merged
authornipkow
Fri, 06 Mar 2009 09:35:43 +0100 (2009-03-06)
changeset 30294 d6bffd97d8d5
parent 30292 a3bb22493f11 (current diff)
parent 30293 cf57f2acb94c (diff)
child 30295 3d65318d17b7
child 30298 abefe1dfadbb
child 30307 6c74ef5a349f
merged
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Docs/MainDoc.thy	Fri Mar 06 09:35:43 2009 +0100
@@ -0,0 +1,470 @@
+(*<*)
+theory MainDoc
+imports Main
+begin
+
+ML {*
+fun pretty_term_type_only ctxt (t, T) =
+  (if fastype_of t = Sign.certify_typ (ProofContext.theory_of ctxt) T then ()
+   else error "term_type_only: type mismatch";
+   Syntax.pretty_typ ctxt T)
+
+val _ = ThyOutput.add_commands
+  [("term_type_only", ThyOutput.args (Args.term -- Args.typ_abbrev) (ThyOutput.output pretty_term_type_only))];
+*}
+(*>*)
+text{*
+
+\begin{abstract}
+This document lists the main types, functions and syntax provided by theory @{theory Main}. It is meant as a quick overview of what is available. The sophisicated class structure is only hinted at.
+\end{abstract}
+
+\section{HOL}
+
+The basic logic: @{prop "x = y"}, @{const True}, @{const False}, @{prop"Not P"}, @{prop"P & Q"}, @{prop "P | Q"}, @{prop "P --> Q"}, @{prop"ALL x. P"}, @{prop"EX x. P"}, @{prop"EX! x. P"}, @{term"THE x. P"}.
+
+Overloaded operators:
+
+\begin{supertabular}{@ {} l @ {~::~} l @ {}}
+@{text "0"} & @{typeof HOL.zero}\\
+@{text "1"} & @{typeof HOL.one}\\
+@{const HOL.plus} & @{typeof HOL.plus}\\
+@{const HOL.minus} & @{typeof HOL.minus}\\
+@{const HOL.uminus} & @{typeof HOL.uminus}\\
+@{const HOL.times} & @{typeof HOL.times}\\
+@{const HOL.inverse} & @{typeof HOL.inverse}\\
+@{const HOL.divide} & @{typeof HOL.divide}\\
+@{const HOL.abs} & @{typeof HOL.abs}\\
+@{const HOL.sgn} & @{typeof HOL.sgn}\\
+@{const HOL.less_eq} & @{typeof HOL.less_eq}\\
+@{const HOL.less} & @{typeof HOL.less}\\
+@{const HOL.default} & @{typeof HOL.default}\\
+@{const HOL.undefined} & @{typeof HOL.undefined}\\
+\end{supertabular}
+
+\subsubsection*{Syntax}
+
+\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
+@{term"~(x = y)"} & @{term[source]"\<not> (x = y)"}\\
+@{term[source]"P \<longleftrightarrow> Q"} & @{term"P \<longleftrightarrow> Q"}\\
+@{term"If x y z"} & @{term[source]"If x y z"}\\
+@{term"Let e\<^isub>1 (%x. e\<^isub>2)"} & @{term[source]"Let e\<^isub>1 (\<lambda>x. e\<^isub>2)"}\\
+@{term"abs x"} & @{term[source]"abs x"}\\
+@{term"uminus x"} & @{term[source]"uminus x"}\\
+\end{supertabular}
+
+\section{Orderings}
+
+A collection of classes constraining @{text"\<le>"} and @{text"<"}:
+preorders, partial orders, linear orders, dense linear orders and wellorders.
