*v) A)"
- by (simp add: matrix_right_invertible_surjective [symmetric] left_invertible_transpose [symmetric]
- matrix_left_invertible_injective full_rank_injective [symmetric] rank_transpose)
-
-lemma%unimportant rank_I: "rank(mat 1::real^'n^'n) = CARD('n)"
- by (simp add: full_rank_injective inj_on_def)
-
-lemma%unimportant less_rank_noninjective:
- fixes A :: "real^'n^'m"
- shows "rank A < CARD('n) \<longleftrightarrow> \<not> inj ((*v) A)"
-using less_le rank_bound by (auto simp: full_rank_injective [symmetric])
-
-lemma%unimportant matrix_nonfull_linear_equations_eq:
- fixes A :: "real^'n^'m"
- shows "(\<exists>x. (x \<noteq> 0) \<and> A *v x = 0) \<longleftrightarrow> rank A \<noteq> CARD('n)"
- by (meson matrix_left_invertible_injective full_rank_injective matrix_left_invertible_ker)
-
-lemma%unimportant rank_eq_0: "rank A = 0 \<longleftrightarrow> A = 0" and rank_0 [simp]: "rank (0::real^'n^'m) = 0"
- for A :: "real^'n^'m"
- by (auto simp: rank_dim_range matrix_eq)
-
-lemma%important rank_mul_le_right:
- fixes A :: "real^'n^'m" and B :: "real^'p^'n"
- shows "rank(A ** B) \<le> rank B"
-proof%unimportant -
- have "rank(A ** B) \<le> dim ((*v) A ` range ((*v) B))"
- by (auto simp: rank_dim_range image_comp o_def matrix_vector_mul_assoc)
- also have "\<dots> \<le> rank B"
- by (simp add: rank_dim_range dim_image_le)
- finally show ?thesis .
-qed
-
-lemma%unimportant rank_mul_le_left:
- fixes A :: "real^'n^'m" and B :: "real^'p^'n"
- shows "rank(A ** B) \<le> rank A"
- by (metis matrix_transpose_mul rank_mul_le_right rank_transpose)
-
subsection%unimportant\<open>Routine results connecting the types \<^typ>\<open>real^1\<close> and \<^typ>\<open>real\<close>\<close>
lemma vector_one_nth [simp]:
--- a/src/HOL/Analysis/Cartesian_Space.thy Wed Jan 16 10:27:57 2019 +0100
+++ b/src/HOL/Analysis/Cartesian_Space.thy Wed Jan 16 11:48:06 2019 +0100
@@ -462,4 +462,209 @@
lemma dimension_eq_1[code_unfold]: "vector_space_over_itself.dimension TYPE('a::field)= 1"
unfolding vector_space_over_itself.dimension_def by simp
+
+lemma%unimportant dim_subset_UNIV_cart_gen:
+ fixes S :: "('a::field^'n) set"
+ shows "vec.dim S \<le> CARD('n)"
+ by (metis vec.dim_eq_full vec.dim_subset_UNIV vec.span_UNIV vec_dim_card)
+
+lemma%unimportant dim_subset_UNIV_cart:
+ fixes S :: "(real^'n) set"
+ shows "dim S \<le> CARD('n)"
+ using dim_subset_UNIV_cart_gen[of S] by (simp add: dim_vec_eq)
+
+text\<open>Two sometimes fruitful ways of looking at matrix-vector multiplication.\<close>
+
+lemma%important matrix_mult_dot: "A *v x = (\<chi> i. inner (A$i) x)"
+ by (simp add: matrix_vector_mult_def inner_vec_def)
+
+lemma%unimportant adjoint_matrix: "adjoint(\<lambda>x. (A::real^'n^'m) *v x) = (\<lambda>x. transpose A *v x)"
+ apply (rule adjoint_unique)
+ apply (simp add: transpose_def inner_vec_def matrix_vector_mult_def
+ sum_distrib_right sum_distrib_left)
+ apply (subst sum.swap)
+ apply (simp add: ac_simps)
+ done
+
+lemma%important matrix_adjoint: assumes lf: "linear (f :: real^'n \<Rightarrow> real ^'m)"
+ shows "matrix(adjoint f) = transpose(matrix f)"
+proof%unimportant -
+ have "matrix(adjoint f) = matrix(adjoint ((*v) (matrix f)))"
+ by (simp add: lf)
+ also have "\<dots> = transpose(matrix f)"
+ unfolding adjoint_matrix matrix_of_matrix_vector_mul
+ apply rule
+ done
+ finally show ?thesis .
