--- a/NEWS Thu Feb 25 22:46:52 2010 +0100
+++ b/NEWS Fri Feb 26 10:57:35 2010 +0100
@@ -54,6 +54,9 @@
*** HOL ***
+* Theory "Rational" renamed to "Rat", for consistency with "Nat", "Int" etc.
+INCOMPATIBILITY.
+
* New set of rules "ac_simps" provides combined assoc / commute rewrites
for all interpretations of the appropriate generic locales.
--- a/src/HOL/Code_Evaluation.thy Thu Feb 25 22:46:52 2010 +0100
+++ b/src/HOL/Code_Evaluation.thy Fri Feb 26 10:57:35 2010 +0100
@@ -119,6 +119,44 @@
end
*}
+setup {*
+let
+ fun mk_term_of_eq thy ty vs tyco abs ty_rep proj =
+ let
+ val arg = Var (("x", 0), ty);
+ val rhs = Abs ("y", @{typ term}, HOLogic.reflect_term (Const (abs, ty_rep --> ty) $ Bound 0)) $
+ (HOLogic.mk_term_of ty_rep (Const (proj, ty --> ty_rep) $ arg))
+ |> Thm.cterm_of thy;
+ val cty = Thm.ctyp_of thy ty;
+ in
+ @{thm term_of_anything}
+ |> Drule.instantiate' [SOME cty] [SOME (Thm.cterm_of thy arg), SOME rhs]
+ |> Thm.varifyT
+ end;
+ fun add_term_of_code tyco raw_vs abs raw_ty_rep proj thy =
+ let
+ val algebra = Sign.classes_of thy;
+ val vs = map (fn (v, sort) =>
+ (v, curry (Sorts.inter_sort algebra) @{sort typerep} sort)) raw_vs;
+ val ty = Type (tyco, map TFree vs);
+ val ty_rep = map_atyps
+ (fn TFree (v, _) => TFree (v, (the o AList.lookup (op =) vs) v)) raw_ty_rep;
+ val const = AxClass.param_of_inst thy (@{const_name term_of}, tyco);
+ val eq = mk_term_of_eq thy ty vs tyco abs ty_rep proj;
+ in
+ thy
+ |> Code.del_eqns const
+ |> Code.add_eqn eq
+ end;
+ fun ensure_term_of_code (tyco, (raw_vs, ((abs, ty), (proj, _)))) thy =
+ let
+ val has_inst = can (Sorts.mg_domain (Sign.classes_of thy) tyco) @{sort term_of};
+ in if has_inst then add_term_of_code tyco raw_vs abs ty proj thy else thy end;
+in
+ Code.abstype_interpretation ensure_term_of_code
+end
+*}
+
subsubsection {* Code generator setup *}
--- a/src/HOL/Divides.thy Thu Feb 25 22:46:52 2010 +0100
+++ b/src/HOL/Divides.thy Fri Feb 26 10:57:35 2010 +0100
@@ -309,6 +309,15 @@
apply (simp add: no_zero_divisors)
done
+lemma div_mult_swap:
+ assumes "c dvd b"
+ shows "a * (b div c) = (a * b) div c"
+proof -
+ from assms have "b div c * (a div 1) = b * a div (c * 1)"
+ by (simp only: div_mult_div_if_dvd one_dvd)
+ then show ?thesis by (simp add: mult_commute)
+qed
+
lemma div_mult_mult2 [simp]:
"c \<noteq> 0 \<Longrightarrow> (a * c) div (b * c) = a div b"
by (drule div_mult_mult1) (simp add: mult_commute)
@@ -347,6 +356,24 @@
apply(simp add: div_mult_div_if_dvd dvd_power_same)
done
+lemma dvd_div_eq_mult:
+ assumes "a \<noteq> 0" and "a dvd b"
+ shows "b div a = c \<longleftrightarrow> b = c * a"
+proof
+ assume "b = c * a"
+ then show "b div a = c" by (simp add: assms)
+next
+ assume "b div a = c"
+ then have "b div a * a = c * a" by simp
+ moreover from `a dvd b` have "b div a * a = b" by (simp add: dvd_div_mult_self)
+ ultimately show "b = c * a" by simp
+qed
+
+lemma dvd_div_div_eq_mult:
+ assumes "a \<noteq> 0" "c \<noteq> 0" and "a dvd b" "c dvd d"
+ shows "b div a = d div c \<longleftrightarrow> b * c = a * d"
+ using assms by (auto simp add: mult_commute [of _ a] dvd_div_mult_self dvd_div_eq_mult div_mult_swap intro: sym)
+
end
class ring_div = semiring_div + idom
--- a/src/HOL/GCD.thy Thu Feb 25 22:46:52 2010 +0100
+++ b/src/HOL/GCD.thy Fri Feb 26 10:57:35 2010 +0100
@@ -412,6 +412,33 @@
apply (rule gcd_mult_cancel_nat [transferred], auto)
done
+lemma coprime_crossproduct_nat:
+ fixes a b c d :: nat
+ assumes "coprime a d" and "coprime b c"
+ shows "a * c = b * d \<longleftrightarrow> a = b \<and> c = d" (is "?lhs \<longleftrightarrow> ?rhs")
+proof
+ assume ?rhs then show ?lhs by simp
+next
+ assume ?lhs
+ from `?lhs` have "a dvd b * d" by (auto intro: dvdI dest: sym)
+ with `coprime a d` have "a dvd b" by (simp add: coprime_dvd_mult_iff_nat)
+ from `?lhs` have "b dvd a * c" by (auto intro: dvdI dest: sym)
+ with `coprime b c` have "b dvd a" by (simp add: coprime_dvd_mult_iff_nat)
+ from `?lhs` have "c dvd d * b" by (auto intro: dvdI dest: sym simp add: mult_commute)
+ with `coprime b c` have "c dvd d" by (simp add: coprime_dvd_mult_iff_nat gcd_commute_nat)
+ from `?lhs` have "d dvd c * a" by (auto intro: dvdI dest: sym simp add: mult_commute)
+ with `coprime a d` have "d dvd c" by (simp add: coprime_dvd_mult_iff_nat gcd_commute_nat)
+ from `a dvd b` `b dvd a` have "a = b" by (rule Nat.dvd.antisym)
+ moreover from `c dvd d` `d dvd c` have "c = d" by (rule Nat.dvd.antisym)
+ ultimately show ?rhs ..
+qed
+
+lemma coprime_crossproduct_int:
+ fixes a b c d :: int
+ assumes "coprime a d" and "coprime b c"
+ shows "\<bar>a\<bar> * \<bar>c\<bar> = \<bar>b\<bar> * \<bar>d\<bar> \<longleftrightarrow> \<bar>a\<bar> = \<bar>b\<bar> \<and> \<bar>c\<bar> = \<bar>d\<bar>"
+ using assms by (intro coprime_crossproduct_nat [transferred]) auto
+
text {* \medskip Addition laws *}
lemma gcd_add1_nat [simp]: "gcd ((m::nat) + n) n = gcd m n"
--- a/src/HOL/IsaMakefile Thu Feb 25 22:46:52 2010 +0100
+++ b/src/HOL/IsaMakefile Fri Feb 26 10:57:35 2010 +0100
@@ -352,7 +352,7 @@
PReal.thy \
Parity.thy \
RComplete.thy \
- Rational.thy \
+ Rat.thy \
Real.thy \
RealDef.thy \
RealPow.thy \
--- a/src/HOL/Library/Binomial.thy Thu Feb 25 22:46:52 2010 +0100
+++ b/src/HOL/Library/Binomial.thy Fri Feb 26 10:57:35 2010 +0100
@@ -1,4 +1,4 @@
-(* Title: HOL/Binomial.thy
+(* Title: HOL/Library/Binomial.thy
Author: Lawrence C Paulson, Amine Chaieb
Copyright 1997 University of Cambridge
*)
@@ -6,7 +6,7 @@
header {* Binomial Coefficients *}
theory Binomial
-imports Fact SetInterval Presburger Main Rational
+imports Complex_Main
begin
text {* This development is based on the work of Andy Gordon and
--- a/src/HOL/Library/Countable.thy Thu Feb 25 22:46:52 2010 +0100
+++ b/src/HOL/Library/Countable.thy Fri Feb 26 10:57:35 2010 +0100
@@ -5,12 +5,7 @@
header {* Encoding (almost) everything into natural numbers *}
theory Countable
-imports
- "~~/src/HOL/List"
- "~~/src/HOL/Hilbert_Choice"
- "~~/src/HOL/Nat_Int_Bij"
- "~~/src/HOL/Rational"
- Main
+imports Main Rat Nat_Int_Bij
begin
subsection {* The class of countable types *}
@@ -213,8 +208,8 @@
proof
fix r::rat
show "\<exists>n. r = nat_to_rat_surj n"
- proof(cases r)
- fix i j assume [simp]: "r = Fract i j" and "j \<noteq> 0"
+ proof (cases r)
+ fix i j assume [simp]: "r = Fract i j" and "j > 0"
have "r = (let m = inv nat_to_int_bij i; n = inv nat_to_int_bij j
in nat_to_rat_surj(nat2_to_nat (m,n)))"
using nat2_to_nat_inj surj_f_inv_f[OF surj_nat_to_int_bij]
--- a/src/HOL/Library/Fraction_Field.thy Thu Feb 25 22:46:52 2010 +0100
+++ b/src/HOL/Library/Fraction_Field.thy Fri Feb 26 10:57:35 2010 +0100
@@ -1,12 +1,12 @@
-(* Title: Fraction_Field.thy
+(* Title: HOL/Library/Fraction_Field.thy
Author: Amine Chaieb, University of Cambridge
*)
header{* A formalization of the fraction field of any integral domain
- A generalization of Rational.thy from int to any integral domain *}
+ A generalization of Rat.thy from int to any integral domain *}
theory Fraction_Field
-imports Main (* Equiv_Relations Plain *)
+imports Main
begin
subsection {* General fractions construction *}
--- a/src/HOL/Nitpick_Examples/Typedef_Nits.thy Thu Feb 25 22:46:52 2010 +0100
+++ b/src/HOL/Nitpick_Examples/Typedef_Nits.thy Fri Feb 26 10:57:35 2010 +0100
@@ -8,7 +8,7 @@
header {* Examples Featuring Nitpick Applied to Typedefs *}
theory Typedef_Nits
-imports Main Rational
+imports Complex_Main
begin
nitpick_params [card = 1\<midarrow>4, sat_solver = MiniSat_JNI, max_threads = 1,
--- a/src/HOL/PReal.thy Thu Feb 25 22:46:52 2010 +0100
+++ b/src/HOL/PReal.thy Fri Feb 26 10:57:35 2010 +0100
@@ -9,7 +9,7 @@
header {* Positive real numbers *}
theory PReal
-imports Rational
+imports Rat
begin
text{*Could be generalized and moved to @{text Groups}*}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Rat.thy Fri Feb 26 10:57:35 2010 +0100
@@ -0,0 +1,1210 @@
+(* Title: HOL/Rat.thy
+ Author: Markus Wenzel, TU Muenchen
+*)
+
+header {* Rational numbers *}
+
+theory Rat
+imports GCD Archimedean_Field
+uses ("Tools/float_syntax.ML")
+begin
+
+subsection {* Rational numbers as quotient *}
+
+subsubsection {* Construction of the type of rational numbers *}
+
+definition
+ ratrel :: "((int \<times> int) \<times> (int \<times> int)) set" where
+ "ratrel = {(x, y). snd x \<noteq> 0 \<and> snd y \<noteq> 0 \<and> fst x * snd y = fst y * snd x}"
+
+lemma ratrel_iff [simp]:
+ "(x, y) \<in> ratrel \<longleftrightarrow> snd x \<noteq> 0 \<and> snd y \<noteq> 0 \<and> fst x * snd y = fst y * snd x"
+ by (simp add: ratrel_def)
+
+lemma refl_on_ratrel: "refl_on {x. snd x \<noteq> 0} ratrel"
+ by (auto simp add: refl_on_def ratrel_def)
+
+lemma sym_ratrel: "sym ratrel"
+ by (simp add: ratrel_def sym_def)
+
+lemma trans_ratrel: "trans ratrel"
+proof (rule transI, unfold split_paired_all)
+ fix a b a' b' a'' b'' :: int
+ assume A: "((a, b), (a', b')) \<in> ratrel"
+ assume B: "((a', b'), (a'', b'')) \<in> ratrel"
+ have "b' * (a * b'') = b'' * (a * b')" by simp
+ also from A have "a * b' = a' * b" by auto
+ also have "b'' * (a' * b) = b * (a' * b'')" by simp
+ also from B have "a' * b'' = a'' * b'" by auto
+ also have "b * (a'' * b') = b' * (a'' * b)" by simp
+ finally have "b' * (a * b'') = b' * (a'' * b)" .
+ moreover from B have "b' \<noteq> 0" by auto
+ ultimately have "a * b'' = a'' * b" by simp
+ with A B show "((a, b), (a'', b'')) \<in> ratrel" by auto
+qed
+
+lemma equiv_ratrel: "equiv {x. snd x \<noteq> 0} ratrel"
+ by (rule equiv.intro [OF refl_on_ratrel sym_ratrel trans_ratrel])
+
+lemmas UN_ratrel = UN_equiv_class [OF equiv_ratrel]
+lemmas UN_ratrel2 = UN_equiv_class2 [OF equiv_ratrel equiv_ratrel]
+
+lemma equiv_ratrel_iff [iff]:
+ assumes "snd x \<noteq> 0" and "snd y \<noteq> 0"
+ shows "ratrel `` {x} = ratrel `` {y} \<longleftrightarrow> (x, y) \<in> ratrel"
+ by (rule eq_equiv_class_iff, rule equiv_ratrel) (auto simp add: assms)
+
+typedef (Rat) rat = "{x. snd x \<noteq> 0} // ratrel"
+proof
+ have "(0::int, 1::int) \<in> {x. snd x \<noteq> 0}" by simp
+ then show "ratrel `` {(0, 1)} \<in> {x. snd x \<noteq> 0} // ratrel" by (rule quotientI)
+qed
+
+lemma ratrel_in_Rat [simp]: "snd x \<noteq> 0 \<Longrightarrow> ratrel `` {x} \<in> Rat"
+ by (simp add: Rat_def quotientI)
+
+declare Abs_Rat_inject [simp] Abs_Rat_inverse [simp]
+
+
+subsubsection {* Representation and basic operations *}
+
+definition
+ Fract :: "int \<Rightarrow> int \<Rightarrow> rat" where
+ "Fract a b = Abs_Rat (ratrel `` {if b = 0 then (0, 1) else (a, b)})"
+
+lemma eq_rat:
+ shows "\<And>a b c d. b \<noteq> 0 \<Longrightarrow> d \<noteq> 0 \<Longrightarrow> Fract a b = Fract c d \<longleftrightarrow> a * d = c * b"
+ and "\<And>a. Fract a 0 = Fract 0 1"
+ and "\<And>a c. Fract 0 a = Fract 0 c"
+ by (simp_all add: Fract_def)
+
+lemma Rat_cases [case_names Fract, cases type: rat]:
+ assumes "\<And>a b. q = Fract a b \<Longrightarrow> b > 0 \<Longrightarrow> coprime a b \<Longrightarrow> C"
+ shows C
+proof -
+ obtain a b :: int where "q = Fract a b" and "b \<noteq> 0"
+ by (cases q) (clarsimp simp add: Fract_def Rat_def quotient_def)
+ let ?a = "a div gcd a b"
+ let ?b = "b div gcd a b"
+ from `b \<noteq> 0` have "?b * gcd a b = b"
+ by (simp add: dvd_div_mult_self)
+ with `b \<noteq> 0` have "?b \<noteq> 0" by auto
+ from `q = Fract a b` `b \<noteq> 0` `?b \<noteq> 0` have q: "q = Fract ?a ?b"
+ by (simp add: eq_rat dvd_div_mult mult_commute [of a])
+ from `b \<noteq> 0` have coprime: "coprime ?a ?b"
+ by (auto intro: div_gcd_coprime_int)
+ show C proof (cases "b > 0")
+ case True
+ note assms
+ moreover note q
+ moreover from True have "?b > 0" by (simp add: nonneg1_imp_zdiv_pos_iff)
+ moreover note coprime
+ ultimately show C .