+
+\begin{tabular}{@ {} l @ {~::~} l @ {}}
+@{const Orderings.Least} & @{typeof Orderings.Least}\\
+@{const Orderings.min} & @{typeof Orderings.min}\\
+@{const Orderings.max} & @{typeof Orderings.max}\\
+@{const Orderings.mono} & @{typeof Orderings.mono}\\
+\end{tabular}
+
+\subsubsection*{Syntax}
+
+\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
+@{term[source]"x \<ge> y"} & @{term"x \<ge> y"}\\
+@{term[source]"x > y"} & @{term"x > y"}\\
+@{term"ALL x<=y. P"} & @{term[source]"\<forall>x. x \<le> y \<longrightarrow> P"}\\
+@{term"ALL x<y. P"} & @{term[source]"\<forall>x. x < y \<longrightarrow> P"}\\
+@{term"ALL x>=y. P"} & @{term[source]"\<forall>x. x \<ge> y \<longrightarrow> P"}\\
+@{term"ALL x>y. P"} & @{term[source]"\<forall>x. x > y \<longrightarrow> P"}\\
+@{term"LEAST x. P"} & @{term[source]"Least (\<lambda>x. P)"}\\
+\end{supertabular}
+
+Similar for @{text"\<exists>"} instead of @{text"\<forall>"}.
+
+\section{Set}
+
+Sets are predicates: @{text[source]"'a set  =  'a \<Rightarrow> bool"}
+\bigskip
+
+\begin{supertabular}{@ {} l @ {~::~} l @ {}}
+@{const "{}"} & @{term_type_only "{}" "'a set"}\\
+@{const insert} & @{term_type_only insert "'a\<Rightarrow>'a set\<Rightarrow>'a set"}\\
+@{const Collect} & @{term_type_only Collect "('a\<Rightarrow>bool)\<Rightarrow>'a set"}\\
+@{const "op :"} & @{term_type_only "op :" "'a\<Rightarrow>'a set\<Rightarrow>bool"}\\
+@{const "op Un"} & @{term_type_only "op Un" "'a set\<Rightarrow>'a set \<Rightarrow> 'a set"}\\
+@{const "op Int"} & @{term_type_only "op Int" "'a set\<Rightarrow>'a set \<Rightarrow> 'a set"}\\
+@{const UNION} & @{term_type_only UNION "'a set\<Rightarrow>('a \<Rightarrow> 'b set) \<Rightarrow> 'b set"}\\
+@{const INTER} & @{term_type_only INTER "'a set\<Rightarrow>('a \<Rightarrow> 'b set) \<Rightarrow> 'b set"}\\
+@{const Union} & @{term_type_only Union "'a set set\<Rightarrow>'a set"}\\
+@{const Inter} & @{term_type_only Inter "'a set set\<Rightarrow>'a set"}\\
+@{const Pow} & @{term_type_only Pow "'a set \<Rightarrow>'a set set"}\\
+@{const UNIV} & @{term_type_only UNIV "'a set"}\\
+@{const image} & @{term_type_only image "('a\<Rightarrow>'b)\<Rightarrow>'a set\<Rightarrow>'b set"}\\
+@{const Ball} & @{term_type_only Ball "'a set\<Rightarrow>('a\<Rightarrow>bool)\<Rightarrow>bool"}\\
+@{const Bex} & @{term_type_only Bex "'a set\<Rightarrow>('a\<Rightarrow>bool)\<Rightarrow>bool"}\\
+\end{supertabular}
+
+\subsubsection*{Syntax}
+
+\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
+@{text"{x\<^isub>1,\<dots>,x\<^isub>n}"} & @{text"insert x\<^isub>1 (\<dots> (insert x\<^isub>n {})\<dots>)"}\\
+@{term"x ~: A"} & @{term[source]"\<not>(x \<in> A)"}\\
+@{term"A \<subseteq> B"} & @{term[source]"A \<le> B"}\\
+@{term"A \<subset> B"} & @{term[source]"A < B"}\\
+@{term[source]"A \<supseteq> B"} & @{term[source]"B \<le> A"}\\
+@{term[source]"A \<supset> B"} & @{term[source]"B < A"}\\
+@{term"{x. P}"} & @{term[source]"Collect(\<lambda>x. P)"}\\
