--- a/src/HOL/Metis_Examples/HO_Reas.thy Thu May 12 15:29:19 2011 +0200
+++ b/src/HOL/Metis_Examples/HO_Reas.thy Thu May 12 15:29:19 2011 +0200
@@ -28,10 +28,6 @@
sledgehammer [expect = some] (inc_def)
by (metis inc_def)
-lemma "(\<lambda>y. y + 1) = inc"
-sledgehammer [expect = some] (inc_def)
-by (metis inc_def)
-
definition add_swap :: "nat \<Rightarrow> nat \<Rightarrow> nat" where
"add_swap = (\<lambda>x y. y + x)"
--- a/src/HOL/Tools/Meson/meson.ML Thu May 12 15:29:19 2011 +0200
+++ b/src/HOL/Tools/Meson/meson.ML Thu May 12 15:29:19 2011 +0200
@@ -616,18 +616,14 @@
skolemize_with_choice_theorems ctxt (choice_theorems thy)
end
-fun is_Abs (Abs _) = true
- | is_Abs _ = false
-
-(* Removes the lambdas from an equation of the form "t = (%x. u)". *)
+(* Removes the lambdas from an equation of the form "t = (%x1 ... xn. u)". It
+ would be desirable to do this symmetrically but there's at least one existing
+ proof in "Tarski" that relies on the current behavior. *)
fun extensionalize_conv ctxt ct =
case term_of ct of
- Const (@{const_name HOL.eq}, _) $ t1 $ t2 =>
- ct |> (if is_Abs t1 orelse is_Abs t2 then
- Conv.rewr_conv @{thm fun_eq_iff [THEN eq_reflection]}
- then_conv extensionalize_conv ctxt
- else
- Conv.comb_conv (extensionalize_conv ctxt))
+ Const (@{const_name HOL.eq}, _) $ _ $ Abs _ =>
+ ct |> (Conv.rewr_conv @{thm fun_eq_iff [THEN eq_reflection]}
+ then_conv extensionalize_conv ctxt)
| _ $ _ => Conv.comb_conv (extensionalize_conv ctxt) ct
| Abs _ => Conv.abs_conv (extensionalize_conv o snd) ctxt ct
| _ => Conv.all_conv ct