+ next
+ case False
+ note assms
+ moreover from q have "q = Fract (- ?a) (- ?b)" by (simp add: Fract_def)
+ moreover from False `b \<noteq> 0` have "- ?b > 0" by (simp add: pos_imp_zdiv_neg_iff)
+ moreover from coprime have "coprime (- ?a) (- ?b)" by simp
+ ultimately show C .
+ qed
+qed
+
+lemma Rat_induct [case_names Fract, induct type: rat]:
+ assumes "\<And>a b. b > 0 \<Longrightarrow> coprime a b \<Longrightarrow> P (Fract a b)"
+ shows "P q"
+ using assms by (cases q) simp
+
+instantiation rat :: comm_ring_1
+begin
+
+definition
+ Zero_rat_def: "0 = Fract 0 1"
+
+definition
+ One_rat_def: "1 = Fract 1 1"
+
+definition
+ add_rat_def:
+ "q + r = Abs_Rat (\<Union>x \<in> Rep_Rat q. \<Union>y \<in> Rep_Rat r.
+ ratrel `` {(fst x * snd y + fst y * snd x, snd x * snd y)})"
+
+lemma add_rat [simp]:
+ assumes "b \<noteq> 0" and "d \<noteq> 0"
+ shows "Fract a b + Fract c d = Fract (a * d + c * b) (b * d)"
+proof -
+ have "(\<lambda>x y. ratrel``{(fst x * snd y + fst y * snd x, snd x * snd y)})
+ respects2 ratrel"
+ by (rule equiv_ratrel [THEN congruent2_commuteI]) (simp_all add: left_distrib)
+ with assms show ?thesis by (simp add: Fract_def add_rat_def UN_ratrel2)
+qed
+
+definition
+ minus_rat_def:
+ "- q = Abs_Rat (\<Union>x \<in> Rep_Rat q. ratrel `` {(- fst x, snd x)})"
+
+lemma minus_rat [simp]: "- Fract a b = Fract (- a) b"
+proof -
+ have "(\<lambda>x. ratrel `` {(- fst x, snd x)}) respects ratrel"
+ by (simp add: congruent_def)
+ then show ?thesis by (simp add: Fract_def minus_rat_def UN_ratrel)
+qed
+
+lemma minus_rat_cancel [simp]: "Fract (- a) (- b) = Fract a b"
+ by (cases "b = 0") (simp_all add: eq_rat)
+
+definition
+ diff_rat_def: "q - r = q + - (r::rat)"
+
+lemma diff_rat [simp]:
+ assumes "b \<noteq> 0" and "d \<noteq> 0"
+ shows "Fract a b - Fract c d = Fract (a * d - c * b) (b * d)"
+ using assms by (simp add: diff_rat_def)
+
+definition
+ mult_rat_def:
+ "q * r = Abs_Rat (\<Union>x \<in> Rep_Rat q. \<Union>y \<in> Rep_Rat r.
+ ratrel``{(fst x * fst y, snd x * snd y)})"
+
+lemma mult_rat [simp]: "Fract a b * Fract c d = Fract (a * c) (b * d)"
+proof -
+ have "(\<lambda>x y. ratrel `` {(fst x * fst y, snd x * snd y)}) respects2 ratrel"
+ by (rule equiv_ratrel [THEN congruent2_commuteI]) simp_all
+ then show ?thesis by (simp add: Fract_def mult_rat_def UN_ratrel2)
+qed
+
+lemma mult_rat_cancel:
+ assumes "c \<noteq> 0"
+ shows "Fract (c * a) (c * b) = Fract a b"
+proof -
+ from assms have "Fract c c = Fract 1 1" by (simp add: Fract_def)
+ then show ?thesis by (simp add: mult_rat [symmetric])
+qed
+
+instance proof
+ fix q r s :: rat show "(q * r) * s = q * (r * s)"
+ by (cases q, cases r, cases s) (simp add: eq_rat)
+next
+ fix q r :: rat show "q * r = r * q"
+ by (cases q, cases r) (simp add: eq_rat)
+next
+ fix q :: rat show "1 * q = q"
+ by (cases q) (simp add: One_rat_def eq_rat)
+next
+ fix q r s :: rat show "(q + r) + s = q + (r + s)"
+ by (cases q, cases r, cases s) (simp add: eq_rat algebra_simps)
+next
+ fix q r :: rat show "q + r = r + q"
+ by (cases q, cases r) (simp add: eq_rat)
+next
+ fix q :: rat show "0 + q = q"
+ by (cases q) (simp add: Zero_rat_def eq_rat)
+next
+ fix q :: rat show "- q + q = 0"
+ by (cases q) (simp add: Zero_rat_def eq_rat)
+next
+ fix q r :: rat show "q - r = q + - r"
+ by (cases q, cases r) (simp add: eq_rat)
+next
+ fix q r s :: rat show "(q + r) * s = q * s + r * s"
+ by (cases q, cases r, cases s) (simp add: eq_rat algebra_simps)
+next
+ show "(0::rat) \<noteq> 1" by (simp add: Zero_rat_def One_rat_def eq_rat)
+qed
+
+end
+
+lemma of_nat_rat: "of_nat k = Fract (of_nat k) 1"
+ by (induct k) (simp_all add: Zero_rat_def One_rat_def)
+
+lemma of_int_rat: "of_int k = Fract k 1"
+ by (cases k rule: int_diff_cases) (simp add: of_nat_rat)
+
+lemma Fract_of_nat_eq: "Fract (of_nat k) 1 = of_nat k"
+ by (rule of_nat_rat [symmetric])
+
+lemma Fract_of_int_eq: "Fract k 1 = of_int k"
+ by (rule of_int_rat [symmetric])
+
+instantiation rat :: number_ring
+begin
+
+definition
+ rat_number_of_def: "number_of w = Fract w 1"
+
+instance proof
+qed (simp add: rat_number_of_def of_int_rat)
+
+end
+
+lemma rat_number_collapse:
+ "Fract 0 k = 0"
+ "Fract 1 1 = 1"
+ "Fract (number_of k) 1 = number_of k"
+ "Fract k 0 = 0"
+ by (cases "k = 0")
+ (simp_all add: Zero_rat_def One_rat_def number_of_is_id number_of_eq of_int_rat eq_rat Fract_def)
+
+lemma rat_number_expand [code_unfold]:
+ "0 = Fract 0 1"
+ "1 = Fract 1 1"
+ "number_of k = Fract (number_of k) 1"
+ by (simp_all add: rat_number_collapse)
+
+lemma iszero_rat [simp]:
+ "iszero (number_of k :: rat) \<longleftrightarrow> iszero (number_of k :: int)"
+ by (simp add: iszero_def rat_number_expand number_of_is_id eq_rat)
+
+lemma Rat_cases_nonzero [case_names Fract 0]:
+ assumes Fract: "\<And>a b. q = Fract a b \<Longrightarrow> b > 0 \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> coprime a b \<Longrightarrow> C"
+ assumes 0: "q = 0 \<Longrightarrow> C"
+ shows C
+proof (cases "q = 0")
+ case True then show C using 0 by auto
+next
+ case False
+ then obtain a b where "q = Fract a b" and "b > 0" and "coprime a b" by (cases q) auto
+ moreover with False have "0 \<noteq> Fract a b" by simp
+ with `b > 0` have "a \<noteq> 0" by (simp add: Zero_rat_def eq_rat)
+ with Fract `q = Fract a b` `b > 0` `coprime a b` show C by blast
+qed
+
+subsubsection {* Function @{text normalize} *}
+
+lemma Fract_coprime: "Fract (a div gcd a b) (b div gcd a b) = Fract a b"
+proof (cases "b = 0")
+ case True then show ?thesis by (simp add: eq_rat)
+next
+ case False
+ moreover have "b div gcd a b * gcd a b = b"
+ by (rule dvd_div_mult_self) simp
+ ultimately have "b div gcd a b \<noteq> 0" by auto
+ with False show ?thesis by (simp add: eq_rat dvd_div_mult mult_commute [of a])
+qed
+
+definition normalize :: "int \<times> int \<Rightarrow> int \<times> int" where
+ "normalize p = (if snd p > 0 then (let a = gcd (fst p) (snd p) in (fst p div a, snd p div a))
+ else if snd p = 0 then (0, 1)
+ else (let a = - gcd (fst p) (snd p) in (fst p div a, snd p div a)))"
+
+lemma normalize_crossproduct:
+ assumes "q \<noteq> 0" "s \<noteq> 0"
+ assumes "normalize (p, q) = normalize (r, s)"
+ shows "p * s = r * q"
+proof -
+ have aux: "p * gcd r s = sgn (q * s) * r * gcd p q \<Longrightarrow> q * gcd r s = sgn (q * s) * s * gcd p q \<Longrightarrow> p * s = q * r"
+ proof -
+ assume "p * gcd r s = sgn (q * s) * r * gcd p q" and "q * gcd r s = sgn (q * s) * s * gcd p q"
+ then have "(p * gcd r s) * (sgn (q * s) * s * gcd p q) = (q * gcd r s) * (sgn (q * s) * r * gcd p q)" by simp
+ with assms show "p * s = q * r" by (auto simp add: mult_ac sgn_times sgn_0_0)
+ qed
+ from assms show ?thesis
+ by (auto simp add: normalize_def Let_def dvd_div_div_eq_mult mult_commute sgn_times split: if_splits intro: aux)
+qed
+
+lemma normalize_eq: "normalize (a, b) = (p, q) \<Longrightarrow> Fract p q = Fract a b"
+ by (auto simp add: normalize_def Let_def Fract_coprime dvd_div_neg rat_number_collapse
+ split:split_if_asm)
+
+lemma normalize_denom_pos: "normalize r = (p, q) \<Longrightarrow> q > 0"
+ by (auto simp add: normalize_def Let_def dvd_div_neg pos_imp_zdiv_neg_iff nonneg1_imp_zdiv_pos_iff
+ split:split_if_asm)
+
+lemma normalize_coprime: "normalize r = (p, q) \<Longrightarrow> coprime p q"
+ by (auto simp add: normalize_def Let_def dvd_div_neg div_gcd_coprime_int
+ split:split_if_asm)
+
+lemma normalize_stable [simp]:
+ "q > 0 \<Longrightarrow> coprime p q \<Longrightarrow> normalize (p, q) = (p, q)"
+ by (simp add: normalize_def)
+
+lemma normalize_denom_zero [simp]:
+ "normalize (p, 0) = (0, 1)"
+ by (simp add: normalize_def)
+
+lemma normalize_negative [simp]:
+ "q < 0 \<Longrightarrow> normalize (p, q) = normalize (- p, - q)"
+ by (simp add: normalize_def Let_def dvd_div_neg dvd_neg_div)
+
+text{*
+ Decompose a fraction into normalized, i.e. coprime numerator and denominator:
+*}
+
+definition quotient_of :: "rat \<Rightarrow> int \<times> int" where
+ "quotient_of x = (THE pair. x = Fract (fst pair) (snd pair) &
+ snd pair > 0 & coprime (fst pair) (snd pair))"
+
+lemma quotient_of_unique:
+ "\<exists>!p. r = Fract (fst p) (snd p) \<and> snd p > 0 \<and> coprime (fst p) (snd p)"
+proof (cases r)
+ case (Fract a b)
+ then have "r = Fract (fst (a, b)) (snd (a, b)) \<and> snd (a, b) > 0 \<and> coprime (fst (a, b)) (snd (a, b))" by auto
+ then show ?thesis proof (rule ex1I)
+ fix p
+ obtain c d :: int where p: "p = (c, d)" by (cases p)
+ assume "r = Fract (fst p) (snd p) \<and> snd p > 0 \<and> coprime (fst p) (snd p)"
+ with p have Fract': "r = Fract c d" "d > 0" "coprime c d" by simp_all
+ have "c = a \<and> d = b"
+ proof (cases "a = 0")
+ case True with Fract Fract' show ?thesis by (simp add: eq_rat)
+ next
+ case False
+ with Fract Fract' have *: "c * b = a * d" and "c \<noteq> 0" by (auto simp add: eq_rat)
+ then have "c * b > 0 \<longleftrightarrow> a * d > 0" by auto
+ with `b > 0` `d > 0` have "a > 0 \<longleftrightarrow> c > 0" by (simp add: zero_less_mult_iff)
+ with `a \<noteq> 0` `c \<noteq> 0` have sgn: "sgn a = sgn c" by (auto simp add: not_less)
+ from `coprime a b` `coprime c d` have "\<bar>a\<bar> * \<bar>d\<bar> = \<bar>c\<bar> * \<bar>b\<bar> \<longleftrightarrow> \<bar>a\<bar> = \<bar>c\<bar> \<and> \<bar>d\<bar> = \<bar>b\<bar>"
+ by (simp add: coprime_crossproduct_int)
+ with `b > 0` `d > 0` have "\<bar>a\<bar> * d = \<bar>c\<bar> * b \<longleftrightarrow> \<bar>a\<bar> = \<bar>c\<bar> \<and> d = b" by simp
+ then have "a * sgn a * d = c * sgn c * b \<longleftrightarrow> a * sgn a = c * sgn c \<and> d = b" by (simp add: abs_sgn)
+ with sgn * show ?thesis by (auto simp add: sgn_0_0)
+ qed
+ with p show "p = (a, b)" by simp
+ qed
+qed
+
+lemma quotient_of_Fract [code]:
+ "quotient_of (Fract a b) = normalize (a, b)"
+proof -
+ have "Fract a b = Fract (fst (normalize (a, b))) (snd (normalize (a, b)))" (is ?Fract)
+ by (rule sym) (auto intro: normalize_eq)
+ moreover have "0 < snd (normalize (a, b))" (is ?denom_pos)
+ by (cases "normalize (a, b)") (rule normalize_denom_pos, simp)
+ moreover have "coprime (fst (normalize (a, b))) (snd (normalize (a, b)))" (is ?coprime)
+ by (rule normalize_coprime) simp
+ ultimately have "?Fract \<and> ?denom_pos \<and> ?coprime" by blast
+ with quotient_of_unique have
+ "(THE p. Fract a b = Fract (fst p) (snd p) \<and> 0 < snd p \<and> coprime (fst p) (snd p)) = normalize (a, b)"
+ by (rule the1_equality)
+ then show ?thesis by (simp add: quotient_of_def)
+qed
+
+lemma quotient_of_number [simp]:
+ "quotient_of 0 = (0, 1)"
+ "quotient_of 1 = (1, 1)"
+ "quotient_of (number_of k) = (number_of k, 1)"
+ by (simp_all add: rat_number_expand quotient_of_Fract)
+
+lemma quotient_of_eq: "quotient_of (Fract a b) = (p, q) \<Longrightarrow> Fract p q = Fract a b"
+ by (simp add: quotient_of_Fract normalize_eq)
+
+lemma quotient_of_denom_pos: "quotient_of r = (p, q) \<Longrightarrow> q > 0"
+ by (cases r) (simp add: quotient_of_Fract normalize_denom_pos)
+
+lemma quotient_of_coprime: "quotient_of r = (p, q) \<Longrightarrow> coprime p q"
+ by (cases r) (simp add: quotient_of_Fract normalize_coprime)
+
+lemma quotient_of_inject:
+ assumes "quotient_of a = quotient_of b"
+ shows "a = b"
+proof -
+ obtain p q r s where a: "a = Fract p q"
+ and b: "b = Fract r s"
+ and "q > 0" and "s > 0" by (cases a, cases b)
+ with assms show ?thesis by (simp add: eq_rat quotient_of_Fract normalize_crossproduct)
+qed
+
+lemma quotient_of_inject_eq:
+ "quotient_of a = quotient_of b \<longleftrightarrow> a = b"
+ by (auto simp add: quotient_of_inject)
+
+
+subsubsection {* The field of rational numbers *}
+
+instantiation rat :: "{field, division_by_zero}"
+begin
+
+definition
+ inverse_rat_def:
+ "inverse q = Abs_Rat (\<Union>x \<in> Rep_Rat q.