+@{term"UN x:I. A"} & @{term[source]"UNION I (\<lambda>x. A)"}\\
+@{term"UN x. A"} & @{term[source]"UNION UNIV (\<lambda>x. A)"}\\
+@{term"INT x:I. A"} & @{term[source]"INTER I (\<lambda>x. A)"}\\
+@{term"INT x. A"} & @{term[source]"INTER UNIV (\<lambda>x. A)"}\\
+@{term"ALL x:A. P"} & @{term[source]"Ball A (\<lambda>x. P)"}\\
+@{term"EX x:A. P"} & @{term[source]"Bex A (\<lambda>x. P)"}\\
+@{term"range f"} & @{term[source]"f ` UNIV"}\\
+\end{supertabular}
+
+
+\section{Fun}
+
+\begin{supertabular}{@ {} l @ {~::~} l @ {}}
+@{const "Fun.id"} & @{typeof Fun.id}\\
+@{const "Fun.comp"} & @{typeof Fun.comp}\\
+@{const "Fun.inj_on"} & @{term_type_only Fun.inj_on "('a\<Rightarrow>'b)\<Rightarrow>'a set\<Rightarrow>bool"}\\
+@{const "Fun.inj"} & @{typeof Fun.inj}\\
+@{const "Fun.surj"} & @{typeof Fun.surj}\\
+@{const "Fun.bij"} & @{typeof Fun.bij}\\
+@{const "Fun.bij_betw"} & @{term_type_only Fun.bij_betw "('a\<Rightarrow>'b)\<Rightarrow>'a set\<Rightarrow>'b set\<Rightarrow>bool"}\\
+@{const "Fun.fun_upd"} & @{typeof Fun.fun_upd}\\
+\end{supertabular}
+
+\subsubsection*{Syntax}
+
+\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
+@{term"fun_upd f x y"} & @{term[source]"fun_upd f x y"}\\
+@{text"f(x\<^isub>1:=y\<^isub>1,\<dots>,x\<^isub>n:=y\<^isub>n)"} & @{text"f(x\<^isub>1:=y\<^isub>1)\<dots>(x\<^isub>n:=y\<^isub>n)"}\\
+\end{tabular}
+
+
+\section{Fixed Points}
+
+Theory: @{theory Inductive}.
+
+Least and greatest fixed points in a complete lattice @{typ 'a}:
+
+\begin{tabular}{@ {} l @ {~::~} l @ {}}
+@{const Inductive.lfp} & @{typeof Inductive.lfp}\\
+@{const Inductive.gfp} & @{typeof Inductive.gfp}\\
+\end{tabular}
+
+Note that in particular sets (@{typ"'a \<Rightarrow> bool"}) are complete lattices.
+
+\section{Sum\_Type}
+
+Type constructor @{text"+"}.
+
+\begin{tabular}{@ {} l @ {~::~} l @ {}}
+@{const Sum_Type.Inl} & @{typeof Sum_Type.Inl}\\
+@{const Sum_Type.Inr} & @{typeof Sum_Type.Inr}\\
+@{const Sum_Type.Plus} & @{term_type_only Sum_Type.Plus "'a set\<Rightarrow>'b set\<Rightarrow>('a+'b)set"}
+\end{tabular}
+
+
+\section{Product\_Type}
+
+Types @{typ unit} and @{text"\<times>"}.
+
+\begin{supertabular}{@ {} l @ {~::~} l @ {}}
+@{const Product_Type.Unity} & @{typeof Product_Type.Unity}\\
+@{const Pair} & @{typeof Pair}\\
+@{const fst} & @{typeof fst}\\
+@{const snd} & @{typeof snd}\\
+@{const split} & @{typeof split}\\
+@{const curry} & @{typeof curry}\\
+@{const Product_Type.Times} & @{typeof Product_Type.Times}\\
+@{const Product_Type.Sigma} & @{term_type_only Product_Type.Sigma "'a set\<Rightarrow>('a\<Rightarrow>'b set)\<Rightarrow>('a*'b)set"}\\
+\end{supertabular}
+
+\subsubsection*{Syntax}
+
+\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
+@{term"Pair a b"} & @{term[source]"Pair a b"}\\
+@{term"split (\<lambda>x y. t)"} & @{term[source]"split (\<lambda>x y. t)"}\\
+\end{tabular}
+
+Pairs may be nested. Nesting to the right is printed as a tuple,
+e.g.\ \mbox{@{term"(a,b,c)"}} is really @{text"(a,(b,c))"}.