+qed
+
+
+subsection%important\<open> Rank of a matrix\<close>
+
+text\<open>Equivalence of row and column rank is taken from George Mackiw's paper, Mathematics Magazine 1995, p. 285.\<close>
+
+lemma%unimportant matrix_vector_mult_in_columnspace_gen:
+ fixes A :: "'a::field^'n^'m"
+ shows "(A *v x) \<in> vec.span(columns A)"
+ apply (simp add: matrix_vector_column columns_def transpose_def column_def)
+ apply (intro vec.span_sum vec.span_scale)
+ apply (force intro: vec.span_base)
+ done
+
+lemma%unimportant matrix_vector_mult_in_columnspace:
+ fixes A :: "real^'n^'m"
+ shows "(A *v x) \<in> span(columns A)"
+ using matrix_vector_mult_in_columnspace_gen[of A x] by (simp add: span_vec_eq)
+
+lemma subspace_orthogonal_to_vector: "subspace {y. orthogonal x y}"
+ by (simp add: subspace_def orthogonal_clauses)
+
+lemma%important orthogonal_nullspace_rowspace:
+ fixes A :: "real^'n^'m"
+ assumes 0: "A *v x = 0" and y: "y \<in> span(rows A)"
+ shows "orthogonal x y"
+ using y
+proof%unimportant (induction rule: span_induct)
+ case base
+ then show ?case
+ by (simp add: subspace_orthogonal_to_vector)
+next
+ case (step v)
+ then obtain i where "v = row i A"
+ by (auto simp: rows_def)
+ with 0 show ?case
+ unfolding orthogonal_def inner_vec_def matrix_vector_mult_def row_def
+ by (simp add: mult.commute) (metis (no_types) vec_lambda_beta zero_index)
+qed
+
+lemma%unimportant nullspace_inter_rowspace:
+ fixes A :: "real^'n^'m"
+ shows "A *v x = 0 \<and> x \<in> span(rows A) \<longleftrightarrow> x = 0"
+ using orthogonal_nullspace_rowspace orthogonal_self span_zero matrix_vector_mult_0_right
+ by blast
+
+lemma%unimportant matrix_vector_mul_injective_on_rowspace:
+ fixes A :: "real^'n^'m"
+ shows "\<lbrakk>A *v x = A *v y; x \<in> span(rows A); y \<in> span(rows A)\<rbrakk> \<Longrightarrow> x = y"
+ using nullspace_inter_rowspace [of A "x-y"]
+ by (metis diff_eq_diff_eq diff_self matrix_vector_mult_diff_distrib span_diff)
+
+definition%important rank :: "'a::field^'n^'m=>nat"
+ where row_rank_def_gen: "rank A \<equiv> vec.dim(rows A)"
+
+lemma%important row_rank_def: "rank A = dim (rows A)" for A::"real^'n^'m"
+ by%unimportant (auto simp: row_rank_def_gen dim_vec_eq)
+
+lemma%important dim_rows_le_dim_columns:
+ fixes A :: "real^'n^'m"
+ shows "dim(rows A) \<le> dim(columns A)"
+proof%unimportant -
+ have "dim (span (rows A)) \<le> dim (span (columns A))"
+ proof -
+ obtain B where "independent B" "span(rows A) \<subseteq> span B"
+ and B: "B \<subseteq> span(rows A)""card B = dim (span(rows A))"
+ using basis_exists [of "span(rows A)"] by metis
+ with span_subspace have eq: "span B = span(rows A)"
+ by auto
+ then have inj: "inj_on ((*v) A) (span B)"
+ by (simp add: inj_on_def matrix_vector_mul_injective_on_rowspace)
+ then have ind: "independent ((*v) A ` B)"
+ by (rule linear_independent_injective_image [OF Finite_Cartesian_Product.matrix_vector_mul_linear \<open>independent B\<close>])
+ have "dim (span (rows A)) \<le> card ((*v) A ` B)"
+ unfolding B(2)[symmetric]
+ using inj
+ by (auto simp: card_image inj_on_subset span_superset)
+ also have "\<dots> \<le> dim (span (columns A))"
+ using _ ind
+ by (rule independent_card_le_dim) (auto intro!: matrix_vector_mult_in_columnspace)
+ finally show ?thesis .
+ qed
+ then show ?thesis
+ by (simp add: dim_span)
+qed
+
+lemma%unimportant column_rank_def:
+ fixes A :: "real^'n^'m"
+ shows "rank A = dim(columns A)"
+ unfolding row_rank_def
+ by (metis columns_transpose dim_rows_le_dim_columns le_antisym rows_transpose)
+
+lemma%unimportant rank_transpose:
+ fixes A :: "real^'n^'m"
+ shows "rank(transpose A) = rank A"
+ by (metis column_rank_def row_rank_def rows_transpose)
+
+lemma%unimportant matrix_vector_mult_basis:
+ fixes A :: "real^'n^'m"
+ shows "A *v (axis k 1) = column k A"
+ by (simp add: cart_eq_inner_axis column_def matrix_mult_dot)
+
+lemma%unimportant columns_image_basis:
+ fixes A :: "real^'n^'m"
+ shows "columns A = (*v) A ` (range (\<lambda>i. axis i 1))"
+ by (force simp: columns_def matrix_vector_mult_basis [symmetric])
+
+lemma%important rank_dim_range:
+ fixes A :: "real^'n^'m"
+ shows "rank A = dim(range (\<lambda>x. A *v x))"
+ unfolding column_rank_def
+proof%unimportant (rule span_eq_dim)
+ have "span (columns A) \<subseteq> span (range ((*v) A))" (is "?l \<subseteq> ?r")
+ by (simp add: columns_image_basis image_subsetI span_mono)
+ then show "?l = ?r"
+ by (metis (no_types, lifting) image_subset_iff matrix_vector_mult_in_columnspace
+ span_eq span_span)
+qed
+
+lemma%unimportant rank_bound:
+ fixes A :: "real^'n^'m"
+ shows "rank A \<le> min CARD('m) (CARD('n))"
+ by (metis (mono_tags, lifting) dim_subset_UNIV_cart min.bounded_iff
+ column_rank_def row_rank_def)
+
+lemma%unimportant full_rank_injective:
+ fixes A :: "real^'n^'m"
+ shows "rank A = CARD('n) \<longleftrightarrow> inj ((*v) A)"
+ by (simp add: matrix_left_invertible_injective [symmetric] matrix_left_invertible_span_rows row_rank_def
+ dim_eq_full [symmetric] card_cart_basis vec.dimension_def)
+
+lemma%unimportant full_rank_surjective:
+ fixes A :: "real^'n^'m"
+ shows "rank A = CARD('m) \<longleftrightarrow> surj ((*v) A)"
+ by (simp add: matrix_right_invertible_surjective [symmetric] left_invertible_transpose [symmetric]
+ matrix_left_invertible_injective full_rank_injective [symmetric] rank_transpose)
+
+lemma%unimportant rank_I: "rank(mat 1::real^'n^'n) = CARD('n)"
+ by (simp add: full_rank_injective inj_on_def)
+
+lemma%unimportant less_rank_noninjective:
+ fixes A :: "real^'n^'m"
+ shows "rank A < CARD('n) \<longleftrightarrow> \<not> inj ((*v) A)"
+using less_le rank_bound by (auto simp: full_rank_injective [symmetric])
+
+lemma%unimportant matrix_nonfull_linear_equations_eq:
+ fixes A :: "real^'n^'m"
+ shows "(\<exists>x. (x \<noteq> 0) \<and> A *v x = 0) \<longleftrightarrow> rank A \<noteq> CARD('n)"
+ by (meson matrix_left_invertible_injective full_rank_injective matrix_left_invertible_ker)
+
+lemma%unimportant rank_eq_0: "rank A = 0 \<longleftrightarrow> A = 0" and rank_0 [simp]: "rank (0::real^'n^'m) = 0"
+ for A :: "real^'n^'m"
+ by (auto simp: rank_dim_range matrix_eq)
+
+lemma%important rank_mul_le_right:
+ fixes A :: "real^'n^'m" and B :: "real^'p^'n"
+ shows "rank(A ** B) \<le> rank B"
+proof%unimportant -
+ have "rank(A ** B) \<le> dim ((*v) A ` range ((*v) B))"
+ by (auto simp: rank_dim_range image_comp o_def matrix_vector_mul_assoc)
+ also have "\<dots> \<le> rank B"
+ by (simp add: rank_dim_range dim_image_le)
+ finally show ?thesis .
+qed
+
+lemma%unimportant rank_mul_le_left:
+ fixes A :: "real^'n^'m" and B :: "real^'p^'n"
+ shows "rank(A ** B) \<le> rank A"
+ by (metis matrix_transpose_mul rank_mul_le_right rank_transpose)
+
end
\ No newline at end of file
--- a/src/HOL/Library/Numeral_Type.thy Wed Jan 16 10:27:57 2019 +0100
+++ b/src/HOL/Library/Numeral_Type.thy Wed Jan 16 11:48:06 2019 +0100
@@ -45,6 +45,8 @@
unfolding type_definition.card [OF type_definition_bit1]
by simp
+subsection \<open>@{typ num1}\<close>
+
instance num1 :: finite
proof
show "finite (UNIV::num1 set)"
@@ -62,6 +64,42 @@
end
+lemma num1_eq_iff: "(x::num1) = (y::num1) \<longleftrightarrow> True"
+ by (induct x, induct y) simp
+
+instantiation num1 :: "{comm_ring,comm_monoid_mult,numeral}"
+begin
+
+instance
+ by standard (simp_all add: num1_eq_iff)
+
+end
+
+lemma num1_eqI:
+ fixes a::num1 shows "a = b"
+by(simp add: num1_eq_iff)
+
+lemma num1_eq1 [simp]:
+ fixes a::num1 shows "a = 1"
+ by (rule num1_eqI)
+
+lemma forall_1[simp]: "(\<forall>i::num1. P i) \<longleftrightarrow> P 1"
+ by (metis (full_types) num1_eq_iff)
+
+lemma ex_1[simp]: "(\<exists>x::num1. P x) \<longleftrightarrow> P 1"
+ by auto (metis (full_types) num1_eq_iff)
+
+instantiation num1 :: linorder begin
+definition "a < b \<longleftrightarrow> Rep_num1 a < Rep_num1 b"
+definition "a \<le> b \<longleftrightarrow> Rep_num1 a \<le> Rep_num1 b"
+instance
+ by intro_classes (auto simp: less_eq_num1_def less_num1_def intro: num1_eqI)
+end
+
+instance num1 :: wellorder
+ by intro_classes (auto simp: less_eq_num1_def less_num1_def)
+
+
instance bit0 :: (finite) card2
proof
show "finite (UNIV::'a bit0 set)"
@@ -195,17 +233,6 @@
\<^typ>\<open>num1\<close>, since 0 and 1 are not distinct.
\<close>
-instantiation num1 :: "{comm_ring,comm_monoid_mult,numeral}"
-begin
-
-lemma num1_eq_iff: "(x::num1) = (y::num1) \<longleftrightarrow> True"
- by (induct x, induct y) simp
-
-instance
- by standard (simp_all add: num1_eq_iff)
-
-end
-
instantiation
bit0 and bit1 :: (finite) "{zero,one,plus,times,uminus,minus}"
begin
@@ -360,8 +387,7 @@
definition "enum_class.enum_ex P = P (1 :: num1)"
instance
by intro_classes
- (auto simp add: enum_num1_def enum_all_num1_def enum_ex_num1_def num1_eq_iff Ball_def,
- (metis (full_types) num1_eq_iff)+)
+ (auto simp add: enum_num1_def enum_all_num1_def enum_ex_num1_def num1_eq_iff Ball_def)
end
instantiation num0 and num1 :: card_UNIV begin