+ ratrel `` {if fst x = 0 then (0, 1) else (snd x, fst x)})"
+
+lemma inverse_rat [simp]: "inverse (Fract a b) = Fract b a"
+proof -
+ have "(\<lambda>x. ratrel `` {if fst x = 0 then (0, 1) else (snd x, fst x)}) respects ratrel"
+ by (auto simp add: congruent_def mult_commute)
+ then show ?thesis by (simp add: Fract_def inverse_rat_def UN_ratrel)
+qed
+
+definition
+ divide_rat_def: "q / r = q * inverse (r::rat)"
+
+lemma divide_rat [simp]: "Fract a b / Fract c d = Fract (a * d) (b * c)"
+ by (simp add: divide_rat_def)
+
+instance proof
+ show "inverse 0 = (0::rat)" by (simp add: rat_number_expand)
+ (simp add: rat_number_collapse)
+next
+ fix q :: rat
+ assume "q \<noteq> 0"
+ then show "inverse q * q = 1" by (cases q rule: Rat_cases_nonzero)
+ (simp_all add: rat_number_expand eq_rat)
+next
+ fix q r :: rat
+ show "q / r = q * inverse r" by (simp add: divide_rat_def)
+qed
+
+end
+
+
+subsubsection {* Various *}
+
+lemma Fract_add_one: "n \<noteq> 0 ==> Fract (m + n) n = Fract m n + 1"
+ by (simp add: rat_number_expand)
+
+lemma Fract_of_int_quotient: "Fract k l = of_int k / of_int l"
+ by (simp add: Fract_of_int_eq [symmetric])
+
+lemma Fract_number_of_quotient:
+ "Fract (number_of k) (number_of l) = number_of k / number_of l"
+ unfolding Fract_of_int_quotient number_of_is_id number_of_eq ..
+
+lemma Fract_1_number_of:
+ "Fract 1 (number_of k) = 1 / number_of k"
+ unfolding Fract_of_int_quotient number_of_eq by simp
+
+subsubsection {* The ordered field of rational numbers *}
+
+instantiation rat :: linorder
+begin
+
+definition
+ le_rat_def:
+ "q \<le> r \<longleftrightarrow> contents (\<Union>x \<in> Rep_Rat q. \<Union>y \<in> Rep_Rat r.
+ {(fst x * snd y) * (snd x * snd y) \<le> (fst y * snd x) * (snd x * snd y)})"
+
+lemma le_rat [simp]:
+ assumes "b \<noteq> 0" and "d \<noteq> 0"
+ shows "Fract a b \<le> Fract c d \<longleftrightarrow> (a * d) * (b * d) \<le> (c * b) * (b * d)"
+proof -
+ have "(\<lambda>x y. {(fst x * snd y) * (snd x * snd y) \<le> (fst y * snd x) * (snd x * snd y)})
+ respects2 ratrel"
+ proof (clarsimp simp add: congruent2_def)
+ fix a b a' b' c d c' d'::int
+ assume neq: "b \<noteq> 0" "b' \<noteq> 0" "d \<noteq> 0" "d' \<noteq> 0"
+ assume eq1: "a * b' = a' * b"
+ assume eq2: "c * d' = c' * d"
+
+ let ?le = "\<lambda>a b c d. ((a * d) * (b * d) \<le> (c * b) * (b * d))"
+ {
+ fix a b c d x :: int assume x: "x \<noteq> 0"
+ have "?le a b c d = ?le (a * x) (b * x) c d"
+ proof -
+ from x have "0 < x * x" by (auto simp add: zero_less_mult_iff)
+ hence "?le a b c d =
+ ((a * d) * (b * d) * (x * x) \<le> (c * b) * (b * d) * (x * x))"
+ by (simp add: mult_le_cancel_right)
+ also have "... = ?le (a * x) (b * x) c d"
+ by (simp add: mult_ac)
+ finally show ?thesis .
+ qed
+ } note le_factor = this
+
+ let ?D = "b * d" and ?D' = "b' * d'"
+ from neq have D: "?D \<noteq> 0" by simp
+ from neq have "?D' \<noteq> 0" by simp
+ hence "?le a b c d = ?le (a * ?D') (b * ?D') c d"
+ by (rule le_factor)
+ also have "... = ((a * b') * ?D * ?D' * d * d' \<le> (c * d') * ?D * ?D' * b * b')"
+ by (simp add: mult_ac)
+ also have "... = ((a' * b) * ?D * ?D' * d * d' \<le> (c' * d) * ?D * ?D' * b * b')"
+ by (simp only: eq1 eq2)
+ also have "... = ?le (a' * ?D) (b' * ?D) c' d'"
+ by (simp add: mult_ac)
+ also from D have "... = ?le a' b' c' d'"
+ by (rule le_factor [symmetric])
+ finally show "?le a b c d = ?le a' b' c' d'" .
+ qed
+ with assms show ?thesis by (simp add: Fract_def le_rat_def UN_ratrel2)
+qed
+
+definition
+ less_rat_def: "z < (w::rat) \<longleftrightarrow> z \<le> w \<and> z \<noteq> w"
+
+lemma less_rat [simp]:
+ assumes "b \<noteq> 0" and "d \<noteq> 0"
+ shows "Fract a b < Fract c d \<longleftrightarrow> (a * d) * (b * d) < (c * b) * (b * d)"
+ using assms by (simp add: less_rat_def eq_rat order_less_le)
+
+instance proof
+ fix q r s :: rat
+ {
+ assume "q \<le> r" and "r \<le> s"
+ then show "q \<le> s"
+ proof (induct q, induct r, induct s)
+ fix a b c d e f :: int
+ assume neq: "b > 0" "d > 0" "f > 0"
+ assume 1: "Fract a b \<le> Fract c d" and 2: "Fract c d \<le> Fract e f"
+ show "Fract a b \<le> Fract e f"
+ proof -
+ from neq obtain bb: "0 < b * b" and dd: "0 < d * d" and ff: "0 < f * f"
+ by (auto simp add: zero_less_mult_iff linorder_neq_iff)
+ have "(a * d) * (b * d) * (f * f) \<le> (c * b) * (b * d) * (f * f)"
+ proof -
+ from neq 1 have "(a * d) * (b * d) \<le> (c * b) * (b * d)"
+ by simp
+ with ff show ?thesis by (simp add: mult_le_cancel_right)
+ qed
+ also have "... = (c * f) * (d * f) * (b * b)" by algebra
+ also have "... \<le> (e * d) * (d * f) * (b * b)"
+ proof -
+ from neq 2 have "(c * f) * (d * f) \<le> (e * d) * (d * f)"
+ by simp
+ with bb show ?thesis by (simp add: mult_le_cancel_right)
+ qed
+ finally have "(a * f) * (b * f) * (d * d) \<le> e * b * (b * f) * (d * d)"
+ by (simp only: mult_ac)
+ with dd have "(a * f) * (b * f) \<le> (e * b) * (b * f)"
+ by (simp add: mult_le_cancel_right)
+ with neq show ?thesis by simp
+ qed
+ qed
+ next
+ assume "q \<le> r" and "r \<le> q"
+ then show "q = r"
+ proof (induct q, induct r)
+ fix a b c d :: int
+ assume neq: "b > 0" "d > 0"
+ assume 1: "Fract a b \<le> Fract c d" and 2: "Fract c d \<le> Fract a b"
+ show "Fract a b = Fract c d"
+ proof -
+ from neq 1 have "(a * d) * (b * d) \<le> (c * b) * (b * d)"
+ by simp
+ also have "... \<le> (a * d) * (b * d)"
+ proof -
+ from neq 2 have "(c * b) * (d * b) \<le> (a * d) * (d * b)"
+ by simp
+ thus ?thesis by (simp only: mult_ac)
+ qed
+ finally have "(a * d) * (b * d) = (c * b) * (b * d)" .
+ moreover from neq have "b * d \<noteq> 0" by simp
+ ultimately have "a * d = c * b" by simp
+ with neq show ?thesis by (simp add: eq_rat)
+ qed
+ qed
+ next
+ show "q \<le> q"
+ by (induct q) simp
+ show "(q < r) = (q \<le> r \<and> \<not> r \<le> q)"
+ by (induct q, induct r) (auto simp add: le_less mult_commute)
+ show "q \<le> r \<or> r \<le> q"
+ by (induct q, induct r)
+ (simp add: mult_commute, rule linorder_linear)
+ }
+qed
+
+end
+
+instantiation rat :: "{distrib_lattice, abs_if, sgn_if}"
+begin
+
+definition
+ abs_rat_def: "\<bar>q\<bar> = (if q < 0 then -q else (q::rat))"
+
+lemma abs_rat [simp, code]: "\<bar>Fract a b\<bar> = Fract \<bar>a\<bar> \<bar>b\<bar>"
+ by (auto simp add: abs_rat_def zabs_def Zero_rat_def not_less le_less eq_rat zero_less_mult_iff)
+
+definition
+ sgn_rat_def: "sgn (q::rat) = (if q = 0 then 0 else if 0 < q then 1 else - 1)"
+
+lemma sgn_rat [simp, code]: "sgn (Fract a b) = of_int (sgn a * sgn b)"
+ unfolding Fract_of_int_eq
+ by (auto simp: zsgn_def sgn_rat_def Zero_rat_def eq_rat)
+ (auto simp: rat_number_collapse not_less le_less zero_less_mult_iff)
+
+definition
+ "(inf \<Colon> rat \<Rightarrow> rat \<Rightarrow> rat) = min"
+
+definition
+ "(sup \<Colon> rat \<Rightarrow> rat \<Rightarrow> rat) = max"
+
+instance by intro_classes
+ (auto simp add: abs_rat_def sgn_rat_def min_max.sup_inf_distrib1 inf_rat_def sup_rat_def)
+
+end
+
+instance rat :: linordered_field
+proof
+ fix q r s :: rat
+ show "q \<le> r ==> s + q \<le> s + r"
+ proof (induct q, induct r, induct s)
+ fix a b c d e f :: int
+ assume neq: "b > 0" "d > 0" "f > 0"
+ assume le: "Fract a b \<le> Fract c d"
+ show "Fract e f + Fract a b \<le> Fract e f + Fract c d"
+ proof -
+ let ?F = "f * f" from neq have F: "0 < ?F"
+ by (auto simp add: zero_less_mult_iff)
+ from neq le have "(a * d) * (b * d) \<le> (c * b) * (b * d)"
+ by simp
+ with F have "(a * d) * (b * d) * ?F * ?F \<le> (c * b) * (b * d) * ?F * ?F"
+ by (simp add: mult_le_cancel_right)
+ with neq show ?thesis by (simp add: mult_ac int_distrib)
+ qed
+ qed
+ show "q < r ==> 0 < s ==> s * q < s * r"
+ proof (induct q, induct r, induct s)
+ fix a b c d e f :: int
+ assume neq: "b > 0" "d > 0" "f > 0"
+ assume le: "Fract a b < Fract c d"
+ assume gt: "0 < Fract e f"
+ show "Fract e f * Fract a b < Fract e f * Fract c d"
+ proof -
+ let ?E = "e * f" and ?F = "f * f"
+ from neq gt have "0 < ?E"
+ by (auto simp add: Zero_rat_def order_less_le eq_rat)
+ moreover from neq have "0 < ?F"
+ by (auto simp add: zero_less_mult_iff)
+ moreover from neq le have "(a * d) * (b * d) < (c * b) * (b * d)"
+ by simp
+ ultimately have "(a * d) * (b * d) * ?E * ?F < (c * b) * (b * d) * ?E * ?F"
+ by (simp add: mult_less_cancel_right)
+ with neq show ?thesis
+ by (simp add: mult_ac)
+ qed
+ qed
+qed auto
+
+lemma Rat_induct_pos [case_names Fract, induct type: rat]:
+ assumes step: "\<And>a b. 0 < b \<Longrightarrow> P (Fract a b)"
+ shows "P q"
+proof (cases q)
+ have step': "\<And>a b. b < 0 \<Longrightarrow> P (Fract a b)"
+ proof -
+ fix a::int and b::int
+ assume b: "b < 0"
+ hence "0 < -b" by simp
+ hence "P (Fract (-a) (-b))" by (rule step)
+ thus "P (Fract a b)" by (simp add: order_less_imp_not_eq [OF b])
+ qed
+ case (Fract a b)
+ thus "P q" by (force simp add: linorder_neq_iff step step')
+qed
+
+lemma zero_less_Fract_iff:
+ "0 < b \<Longrightarrow> 0 < Fract a b \<longleftrightarrow> 0 < a"
+ by (simp add: Zero_rat_def zero_less_mult_iff)
+
+lemma Fract_less_zero_iff:
+ "0 < b \<Longrightarrow> Fract a b < 0 \<longleftrightarrow> a < 0"
+ by (simp add: Zero_rat_def mult_less_0_iff)
+
+lemma zero_le_Fract_iff:
+ "0 < b \<Longrightarrow> 0 \<le> Fract a b \<longleftrightarrow> 0 \<le> a"
+ by (simp add: Zero_rat_def zero_le_mult_iff)
+
+lemma Fract_le_zero_iff:
+ "0 < b \<Longrightarrow> Fract a b \<le> 0 \<longleftrightarrow> a \<le> 0"
+ by (simp add: Zero_rat_def mult_le_0_iff)
+
+lemma one_less_Fract_iff:
+ "0 < b \<Longrightarrow> 1 < Fract a b \<longleftrightarrow> b < a"
+ by (simp add: One_rat_def mult_less_cancel_right_disj)
+
+lemma Fract_less_one_iff:
+ "0 < b \<Longrightarrow> Fract a b < 1 \<longleftrightarrow> a < b"
+ by (simp add: One_rat_def mult_less_cancel_right_disj)
+
+lemma one_le_Fract_iff:
+ "0 < b \<Longrightarrow> 1 \<le> Fract a b \<longleftrightarrow> b \<le> a"
+ by (simp add: One_rat_def mult_le_cancel_right)
+
+lemma Fract_le_one_iff:
+ "0 < b \<Longrightarrow> Fract a b \<le> 1 \<longleftrightarrow> a \<le> b"
+ by (simp add: One_rat_def mult_le_cancel_right)
+
+
+subsubsection {* Rationals are an Archimedean field *}
+
+lemma rat_floor_lemma:
+ shows "of_int (a div b) \<le> Fract a b \<and> Fract a b < of_int (a div b + 1)"
+proof -
+ have "Fract a b = of_int (a div b) + Fract (a mod b) b"
+ by (cases "b = 0", simp, simp add: of_int_rat)
+ moreover have "0 \<le> Fract (a mod b) b \<and> Fract (a mod b) b < 1"
+ unfolding Fract_of_int_quotient
+ by (rule linorder_cases [of b 0])
+ (simp add: divide_nonpos_neg, simp, simp add: divide_nonneg_pos)
+ ultimately show ?thesis by simp
+qed
+
+instance rat :: archimedean_field
+proof
+ fix r :: rat
+ show "\<exists>z. r \<le> of_int z"
+ proof (induct r)
+ case (Fract a b)
+ have "Fract a b \<le> of_int (a div b + 1)"
+ using rat_floor_lemma [of a b] by simp
+ then show "\<exists>z. Fract a b \<le> of_int z" ..
+ qed
+qed
+
+lemma floor_Fract: "floor (Fract a b) = a div b"
+ using rat_floor_lemma [of a b]
+ by (simp add: floor_unique)
+
+
+subsection {* Linear arithmetic setup *}
+
+declaration {*
+ K (Lin_Arith.add_inj_thms [@{thm of_nat_le_iff} RS iffD2, @{thm of_nat_eq_iff} RS iffD2]
+ (* not needed because x < (y::nat) can be rewritten as Suc x <= y: of_nat_less_iff RS iffD2 *)
+ #> Lin_Arith.add_inj_thms [@{thm of_int_le_iff} RS iffD2, @{thm of_int_eq_iff} RS iffD2]
+ (* not needed because x < (y::int) can be rewritten as x + 1 <= y: of_int_less_iff RS iffD2 *)
+ #> Lin_Arith.add_simps [@{thm neg_less_iff_less},
+ @{thm True_implies_equals},
+ read_instantiate @{context} [(("a", 0), "(number_of ?v)")] @{thm right_distrib},
+ @{thm divide_1}, @{thm divide_zero_left},
+ @{thm times_divide_eq_right}, @{thm times_divide_eq_left},
+ @{thm minus_divide_left} RS sym, @{thm minus_divide_right} RS sym,
+ @{thm of_int_minus}, @{thm of_int_diff},
+ @{thm of_int_of_nat_eq}]
+ #> Lin_Arith.add_simprocs Numeral_Simprocs.field_cancel_numeral_factors
+ #> Lin_Arith.add_inj_const (@{const_name of_nat}, @{typ "nat => rat"})
+ #> Lin_Arith.add_inj_const (@{const_name of_int}, @{typ "int => rat"}))
+*}
+
+
+subsection {* Embedding from Rationals to other Fields *}
+
+class field_char_0 = field + ring_char_0
+
+subclass (in linordered_field) field_char_0 ..