+Pattern matching with pairs and tuples extends to all binders,
+e.g.\ @{prop"ALL (x,y):A. P"}, @{term"{(x,y). P}"}, etc.
+
+
+\section{Relation}
+
+\begin{supertabular}{@ {} l @ {~::~} l @ {}}
+@{const Relation.converse} & @{term_type_only Relation.converse "('a * 'b)set \<Rightarrow> ('b*'a)set"}\\
+@{const Relation.rel_comp} & @{term_type_only Relation.rel_comp "('a*'b)set\<Rightarrow>('c*'a)set\<Rightarrow>('c*'b)set"}\\
+@{const Relation.Image} & @{term_type_only Relation.Image "('a*'b)set\<Rightarrow>'a set\<Rightarrow>'b set"}\\
+@{const Relation.inv_image} & @{term_type_only Relation.inv_image "('a*'a)set\<Rightarrow>('b\<Rightarrow>'a)\<Rightarrow>('b*'b)set"}\\
+@{const Relation.Id_on} & @{term_type_only Relation.Id_on "'a set\<Rightarrow>('a*'a)set"}\\
+@{const Relation.Id} & @{term_type_only Relation.Id "('a*'a)set"}\\
+@{const Relation.Domain} & @{term_type_only Relation.Domain "('a*'b)set\<Rightarrow>'a set"}\\
+@{const Relation.Range} & @{term_type_only Relation.Range "('a*'b)set\<Rightarrow>'b set"}\\
+@{const Relation.Field} & @{term_type_only Relation.Field "('a*'a)set\<Rightarrow>'a set"}\\
+@{const Relation.refl_on} & @{term_type_only Relation.refl_on "'a set\<Rightarrow>('a*'a)set\<Rightarrow>bool"}\\
+@{const Relation.refl} & @{term_type_only Relation.refl "('a*'a)set\<Rightarrow>bool"}\\
+@{const Relation.sym} & @{term_type_only Relation.sym "('a*'a)set\<Rightarrow>bool"}\\
+@{const Relation.antisym} & @{term_type_only Relation.antisym "('a*'a)set\<Rightarrow>bool"}\\
+@{const Relation.trans} & @{term_type_only Relation.trans "('a*'a)set\<Rightarrow>bool"}\\
+@{const Relation.irrefl} & @{term_type_only Relation.irrefl "('a*'a)set\<Rightarrow>bool"}\\
+@{const Relation.total_on} & @{term_type_only Relation.total_on "'a set\<Rightarrow>('a*'a)set\<Rightarrow>bool"}\\
+@{const Relation.total} & @{term_type_only Relation.total "('a*'a)set\<Rightarrow>bool"}\\
+\end{supertabular}
+
+\subsubsection*{Syntax}
+
+\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
+@{term"converse r"} & @{term[source]"converse r"}
+\end{tabular}
+
+\section{Equiv\_Relations}
+
+\begin{supertabular}{@ {} l @ {~::~} l @ {}}
+@{const Equiv_Relations.equiv} & @{term_type_only Equiv_Relations.equiv "'a set \<Rightarrow> ('a*'a)set\<Rightarrow>bool"}\\
+@{const Equiv_Relations.quotient} & @{term_type_only Equiv_Relations.quotient "'a set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> 'a set set"}\\
+@{const Equiv_Relations.congruent} & @{term_type_only Equiv_Relations.congruent "('a*'a)set\<Rightarrow>('a\<Rightarrow>'b)\<Rightarrow>bool"}\\
+@{const Equiv_Relations.congruent2} & @{term_type_only Equiv_Relations.congruent2 "('a*'a)set\<Rightarrow>('b*'b)set\<Rightarrow>('a\<Rightarrow>'b\<Rightarrow>'c)\<Rightarrow>bool"}\\
+%@ {const Equiv_Relations.} & @ {term_type_only Equiv_Relations. ""}\\
+\end{supertabular}
+
+\subsubsection*{Syntax}
+