+
+context field_char_0
+begin
+
+definition of_rat :: "rat \<Rightarrow> 'a" where
+ "of_rat q = contents (\<Union>(a,b) \<in> Rep_Rat q. {of_int a / of_int b})"
+
+end
+
+lemma of_rat_congruent:
+ "(\<lambda>(a, b). {of_int a / of_int b :: 'a::field_char_0}) respects ratrel"
+apply (rule congruent.intro)
+apply (clarsimp simp add: nonzero_divide_eq_eq nonzero_eq_divide_eq)
+apply (simp only: of_int_mult [symmetric])
+done
+
+lemma of_rat_rat: "b \<noteq> 0 \<Longrightarrow> of_rat (Fract a b) = of_int a / of_int b"
+ unfolding Fract_def of_rat_def by (simp add: UN_ratrel of_rat_congruent)
+
+lemma of_rat_0 [simp]: "of_rat 0 = 0"
+by (simp add: Zero_rat_def of_rat_rat)
+
+lemma of_rat_1 [simp]: "of_rat 1 = 1"
+by (simp add: One_rat_def of_rat_rat)
+
+lemma of_rat_add: "of_rat (a + b) = of_rat a + of_rat b"
+by (induct a, induct b, simp add: of_rat_rat add_frac_eq)
+
+lemma of_rat_minus: "of_rat (- a) = - of_rat a"
+by (induct a, simp add: of_rat_rat)
+
+lemma of_rat_diff: "of_rat (a - b) = of_rat a - of_rat b"
+by (simp only: diff_minus of_rat_add of_rat_minus)
+
+lemma of_rat_mult: "of_rat (a * b) = of_rat a * of_rat b"
+apply (induct a, induct b, simp add: of_rat_rat)
+apply (simp add: divide_inverse nonzero_inverse_mult_distrib mult_ac)
+done
+
+lemma nonzero_of_rat_inverse:
+ "a \<noteq> 0 \<Longrightarrow> of_rat (inverse a) = inverse (of_rat a)"
+apply (rule inverse_unique [symmetric])
+apply (simp add: of_rat_mult [symmetric])
+done
+
+lemma of_rat_inverse:
+ "(of_rat (inverse a)::'a::{field_char_0,division_by_zero}) =
+ inverse (of_rat a)"
+by (cases "a = 0", simp_all add: nonzero_of_rat_inverse)
+
+lemma nonzero_of_rat_divide:
+ "b \<noteq> 0 \<Longrightarrow> of_rat (a / b) = of_rat a / of_rat b"
+by (simp add: divide_inverse of_rat_mult nonzero_of_rat_inverse)
+
+lemma of_rat_divide:
+ "(of_rat (a / b)::'a::{field_char_0,division_by_zero})
+ = of_rat a / of_rat b"
+by (cases "b = 0") (simp_all add: nonzero_of_rat_divide)
+
+lemma of_rat_power:
+ "(of_rat (a ^ n)::'a::field_char_0) = of_rat a ^ n"
+by (induct n) (simp_all add: of_rat_mult)
+
+lemma of_rat_eq_iff [simp]: "(of_rat a = of_rat b) = (a = b)"
+apply (induct a, induct b)
+apply (simp add: of_rat_rat eq_rat)
+apply (simp add: nonzero_divide_eq_eq nonzero_eq_divide_eq)
+apply (simp only: of_int_mult [symmetric] of_int_eq_iff)
+done
+
+lemma of_rat_less:
+ "(of_rat r :: 'a::linordered_field) < of_rat s \<longleftrightarrow> r < s"
+proof (induct r, induct s)
+ fix a b c d :: int
+ assume not_zero: "b > 0" "d > 0"
+ then have "b * d > 0" by (rule mult_pos_pos)
+ have of_int_divide_less_eq:
+ "(of_int a :: 'a) / of_int b < of_int c / of_int d
+ \<longleftrightarrow> (of_int a :: 'a) * of_int d < of_int c * of_int b"
+ using not_zero by (simp add: pos_less_divide_eq pos_divide_less_eq)
+ show "(of_rat (Fract a b) :: 'a::linordered_field) < of_rat (Fract c d)
+ \<longleftrightarrow> Fract a b < Fract c d"
+ using not_zero `b * d > 0`
+ by (simp add: of_rat_rat of_int_divide_less_eq of_int_mult [symmetric] del: of_int_mult)
+qed
+
+lemma of_rat_less_eq:
+ "(of_rat r :: 'a::linordered_field) \<le> of_rat s \<longleftrightarrow> r \<le> s"
+ unfolding le_less by (auto simp add: of_rat_less)
+
+lemmas of_rat_eq_0_iff [simp] = of_rat_eq_iff [of _ 0, simplified]
+
+lemma of_rat_eq_id [simp]: "of_rat = id"
+proof
+ fix a
+ show "of_rat a = id a"
+ by (induct a)
+ (simp add: of_rat_rat Fract_of_int_eq [symmetric])
+qed
+
+text{*Collapse nested embeddings*}
+lemma of_rat_of_nat_eq [simp]: "of_rat (of_nat n) = of_nat n"
+by (induct n) (simp_all add: of_rat_add)
+
+lemma of_rat_of_int_eq [simp]: "of_rat (of_int z) = of_int z"
+by (cases z rule: int_diff_cases) (simp add: of_rat_diff)
+
+lemma of_rat_number_of_eq [simp]:
+ "of_rat (number_of w) = (number_of w :: 'a::{number_ring,field_char_0})"
+by (simp add: number_of_eq)
+
+lemmas zero_rat = Zero_rat_def
+lemmas one_rat = One_rat_def
+
+abbreviation
+ rat_of_nat :: "nat \<Rightarrow> rat"
+where
+ "rat_of_nat \<equiv> of_nat"
+
+abbreviation
+ rat_of_int :: "int \<Rightarrow> rat"
+where
+ "rat_of_int \<equiv> of_int"
+
+subsection {* The Set of Rational Numbers *}
+
+context field_char_0
+begin
+
+definition
+ Rats :: "'a set" where
+ "Rats = range of_rat"
+
+notation (xsymbols)
+ Rats ("\<rat>")
+
+end
+
+lemma Rats_of_rat [simp]: "of_rat r \<in> Rats"
+by (simp add: Rats_def)
+
+lemma Rats_of_int [simp]: "of_int z \<in> Rats"
+by (subst of_rat_of_int_eq [symmetric], rule Rats_of_rat)
+
+lemma Rats_of_nat [simp]: "of_nat n \<in> Rats"
+by (subst of_rat_of_nat_eq [symmetric], rule Rats_of_rat)
+
+lemma Rats_number_of [simp]:
+ "(number_of w::'a::{number_ring,field_char_0}) \<in> Rats"
+by (subst of_rat_number_of_eq [symmetric], rule Rats_of_rat)
+
+lemma Rats_0 [simp]: "0 \<in> Rats"
+apply (unfold Rats_def)
+apply (rule range_eqI)
+apply (rule of_rat_0 [symmetric])
+done
+
+lemma Rats_1 [simp]: "1 \<in> Rats"
+apply (unfold Rats_def)
+apply (rule range_eqI)
+apply (rule of_rat_1 [symmetric])
+done
+
+lemma Rats_add [simp]: "\<lbrakk>a \<in> Rats; b \<in> Rats\<rbrakk> \<Longrightarrow> a + b \<in> Rats"
+apply (auto simp add: Rats_def)
+apply (rule range_eqI)
+apply (rule of_rat_add [symmetric])
+done
+
+lemma Rats_minus [simp]: "a \<in> Rats \<Longrightarrow> - a \<in> Rats"
+apply (auto simp add: Rats_def)
+apply (rule range_eqI)
+apply (rule of_rat_minus [symmetric])
+done
+
+lemma Rats_diff [simp]: "\<lbrakk>a \<in> Rats; b \<in> Rats\<rbrakk> \<Longrightarrow> a - b \<in> Rats"
+apply (auto simp add: Rats_def)
+apply (rule range_eqI)
+apply (rule of_rat_diff [symmetric])
+done
+
+lemma Rats_mult [simp]: "\<lbrakk>a \<in> Rats; b \<in> Rats\<rbrakk> \<Longrightarrow> a * b \<in> Rats"
+apply (auto simp add: Rats_def)
+apply (rule range_eqI)
+apply (rule of_rat_mult [symmetric])
+done
+
+lemma nonzero_Rats_inverse:
+ fixes a :: "'a::field_char_0"
+ shows "\<lbrakk>a \<in> Rats; a \<noteq> 0\<rbrakk> \<Longrightarrow> inverse a \<in> Rats"
+apply (auto simp add: Rats_def)
+apply (rule range_eqI)
+apply (erule nonzero_of_rat_inverse [symmetric])
+done
+
+lemma Rats_inverse [simp]:
+ fixes a :: "'a::{field_char_0,division_by_zero}"
+ shows "a \<in> Rats \<Longrightarrow> inverse a \<in> Rats"
+apply (auto simp add: Rats_def)
+apply (rule range_eqI)
+apply (rule of_rat_inverse [symmetric])
+done
+
+lemma nonzero_Rats_divide:
+ fixes a b :: "'a::field_char_0"
+ shows "\<lbrakk>a \<in> Rats; b \<in> Rats; b \<noteq> 0\<rbrakk> \<Longrightarrow> a / b \<in> Rats"
+apply (auto simp add: Rats_def)
+apply (rule range_eqI)
+apply (erule nonzero_of_rat_divide [symmetric])
+done
+
+lemma Rats_divide [simp]:
+ fixes a b :: "'a::{field_char_0,division_by_zero}"
+ shows "\<lbrakk>a \<in> Rats; b \<in> Rats\<rbrakk> \<Longrightarrow> a / b \<in> Rats"
+apply (auto simp add: Rats_def)
+apply (rule range_eqI)
+apply (rule of_rat_divide [symmetric])
+done
+
+lemma Rats_power [simp]:
+ fixes a :: "'a::field_char_0"
+ shows "a \<in> Rats \<Longrightarrow> a ^ n \<in> Rats"
+apply (auto simp add: Rats_def)
+apply (rule range_eqI)
+apply (rule of_rat_power [symmetric])
+done
+
+lemma Rats_cases [cases set: Rats]:
+ assumes "q \<in> \<rat>"
+ obtains (of_rat) r where "q = of_rat r"
+ unfolding Rats_def
+proof -
+ from `q \<in> \<rat>` have "q \<in> range of_rat" unfolding Rats_def .
+ then obtain r where "q = of_rat r" ..
+ then show thesis ..
+qed
+
+lemma Rats_induct [case_names of_rat, induct set: Rats]:
+ "q \<in> \<rat> \<Longrightarrow> (\<And>r. P (of_rat r)) \<Longrightarrow> P q"
+ by (rule Rats_cases) auto
+
+
+subsection {* Implementation of rational numbers as pairs of integers *}
+
+definition Frct :: "int \<times> int \<Rightarrow> rat" where
+ [simp]: "Frct p = Fract (fst p) (snd p)"
+
+code_abstype Frct quotient_of
+proof (rule eq_reflection)
+ fix r :: rat
+ show "Frct (quotient_of r) = r" by (cases r) (auto intro: quotient_of_eq)
+qed
+
+lemma Frct_code_post [code_post]:
+ "Frct (0, k) = 0"
+ "Frct (k, 0) = 0"
+ "Frct (1, 1) = 1"
+ "Frct (number_of k, 1) = number_of k"
+ "Frct (1, number_of k) = 1 / number_of k"
+ "Frct (number_of k, number_of l) = number_of k / number_of l"
+ by (simp_all add: rat_number_collapse Fract_number_of_quotient Fract_1_number_of)
+
+declare quotient_of_Fract [code abstract]
+
+lemma rat_zero_code [code abstract]:
+ "quotient_of 0 = (0, 1)"
+ by (simp add: Zero_rat_def quotient_of_Fract normalize_def)
+
+lemma rat_one_code [code abstract]:
+ "quotient_of 1 = (1, 1)"
+ by (simp add: One_rat_def quotient_of_Fract normalize_def)
+
+lemma rat_plus_code [code abstract]:
+ "quotient_of (p + q) = (let (a, c) = quotient_of p; (b, d) = quotient_of q
+ in normalize (a * d + b * c, c * d))"
+ by (cases p, cases q) (simp add: quotient_of_Fract)
+
+lemma rat_uminus_code [code abstract]:
+ "quotient_of (- p) = (let (a, b) = quotient_of p in (- a, b))"
+ by (cases p) (simp add: quotient_of_Fract)
+
+lemma rat_minus_code [code abstract]:
+ "quotient_of (p - q) = (let (a, c) = quotient_of p; (b, d) = quotient_of q
+ in normalize (a * d - b * c, c * d))"
+ by (cases p, cases q) (simp add: quotient_of_Fract)
+
+lemma rat_times_code [code abstract]:
+ "quotient_of (p * q) = (let (a, c) = quotient_of p; (b, d) = quotient_of q
+ in normalize (a * b, c * d))"
+ by (cases p, cases q) (simp add: quotient_of_Fract)
+
+lemma rat_inverse_code [code abstract]:
+ "quotient_of (inverse p) = (let (a, b) = quotient_of p
+ in if a = 0 then (0, 1) else (sgn a * b, \<bar>a\<bar>))"
+proof (cases p)
+ case (Fract a b) then show ?thesis
+ by (cases "0::int" a rule: linorder_cases) (simp_all add: quotient_of_Fract gcd_int.commute)
+qed
+
+lemma rat_divide_code [code abstract]:
+ "quotient_of (p / q) = (let (a, c) = quotient_of p; (b, d) = quotient_of q
+ in normalize (a * d, c * b))"
+ by (cases p, cases q) (simp add: quotient_of_Fract)
+
+lemma rat_abs_code [code abstract]:
+ "quotient_of \<bar>p\<bar> = (let (a, b) = quotient_of p in (\<bar>a\<bar>, b))"
+ by (cases p) (simp add: quotient_of_Fract)
+
+lemma rat_sgn_code [code abstract]:
+ "quotient_of (sgn p) = (sgn (fst (quotient_of p)), 1)"
+proof (cases p)
+ case (Fract a b) then show ?thesis
+ by (cases "0::int" a rule: linorder_cases) (simp_all add: quotient_of_Fract)
+qed
+
+instantiation rat :: eq
+begin
+
+definition [code]:
+ "eq_class.eq a b \<longleftrightarrow> quotient_of a = quotient_of b"
+
+instance proof
+qed (simp add: eq_rat_def quotient_of_inject_eq)
+
+lemma rat_eq_refl [code nbe]:
+ "eq_class.eq (r::rat) r \<longleftrightarrow> True"
+ by (rule HOL.eq_refl)
+
+end
+
+lemma rat_less_eq_code [code]:
+ "p \<le> q \<longleftrightarrow> (let (a, c) = quotient_of p; (b, d) = quotient_of q in a * d \<le> c * b)"
+ by (cases p, cases q) (simp add: quotient_of_Fract times.commute)
+
+lemma rat_less_code [code]:
+ "p < q \<longleftrightarrow> (let (a, c) = quotient_of p; (b, d) = quotient_of q in a * d < c * b)"
+ by (cases p, cases q) (simp add: quotient_of_Fract times.commute)
+
+lemma [code]:
+ "of_rat p = (let (a, b) = quotient_of p in of_int a / of_int b)"
+ by (cases p) (simp add: quotient_of_Fract of_rat_rat)
+
+definition (in term_syntax)
+ valterm_fract :: "int \<times> (unit \<Rightarrow> Code_Evaluation.term) \<Rightarrow> int \<times> (unit \<Rightarrow> Code_Evaluation.term) \<Rightarrow> rat \<times> (unit \<Rightarrow> Code_Evaluation.term)" where
+ [code_unfold]: "valterm_fract k l = Code_Evaluation.valtermify Fract {\<cdot>} k {\<cdot>} l"
+
+notation fcomp (infixl "o>" 60)
+notation scomp (infixl "o\<rightarrow>" 60)
+
+instantiation rat :: random
+begin
+
+definition
+ "Quickcheck.random i = Quickcheck.random i o\<rightarrow> (\<lambda>num. Random.range i o\<rightarrow> (\<lambda>denom. Pair (
+ let j = Code_Numeral.int_of (denom + 1)
+ in valterm_fract num (j, \<lambda>u. Code_Evaluation.term_of j))))"
+
+instance ..
+
+end
+
+no_notation fcomp (infixl "o>" 60)
+no_notation scomp (infixl "o\<rightarrow>" 60)
+
+text {* Setup for SML code generator *}
+
+types_code
+ rat ("(int */ int)")
+attach (term_of) {*
+fun term_of_rat (p, q) =
+ let
+ val rT = Type ("Rat.rat", [])
+ in
+ if q = 1 orelse p = 0 then HOLogic.mk_number rT p
+ else @{term "op / \<Colon> rat \<Rightarrow> rat \<Rightarrow> rat"} $
+ HOLogic.mk_number rT p $ HOLogic.mk_number rT q
+ end;
+*}
+attach (test) {*
+fun gen_rat i =
+ let
+ val p = random_range 0 i;
+ val q = random_range 1 (i + 1);
+ val g = Integer.gcd p q;
+ val p' = p div g;
+ val q' = q div g;
+ val r = (if one_of [true, false] then p' else ~ p',
+ if p' = 0 then 1 else q')
+ in
+ (r, fn () => term_of_rat r)
+ end;
+*}
+
+consts_code
+ Fract ("(_,/ _)")
+
+consts_code
+ quotient_of ("{*normalize*}")
+
+consts_code
+ "of_int :: int \<Rightarrow> rat" ("\<module>rat'_of'_int")
+attach {*
+fun rat_of_int i = (i, 1);
+*}
+
+setup {*
+ Nitpick.register_frac_type @{type_name rat}
+ [(@{const_name zero_rat_inst.zero_rat}, @{const_name Nitpick.zero_frac}),
+ (@{const_name one_rat_inst.one_rat}, @{const_name Nitpick.one_frac}),
+ (@{const_name plus_rat_inst.plus_rat}, @{const_name Nitpick.plus_frac}),
+ (@{const_name times_rat_inst.times_rat}, @{const_name Nitpick.times_frac}),
+ (@{const_name uminus_rat_inst.uminus_rat}, @{const_name Nitpick.uminus_frac}),
+ (@{const_name number_rat_inst.number_of_rat}, @{const_name Nitpick.number_of_frac}),
+ (@{const_name inverse_rat_inst.inverse_rat}, @{const_name Nitpick.inverse_frac}),
+ (@{const_name ord_rat_inst.less_eq_rat}, @{const_name Nitpick.less_eq_frac}),
+ (@{const_name field_char_0_class.of_rat}, @{const_name Nitpick.of_frac}),
+ (@{const_name field_char_0_class.Rats}, @{const_name UNIV})]
+*}
+
+lemmas [nitpick_def] = inverse_rat_inst.inverse_rat
+ number_rat_inst.number_of_rat one_rat_inst.one_rat ord_rat_inst.less_eq_rat
+ plus_rat_inst.plus_rat times_rat_inst.times_rat uminus_rat_inst.uminus_rat
+ zero_rat_inst.zero_rat
+
+subsection{* Float syntax *}
+
+syntax "_Float" :: "float_const \<Rightarrow> 'a" ("_")
+
+use "Tools/float_syntax.ML"
+setup Float_Syntax.setup
+
+text{* Test: *}
+lemma "123.456 = -111.111 + 200 + 30 + 4 + 5/10 + 6/100 + (7/1000::rat)"
+by simp
+
+end
--- a/src/HOL/Rational.thy Thu Feb 25 22:46:52 2010 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,1227 +0,0 @@
-(* Title: HOL/Rational.thy
- Author: Markus Wenzel, TU Muenchen
-*)
-
-header {* Rational numbers *}
-
-theory Rational
-imports GCD Archimedean_Field
-uses ("Tools/float_syntax.ML")
-begin
-
-subsection {* Rational numbers as quotient *}
-
-subsubsection {* Construction of the type of rational numbers *}
-
-definition
- ratrel :: "((int \<times> int) \<times> (int \<times> int)) set" where
- "ratrel = {(x, y). snd x \<noteq> 0 \<and> snd y \<noteq> 0 \<and> fst x * snd y = fst y * snd x}"
-
-lemma ratrel_iff [simp]:
- "(x, y) \<in> ratrel \<longleftrightarrow> snd x \<noteq> 0 \<and> snd y \<noteq> 0 \<and> fst x * snd y = fst y * snd x"
- by (simp add: ratrel_def)
-
-lemma refl_on_ratrel: "refl_on {x. snd x \<noteq> 0} ratrel"
- by (auto simp add: refl_on_def ratrel_def)
-
-lemma sym_ratrel: "sym ratrel"
- by (simp add: ratrel_def sym_def)
-
-lemma trans_ratrel: "trans ratrel"
-proof (rule transI, unfold split_paired_all)
- fix a b a' b' a'' b'' :: int
- assume A: "((a, b), (a', b')) \<in> ratrel"
- assume B: "((a', b'), (a'', b'')) \<in> ratrel"
- have "b' * (a * b'') = b'' * (a * b')" by simp
- also from A have "a * b' = a' * b" by auto
- also have "b'' * (a' * b) = b * (a' * b'')" by simp
- also from B have "a' * b'' = a'' * b'" by auto
- also have "b * (a'' * b') = b' * (a'' * b)" by simp
- finally have "b' * (a * b'') = b' * (a'' * b)" .
- moreover from B have "b' \<noteq> 0" by auto
- ultimately have "a * b'' = a'' * b" by simp
- with A B show "((a, b), (a'', b'')) \<in> ratrel" by auto
-qed
-
-lemma equiv_ratrel: "equiv {x. snd x \<noteq> 0} ratrel"
- by (rule equiv.intro [OF refl_on_ratrel sym_ratrel trans_ratrel])
-
-lemmas UN_ratrel = UN_equiv_class [OF equiv_ratrel]
-lemmas UN_ratrel2 = UN_equiv_class2 [OF equiv_ratrel equiv_ratrel]
-
-lemma equiv_ratrel_iff [iff]:
- assumes "snd x \<noteq> 0" and "snd y \<noteq> 0"
- shows "ratrel `` {x} = ratrel `` {y} \<longleftrightarrow> (x, y) \<in> ratrel"
- by (rule eq_equiv_class_iff, rule equiv_ratrel) (auto simp add: assms)
-
-typedef (Rat) rat = "{x. snd x \<noteq> 0} // ratrel"
-proof
- have "(0::int, 1::int) \<in> {x. snd x \<noteq> 0}" by simp
- then show "ratrel `` {(0, 1)} \<in> {x. snd x \<noteq> 0} // ratrel" by (rule quotientI)
-qed
-
-lemma ratrel_in_Rat [simp]: "snd x \<noteq> 0 \<Longrightarrow> ratrel `` {x} \<in> Rat"
- by (simp add: Rat_def quotientI)
-
-declare Abs_Rat_inject [simp] Abs_Rat_inverse [simp]
-
-
-subsubsection {* Representation and basic operations *}
-
-definition
- Fract :: "int \<Rightarrow> int \<Rightarrow> rat" where
- [code del]: "Fract a b = Abs_Rat (ratrel `` {if b = 0 then (0, 1) else (a, b)})"
-
-code_datatype Fract
-
-lemma Rat_cases [case_names Fract, cases type: rat]:
- assumes "\<And>a b. q = Fract a b \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> C"
- shows C
- using assms by (cases q) (clarsimp simp add: Fract_def Rat_def quotient_def)
-
-lemma Rat_induct [case_names Fract, induct type: rat]:
- assumes "\<And>a b. b \<noteq> 0 \<Longrightarrow> P (Fract a b)"
- shows "P q"
- using assms by (cases q) simp
-
-lemma eq_rat:
- shows "\<And>a b c d. b \<noteq> 0 \<Longrightarrow> d \<noteq> 0 \<Longrightarrow> Fract a b = Fract c d \<longleftrightarrow> a * d = c * b"
- and "\<And>a. Fract a 0 = Fract 0 1"
- and "\<And>a c. Fract 0 a = Fract 0 c"
- by (simp_all add: Fract_def)
-
-instantiation rat :: comm_ring_1
-begin
-
-definition
- Zero_rat_def [code, code_unfold]: "0 = Fract 0 1"
-
-definition
- One_rat_def [code, code_unfold]: "1 = Fract 1 1"
-
-definition
- add_rat_def [code del]:
- "q + r = Abs_Rat (\<Union>x \<in> Rep_Rat q. \<Union>y \<in> Rep_Rat r.
- ratrel `` {(fst x * snd y + fst y * snd x, snd x * snd y)})"
-
-lemma add_rat [simp]:
- assumes "b \<noteq> 0" and "d \<noteq> 0"
- shows "Fract a b + Fract c d = Fract (a * d + c * b) (b * d)"
-proof -
- have "(\<lambda>x y. ratrel``{(fst x * snd y + fst y * snd x, snd x * snd y)})
- respects2 ratrel"
- by (rule equiv_ratrel [THEN congruent2_commuteI]) (simp_all add: left_distrib)
- with assms show ?thesis by (simp add: Fract_def add_rat_def UN_ratrel2)
-qed
-
-definition
- minus_rat_def [code del]:
- "- q = Abs_Rat (\<Union>x \<in> Rep_Rat q. ratrel `` {(- fst x, snd x)})"
-
-lemma minus_rat [simp, code]: "- Fract a b = Fract (- a) b"
-proof -
- have "(\<lambda>x. ratrel `` {(- fst x, snd x)}) respects ratrel"
- by (simp add: congruent_def)
- then show ?thesis by (simp add: Fract_def minus_rat_def UN_ratrel)
-qed
-
-lemma minus_rat_cancel [simp]: "Fract (- a) (- b) = Fract a b"
- by (cases "b = 0") (simp_all add: eq_rat)
-
-definition
- diff_rat_def [code del]: "q - r = q + - (r::rat)"
-
-lemma diff_rat [simp]:
- assumes "b \<noteq> 0" and "d \<noteq> 0"
- shows "Fract a b - Fract c d = Fract (a * d - c * b) (b * d)"
- using assms by (simp add: diff_rat_def)
-
-definition
- mult_rat_def [code del]:
- "q * r = Abs_Rat (\<Union>x \<in> Rep_Rat q. \<Union>y \<in> Rep_Rat r.
- ratrel``{(fst x * fst y, snd x * snd y)})"
-
-lemma mult_rat [simp]: "Fract a b * Fract c d = Fract (a * c) (b * d)"
-proof -
- have "(\<lambda>x y. ratrel `` {(fst x * fst y, snd x * snd y)}) respects2 ratrel"
- by (rule equiv_ratrel [THEN congruent2_commuteI]) simp_all
- then show ?thesis by (simp add: Fract_def mult_rat_def UN_ratrel2)
-qed
-
-lemma mult_rat_cancel:
- assumes "c \<noteq> 0"
- shows "Fract (c * a) (c * b) = Fract a b"
-proof -
- from assms have "Fract c c = Fract 1 1" by (simp add: Fract_def)
- then show ?thesis by (simp add: mult_rat [symmetric])
-qed
-
-instance proof
- fix q r s :: rat show "(q * r) * s = q * (r * s)"
- by (cases q, cases r, cases s) (simp add: eq_rat)
-next
- fix q r :: rat show "q * r = r * q"
- by (cases q, cases r) (simp add: eq_rat)
-next
- fix q :: rat show "1 * q = q"
- by (cases q) (simp add: One_rat_def eq_rat)
-next
- fix q r s :: rat show "(q + r) + s = q + (r + s)"
- by (cases q, cases r, cases s) (simp add: eq_rat algebra_simps)
-next
- fix q r :: rat show "q + r = r + q"
- by (cases q, cases r) (simp add: eq_rat)
-next
- fix q :: rat show "0 + q = q"
- by (cases q) (simp add: Zero_rat_def eq_rat)
-next
- fix q :: rat show "- q + q = 0"
- by (cases q) (simp add: Zero_rat_def eq_rat)
-next
- fix q r :: rat show "q - r = q + - r"
- by (cases q, cases r) (simp add: eq_rat)
-next
- fix q r s :: rat show "(q + r) * s = q * s + r * s"
- by (cases q, cases r, cases s) (simp add: eq_rat algebra_simps)
-next
- show "(0::rat) \<noteq> 1" by (simp add: Zero_rat_def One_rat_def eq_rat)
-qed
-
-end
-
-lemma of_nat_rat: "of_nat k = Fract (of_nat k) 1"
- by (induct k) (simp_all add: Zero_rat_def One_rat_def)
-
-lemma of_int_rat: "of_int k = Fract k 1"
- by (cases k rule: int_diff_cases) (simp add: of_nat_rat)
-
-lemma Fract_of_nat_eq: "Fract (of_nat k) 1 = of_nat k"
- by (rule of_nat_rat [symmetric])
-
-lemma Fract_of_int_eq: "Fract k 1 = of_int k"
- by (rule of_int_rat [symmetric])
-
-instantiation rat :: number_ring
-begin
-
-definition
- rat_number_of_def [code del]: "number_of w = Fract w 1"
-
-instance proof
-qed (simp add: rat_number_of_def of_int_rat)
-
-end
-
-lemma rat_number_collapse [code_post]:
- "Fract 0 k = 0"
- "Fract 1 1 = 1"
- "Fract (number_of k) 1 = number_of k"
- "Fract k 0 = 0"
- by (cases "k = 0")
- (simp_all add: Zero_rat_def One_rat_def number_of_is_id number_of_eq of_int_rat eq_rat Fract_def)
-
-lemma rat_number_expand [code_unfold]:
- "0 = Fract 0 1"
- "1 = Fract 1 1"
- "number_of k = Fract (number_of k) 1"
- by (simp_all add: rat_number_collapse)
-
-lemma iszero_rat [simp]:
- "iszero (number_of k :: rat) \<longleftrightarrow> iszero (number_of k :: int)"
- by (simp add: iszero_def rat_number_expand number_of_is_id eq_rat)
-
-lemma Rat_cases_nonzero [case_names Fract 0]:
- assumes Fract: "\<And>a b. q = Fract a b \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> C"
- assumes 0: "q = 0 \<Longrightarrow> C"
- shows C
-proof (cases "q = 0")
- case True then show C using 0 by auto
-next
- case False
- then obtain a b where "q = Fract a b" and "b \<noteq> 0" by (cases q) auto
- moreover with False have "0 \<noteq> Fract a b" by simp
- with `b \<noteq> 0` have "a \<noteq> 0" by (simp add: Zero_rat_def eq_rat)
- with Fract `q = Fract a b` `b \<noteq> 0` show C by auto
-qed
-
-subsubsection {* Function @{text normalize} *}
-
-text{*
-Decompose a fraction into normalized, i.e. coprime numerator and denominator:
-*}
-
-definition normalize :: "rat \<Rightarrow> int \<times> int" where
-"normalize x \<equiv> THE pair. x = Fract (fst pair) (snd pair) &
- snd pair > 0 & gcd (fst pair) (snd pair) = 1"
-
-declare normalize_def[code del]
-
-lemma Fract_norm: "Fract (a div gcd a b) (b div gcd a b) = Fract a b"
-proof (cases "a = 0 | b = 0")
- case True then show ?thesis by (auto simp add: eq_rat)
-next
- let ?c = "gcd a b"
- case False then have "a \<noteq> 0" and "b \<noteq> 0" by auto
- then have "?c \<noteq> 0" by simp
- then have "Fract ?c ?c = Fract 1 1" by (simp add: eq_rat)
- moreover have "Fract (a div ?c * ?c + a mod ?c) (b div ?c * ?c + b mod ?c) = Fract a b"
- by (simp add: semiring_div_class.mod_div_equality)
- moreover have "a mod ?c = 0" by (simp add: dvd_eq_mod_eq_0 [symmetric])
- moreover have "b mod ?c = 0" by (simp add: dvd_eq_mod_eq_0 [symmetric])
- ultimately show ?thesis
- by (simp add: mult_rat [symmetric])
-qed
-
-text{* Proof by Ren\'e Thiemann: *}
-lemma normalize_code[code]:
-"normalize (Fract a b) =
- (if b > 0 then (let g = gcd a b in (a div g, b div g))
- else if b = 0 then (0,1)
- else (let g = - gcd a b in (a div g, b div g)))"
-proof -
- let ?cond = "% r p. r = Fract (fst p) (snd p) & snd p > 0 &
- gcd (fst p) (snd p) = 1"
- show ?thesis
- proof (cases "b = 0")
- case True
- thus ?thesis
- proof (simp add: normalize_def)
- show "(THE pair. ?cond (Fract a 0) pair) = (0,1)"
- proof
- show "?cond (Fract a 0) (0,1)"
- by (simp add: rat_number_collapse)
- next
- fix pair
- assume cond: "?cond (Fract a 0) pair"
- show "pair = (0,1)"
- proof (cases pair)
- case (Pair den num)
- with cond have num: "num > 0" by auto
- with Pair cond have den: "den = 0" by (simp add: eq_rat)
- show ?thesis
- proof (cases "num = 1", simp add: Pair den)
- case False
- with num have gr: "num > 1" by auto
- with den have "gcd den num = num" by auto
- with Pair cond False gr show ?thesis by auto
- qed
- qed
- qed
- qed
- next
- { fix a b :: int assume b: "b > 0"
- hence b0: "b \<noteq> 0" and "b >= 0" by auto
- let ?g = "gcd a b"
- from b0 have g0: "?g \<noteq> 0" by auto
- then have gp: "?g > 0" by simp
- then have gs: "?g <= b" by (metis b gcd_le2_int)
- from gcd_dvd1_int[of a b] obtain a' where a': "a = ?g * a'"
- unfolding dvd_def by auto
- from gcd_dvd2_int[of a b] obtain b' where b': "b = ?g * b'"
- unfolding dvd_def by auto
- hence b'2: "b' * ?g = b" by (simp add: ring_simps)
- with b0 have b'0: "b' \<noteq> 0" by auto
- from b b' zero_less_mult_iff[of ?g b'] gp have b'p: "b' > 0" by arith
- have "normalize (Fract a b) = (a div ?g, b div ?g)"
- proof (simp add: normalize_def)
- show "(THE pair. ?cond (Fract a b) pair) = (a div ?g, b div ?g)"
- proof
- have "1 = b div b" using b0 by auto
- also have "\<dots> <= b div ?g" by (rule zdiv_mono2[OF `b >= 0` gp gs])
- finally have div0: "b div ?g > 0" by simp
- show "?cond (Fract a b) (a div ?g, b div ?g)"
- by (simp add: b0 Fract_norm div_gcd_coprime_int div0)
- next
- fix pair assume cond: "?cond (Fract a b) pair"
- show "pair = (a div ?g, b div ?g)"
- proof (cases pair)
- case (Pair den num)
- with cond
- have num: "num > 0" and num0: "num \<noteq> 0" and gcd: "gcd den num = 1"
- by auto
- obtain g where g: "g = ?g" by auto
- with gp have gg0: "g > 0" by auto
- from cond Pair eq_rat(1)[OF b0 num0]
- have eq: "a * num = den * b" by auto
- hence "a' * g * num = den * g * b'"
- using a'[simplified g[symmetric]] b'[simplified g[symmetric]]
- by simp
- hence "a' * num * g = b' * den * g" by (simp add: algebra_simps)
- hence eq2: "a' * num = b' * den" using gg0 by auto
- have "a div ?g = ?g * a' div ?g" using a' by force
- hence adiv: "a div ?g = a'" using g0 by auto
- have "b div ?g = ?g * b' div ?g" using b' by force
- hence bdiv: "b div ?g = b'" using g0 by auto
- from div_gcd_coprime_int[of a b] b0
- have "gcd (a div ?g) (b div ?g) = 1" by auto
- with adiv bdiv have gcd2: "gcd a' b' = 1" by auto
- from gcd have gcd3: "gcd num den = 1"
- by (simp add: gcd_commute_int[of den num])
- from gcd2 have gcd4: "gcd b' a' = 1"
- by (simp add: gcd_commute_int[of a' b'])
- have one: "num dvd b'"
- by (metis coprime_dvd_mult_int[OF gcd3] dvd_triv_right eq2)
- have two: "b' dvd num"
- by (metis coprime_dvd_mult_int[OF gcd4] dvd_triv_left eq2 zmult_commute)
- from zdvd_antisym_abs[OF one two] b'p num
- have numb': "num = b'" by auto
- with eq2 b'0 have "a' = den" by auto
- with numb' adiv bdiv Pair show ?thesis by simp
- qed
- qed
- qed
- }
- note main = this
- assume "b \<noteq> 0"
- hence "b > 0 | b < 0" by arith
- thus ?thesis
- proof
- assume b: "b > 0" thus ?thesis by (simp add: Let_def main[OF b])
- next
- assume b: "b < 0"
- thus ?thesis
- by(simp add:main Let_def minus_rat_cancel[of a b, symmetric]
- zdiv_zminus2 del:minus_rat_cancel)
- qed
- qed
-qed
-
-lemma normalize_id: "normalize (Fract a b) = (p,q) \<Longrightarrow> Fract p q = Fract a b"
-by(auto simp add: normalize_code Let_def Fract_norm dvd_div_neg rat_number_collapse
- split:split_if_asm)
-
-lemma normalize_denom_pos: "normalize (Fract a b) = (p,q) \<Longrightarrow> q > 0"
-by(auto simp add: normalize_code Let_def dvd_div_neg pos_imp_zdiv_neg_iff nonneg1_imp_zdiv_pos_iff
- split:split_if_asm)
-
-lemma normalize_coprime: "normalize (Fract a b) = (p,q) \<Longrightarrow> coprime p q"
-by(auto simp add: normalize_code Let_def dvd_div_neg div_gcd_coprime_int
- split:split_if_asm)
-
-
-subsubsection {* The field of rational numbers *}
-
-instantiation rat :: "{field, division_by_zero}"
-begin
-
-definition
- inverse_rat_def [code del]:
- "inverse q = Abs_Rat (\<Union>x \<in> Rep_Rat q.
- ratrel `` {if fst x = 0 then (0, 1) else (snd x, fst x)})"
-
-lemma inverse_rat [simp]: "inverse (Fract a b) = Fract b a"
-proof -
- have "(\<lambda>x. ratrel `` {if fst x = 0 then (0, 1) else (snd x, fst x)}) respects ratrel"
- by (auto simp add: congruent_def mult_commute)
- then show ?thesis by (simp add: Fract_def inverse_rat_def UN_ratrel)
-qed
-
-definition
- divide_rat_def [code del]: "q / r = q * inverse (r::rat)"
-
-lemma divide_rat [simp]: "Fract a b / Fract c d = Fract (a * d) (b * c)"
- by (simp add: divide_rat_def)
-
-instance proof
- show "inverse 0 = (0::rat)" by (simp add: rat_number_expand)
- (simp add: rat_number_collapse)
-next
- fix q :: rat
- assume "q \<noteq> 0"
- then show "inverse q * q = 1" by (cases q rule: Rat_cases_nonzero)
- (simp_all add: rat_number_expand eq_rat)
-next
- fix q r :: rat
- show "q / r = q * inverse r" by (simp add: divide_rat_def)
-qed
-
-end
-
-
-subsubsection {* Various *}
-
-lemma Fract_add_one: "n \<noteq> 0 ==> Fract (m + n) n = Fract m n + 1"
- by (simp add: rat_number_expand)
-
-lemma Fract_of_int_quotient: "Fract k l = of_int k / of_int l"
- by (simp add: Fract_of_int_eq [symmetric])
-
-lemma Fract_number_of_quotient [code_post]:
- "Fract (number_of k) (number_of l) = number_of k / number_of l"
- unfolding Fract_of_int_quotient number_of_is_id number_of_eq ..
-
-lemma Fract_1_number_of [code_post]:
- "Fract 1 (number_of k) = 1 / number_of k"
- unfolding Fract_of_int_quotient number_of_eq by simp
-
-subsubsection {* The ordered field of rational numbers *}
-
-instantiation rat :: linorder
-begin
-
-definition
- le_rat_def [code del]:
- "q \<le> r \<longleftrightarrow> contents (\<Union>x \<in> Rep_Rat q. \<Union>y \<in> Rep_Rat r.
- {(fst x * snd y) * (snd x * snd y) \<le> (fst y * snd x) * (snd x * snd y)})"
-
-lemma le_rat [simp]:
- assumes "b \<noteq> 0" and "d \<noteq> 0"
- shows "Fract a b \<le> Fract c d \<longleftrightarrow> (a * d) * (b * d) \<le> (c * b) * (b * d)"
-proof -
- have "(\<lambda>x y. {(fst x * snd y) * (snd x * snd y) \<le> (fst y * snd x) * (snd x * snd y)})
- respects2 ratrel"
- proof (clarsimp simp add: congruent2_def)
- fix a b a' b' c d c' d'::int
- assume neq: "b \<noteq> 0" "b' \<noteq> 0" "d \<noteq> 0" "d' \<noteq> 0"
- assume eq1: "a * b' = a' * b"
- assume eq2: "c * d' = c' * d"
-
- let ?le = "\<lambda>a b c d. ((a * d) * (b * d) \<le> (c * b) * (b * d))"
- {
- fix a b c d x :: int assume x: "x \<noteq> 0"
- have "?le a b c d = ?le (a * x) (b * x) c d"
- proof -
- from x have "0 < x * x" by (auto simp add: zero_less_mult_iff)
- hence "?le a b c d =
- ((a * d) * (b * d) * (x * x) \<le> (c * b) * (b * d) * (x * x))"
- by (simp add: mult_le_cancel_right)
- also have "... = ?le (a * x) (b * x) c d"
- by (simp add: mult_ac)
- finally show ?thesis .
- qed
- } note le_factor = this
-
- let ?D = "b * d" and ?D' = "b' * d'"
- from neq have D: "?D \<noteq> 0" by simp
- from neq have "?D' \<noteq> 0" by simp
- hence "?le a b c d = ?le (a * ?D') (b * ?D') c d"
- by (rule le_factor)
- also have "... = ((a * b') * ?D * ?D' * d * d' \<le> (c * d') * ?D * ?D' * b * b')"
- by (simp add: mult_ac)
- also have "... = ((a' * b) * ?D * ?D' * d * d' \<le> (c' * d) * ?D * ?D' * b * b')"
- by (simp only: eq1 eq2)
- also have "... = ?le (a' * ?D) (b' * ?D) c' d'"
- by (simp add: mult_ac)
- also from D have "... = ?le a' b' c' d'"
- by (rule le_factor [symmetric])
- finally show "?le a b c d = ?le a' b' c' d'" .
- qed
- with assms show ?thesis by (simp add: Fract_def le_rat_def UN_ratrel2)
-qed
-
-definition
- less_rat_def [code del]: "z < (w::rat) \<longleftrightarrow> z \<le> w \<and> z \<noteq> w"
-
-lemma less_rat [simp]:
- assumes "b \<noteq> 0" and "d \<noteq> 0"
- shows "Fract a b < Fract c d \<longleftrightarrow> (a * d) * (b * d) < (c * b) * (b * d)"
- using assms by (simp add: less_rat_def eq_rat order_less_le)
-
-instance proof
- fix q r s :: rat
- {
- assume "q \<le> r" and "r \<le> s"
- show "q \<le> s"
- proof (insert prems, induct q, induct r, induct s)
- fix a b c d e f :: int
- assume neq: "b \<noteq> 0" "d \<noteq> 0" "f \<noteq> 0"
- assume 1: "Fract a b \<le> Fract c d" and 2: "Fract c d \<le> Fract e f"
- show "Fract a b \<le> Fract e f"
- proof -
- from neq obtain bb: "0 < b * b" and dd: "0 < d * d" and ff: "0 < f * f"
- by (auto simp add: zero_less_mult_iff linorder_neq_iff)
- have "(a * d) * (b * d) * (f * f) \<le> (c * b) * (b * d) * (f * f)"
- proof -
- from neq 1 have "(a * d) * (b * d) \<le> (c * b) * (b * d)"
- by simp
- with ff show ?thesis by (simp add: mult_le_cancel_right)
- qed
- also have "... = (c * f) * (d * f) * (b * b)" by algebra
- also have "... \<le> (e * d) * (d * f) * (b * b)"
- proof -
- from neq 2 have "(c * f) * (d * f) \<le> (e * d) * (d * f)"
- by simp
- with bb show ?thesis by (simp add: mult_le_cancel_right)
- qed
- finally have "(a * f) * (b * f) * (d * d) \<le> e * b * (b * f) * (d * d)"
- by (simp only: mult_ac)
- with dd have "(a * f) * (b * f) \<le> (e * b) * (b * f)"
- by (simp add: mult_le_cancel_right)
- with neq show ?thesis by simp
- qed
- qed
- next
- assume "q \<le> r" and "r \<le> q"
- show "q = r"
- proof (insert prems, induct q, induct r)
- fix a b c d :: int
- assume neq: "b \<noteq> 0" "d \<noteq> 0"
- assume 1: "Fract a b \<le> Fract c d" and 2: "Fract c d \<le> Fract a b"
- show "Fract a b = Fract c d"
- proof -
- from neq 1 have "(a * d) * (b * d) \<le> (c * b) * (b * d)"
- by simp
- also have "... \<le> (a * d) * (b * d)"
- proof -
- from neq 2 have "(c * b) * (d * b) \<le> (a * d) * (d * b)"
- by simp
- thus ?thesis by (simp only: mult_ac)
- qed
- finally have "(a * d) * (b * d) = (c * b) * (b * d)" .
- moreover from neq have "b * d \<noteq> 0" by simp
- ultimately have "a * d = c * b" by simp
- with neq show ?thesis by (simp add: eq_rat)
- qed
- qed
- next
- show "q \<le> q"
- by (induct q) simp
- show "(q < r) = (q \<le> r \<and> \<not> r \<le> q)"
- by (induct q, induct r) (auto simp add: le_less mult_commute)
- show "q \<le> r \<or> r \<le> q"
- by (induct q, induct r)
- (simp add: mult_commute, rule linorder_linear)
- }
-qed
-
-end
-
-instantiation rat :: "{distrib_lattice, abs_if, sgn_if}"
-begin
-
-definition
- abs_rat_def [code del]: "\<bar>q\<bar> = (if q < 0 then -q else (q::rat))"
-
-lemma abs_rat [simp, code]: "\<bar>Fract a b\<bar> = Fract \<bar>a\<bar> \<bar>b\<bar>"
- by (auto simp add: abs_rat_def zabs_def Zero_rat_def not_less le_less eq_rat zero_less_mult_iff)
-
-definition
- sgn_rat_def [code del]: "sgn (q::rat) = (if q = 0 then 0 else if 0 < q then 1 else - 1)"
-
-lemma sgn_rat [simp, code]: "sgn (Fract a b) = of_int (sgn a * sgn b)"
- unfolding Fract_of_int_eq
- by (auto simp: zsgn_def sgn_rat_def Zero_rat_def eq_rat)
- (auto simp: rat_number_collapse not_less le_less zero_less_mult_iff)
-
-definition
- "(inf \<Colon> rat \<Rightarrow> rat \<Rightarrow> rat) = min"
-
-definition
- "(sup \<Colon> rat \<Rightarrow> rat \<Rightarrow> rat) = max"
-
-instance by intro_classes
- (auto simp add: abs_rat_def sgn_rat_def min_max.sup_inf_distrib1 inf_rat_def sup_rat_def)
-
-end
-
-instance rat :: linordered_field
-proof
- fix q r s :: rat
- show "q \<le> r ==> s + q \<le> s + r"
- proof (induct q, induct r, induct s)
- fix a b c d e f :: int
- assume neq: "b \<noteq> 0" "d \<noteq> 0" "f \<noteq> 0"
- assume le: "Fract a b \<le> Fract c d"
- show "Fract e f + Fract a b \<le> Fract e f + Fract c d"
- proof -
- let ?F = "f * f" from neq have F: "0 < ?F"
- by (auto simp add: zero_less_mult_iff)
- from neq le have "(a * d) * (b * d) \<le> (c * b) * (b * d)"
- by simp
- with F have "(a * d) * (b * d) * ?F * ?F \<le> (c * b) * (b * d) * ?F * ?F"
- by (simp add: mult_le_cancel_right)
- with neq show ?thesis by (simp add: mult_ac int_distrib)
- qed
- qed
- show "q < r ==> 0 < s ==> s * q < s * r"
- proof (induct q, induct r, induct s)
- fix a b c d e f :: int
- assume neq: "b \<noteq> 0" "d \<noteq> 0" "f \<noteq> 0"
- assume le: "Fract a b < Fract c d"
- assume gt: "0 < Fract e f"
- show "Fract e f * Fract a b < Fract e f * Fract c d"
- proof -
- let ?E = "e * f" and ?F = "f * f"
- from neq gt have "0 < ?E"
- by (auto simp add: Zero_rat_def order_less_le eq_rat)
- moreover from neq have "0 < ?F"
- by (auto simp add: zero_less_mult_iff)
- moreover from neq le have "(a * d) * (b * d) < (c * b) * (b * d)"
- by simp
- ultimately have "(a * d) * (b * d) * ?E * ?F < (c * b) * (b * d) * ?E * ?F"
- by (simp add: mult_less_cancel_right)
- with neq show ?thesis
- by (simp add: mult_ac)
- qed
- qed
-qed auto
-
-lemma Rat_induct_pos [case_names Fract, induct type: rat]:
- assumes step: "\<And>a b. 0 < b \<Longrightarrow> P (Fract a b)"
- shows "P q"
-proof (cases q)
- have step': "\<And>a b. b < 0 \<Longrightarrow> P (Fract a b)"
- proof -
- fix a::int and b::int
- assume b: "b < 0"
- hence "0 < -b" by simp
- hence "P (Fract (-a) (-b))" by (rule step)
- thus "P (Fract a b)" by (simp add: order_less_imp_not_eq [OF b])
- qed
- case (Fract a b)
- thus "P q" by (force simp add: linorder_neq_iff step step')
-qed
-
-lemma zero_less_Fract_iff:
- "0 < b \<Longrightarrow> 0 < Fract a b \<longleftrightarrow> 0 < a"
- by (simp add: Zero_rat_def zero_less_mult_iff)
-
-lemma Fract_less_zero_iff:
- "0 < b \<Longrightarrow> Fract a b < 0 \<longleftrightarrow> a < 0"
- by (simp add: Zero_rat_def mult_less_0_iff)
-
-lemma zero_le_Fract_iff:
- "0 < b \<Longrightarrow> 0 \<le> Fract a b \<longleftrightarrow> 0 \<le> a"
- by (simp add: Zero_rat_def zero_le_mult_iff)
-
-lemma Fract_le_zero_iff:
- "0 < b \<Longrightarrow> Fract a b \<le> 0 \<longleftrightarrow> a \<le> 0"
- by (simp add: Zero_rat_def mult_le_0_iff)
-
-lemma one_less_Fract_iff:
- "0 < b \<Longrightarrow> 1 < Fract a b \<longleftrightarrow> b < a"
- by (simp add: One_rat_def mult_less_cancel_right_disj)
-
-lemma Fract_less_one_iff:
- "0 < b \<Longrightarrow> Fract a b < 1 \<longleftrightarrow> a < b"
- by (simp add: One_rat_def mult_less_cancel_right_disj)
-
-lemma one_le_Fract_iff:
- "0 < b \<Longrightarrow> 1 \<le> Fract a b \<longleftrightarrow> b \<le> a"
- by (simp add: One_rat_def mult_le_cancel_right)
-
-lemma Fract_le_one_iff:
- "0 < b \<Longrightarrow> Fract a b \<le> 1 \<longleftrightarrow> a \<le> b"
- by (simp add: One_rat_def mult_le_cancel_right)
-
-
-subsubsection {* Rationals are an Archimedean field *}
-
-lemma rat_floor_lemma:
- shows "of_int (a div b) \<le> Fract a b \<and> Fract a b < of_int (a div b + 1)"
-proof -
- have "Fract a b = of_int (a div b) + Fract (a mod b) b"
- by (cases "b = 0", simp, simp add: of_int_rat)
- moreover have "0 \<le> Fract (a mod b) b \<and> Fract (a mod b) b < 1"
- unfolding Fract_of_int_quotient
- by (rule linorder_cases [of b 0])
- (simp add: divide_nonpos_neg, simp, simp add: divide_nonneg_pos)
- ultimately show ?thesis by simp
-qed
-
-instance rat :: archimedean_field
-proof
- fix r :: rat
- show "\<exists>z. r \<le> of_int z"
- proof (induct r)
- case (Fract a b)
- have "Fract a b \<le> of_int (a div b + 1)"
- using rat_floor_lemma [of a b] by simp
- then show "\<exists>z. Fract a b \<le> of_int z" ..
- qed
-qed
-
-lemma floor_Fract: "floor (Fract a b) = a div b"
- using rat_floor_lemma [of a b]
- by (simp add: floor_unique)
-
-
-subsection {* Linear arithmetic setup *}
-
-declaration {*
- K (Lin_Arith.add_inj_thms [@{thm of_nat_le_iff} RS iffD2, @{thm of_nat_eq_iff} RS iffD2]
- (* not needed because x < (y::nat) can be rewritten as Suc x <= y: of_nat_less_iff RS iffD2 *)
- #> Lin_Arith.add_inj_thms [@{thm of_int_le_iff} RS iffD2, @{thm of_int_eq_iff} RS iffD2]
- (* not needed because x < (y::int) can be rewritten as x + 1 <= y: of_int_less_iff RS iffD2 *)
- #> Lin_Arith.add_simps [@{thm neg_less_iff_less},
- @{thm True_implies_equals},
- read_instantiate @{context} [(("a", 0), "(number_of ?v)")] @{thm right_distrib},
- @{thm divide_1}, @{thm divide_zero_left},
- @{thm times_divide_eq_right}, @{thm times_divide_eq_left},
- @{thm minus_divide_left} RS sym, @{thm minus_divide_right} RS sym,
- @{thm of_int_minus}, @{thm of_int_diff},
- @{thm of_int_of_nat_eq}]
- #> Lin_Arith.add_simprocs Numeral_Simprocs.field_cancel_numeral_factors
- #> Lin_Arith.add_inj_const (@{const_name of_nat}, @{typ "nat => rat"})
- #> Lin_Arith.add_inj_const (@{const_name of_int}, @{typ "int => rat"}))
-*}
-
-
-subsection {* Embedding from Rationals to other Fields *}
-
-class field_char_0 = field + ring_char_0
-
-subclass (in linordered_field) field_char_0 ..
-
-context field_char_0
-begin
-
-definition of_rat :: "rat \<Rightarrow> 'a" where
- [code del]: "of_rat q = contents (\<Union>(a,b) \<in> Rep_Rat q. {of_int a / of_int b})"
-
-end
-
-lemma of_rat_congruent:
- "(\<lambda>(a, b). {of_int a / of_int b :: 'a::field_char_0}) respects ratrel"
-apply (rule congruent.intro)
-apply (clarsimp simp add: nonzero_divide_eq_eq nonzero_eq_divide_eq)
-apply (simp only: of_int_mult [symmetric])
-done
-
-lemma of_rat_rat: "b \<noteq> 0 \<Longrightarrow> of_rat (Fract a b) = of_int a / of_int b"
- unfolding Fract_def of_rat_def by (simp add: UN_ratrel of_rat_congruent)
-
-lemma of_rat_0 [simp]: "of_rat 0 = 0"
-by (simp add: Zero_rat_def of_rat_rat)
-
-lemma of_rat_1 [simp]: "of_rat 1 = 1"
-by (simp add: One_rat_def of_rat_rat)
-
-lemma of_rat_add: "of_rat (a + b) = of_rat a + of_rat b"
-by (induct a, induct b, simp add: of_rat_rat add_frac_eq)
-
-lemma of_rat_minus: "of_rat (- a) = - of_rat a"
-by (induct a, simp add: of_rat_rat)
-
-lemma of_rat_diff: "of_rat (a - b) = of_rat a - of_rat b"
-by (simp only: diff_minus of_rat_add of_rat_minus)
-
-lemma of_rat_mult: "of_rat (a * b) = of_rat a * of_rat b"
-apply (induct a, induct b, simp add: of_rat_rat)
-apply (simp add: divide_inverse nonzero_inverse_mult_distrib mult_ac)
-done
-
-lemma nonzero_of_rat_inverse:
- "a \<noteq> 0 \<Longrightarrow> of_rat (inverse a) = inverse (of_rat a)"
-apply (rule inverse_unique [symmetric])
-apply (simp add: of_rat_mult [symmetric])
-done
-
-lemma of_rat_inverse:
- "(of_rat (inverse a)::'a::{field_char_0,division_by_zero}) =
- inverse (of_rat a)"
-by (cases "a = 0", simp_all add: nonzero_of_rat_inverse)
-
-lemma nonzero_of_rat_divide:
- "b \<noteq> 0 \<Longrightarrow> of_rat (a / b) = of_rat a / of_rat b"
-by (simp add: divide_inverse of_rat_mult nonzero_of_rat_inverse)
-
-lemma of_rat_divide:
- "(of_rat (a / b)::'a::{field_char_0,division_by_zero})
- = of_rat a / of_rat b"
-by (cases "b = 0") (simp_all add: nonzero_of_rat_divide)
-
-lemma of_rat_power:
- "(of_rat (a ^ n)::'a::field_char_0) = of_rat a ^ n"
-by (induct n) (simp_all add: of_rat_mult)
-
-lemma of_rat_eq_iff [simp]: "(of_rat a = of_rat b) = (a = b)"
-apply (induct a, induct b)
-apply (simp add: of_rat_rat eq_rat)
-apply (simp add: nonzero_divide_eq_eq nonzero_eq_divide_eq)
-apply (simp only: of_int_mult [symmetric] of_int_eq_iff)
-done
-
-lemma of_rat_less:
- "(of_rat r :: 'a::linordered_field) < of_rat s \<longleftrightarrow> r < s"
-proof (induct r, induct s)
- fix a b c d :: int
- assume not_zero: "b > 0" "d > 0"
- then have "b * d > 0" by (rule mult_pos_pos)
- have of_int_divide_less_eq:
- "(of_int a :: 'a) / of_int b < of_int c / of_int d
- \<longleftrightarrow> (of_int a :: 'a) * of_int d < of_int c * of_int b"
- using not_zero by (simp add: pos_less_divide_eq pos_divide_less_eq)
- show "(of_rat (Fract a b) :: 'a::linordered_field) < of_rat (Fract c d)
- \<longleftrightarrow> Fract a b < Fract c d"
- using not_zero `b * d > 0`
- by (simp add: of_rat_rat of_int_divide_less_eq of_int_mult [symmetric] del: of_int_mult)
-qed
-
-lemma of_rat_less_eq:
- "(of_rat r :: 'a::linordered_field) \<le> of_rat s \<longleftrightarrow> r \<le> s"
- unfolding le_less by (auto simp add: of_rat_less)
-
-lemmas of_rat_eq_0_iff [simp] = of_rat_eq_iff [of _ 0, simplified]
-
-lemma of_rat_eq_id [simp]: "of_rat = id"
-proof
- fix a
- show "of_rat a = id a"
- by (induct a)
- (simp add: of_rat_rat Fract_of_int_eq [symmetric])
-qed
-
-text{*Collapse nested embeddings*}
-lemma of_rat_of_nat_eq [simp]: "of_rat (of_nat n) = of_nat n"
-by (induct n) (simp_all add: of_rat_add)
-
-lemma of_rat_of_int_eq [simp]: "of_rat (of_int z) = of_int z"
-by (cases z rule: int_diff_cases) (simp add: of_rat_diff)
-
-lemma of_rat_number_of_eq [simp]:
- "of_rat (number_of w) = (number_of w :: 'a::{number_ring,field_char_0})"
-by (simp add: number_of_eq)
-
-lemmas zero_rat = Zero_rat_def
-lemmas one_rat = One_rat_def
-
-abbreviation
- rat_of_nat :: "nat \<Rightarrow> rat"
-where
- "rat_of_nat \<equiv> of_nat"
-
-abbreviation
- rat_of_int :: "int \<Rightarrow> rat"
-where
- "rat_of_int \<equiv> of_int"
-
-subsection {* The Set of Rational Numbers *}
-
-context field_char_0
-begin
-
-definition
- Rats :: "'a set" where
- [code del]: "Rats = range of_rat"
-
-notation (xsymbols)
- Rats ("\<rat>")
-
-end
-
-lemma Rats_of_rat [simp]: "of_rat r \<in> Rats"
-by (simp add: Rats_def)
-
-lemma Rats_of_int [simp]: "of_int z \<in> Rats"
-by (subst of_rat_of_int_eq [symmetric], rule Rats_of_rat)
-
-lemma Rats_of_nat [simp]: "of_nat n \<in> Rats"
-by (subst of_rat_of_nat_eq [symmetric], rule Rats_of_rat)
-
-lemma Rats_number_of [simp]:
- "(number_of w::'a::{number_ring,field_char_0}) \<in> Rats"
-by (subst of_rat_number_of_eq [symmetric], rule Rats_of_rat)
-
-lemma Rats_0 [simp]: "0 \<in> Rats"
-apply (unfold Rats_def)
-apply (rule range_eqI)
-apply (rule of_rat_0 [symmetric])
-done
-
-lemma Rats_1 [simp]: "1 \<in> Rats"
-apply (unfold Rats_def)
-apply (rule range_eqI)
-apply (rule of_rat_1 [symmetric])
-done
-
-lemma Rats_add [simp]: "\<lbrakk>a \<in> Rats; b \<in> Rats\<rbrakk> \<Longrightarrow> a + b \<in> Rats"
-apply (auto simp add: Rats_def)
-apply (rule range_eqI)
-apply (rule of_rat_add [symmetric])
-done
-
-lemma Rats_minus [simp]: "a \<in> Rats \<Longrightarrow> - a \<in> Rats"
-apply (auto simp add: Rats_def)
-apply (rule range_eqI)
-apply (rule of_rat_minus [symmetric])
-done
-
-lemma Rats_diff [simp]: "\<lbrakk>a \<in> Rats; b \<in> Rats\<rbrakk> \<Longrightarrow> a - b \<in> Rats"
-apply (auto simp add: Rats_def)
-apply (rule range_eqI)
-apply (rule of_rat_diff [symmetric])
-done
-
-lemma Rats_mult [simp]: "\<lbrakk>a \<in> Rats; b \<in> Rats\<rbrakk> \<Longrightarrow> a * b \<in> Rats"
-apply (auto simp add: Rats_def)
-apply (rule range_eqI)
-apply (rule of_rat_mult [symmetric])
-done
-
-lemma nonzero_Rats_inverse:
- fixes a :: "'a::field_char_0"
- shows "\<lbrakk>a \<in> Rats; a \<noteq> 0\<rbrakk> \<Longrightarrow> inverse a \<in> Rats"
-apply (auto simp add: Rats_def)
-apply (rule range_eqI)
-apply (erule nonzero_of_rat_inverse [symmetric])
-done
-
-lemma Rats_inverse [simp]:
- fixes a :: "'a::{field_char_0,division_by_zero}"
- shows "a \<in> Rats \<Longrightarrow> inverse a \<in> Rats"
-apply (auto simp add: Rats_def)
-apply (rule range_eqI)
-apply (rule of_rat_inverse [symmetric])
-done
-
-lemma nonzero_Rats_divide:
- fixes a b :: "'a::field_char_0"
- shows "\<lbrakk>a \<in> Rats; b \<in> Rats; b \<noteq> 0\<rbrakk> \<Longrightarrow> a / b \<in> Rats"
-apply (auto simp add: Rats_def)
-apply (rule range_eqI)
-apply (erule nonzero_of_rat_divide [symmetric])
-done
-
-lemma Rats_divide [simp]:
- fixes a b :: "'a::{field_char_0,division_by_zero}"
- shows "\<lbrakk>a \<in> Rats; b \<in> Rats\<rbrakk> \<Longrightarrow> a / b \<in> Rats"
-apply (auto simp add: Rats_def)
-apply (rule range_eqI)
-apply (rule of_rat_divide [symmetric])
-done
-
-lemma Rats_power [simp]:
- fixes a :: "'a::field_char_0"
- shows "a \<in> Rats \<Longrightarrow> a ^ n \<in> Rats"
-apply (auto simp add: Rats_def)
-apply (rule range_eqI)
-apply (rule of_rat_power [symmetric])
-done
-
-lemma Rats_cases [cases set: Rats]:
- assumes "q \<in> \<rat>"
- obtains (of_rat) r where "q = of_rat r"
- unfolding Rats_def
-proof -
- from `q \<in> \<rat>` have "q \<in> range of_rat" unfolding Rats_def .