+\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
+@{term"congruent r f"} & @{term[source]"congruent r f"}\\
+@{term"congruent2 r r f"} & @{term[source]"congruent2 r r f"}\\
+\end{tabular}
+
+
+\section{Transitive\_Closure}
+
+\begin{tabular}{@ {} l @ {~::~} l @ {}}
+@{const Transitive_Closure.rtrancl} & @{term_type_only Transitive_Closure.rtrancl "('a*'a)set\<Rightarrow>('a*'a)set"}\\
+@{const Transitive_Closure.trancl} & @{term_type_only Transitive_Closure.trancl "('a*'a)set\<Rightarrow>('a*'a)set"}\\
+@{const Transitive_Closure.reflcl} & @{term_type_only Transitive_Closure.reflcl "('a*'a)set\<Rightarrow>('a*'a)set"}\\
+\end{tabular}
+
+\subsubsection*{Syntax}
+
+\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
+@{term"rtrancl r"} & @{term[source]"rtrancl r"}\\
+@{term"trancl r"} & @{term[source]"trancl r"}\\
+@{term"reflcl r"} & @{term[source]"reflcl r"}
+\end{tabular}
+
+
+\section{Algebra}
+
+Theories @{theory OrderedGroup} and @{theory Ring_and_Field} define a large
+collection of classes describing common algebraic structures from semigroups
+up to fields. Everything is done in terms of @{const plus}, @{const times}
+and other overloaded operators.
+
+
+\section{Nat}
+
+@{datatype nat}
+\bigskip
+
+\begin{tabular}{@ {} lllllll @ {}}
+@{term "op + :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
+@{term "op - :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
+@{term "op * :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
+@{term "op ^ :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
+@{term "op div :: nat \<Rightarrow> nat \<Rightarrow> nat"}&
+@{term "op mod :: nat \<Rightarrow> nat \<Rightarrow> nat"}&
+@{term "op dvd :: nat \<Rightarrow> nat \<Rightarrow> bool"}\\
+@{term "op \<le> :: nat \<Rightarrow> nat \<Rightarrow> bool"} &
+@{term "op < :: nat \<Rightarrow> nat \<Rightarrow> bool"} &
+@{term "min :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
+@{term "max :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
+@{term "Min :: nat set \<Rightarrow> nat"} &
+@{term "Max :: nat set \<Rightarrow> nat"}\\
+\end{tabular}
+
+\begin{tabular}{@ {} l @ {~::~} l @ {}}
+@{const Nat.of_nat} & @{typeof Nat.of_nat}
+\end{tabular}
+
+\section{Int}
+
+Type @{typ int}
+\bigskip
+
+\begin{tabular}{@ {} llllllll @ {}}
+@{term "op + :: int \<Rightarrow> int \<Rightarrow> int"} &
+@{term "op - :: int \<Rightarrow> int \<Rightarrow> int"} &
+@{term "uminus :: int \<Rightarrow> int"} &
+@{term "op * :: int \<Rightarrow> int \<Rightarrow> int"} &
+@{term "op ^ :: int \<Rightarrow> nat \<Rightarrow> int"} &
+@{term "op div :: int \<Rightarrow> int \<Rightarrow> int"}&
+@{term "op mod :: int \<Rightarrow> int \<Rightarrow> int"}&
+@{term "op dvd :: int \<Rightarrow> int \<Rightarrow> bool"}\\
+@{term "op \<le> :: int \<Rightarrow> int \<Rightarrow> bool"} &
+@{term "op < :: int \<Rightarrow> int \<Rightarrow> bool"} &
+@{term "min :: int \<Rightarrow> int \<Rightarrow> int"} &
+@{term "max :: int \<Rightarrow> int \<Rightarrow> int"} &
+@{term "Min :: int set \<Rightarrow> int"} &
+@{term "Max :: int set \<Rightarrow> int"}\\
+@{term "abs :: int \<Rightarrow> int"} &
+@{term "sgn :: int \<Rightarrow> int"}\\
+\end{tabular}
+
+\begin{tabular}{@ {} l @ {~::~} l @ {}}
+@{const Int.nat} & @{typeof Int.nat}\\
+@{const Int.of_int} & @{typeof Int.of_int}\\
+@{const Int.Ints} & @{term_type_only Int.Ints "'a::ring_1 set"}\\
+\end{tabular}
+
+\subsubsection*{Syntax}
+
+\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
+@{term"of_nat::nat\<Rightarrow>int"} & @{term[source]"of_nat"}\\
+\end{tabular}
+
+
+\section{Wellfounded}
+
+\begin{supertabular}{@ {} l @ {~::~} l @ {}}
+@{const Wellfounded.wf} & @{term_type_only Wellfounded.wf "('a*'a)set\<Rightarrow>bool"}\\
+@{const Wellfounded.acyclic} & @{term_type_only Wellfounded.acyclic "('a*'a)set\<Rightarrow>bool"}\\
+@{const Wellfounded.acc} & @{term_type_only Wellfounded.acc "('a*'a)set\<Rightarrow>'a set"}\\
+@{const Wellfounded.measure} & @{term_type_only Wellfounded.measure "('a\<Rightarrow>nat)\<Rightarrow>('a*'a)set"}\\
+@{const Wellfounded.lex_prod} & @{term_type_only Wellfounded.lex_prod "('a*'a)set\<Rightarrow>('b*'b)set\<Rightarrow>(('a*'b)*('a*'b))set"}\\
+@{const Wellfounded.mlex_prod} & @{term_type_only Wellfounded.mlex_prod "('a\<Rightarrow>nat)\<Rightarrow>('a*'a)set\<Rightarrow>('a*'a)set"}\\
+@{const Wellfounded.less_than} & @{term_type_only Wellfounded.less_than "(nat*nat)set"}\\
+@{const Wellfounded.pred_nat} & @{term_type_only Wellfounded.pred_nat "(nat*nat)set"}\\
+\end{supertabular}
+
+
+\section{Power}
+
+\begin{tabular}{@ {} l @ {~::~} l @ {}}
+@{const Power.power} & @{typeof Power.power}
+\end{tabular}
+
+
+\section{Iterated Functions and Relations}
+
+Theory: @{theory Relation_Power}
+
+Iterated functions \ @{term[source]"(f::'a\<Rightarrow>'a) ^ n"} \
+and relations \ @{term[source]"(r::('a\<times>'a)set) ^ n"}.
+
+
+\section{Option}
+
+@{datatype option}
+\bigskip
+
+\begin{tabular}{@ {} l @ {~::~} l @ {}}
+@{const Option.the} & @{typeof Option.the}\\
+@{const Option.map} & @{typ[source]"('a \<Rightarrow> 'b) \<Rightarrow> 'a option \<Rightarrow> 'b option"}\\
+@{const Option.set} & @{term_type_only Option.set "'a option \<Rightarrow> 'a set"}
+\end{tabular}
+
+\section{List}
+
+@{datatype list}
+\bigskip
+
+\begin{supertabular}{@ {} l @ {~::~} l @ {}}
+@{const List.append} & @{typeof List.append}\\
+@{const List.butlast} & @{typeof List.butlast}\\
+@{const List.concat} & @{typeof List.concat}\\
+@{const List.distinct} & @{typeof List.distinct}\\
+@{const List.drop} & @{typeof List.drop}\\
+@{const List.dropWhile} & @{typeof List.dropWhile}\\
+@{const List.filter} & @{typeof List.filter}\\
+@{const List.foldl} & @{typeof List.foldl}\\
+@{const List.foldr} & @{typeof List.foldr}\\
+@{const List.hd} & @{typeof List.hd}\\
+@{const List.last} & @{typeof List.last}\\