- then obtain r where "q = of_rat r" ..
- then show thesis ..
-qed
-
-lemma Rats_induct [case_names of_rat, induct set: Rats]:
- "q \<in> \<rat> \<Longrightarrow> (\<And>r. P (of_rat r)) \<Longrightarrow> P q"
- by (rule Rats_cases) auto
-
-
-subsection {* Implementation of rational numbers as pairs of integers *}
-
-definition Fract_norm :: "int \<Rightarrow> int \<Rightarrow> rat" where
- [simp, code del]: "Fract_norm a b = Fract a b"
-
-lemma Fract_norm_code [code]: "Fract_norm a b = (if a = 0 \<or> b = 0 then 0 else let c = gcd a b in
- if b > 0 then Fract (a div c) (b div c) else Fract (- (a div c)) (- (b div c)))"
- by (simp add: eq_rat Zero_rat_def Let_def Fract_norm)
-
-lemma [code]:
- "of_rat (Fract a b) = (if b \<noteq> 0 then of_int a / of_int b else 0)"
- by (cases "b = 0") (simp_all add: rat_number_collapse of_rat_rat)
-
-instantiation rat :: eq
-begin
-
-definition [code del]: "eq_class.eq (a\<Colon>rat) b \<longleftrightarrow> a - b = 0"
-
-instance by default (simp add: eq_rat_def)
-
-lemma rat_eq_code [code]:
- "eq_class.eq (Fract a b) (Fract c d) \<longleftrightarrow> (if b = 0
- then c = 0 \<or> d = 0
- else if d = 0
- then a = 0 \<or> b = 0
- else a * d = b * c)"
- by (auto simp add: eq eq_rat)
-
-lemma rat_eq_refl [code nbe]:
- "eq_class.eq (r::rat) r \<longleftrightarrow> True"
- by (rule HOL.eq_refl)
-
-end
-
-lemma le_rat':
- assumes "b \<noteq> 0"
- and "d \<noteq> 0"
- shows "Fract a b \<le> Fract c d \<longleftrightarrow> a * \<bar>d\<bar> * sgn b \<le> c * \<bar>b\<bar> * sgn d"
-proof -
- have abs_sgn: "\<And>k::int. \<bar>k\<bar> = k * sgn k" unfolding abs_if sgn_if by simp
- have "a * d * (b * d) \<le> c * b * (b * d) \<longleftrightarrow> a * d * (sgn b * sgn d) \<le> c * b * (sgn b * sgn d)"
- proof (cases "b * d > 0")
- case True
- moreover from True have "sgn b * sgn d = 1"
- by (simp add: sgn_times [symmetric] sgn_1_pos)
- ultimately show ?thesis by (simp add: mult_le_cancel_right)
- next
- case False with assms have "b * d < 0" by (simp add: less_le)
- moreover from this have "sgn b * sgn d = - 1"
- by (simp only: sgn_times [symmetric] sgn_1_neg)
- ultimately show ?thesis by (simp add: mult_le_cancel_right)
- qed
- also have "\<dots> \<longleftrightarrow> a * \<bar>d\<bar> * sgn b \<le> c * \<bar>b\<bar> * sgn d"
- by (simp add: abs_sgn mult_ac)
- finally show ?thesis using assms by simp
-qed
-
-lemma less_rat':
- assumes "b \<noteq> 0"
- and "d \<noteq> 0"
- shows "Fract a b < Fract c d \<longleftrightarrow> a * \<bar>d\<bar> * sgn b < c * \<bar>b\<bar> * sgn d"
-proof -
- have abs_sgn: "\<And>k::int. \<bar>k\<bar> = k * sgn k" unfolding abs_if sgn_if by simp
- have "a * d * (b * d) < c * b * (b * d) \<longleftrightarrow> a * d * (sgn b * sgn d) < c * b * (sgn b * sgn d)"
- proof (cases "b * d > 0")
- case True
- moreover from True have "sgn b * sgn d = 1"
- by (simp add: sgn_times [symmetric] sgn_1_pos)
- ultimately show ?thesis by (simp add: mult_less_cancel_right)
- next
- case False with assms have "b * d < 0" by (simp add: less_le)
- moreover from this have "sgn b * sgn d = - 1"
- by (simp only: sgn_times [symmetric] sgn_1_neg)
- ultimately show ?thesis by (simp add: mult_less_cancel_right)
- qed
- also have "\<dots> \<longleftrightarrow> a * \<bar>d\<bar> * sgn b < c * \<bar>b\<bar> * sgn d"
- by (simp add: abs_sgn mult_ac)
- finally show ?thesis using assms by simp
-qed
-
-lemma rat_le_eq_code [code]:
- "Fract a b < Fract c d \<longleftrightarrow> (if b = 0
- then sgn c * sgn d > 0
- else if d = 0
- then sgn a * sgn b < 0
- else a * \<bar>d\<bar> * sgn b < c * \<bar>b\<bar> * sgn d)"
- by (auto simp add: sgn_times mult_less_0_iff zero_less_mult_iff less_rat' eq_rat simp del: less_rat)
-
-lemma rat_less_eq_code [code]:
- "Fract a b \<le> Fract c d \<longleftrightarrow> (if b = 0
- then sgn c * sgn d \<ge> 0
- else if d = 0
- then sgn a * sgn b \<le> 0
- else a * \<bar>d\<bar> * sgn b \<le> c * \<bar>b\<bar> * sgn d)"
- by (auto simp add: sgn_times mult_le_0_iff zero_le_mult_iff le_rat' eq_rat simp del: le_rat)
- (auto simp add: le_less not_less sgn_0_0)
-
-
-lemma rat_plus_code [code]:
- "Fract a b + Fract c d = (if b = 0
- then Fract c d
- else if d = 0
- then Fract a b
- else Fract_norm (a * d + c * b) (b * d))"
- by (simp add: eq_rat, simp add: Zero_rat_def)
-
-lemma rat_times_code [code]:
- "Fract a b * Fract c d = Fract_norm (a * c) (b * d)"
- by simp
-
-lemma rat_minus_code [code]:
- "Fract a b - Fract c d = (if b = 0
- then Fract (- c) d
- else if d = 0
- then Fract a b
- else Fract_norm (a * d - c * b) (b * d))"
- by (simp add: eq_rat, simp add: Zero_rat_def)
-
-lemma rat_inverse_code [code]:
- "inverse (Fract a b) = (if b = 0 then Fract 1 0
- else if a < 0 then Fract (- b) (- a)
- else Fract b a)"
- by (simp add: eq_rat)
-
-lemma rat_divide_code [code]:
- "Fract a b / Fract c d = Fract_norm (a * d) (b * c)"
- by simp
-
-definition (in term_syntax)
- valterm_fract :: "int \<times> (unit \<Rightarrow> Code_Evaluation.term) \<Rightarrow> int \<times> (unit \<Rightarrow> Code_Evaluation.term) \<Rightarrow> rat \<times> (unit \<Rightarrow> Code_Evaluation.term)" where
- [code_unfold]: "valterm_fract k l = Code_Evaluation.valtermify Fract {\<cdot>} k {\<cdot>} l"
-
-notation fcomp (infixl "o>" 60)
-notation scomp (infixl "o\<rightarrow>" 60)
-
-instantiation rat :: random
-begin
-
-definition
- "Quickcheck.random i = Quickcheck.random i o\<rightarrow> (\<lambda>num. Random.range i o\<rightarrow> (\<lambda>denom. Pair (
- let j = Code_Numeral.int_of (denom + 1)
- in valterm_fract num (j, \<lambda>u. Code_Evaluation.term_of j))))"
-
-instance ..
-
-end
-
-no_notation fcomp (infixl "o>" 60)
-no_notation scomp (infixl "o\<rightarrow>" 60)
-
-hide (open) const Fract_norm
-
-text {* Setup for SML code generator *}
-
-types_code
- rat ("(int */ int)")
-attach (term_of) {*
-fun term_of_rat (p, q) =
- let
- val rT = Type ("Rational.rat", [])
- in
- if q = 1 orelse p = 0 then HOLogic.mk_number rT p
- else @{term "op / \<Colon> rat \<Rightarrow> rat \<Rightarrow> rat"} $
- HOLogic.mk_number rT p $ HOLogic.mk_number rT q
- end;
-*}
-attach (test) {*
-fun gen_rat i =
- let
- val p = random_range 0 i;
- val q = random_range 1 (i + 1);
- val g = Integer.gcd p q;
- val p' = p div g;
- val q' = q div g;
- val r = (if one_of [true, false] then p' else ~ p',
- if p' = 0 then 1 else q')
- in
- (r, fn () => term_of_rat r)
- end;
-*}
-
-consts_code
- Fract ("(_,/ _)")
-
-consts_code
- "of_int :: int \<Rightarrow> rat" ("\<module>rat'_of'_int")
-attach {*
-fun rat_of_int i = (i, 1);
-*}
-
-setup {*
- Nitpick.register_frac_type @{type_name rat}
- [(@{const_name zero_rat_inst.zero_rat}, @{const_name Nitpick.zero_frac}),
- (@{const_name one_rat_inst.one_rat}, @{const_name Nitpick.one_frac}),
- (@{const_name plus_rat_inst.plus_rat}, @{const_name Nitpick.plus_frac}),
- (@{const_name times_rat_inst.times_rat}, @{const_name Nitpick.times_frac}),
- (@{const_name uminus_rat_inst.uminus_rat}, @{const_name Nitpick.uminus_frac}),
- (@{const_name number_rat_inst.number_of_rat}, @{const_name Nitpick.number_of_frac}),
- (@{const_name inverse_rat_inst.inverse_rat}, @{const_name Nitpick.inverse_frac}),
- (@{const_name ord_rat_inst.less_eq_rat}, @{const_name Nitpick.less_eq_frac}),
- (@{const_name field_char_0_class.of_rat}, @{const_name Nitpick.of_frac}),
- (@{const_name field_char_0_class.Rats}, @{const_name UNIV})]
-*}
-
-lemmas [nitpick_def] = inverse_rat_inst.inverse_rat
- number_rat_inst.number_of_rat one_rat_inst.one_rat ord_rat_inst.less_eq_rat
- plus_rat_inst.plus_rat times_rat_inst.times_rat uminus_rat_inst.uminus_rat
- zero_rat_inst.zero_rat
-
-subsection{* Float syntax *}
-
-syntax "_Float" :: "float_const \<Rightarrow> 'a" ("_")
-
-use "Tools/float_syntax.ML"
-setup Float_Syntax.setup
-
-text{* Test: *}
-lemma "123.456 = -111.111 + 200 + 30 + 4 + 5/10 + 6/100 + (7/1000::rat)"
-by simp
-
-end
--- a/src/HOL/ex/NormalForm.thy Thu Feb 25 22:46:52 2010 +0100
+++ b/src/HOL/ex/NormalForm.thy Fri Feb 26 10:57:35 2010 +0100
@@ -3,7 +3,7 @@
header {* Testing implementation of normalization by evaluation *}
theory NormalForm
-imports Main Rational
+imports Complex_Main
begin
lemma "True" by normalization
--- a/src/Pure/Isar/code.ML Thu Feb 25 22:46:52 2010 +0100
+++ b/src/Pure/Isar/code.ML Fri Feb 26 10:57:35 2010 +0100
@@ -420,10 +420,11 @@
of Type ("fun", [ty, ty_abs]) => (ty, ty_abs)
| _ => error ("Not a datatype abstractor:\n" ^ string_of_const thy abs
^ " :: " ^ string_of_typ thy ty');
- val _ = Thm.cterm_of thy (Const (rep, ty_abs --> ty)) handle CTERM _ =>
+ val _ = Thm.cterm_of thy (Const (rep, ty_abs --> ty)) handle TYPE _ =>
error ("Not a projection:\n" ^ string_of_const thy rep);
- val cert = Logic.mk_equals (Const (abs, ty --> ty_abs) $ (Const (rep, ty_abs --> ty)
- $ Free ("x", ty_abs)), Free ("x", ty_abs));
+ val param = Free ("x", ty_abs);
+ val cert = Logic.all param (Logic.mk_equals
+ (Const (abs, ty --> ty_abs) $ (Const (rep, ty_abs --> ty) $ param), param));
in (tyco, (vs ~~ sorts, ((fst abs_ty, ty), (rep, cert)))) end;
fun get_type_entry thy tyco = case these (Symtab.lookup ((the_types o the_exec) thy) tyco)
@@ -839,7 +840,9 @@
fun bare_thms_of_cert thy (cert as Equations _) =
(map_filter (fn (_, (some_thm, proper)) => if proper then some_thm else NONE)
o snd o equations_of_cert thy) cert
- | bare_thms_of_cert thy _ = [];
+ | bare_thms_of_cert thy (Projection _) = []
+ | bare_thms_of_cert thy (Abstract (abs_thm, tyco)) =
+ [Thm.varifyT (snd (concretify_abs thy tyco abs_thm))];
end;
--- a/src/Tools/nbe.ML Thu Feb 25 22:46:52 2010 +0100
+++ b/src/Tools/nbe.ML Fri Feb 26 10:57:35 2010 +0100
@@ -164,6 +164,7 @@
| same _ _ = false
and sames xs ys = length xs = length ys andalso forall (uncurry same) (xs ~~ ys);
+
(* constructor functions *)
fun abss n f = Abs ((n, f), []);
@@ -213,6 +214,7 @@
|> suffix "\n"
end;
+
(* nbe specific syntax and sandbox communication *)
val univs_ref = Unsynchronized.ref (NONE : (unit -> Univ list -> Univ list) option);
@@ -255,6 +257,7 @@
open Basic_Code_Thingol;
+
(* code generation *)
fun assemble_eqnss idx_of deps eqnss =
@@ -330,7 +333,7 @@
val match_cont = if is_eval then NONE else SOME default_rhs;
val assemble_arg = assemble_iterm
(fn c => fn _ => fn ts => nbe_apps_constr idx_of c ts) NONE;
- val assemble_rhs = assemble_iterm assemble_constapp match_cont ;
+ val assemble_rhs = assemble_iterm assemble_constapp match_cont;
val (samepairs, args') = subst_nonlin_vars args;
val s_args = map assemble_arg args';
val s_rhs = if null samepairs then assemble_rhs rhs
@@ -357,6 +360,7 @@
val deps_vars = ml_list (map (nbe_fun 0) deps);
in ml_abs deps_vars (ml_Let (ml_fundefs (flat fun_vars)) (ml_list fun_vals)) end;
+
(* code compilation *)
fun compile_eqnss _ gr raw_deps [] = []
@@ -457,6 +461,7 @@
|> (fn t => apps t (rev dict_frees))
end;
+
(* reification *)
fun typ_of_itype program vs (ityco `%% itys) =
@@ -480,9 +485,9 @@
| is_dict (DFree _) = true
| is_dict _ = false;
fun const_of_idx idx = (case (Graph.get_node program o the o Inttab.lookup idx_tab) idx
- of Code_Thingol.Fun (c, _) => c
- | Code_Thingol.Datatypecons (c, _) => c
- | Code_Thingol.Classparam (c, _) => c);
+ of Code_Thingol.Fun (c, _) => c
+ | Code_Thingol.Datatypecons (c, _) => c
+ | Code_Thingol.Classparam (c, _) => c);
fun of_apps bounds (t, ts) =
fold_map (of_univ bounds) ts
#>> (fn ts' => list_comb (t, rev ts'))
@@ -503,6 +508,7 @@
|-> (fn t' => pair (Term.Abs ("u", dummyT, t')))
in of_univ 0 t 0 |> fst end;
+
(* function store *)
structure Nbe_Functions = Code_Data
@@ -511,6 +517,7 @@
val empty = (Code_Thingol.empty_naming, (Graph.empty, (0, Inttab.empty)));
);
+
(* compilation, evaluation and reification *)
fun compile_eval thy naming program vs_t deps =
@@ -524,6 +531,7 @@
|> term_of_univ thy program idx_tab
end;
+
(* evaluation with type reconstruction *)
fun normalize thy naming program ((vs0, (vs, ty)), t) deps =
@@ -593,6 +601,7 @@
fun norm thy = lift_triv_classes_rew thy (no_frees_rew (Code_Thingol.eval thy I (normalize thy)));
+
(* evaluation command *)
fun norm_print_term ctxt modes t =