+@{const List.length} & @{typeof List.length}\\
+@{const List.lenlex} & @{term_type_only List.lenlex "('a*'a)set\<Rightarrow>('a list * 'a list)set"}\\
+@{const List.lex} & @{term_type_only List.lex "('a*'a)set\<Rightarrow>('a list * 'a list)set"}\\
+@{const List.lexn} & @{term_type_only List.lexn "('a*'a)set\<Rightarrow>nat\<Rightarrow>('a list * 'a list)set"}\\
+@{const List.lexord} & @{term_type_only List.lexord "('a*'a)set\<Rightarrow>('a list * 'a list)set"}\\
+@{const List.listrel} & @{term_type_only List.listrel "('a*'a)set\<Rightarrow>('a list * 'a list)set"}\\
+@{const List.lists} & @{term_type_only List.lists "'a set\<Rightarrow>'a list set"}\\
+@{const List.listset} & @{term_type_only List.listset "'a set list \<Rightarrow> 'a list set"}\\
+@{const List.listsum} & @{typeof List.listsum}\\
+@{const List.list_all2} & @{typeof List.list_all2}\\
+@{const List.list_update} & @{typeof List.list_update}\\
+@{const List.map} & @{typeof List.map}\\
+@{const List.measures} & @{term_type_only List.measures "('a\<Rightarrow>nat)list\<Rightarrow>('a*'a)set"}\\
+@{const List.remdups} & @{typeof List.remdups}\\
+@{const List.removeAll} & @{typeof List.removeAll}\\
+@{const List.remove1} & @{typeof List.remove1}\\
+@{const List.replicate} & @{typeof List.replicate}\\
+@{const List.rev} & @{typeof List.rev}\\
+@{const List.rotate} & @{typeof List.rotate}\\
+@{const List.rotate1} & @{typeof List.rotate1}\\
+@{const List.set} & @{term_type_only List.set "'a list \<Rightarrow> 'a set"}\\
+@{const List.sort} & @{typeof List.sort}\\
+@{const List.sorted} & @{typeof List.sorted}\\
+@{const List.splice} & @{typeof List.splice}\\
+@{const List.sublist} & @{typeof List.sublist}\\
+@{const List.take} & @{typeof List.take}\\
+@{const List.takeWhile} & @{typeof List.takeWhile}\\
+@{const List.tl} & @{typeof List.tl}\\
+@{const List.upt} & @{typeof List.upt}\\
+@{const List.upto} & @{typeof List.upto}\\
+@{const List.zip} & @{typeof List.zip}\\
+\end{supertabular}
+
+\subsubsection*{Syntax}
+
+\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
+@{text"[x\<^isub>1,\<dots>,x\<^isub>n]"} & @{text"x\<^isub>1 # \<dots> # x\<^isub>n # []"}\\
+@{term"[m..<n]"} & @{term[source]"upt m n"}\\
+@{term"[i..j]"} & @{term[source]"upto i j"}\\
+@{text"[e. x \<leftarrow> xs]"} & @{term"map (%x. e) xs"}\\
+@{term"[x \<leftarrow> xs. b]"} & @{term[source]"filter (\<lambda>x. b) xs"} \\
+@{term"xs[n := x]"} & @{term[source]"list_update xs n x"}\\
+@{term"\<Sum>x\<leftarrow>xs. e"} & @{term[source]"listsum (map (\<lambda>x. e) xs)"}\\
+\end{supertabular}
+\medskip
+
+Comprehension: @{text"[e. q\<^isub>1, \<dots>, q\<^isub>n]"} where each
+qualifier @{text q\<^isub>i} is either a generator @{text"pat \<leftarrow> e"} or a
+guard, i.e.\ boolean expression.
+
+\section{Map}
+
+Maps model partial functions and are often used as finite tables. However,
+the domain of a map may be infinite.
+
+@{text"'a \<rightharpoonup> 'b  =  'a \<Rightarrow> 'b option"}
+\bigskip
+
+\begin{supertabular}{@ {} l @ {~::~} l @ {}}
+@{const Map.empty} & @{typeof Map.empty}\\
+@{const Map.map_add} & @{typeof Map.map_add}\\
+@{const Map.map_comp} & @{typeof Map.map_comp}\\
+@{const Map.restrict_map} & @{term_type_only Map.restrict_map "('a\<Rightarrow>'b option)\<Rightarrow>'a set\<Rightarrow>('a\<Rightarrow>'b option)"}\\
+@{const Map.dom} & @{term_type_only Map.dom "('a\<Rightarrow>'b option)\<Rightarrow>'a set"}\\
+@{const Map.ran} & @{term_type_only Map.ran "('a\<Rightarrow>'b option)\<Rightarrow>'b set"}\\
+@{const Map.map_le} & @{typeof Map.map_le}\\
+@{const Map.map_of} & @{typeof Map.map_of}\\
+@{const Map.map_upds} & @{typeof Map.map_upds}\\
+\end{supertabular}
+
+\subsubsection*{Syntax}
+
+\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
+@{text"empty"} & @{term"\<lambda>x. None"}\\
+@{term"m(x:=Some y)"} & @{term[source]"m(x:=Some y)"}\\
+@{text"m(x\<^isub>1\<mapsto>y\<^isub>1,\<dots>,x\<^isub>n\<mapsto>y\<^isub>n)"} & @{text[source]"m(x\<^isub>1\<mapsto>y\<^isub>1)\<dots>(x\<^isub>n\<mapsto>y\<^isub>n)"}\\
+@{term"map_upds m xs ys"} & @{term[source]"map_upds m xs ys"}\\
+\end{tabular}
+
+*}
+(*<*)
+end
+(*>*)
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Docs/ROOT.ML	Fri Mar 06 09:35:43 2009 +0100
@@ -0,0 +1,2 @@
+use_thy "MainDoc";
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Docs/document/root.tex	Fri Mar 06 09:35:43 2009 +0100
@@ -0,0 +1,65 @@
+\documentclass[11pt,a4paper]{article}
+\usepackage{isabelle,isabellesym}
+
+% further packages required for unusual symbols (see also
+% isabellesym.sty), use only when needed
+
+%\usepackage{amssymb}
+  %for \<leadsto>, \<box>, \<diamond>, \<sqsupset>, \<mho>, \<Join>,
+  %\<lhd>, \<lesssim>, \<greatersim>, \<lessapprox>, \<greaterapprox>,
+  %\<triangleq>, \<yen>, \<lozenge>
+
+%\usepackage[greek,english]{babel}
+  %option greek for \<euro>
+  %option english (default language) for \<guillemotleft>, \<guillemotright>
+
+%\usepackage[latin1]{inputenc}
+  %for \<onesuperior>, \<onequarter>, \<twosuperior>, \<onehalf>,
+  %\<threesuperior>, \<threequarters>, \<degree>
+
+%\usepackage[only,bigsqcap]{stmaryrd}
+  %for \<Sqinter>
+
+%\usepackage{eufrak}
+  %for \<AA> ... \<ZZ>, \<aa> ... \<zz> (also included in amssymb)
+
+%\usepackage{textcomp}
+  %for \<cent>, \<currency>
+
+% this should be the last package used
+\usepackage{pdfsetup}
+
+% urls in roman style, theory text in math-similar italics
+\urlstyle{rm}
+\isabellestyle{it}
+
+% for uniform font size
+\renewcommand{\isastyle}{\isastyleminor}
+
+\parindent 0pt\parskip 0.5ex
+
+\usepackage{supertabular}
+
+\begin{document}
+
+\title{What's in Main}
+\author{}
+\date{}
+\maketitle
+
+%\setcounter{tocdepth}{1}
+%\tableofcontents
+
+% generated text of all theories
+\input{session}
+
+% optional bibliography
+%\bibliographystyle{abbrv}
+%\bibliography{root}
+
+\end{document}
+
+%%% Local Variables:
+%%% mode: latex
+%%% TeX-master: t
+%%% End: