--- a/src/HOL/IsaMakefile Thu Jul 03 20:53:44 2008 +0200
+++ b/src/HOL/IsaMakefile Fri Jul 04 07:39:01 2008 +0200
@@ -820,13 +820,12 @@
$(SRC)/Tools/Compute_Oracle/linker.ML \
$(SRC)/Tools/Compute_Oracle/am_ghc.ML \
$(SRC)/Tools/Compute_Oracle/am_sml.ML \
- $(SRC)/Tools/Compute_Oracle/compute.ML Matrix/MatrixGeneral.thy \
+ $(SRC)/Tools/Compute_Oracle/compute.ML \
Matrix/Matrix.thy Matrix/SparseMatrix.thy Matrix/LP.thy \
Matrix/document/root.tex Matrix/ROOT.ML Matrix/cplex/Cplex.thy \
Matrix/cplex/CplexMatrixConverter.ML Matrix/cplex/Cplex_tools.ML \
- Matrix/cplex/FloatSparseMatrix.thy \
Matrix/cplex/FloatSparseMatrixBuilder.ML Matrix/cplex/fspmlp.ML \
- Matrix/cplex/MatrixLP.thy Matrix/cplex/matrixlp.ML
+ Matrix/cplex/matrixlp.ML
@$(ISATOOL) usedir -g true $(OUT)/HOL Matrix
--- a/src/HOL/Matrix/Matrix.thy Thu Jul 03 20:53:44 2008 +0200
+++ b/src/HOL/Matrix/Matrix.thy Fri Jul 04 07:39:01 2008 +0200
@@ -4,17 +4,1445 @@
*)
theory Matrix
-imports MatrixGeneral
+imports Main
begin
+types 'a infmatrix = "nat \<Rightarrow> nat \<Rightarrow> 'a"
+
+definition nonzero_positions :: "(nat \<Rightarrow> nat \<Rightarrow> 'a::zero) \<Rightarrow> nat \<times> nat \<Rightarrow> bool" where
+ "nonzero_positions A = {pos. A (fst pos) (snd pos) ~= 0}"
+
+typedef 'a matrix = "{(f::(nat \<Rightarrow> nat \<Rightarrow> 'a::zero)). finite (nonzero_positions f)}"
+proof -
+ have "(\<lambda>j i. 0) \<in> {(f::(nat \<Rightarrow> nat \<Rightarrow> 'a::zero)). finite (nonzero_positions f)}"
+ by (simp add: nonzero_positions_def)
+ then show ?thesis by auto
+qed
+
+declare Rep_matrix_inverse[simp]
+
+lemma finite_nonzero_positions : "finite (nonzero_positions (Rep_matrix A))"
+apply (rule Abs_matrix_induct)
+by (simp add: Abs_matrix_inverse matrix_def)
+
+constdefs
+ nrows :: "('a::zero) matrix \<Rightarrow> nat"
+ "nrows A == if nonzero_positions(Rep_matrix A) = {} then 0 else Suc(Max ((image fst) (nonzero_positions (Rep_matrix A))))"
+ ncols :: "('a::zero) matrix \<Rightarrow> nat"
+ "ncols A == if nonzero_positions(Rep_matrix A) = {} then 0 else Suc(Max ((image snd) (nonzero_positions (Rep_matrix A))))"
+
+lemma nrows:
+ assumes hyp: "nrows A \<le> m"
+ shows "(Rep_matrix A m n) = 0" (is ?concl)
+proof cases
+ assume "nonzero_positions(Rep_matrix A) = {}"
+ then show "(Rep_matrix A m n) = 0" by (simp add: nonzero_positions_def)
+next
+ assume a: "nonzero_positions(Rep_matrix A) \<noteq> {}"
+ let ?S = "fst`(nonzero_positions(Rep_matrix A))"
+ have c: "finite (?S)" by (simp add: finite_nonzero_positions)
+ from hyp have d: "Max (?S) < m" by (simp add: a nrows_def)
+ have "m \<notin> ?S"
+ proof -
+ have "m \<in> ?S \<Longrightarrow> m <= Max(?S)" by (simp add: Max_ge [OF c])
+ moreover from d have "~(m <= Max ?S)" by (simp)
+ ultimately show "m \<notin> ?S" by (auto)
+ qed
+ thus "Rep_matrix A m n = 0" by (simp add: nonzero_positions_def image_Collect)
+qed
+
+constdefs
+ transpose_infmatrix :: "'a infmatrix \<Rightarrow> 'a infmatrix"
+ "transpose_infmatrix A j i == A i j"
+ transpose_matrix :: "('a::zero) matrix \<Rightarrow> 'a matrix"
+ "transpose_matrix == Abs_matrix o transpose_infmatrix o Rep_matrix"
+
+declare transpose_infmatrix_def[simp]
+
+lemma transpose_infmatrix_twice[simp]: "transpose_infmatrix (transpose_infmatrix A) = A"
+by ((rule ext)+, simp)
+
+lemma transpose_infmatrix: "transpose_infmatrix (% j i. P j i) = (% j i. P i j)"
+ apply (rule ext)+
+ by (simp add: transpose_infmatrix_def)
+
+lemma transpose_infmatrix_closed[simp]: "Rep_matrix (Abs_matrix (transpose_infmatrix (Rep_matrix x))) = transpose_infmatrix (Rep_matrix x)"
+apply (rule Abs_matrix_inverse)
+apply (simp add: matrix_def nonzero_positions_def image_def)
+proof -
+ let ?A = "{pos. Rep_matrix x (snd pos) (fst pos) \<noteq> 0}"
+ let ?swap = "% pos. (snd pos, fst pos)"
+ let ?B = "{pos. Rep_matrix x (fst pos) (snd pos) \<noteq> 0}"
+ have swap_image: "?swap`?A = ?B"
+ apply (simp add: image_def)
+ apply (rule set_ext)
+ apply (simp)
+ proof
+ fix y
+ assume hyp: "\<exists>a b. Rep_matrix x b a \<noteq> 0 \<and> y = (b, a)"
+ thus "Rep_matrix x (fst y) (snd y) \<noteq> 0"
+ proof -
+ from hyp obtain a b where "(Rep_matrix x b a \<noteq> 0 & y = (b,a))" by blast
+ then show "Rep_matrix x (fst y) (snd y) \<noteq> 0" by (simp)
+ qed
+ next
+ fix y
+ assume hyp: "Rep_matrix x (fst y) (snd y) \<noteq> 0"
+ show "\<exists> a b. (Rep_matrix x b a \<noteq> 0 & y = (b,a))"
+ by (rule exI[of _ "snd y"], rule exI[of _ "fst y"]) (simp add: hyp)
+ qed
+ then have "finite (?swap`?A)"
+ proof -
+ have "finite (nonzero_positions (Rep_matrix x))" by (simp add: finite_nonzero_positions)
+ then have "finite ?B" by (simp add: nonzero_positions_def)
+ with swap_image show "finite (?swap`?A)" by (simp)
+ qed
+ moreover
+ have "inj_on ?swap ?A" by (simp add: inj_on_def)
+ ultimately show "finite ?A"by (rule finite_imageD[of ?swap ?A])
+qed
+
+lemma infmatrixforward: "(x::'a infmatrix) = y \<Longrightarrow> \<forall> a b. x a b = y a b" by auto
+
+lemma transpose_infmatrix_inject: "(transpose_infmatrix A = transpose_infmatrix B) = (A = B)"
+apply (auto)
+apply (rule ext)+
+apply (simp add: transpose_infmatrix)
+apply (drule infmatrixforward)
+apply (simp)
+done
+
+lemma transpose_matrix_inject: "(transpose_matrix A = transpose_matrix B) = (A = B)"
+apply (simp add: transpose_matrix_def)
+apply (subst Rep_matrix_inject[THEN sym])+
+apply (simp only: transpose_infmatrix_closed transpose_infmatrix_inject)
+done
+
+lemma transpose_matrix[simp]: "Rep_matrix(transpose_matrix A) j i = Rep_matrix A i j"
+by (simp add: transpose_matrix_def)
+
+lemma transpose_transpose_id[simp]: "transpose_matrix (transpose_matrix A) = A"
+by (simp add: transpose_matrix_def)
+
+lemma nrows_transpose[simp]: "nrows (transpose_matrix A) = ncols A"
+by (simp add: nrows_def ncols_def nonzero_positions_def transpose_matrix_def image_def)
+
+lemma ncols_transpose[simp]: "ncols (transpose_matrix A) = nrows A"
+by (simp add: nrows_def ncols_def nonzero_positions_def transpose_matrix_def image_def)
+
+lemma ncols: "ncols A <= n \<Longrightarrow> Rep_matrix A m n = 0"
+proof -
+ assume "ncols A <= n"
+ then have "nrows (transpose_matrix A) <= n" by (simp)
+ then have "Rep_matrix (transpose_matrix A) n m = 0" by (rule nrows)
+ thus "Rep_matrix A m n = 0" by (simp add: transpose_matrix_def)
+qed
+
+lemma ncols_le: "(ncols A <= n) = (! j i. n <= i \<longrightarrow> (Rep_matrix A j i) = 0)" (is "_ = ?st")
+apply (auto)
+apply (simp add: ncols)
+proof (simp add: ncols_def, auto)
+ let ?P = "nonzero_positions (Rep_matrix A)"
+ let ?p = "snd`?P"
+ have a:"finite ?p" by (simp add: finite_nonzero_positions)
+ let ?m = "Max ?p"
+ assume "~(Suc (?m) <= n)"
+ then have b:"n <= ?m" by (simp)
+ fix a b
+ assume "(a,b) \<in> ?P"
+ then have "?p \<noteq> {}" by (auto)
+ with a have "?m \<in> ?p" by (simp)
+ moreover have "!x. (x \<in> ?p \<longrightarrow> (? y. (Rep_matrix A y x) \<noteq> 0))" by (simp add: nonzero_positions_def image_def)
+ ultimately have "? y. (Rep_matrix A y ?m) \<noteq> 0" by (simp)
+ moreover assume ?st
+ ultimately show "False" using b by (simp)
+qed
+
+lemma less_ncols: "(n < ncols A) = (? j i. n <= i & (Rep_matrix A j i) \<noteq> 0)" (is ?concl)
+proof -
+ have a: "!! (a::nat) b. (a < b) = (~(b <= a))" by arith
+ show ?concl by (simp add: a ncols_le)
+qed
+
+lemma le_ncols: "(n <= ncols A) = (\<forall> m. (\<forall> j i. m <= i \<longrightarrow> (Rep_matrix A j i) = 0) \<longrightarrow> n <= m)" (is ?concl)
+apply (auto)
+apply (subgoal_tac "ncols A <= m")
+apply (simp)
+apply (simp add: ncols_le)
+apply (drule_tac x="ncols A" in spec)
+by (simp add: ncols)
+
+lemma nrows_le: "(nrows A <= n) = (! j i. n <= j \<longrightarrow> (Rep_matrix A j i) = 0)" (is ?s)
+proof -
+ have "(nrows A <= n) = (ncols (transpose_matrix A) <= n)" by (simp)
+ also have "\<dots> = (! j i. n <= i \<longrightarrow> (Rep_matrix (transpose_matrix A) j i = 0))" by (rule ncols_le)
+ also have "\<dots> = (! j i. n <= i \<longrightarrow> (Rep_matrix A i j) = 0)" by (simp)
+ finally show "(nrows A <= n) = (! j i. n <= j \<longrightarrow> (Rep_matrix A j i) = 0)" by (auto)
+qed
+
+lemma less_nrows: "(m < nrows A) = (? j i. m <= j & (Rep_matrix A j i) \<noteq> 0)" (is ?concl)
+proof -
+ have a: "!! (a::nat) b. (a < b) = (~(b <= a))" by arith
+ show ?concl by (simp add: a nrows_le)
+qed
+
+lemma le_nrows: "(n <= nrows A) = (\<forall> m. (\<forall> j i. m <= j \<longrightarrow> (Rep_matrix A j i) = 0) \<longrightarrow> n <= m)" (is ?concl)
+apply (auto)
+apply (subgoal_tac "nrows A <= m")
+apply (simp)
+apply (simp add: nrows_le)
+apply (drule_tac x="nrows A" in spec)
+by (simp add: nrows)
+
+lemma nrows_notzero: "Rep_matrix A m n \<noteq> 0 \<Longrightarrow> m < nrows A"
+apply (case_tac "nrows A <= m")
+apply (simp_all add: nrows)
+done
+
+lemma ncols_notzero: "Rep_matrix A m n \<noteq> 0 \<Longrightarrow> n < ncols A"
+apply (case_tac "ncols A <= n")
+apply (simp_all add: ncols)
+done
+
+lemma finite_natarray1: "finite {x. x < (n::nat)}"
+apply (induct n)
+apply (simp)
+proof -
+ fix n
+ have "{x. x < Suc n} = insert n {x. x < n}" by (rule set_ext, simp, arith)
+ moreover assume "finite {x. x < n}"
+ ultimately show "finite {x. x < Suc n}" by (simp)
+qed
+
+lemma finite_natarray2: "finite {pos. (fst pos) < (m::nat) & (snd pos) < (n::nat)}"
+ apply (induct m)
+ apply (simp+)
+ proof -
+ fix m::nat
+ let ?s0 = "{pos. fst pos < m & snd pos < n}"
+ let ?s1 = "{pos. fst pos < (Suc m) & snd pos < n}"
+ let ?sd = "{pos. fst pos = m & snd pos < n}"
+ assume f0: "finite ?s0"
+ have f1: "finite ?sd"
+ proof -
+ let ?f = "% x. (m, x)"
+ have "{pos. fst pos = m & snd pos < n} = ?f ` {x. x < n}" by (rule set_ext, simp add: image_def, auto)
+ moreover have "finite {x. x < n}" by (simp add: finite_natarray1)
+ ultimately show "finite {pos. fst pos = m & snd pos < n}" by (simp)
+ qed
+ have su: "?s0 \<union> ?sd = ?s1" by (rule set_ext, simp, arith)
+ from f0 f1 have "finite (?s0 \<union> ?sd)" by (rule finite_UnI)
+ with su show "finite ?s1" by (simp)
+qed
+
+lemma RepAbs_matrix:
+ assumes aem: "? m. ! j i. m <= j \<longrightarrow> x j i = 0" (is ?em) and aen:"? n. ! j i. (n <= i \<longrightarrow> x j i = 0)" (is ?en)
+ shows "(Rep_matrix (Abs_matrix x)) = x"
+apply (rule Abs_matrix_inverse)
+apply (simp add: matrix_def nonzero_positions_def)
+proof -
+ from aem obtain m where a: "! j i. m <= j \<longrightarrow> x j i = 0" by (blast)
+ from aen obtain n where b: "! j i. n <= i \<longrightarrow> x j i = 0" by (blast)
+ let ?u = "{pos. x (fst pos) (snd pos) \<noteq> 0}"
+ let ?v = "{pos. fst pos < m & snd pos < n}"
+ have c: "!! (m::nat) a. ~(m <= a) \<Longrightarrow> a < m" by (arith)
+ from a b have "(?u \<inter> (-?v)) = {}"
+ apply (simp)
+ apply (rule set_ext)
+ apply (simp)
+ apply auto
+ by (rule c, auto)+
+ then have d: "?u \<subseteq> ?v" by blast
+ moreover have "finite ?v" by (simp add: finite_natarray2)
+ ultimately show "finite ?u" by (rule finite_subset)
+qed
+
+constdefs
+ apply_infmatrix :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a infmatrix \<Rightarrow> 'b infmatrix"
+ "apply_infmatrix f == % A. (% j i. f (A j i))"
+ apply_matrix :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a::zero) matrix \<Rightarrow> ('b::zero) matrix"
+ "apply_matrix f == % A. Abs_matrix (apply_infmatrix f (Rep_matrix A))"
+ combine_infmatrix :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a infmatrix \<Rightarrow> 'b infmatrix \<Rightarrow> 'c infmatrix"
+ "combine_infmatrix f == % A B. (% j i. f (A j i) (B j i))"
+ combine_matrix :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> ('a::zero) matrix \<Rightarrow> ('b::zero) matrix \<Rightarrow> ('c::zero) matrix"
+ "combine_matrix f == % A B. Abs_matrix (combine_infmatrix f (Rep_matrix A) (Rep_matrix B))"
+
+lemma expand_apply_infmatrix[simp]: "apply_infmatrix f A j i = f (A j i)"
+by (simp add: apply_infmatrix_def)
+
+lemma expand_combine_infmatrix[simp]: "combine_infmatrix f A B j i = f (A j i) (B j i)"
+by (simp add: combine_infmatrix_def)
+
+constdefs
+commutative :: "('a \<Rightarrow> 'a \<Rightarrow> 'b) \<Rightarrow> bool"
+"commutative f == ! x y. f x y = f y x"
+associative :: "('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> bool"
+"associative f == ! x y z. f (f x y) z = f x (f y z)"
+
+text{*
+To reason about associativity and commutativity of operations on matrices,
+let's take a step back and look at the general situtation: Assume that we have
+sets $A$ and $B$ with $B \subset A$ and an abstraction $u: A \rightarrow B$. This abstraction has to fulfill $u(b) = b$ for all $b \in B$, but is arbitrary otherwise.
+Each function $f: A \times A \rightarrow A$ now induces a function $f': B \times B \rightarrow B$ by $f' = u \circ f$.
+It is obvious that commutativity of $f$ implies commutativity of $f'$: $f' x y = u (f x y) = u (f y x) = f' y x.$
+*}
+
+lemma combine_infmatrix_commute:
+ "commutative f \<Longrightarrow> commutative (combine_infmatrix f)"
+by (simp add: commutative_def combine_infmatrix_def)
+
+lemma combine_matrix_commute:
+"commutative f \<Longrightarrow> commutative (combine_matrix f)"
+by (simp add: combine_matrix_def commutative_def combine_infmatrix_def)
+
+text{*
+On the contrary, given an associative function $f$ we cannot expect $f'$ to be associative. A counterexample is given by $A=\ganz$, $B=\{-1, 0, 1\}$,
+as $f$ we take addition on $\ganz$, which is clearly associative. The abstraction is given by $u(a) = 0$ for $a \notin B$. Then we have
+\[ f' (f' 1 1) -1 = u(f (u (f 1 1)) -1) = u(f (u 2) -1) = u (f 0 -1) = -1, \]
+but on the other hand we have
+\[ f' 1 (f' 1 -1) = u (f 1 (u (f 1 -1))) = u (f 1 0) = 1.\]
+A way out of this problem is to assume that $f(A\times A)\subset A$ holds, and this is what we are going to do:
+*}
+
+lemma nonzero_positions_combine_infmatrix[simp]: "f 0 0 = 0 \<Longrightarrow> nonzero_positions (combine_infmatrix f A B) \<subseteq> (nonzero_positions A) \<union> (nonzero_positions B)"
+by (rule subsetI, simp add: nonzero_positions_def combine_infmatrix_def, auto)
+
+lemma finite_nonzero_positions_Rep[simp]: "finite (nonzero_positions (Rep_matrix A))"
+by (insert Rep_matrix [of A], simp add: matrix_def)
+
+lemma combine_infmatrix_closed [simp]:
+ "f 0 0 = 0 \<Longrightarrow> Rep_matrix (Abs_matrix (combine_infmatrix f (Rep_matrix A) (Rep_matrix B))) = combine_infmatrix f (Rep_matrix A) (Rep_matrix B)"
+apply (rule Abs_matrix_inverse)
+apply (simp add: matrix_def)
+apply (rule finite_subset[of _ "(nonzero_positions (Rep_matrix A)) \<union> (nonzero_positions (Rep_matrix B))"])
+by (simp_all)
+
+text {* We need the next two lemmas only later, but it is analog to the above one, so we prove them now: *}
+lemma nonzero_positions_apply_infmatrix[simp]: "f 0 = 0 \<Longrightarrow> nonzero_positions (apply_infmatrix f A) \<subseteq> nonzero_positions A"
+by (rule subsetI, simp add: nonzero_positions_def apply_infmatrix_def, auto)
+
+lemma apply_infmatrix_closed [simp]:
+ "f 0 = 0 \<Longrightarrow> Rep_matrix (Abs_matrix (apply_infmatrix f (Rep_matrix A))) = apply_infmatrix f (Rep_matrix A)"
+apply (rule Abs_matrix_inverse)
+apply (simp add: matrix_def)
+apply (rule finite_subset[of _ "nonzero_positions (Rep_matrix A)"])
+by (simp_all)
+
+lemma combine_infmatrix_assoc[simp]: "f 0 0 = 0 \<Longrightarrow> associative f \<Longrightarrow> associative (combine_infmatrix f)"
+by (simp add: associative_def combine_infmatrix_def)
+
+lemma comb: "f = g \<Longrightarrow> x = y \<Longrightarrow> f x = g y"
+by (auto)
+
+lemma combine_matrix_assoc: "f 0 0 = 0 \<Longrightarrow> associative f \<Longrightarrow> associative (combine_matrix f)"
+apply (simp(no_asm) add: associative_def combine_matrix_def, auto)
+apply (rule comb [of Abs_matrix Abs_matrix])
+by (auto, insert combine_infmatrix_assoc[of f], simp add: associative_def)
+
+lemma Rep_apply_matrix[simp]: "f 0 = 0 \<Longrightarrow> Rep_matrix (apply_matrix f A) j i = f (Rep_matrix A j i)"
+by (simp add: apply_matrix_def)
+
+lemma Rep_combine_matrix[simp]: "f 0 0 = 0 \<Longrightarrow> Rep_matrix (combine_matrix f A B) j i = f (Rep_matrix A j i) (Rep_matrix B j i)"
+ by(simp add: combine_matrix_def)
+
+lemma combine_nrows_max: "f 0 0 = 0 \<Longrightarrow> nrows (combine_matrix f A B) <= max (nrows A) (nrows B)"
+by (simp add: nrows_le)
+
+lemma combine_ncols_max: "f 0 0 = 0 \<Longrightarrow> ncols (combine_matrix f A B) <= max (ncols A) (ncols B)"
+by (simp add: ncols_le)
+
+lemma combine_nrows: "f 0 0 = 0 \<Longrightarrow> nrows A <= q \<Longrightarrow> nrows B <= q \<Longrightarrow> nrows(combine_matrix f A B) <= q"
+ by (simp add: nrows_le)
+
+lemma combine_ncols: "f 0 0 = 0 \<Longrightarrow> ncols A <= q \<Longrightarrow> ncols B <= q \<Longrightarrow> ncols(combine_matrix f A B) <= q"
+ by (simp add: ncols_le)
+
+constdefs
+ zero_r_neutral :: "('a \<Rightarrow> 'b::zero \<Rightarrow> 'a) \<Rightarrow> bool"
+ "zero_r_neutral f == ! a. f a 0 = a"
+ zero_l_neutral :: "('a::zero \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> bool"
+ "zero_l_neutral f == ! a. f 0 a = a"
+ zero_closed :: "(('a::zero) \<Rightarrow> ('b::zero) \<Rightarrow> ('c::zero)) \<Rightarrow> bool"
+ "zero_closed f == (!x. f x 0 = 0) & (!y. f 0 y = 0)"
+
+consts foldseq :: "('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> (nat \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> 'a"
+primrec
+ "foldseq f s 0 = s 0"
+ "foldseq f s (Suc n) = f (s 0) (foldseq f (% k. s(Suc k)) n)"
+
+consts foldseq_transposed :: "('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> (nat \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> 'a"
+primrec
+ "foldseq_transposed f s 0 = s 0"
+ "foldseq_transposed f s (Suc n) = f (foldseq_transposed f s n) (s (Suc n))"
+
+lemma foldseq_assoc : "associative f \<Longrightarrow> foldseq f = foldseq_transposed f"
+proof -
+ assume a:"associative f"
+ then have sublemma: "!! n. ! N s. N <= n \<longrightarrow> foldseq f s N = foldseq_transposed f s N"
+ proof -
+ fix n
+ show "!N s. N <= n \<longrightarrow> foldseq f s N = foldseq_transposed f s N"
+ proof (induct n)
+ show "!N s. N <= 0 \<longrightarrow> foldseq f s N = foldseq_transposed f s N" by simp
+ next
+ fix n
+ assume b:"! N s. N <= n \<longrightarrow> foldseq f s N = foldseq_transposed f s N"
+ have c:"!!N s. N <= n \<Longrightarrow> foldseq f s N = foldseq_transposed f s N" by (simp add: b)
+ show "! N t. N <= Suc n \<longrightarrow> foldseq f t N = foldseq_transposed f t N"
+ proof (auto)
+ fix N t
+ assume Nsuc: "N <= Suc n"
+ show "foldseq f t N = foldseq_transposed f t N"
+ proof cases
+ assume "N <= n"
+ then show "foldseq f t N = foldseq_transposed f t N" by (simp add: b)
+ next
+ assume "~(N <= n)"
+ with Nsuc have Nsuceq: "N = Suc n" by simp
+ have neqz: "n \<noteq> 0 \<Longrightarrow> ? m. n = Suc m & Suc m <= n" by arith
+ have assocf: "!! x y z. f x (f y z) = f (f x y) z" by (insert a, simp add: associative_def)
+ show "foldseq f t N = foldseq_transposed f t N"
+ apply (simp add: Nsuceq)
+ apply (subst c)
+ apply (simp)
+ apply (case_tac "n = 0")
+ apply (simp)
+ apply (drule neqz)
+ apply (erule exE)
+ apply (simp)
+ apply (subst assocf)
+ proof -
+ fix m
+ assume "n = Suc m & Suc m <= n"
+ then have mless: "Suc m <= n" by arith
+ then have step1: "foldseq_transposed f (% k. t (Suc k)) m = foldseq f (% k. t (Suc k)) m" (is "?T1 = ?T2")
+ apply (subst c)
+ by simp+
+ have step2: "f (t 0) ?T2 = foldseq f t (Suc m)" (is "_ = ?T3") by simp
+ have step3: "?T3 = foldseq_transposed f t (Suc m)" (is "_ = ?T4")
+ apply (subst c)
+ by (simp add: mless)+
+ have step4: "?T4 = f (foldseq_transposed f t m) (t (Suc m))" (is "_=?T5") by simp
+ from step1 step2 step3 step4 show sowhat: "f (f (t 0) ?T1) (t (Suc (Suc m))) = f ?T5 (t (Suc (Suc m)))" by simp
+ qed
+ qed
+ qed
+ qed
+ qed
+ show "foldseq f = foldseq_transposed f" by ((rule ext)+, insert sublemma, auto)
+ qed
+
+lemma foldseq_distr: "\<lbrakk>associative f; commutative f\<rbrakk> \<Longrightarrow> foldseq f (% k. f (u k) (v k)) n = f (foldseq f u n) (foldseq f v n)"
+proof -
+ assume assoc: "associative f"
+ assume comm: "commutative f"
+ from assoc have a:"!! x y z. f (f x y) z = f x (f y z)" by (simp add: associative_def)
+ from comm have b: "!! x y. f x y = f y x" by (simp add: commutative_def)
+ from assoc comm have c: "!! x y z. f x (f y z) = f y (f x z)" by (simp add: commutative_def associative_def)
+ have "!! n. (! u v. foldseq f (%k. f (u k) (v k)) n = f (foldseq f u n) (foldseq f v n))"
+ apply (induct_tac n)
+ apply (simp+, auto)
+ by (simp add: a b c)
+ then show "foldseq f (% k. f (u k) (v k)) n = f (foldseq f u n) (foldseq f v n)" by simp
+qed
+
+theorem "\<lbrakk>associative f; associative g; \<forall>a b c d. g (f a b) (f c d) = f (g a c) (g b d); ? x y. (f x) \<noteq> (f y); ? x y. (g x) \<noteq> (g y); f x x = x; g x x = x\<rbrakk> \<Longrightarrow> f=g | (! y. f y x = y) | (! y. g y x = y)"
+oops
+(* Model found
+
+Trying to find a model that refutes: \<lbrakk>associative f; associative g;
+ \<forall>a b c d. g (f a b) (f c d) = f (g a c) (g b d); \<exists>x y. f x \<noteq> f y;
+ \<exists>x y. g x \<noteq> g y; f x x = x; g x x = x\<rbrakk>
+\<Longrightarrow> f = g \<or> (\<forall>y. f y x = y) \<or> (\<forall>y. g y x = y)
+Searching for a model of size 1, translating term... invoking SAT solver... no model found.
+Searching for a model of size 2, translating term... invoking SAT solver... no model found.
+Searching for a model of size 3, translating term... invoking SAT solver...
+Model found:
+Size of types: 'a: 3
+x: a1
+g: (a0\<mapsto>(a0\<mapsto>a1, a1\<mapsto>a0, a2\<mapsto>a1), a1\<mapsto>(a0\<mapsto>a0, a1\<mapsto>a1, a2\<mapsto>a0), a2\<mapsto>(a0\<mapsto>a1, a1\<mapsto>a0, a2\<mapsto>a1))
+f: (a0\<mapsto>(a0\<mapsto>a0, a1\<mapsto>a0, a2\<mapsto>a0), a1\<mapsto>(a0\<mapsto>a1, a1\<mapsto>a1, a2\<mapsto>a1), a2\<mapsto>(a0\<mapsto>a0, a1\<mapsto>a0, a2\<mapsto>a0))
+*)
+
+lemma foldseq_zero:
+assumes fz: "f 0 0 = 0" and sz: "! i. i <= n \<longrightarrow> s i = 0"
+shows "foldseq f s n = 0"
+proof -
+ have "!! n. ! s. (! i. i <= n \<longrightarrow> s i = 0) \<longrightarrow> foldseq f s n = 0"
+ apply (induct_tac n)
+ apply (simp)
+ by (simp add: fz)
+ then show "foldseq f s n = 0" by (simp add: sz)
+qed
+
+lemma foldseq_significant_positions:
+ assumes p: "! i. i <= N \<longrightarrow> S i = T i"
+ shows "foldseq f S N = foldseq f T N" (is ?concl)
+proof -
+ have "!! m . ! s t. (! i. i<=m \<longrightarrow> s i = t i) \<longrightarrow> foldseq f s m = foldseq f t m"
+ apply (induct_tac m)
+ apply (simp)
+ apply (simp)
+ apply (auto)
+ proof -
+ fix n
+ fix s::"nat\<Rightarrow>'a"
+ fix t::"nat\<Rightarrow>'a"
+ assume a: "\<forall>s t. (\<forall>i\<le>n. s i = t i) \<longrightarrow> foldseq f s n = foldseq f t n"
+ assume b: "\<forall>i\<le>Suc n. s i = t i"
+ have c:"!! a b. a = b \<Longrightarrow> f (t 0) a = f (t 0) b" by blast
+ have d:"!! s t. (\<forall>i\<le>n. s i = t i) \<Longrightarrow> foldseq f s n = foldseq f t n" by (simp add: a)
+ show "f (t 0) (foldseq f (\<lambda>k. s (Suc k)) n) = f (t 0) (foldseq f (\<lambda>k. t (Suc k)) n)" by (rule c, simp add: d b)
+ qed
+ with p show ?concl by simp
+qed
+
+lemma foldseq_tail: "M <= N \<Longrightarrow> foldseq f S N = foldseq f (% k. (if k < M then (S k) else (foldseq f (% k. S(k+M)) (N-M)))) M" (is "?p \<Longrightarrow> ?concl")
+proof -
+ have suc: "!! a b. \<lbrakk>a <= Suc b; a \<noteq> Suc b\<rbrakk> \<Longrightarrow> a <= b" by arith
+ have a:"!! a b c . a = b \<Longrightarrow> f c a = f c b" by blast
+ have "!! n. ! m s. m <= n \<longrightarrow> foldseq f s n = foldseq f (% k. (if k < m then (s k) else (foldseq f (% k. s(k+m)) (n-m)))) m"
+ apply (induct_tac n)
+ apply (simp)
+ apply (simp)
+ apply (auto)
+ apply (case_tac "m = Suc na")
+ apply (simp)
+ apply (rule a)
+ apply (rule foldseq_significant_positions)
+ apply (auto)
+ apply (drule suc, simp+)
+ proof -
+ fix na m s
+ assume suba:"\<forall>m\<le>na. \<forall>s. foldseq f s na = foldseq f (\<lambda>k. if k < m then s k else foldseq f (\<lambda>k. s (k + m)) (na - m))m"
+ assume subb:"m <= na"
+ from suba have subc:"!! m s. m <= na \<Longrightarrow>foldseq f s na = foldseq f (\<lambda>k. if k < m then s k else foldseq f (\<lambda>k. s (k + m)) (na - m))m" by simp
+ have subd: "foldseq f (\<lambda>k. if k < m then s (Suc k) else foldseq f (\<lambda>k. s (Suc (k + m))) (na - m)) m =
+ foldseq f (% k. s(Suc k)) na"
+ by (rule subc[of m "% k. s(Suc k)", THEN sym], simp add: subb)
+ from subb have sube: "m \<noteq> 0 \<Longrightarrow> ? mm. m = Suc mm & mm <= na" by arith
+ show "f (s 0) (foldseq f (\<lambda>k. if k < m then s (Suc k) else foldseq f (\<lambda>k. s (Suc (k + m))) (na - m)) m) =
+ foldseq f (\<lambda>k. if k < m then s k else foldseq f (\<lambda>k. s (k + m)) (Suc na - m)) m"
+ apply (simp add: subd)
+ apply (case_tac "m=0")
+ apply (simp)
+ apply (drule sube)
+ apply (auto)
+ apply (rule a)
+ by (simp add: subc if_def)
+ qed
+ then show "?p \<Longrightarrow> ?concl" by simp
+qed
+
+lemma foldseq_zerotail:
+ assumes
+ fz: "f 0 0 = 0"
+ and sz: "! i. n <= i \<longrightarrow> s i = 0"
+ and nm: "n <= m"
+ shows
+ "foldseq f s n = foldseq f s m"
+proof -
+ show "foldseq f s n = foldseq f s m"
+ apply (simp add: foldseq_tail[OF nm, of f s])
+ apply (rule foldseq_significant_positions)
+ apply (auto)
+ apply (subst foldseq_zero)
+ by (simp add: fz sz)+
+qed
+
+lemma foldseq_zerotail2:
+ assumes "! x. f x 0 = x"
+ and "! i. n < i \<longrightarrow> s i = 0"
+ and nm: "n <= m"
+ shows
+ "foldseq f s n = foldseq f s m" (is ?concl)
+proof -
+ have "f 0 0 = 0" by (simp add: prems)
+ have b:"!! m n. n <= m \<Longrightarrow> m \<noteq> n \<Longrightarrow> ? k. m-n = Suc k" by arith
+ have c: "0 <= m" by simp
+ have d: "!! k. k \<noteq> 0 \<Longrightarrow> ? l. k = Suc l" by arith
+ show ?concl
+ apply (subst foldseq_tail[OF nm])
+ apply (rule foldseq_significant_positions)
+ apply (auto)
+ apply (case_tac "m=n")
+ apply (simp+)
+ apply (drule b[OF nm])
+ apply (auto)
+ apply (case_tac "k=0")
+ apply (simp add: prems)
+ apply (drule d)
+ apply (auto)
+ by (simp add: prems foldseq_zero)
+qed
+
+lemma foldseq_zerostart:
+ "! x. f 0 (f 0 x) = f 0 x \<Longrightarrow> ! i. i <= n \<longrightarrow> s i = 0 \<Longrightarrow> foldseq f s (Suc n) = f 0 (s (Suc n))"
+proof -
+ assume f00x: "! x. f 0 (f 0 x) = f 0 x"
+ have "! s. (! i. i<=n \<longrightarrow> s i = 0) \<longrightarrow> foldseq f s (Suc n) = f 0 (s (Suc n))"
+ apply (induct n)
+ apply (simp)
+ apply (rule allI, rule impI)
+ proof -
+ fix n
+ fix s
+ have a:"foldseq f s (Suc (Suc n)) = f (s 0) (foldseq f (% k. s(Suc k)) (Suc n))" by simp
+ assume b: "! s. ((\<forall>i\<le>n. s i = 0) \<longrightarrow> foldseq f s (Suc n) = f 0 (s (Suc n)))"
+ from b have c:"!! s. (\<forall>i\<le>n. s i = 0) \<Longrightarrow> foldseq f s (Suc n) = f 0 (s (Suc n))" by simp
+ assume d: "! i. i <= Suc n \<longrightarrow> s i = 0"
+ show "foldseq f s (Suc (Suc n)) = f 0 (s (Suc (Suc n)))"
+ apply (subst a)
+ apply (subst c)
+ by (simp add: d f00x)+
+ qed
+ then show "! i. i <= n \<longrightarrow> s i = 0 \<Longrightarrow> foldseq f s (Suc n) = f 0 (s (Suc n))" by simp
+qed
+
+lemma foldseq_zerostart2:
+ "! x. f 0 x = x \<Longrightarrow> ! i. i < n \<longrightarrow> s i = 0 \<Longrightarrow> foldseq f s n = s n"
+proof -
+ assume a:"! i. i<n \<longrightarrow> s i = 0"
+ assume x:"! x. f 0 x = x"
+ from x have f00x: "! x. f 0 (f 0 x) = f 0 x" by blast
+ have b: "!! i l. i < Suc l = (i <= l)" by arith
+ have d: "!! k. k \<noteq> 0 \<Longrightarrow> ? l. k = Suc l" by arith
+ show "foldseq f s n = s n"
+ apply (case_tac "n=0")
+ apply (simp)
+ apply (insert a)
+ apply (drule d)
+ apply (auto)
+ apply (simp add: b)
+ apply (insert f00x)
+ apply (drule foldseq_zerostart)
+ by (simp add: x)+
+qed
+
+lemma foldseq_almostzero:
+ assumes f0x:"! x. f 0 x = x" and fx0: "! x. f x 0 = x" and s0:"! i. i \<noteq> j \<longrightarrow> s i = 0"
+ shows "foldseq f s n = (if (j <= n) then (s j) else 0)" (is ?concl)
+proof -
+ from s0 have a: "! i. i < j \<longrightarrow> s i = 0" by simp
+ from s0 have b: "! i. j < i \<longrightarrow> s i = 0" by simp
+ show ?concl
+ apply auto
+ apply (subst foldseq_zerotail2[of f, OF fx0, of j, OF b, of n, THEN sym])
+ apply simp
+ apply (subst foldseq_zerostart2)
+ apply (simp add: f0x a)+
+ apply (subst foldseq_zero)
+ by (simp add: s0 f0x)+
+qed
+
+lemma foldseq_distr_unary:
+ assumes "!! a b. g (f a b) = f (g a) (g b)"
+ shows "g(foldseq f s n) = foldseq f (% x. g(s x)) n" (is ?concl)
+proof -
+ have "! s. g(foldseq f s n) = foldseq f (% x. g(s x)) n"
+ apply (induct_tac n)
+ apply (simp)
+ apply (simp)
+ apply (auto)
+ apply (drule_tac x="% k. s (Suc k)" in spec)
+ by (simp add: prems)
+ then show ?concl by simp
+qed
+
+constdefs
+ mult_matrix_n :: "nat \<Rightarrow> (('a::zero) \<Rightarrow> ('b::zero) \<Rightarrow> ('c::zero)) \<Rightarrow> ('c \<Rightarrow> 'c \<Rightarrow> 'c) \<Rightarrow> 'a matrix \<Rightarrow> 'b matrix \<Rightarrow> 'c matrix"
+ "mult_matrix_n n fmul fadd A B == Abs_matrix(% j i. foldseq fadd (% k. fmul (Rep_matrix A j k) (Rep_matrix B k i)) n)"
+ mult_matrix :: "(('a::zero) \<Rightarrow> ('b::zero) \<Rightarrow> ('c::zero)) \<Rightarrow> ('c \<Rightarrow> 'c \<Rightarrow> 'c) \<Rightarrow> 'a matrix \<Rightarrow> 'b matrix \<Rightarrow> 'c matrix"
+ "mult_matrix fmul fadd A B == mult_matrix_n (max (ncols A) (nrows B)) fmul fadd A B"
+
+lemma mult_matrix_n:
+ assumes prems: "ncols A \<le> n" (is ?An) "nrows B \<le> n" (is ?Bn) "fadd 0 0 = 0" "fmul 0 0 = 0"
+ shows c:"mult_matrix fmul fadd A B = mult_matrix_n n fmul fadd A B" (is ?concl)
+proof -
+ show ?concl using prems
+ apply (simp add: mult_matrix_def mult_matrix_n_def)
+ apply (rule comb[of "Abs_matrix" "Abs_matrix"], simp, (rule ext)+)
+ by (rule foldseq_zerotail, simp_all add: nrows_le ncols_le prems)
+qed
+
+lemma mult_matrix_nm:
+ assumes prems: "ncols A <= n" "nrows B <= n" "ncols A <= m" "nrows B <= m" "fadd 0 0 = 0" "fmul 0 0 = 0"
+ shows "mult_matrix_n n fmul fadd A B = mult_matrix_n m fmul fadd A B"
+proof -
+ from prems have "mult_matrix_n n fmul fadd A B = mult_matrix fmul fadd A B" by (simp add: mult_matrix_n)
+ also from prems have "\<dots> = mult_matrix_n m fmul fadd A B" by (simp add: mult_matrix_n[THEN sym])
+ finally show "mult_matrix_n n fmul fadd A B = mult_matrix_n m fmul fadd A B" by simp
+qed
+
+constdefs
+ r_distributive :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> bool"
+ "r_distributive fmul fadd == ! a u v. fmul a (fadd u v) = fadd (fmul a u) (fmul a v)"
+ l_distributive :: "('a \<Rightarrow> 'b \<Rightarrow> 'a) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> bool"
+ "l_distributive fmul fadd == ! a u v. fmul (fadd u v) a = fadd (fmul u a) (fmul v a)"
+ distributive :: "('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> bool"
+ "distributive fmul fadd == l_distributive fmul fadd & r_distributive fmul fadd"
+
+lemma max1: "!! a x y. (a::nat) <= x \<Longrightarrow> a <= max x y" by (arith)
+lemma max2: "!! b x y. (b::nat) <= y \<Longrightarrow> b <= max x y" by (arith)
+
+lemma r_distributive_matrix:
+ assumes prems:
+ "r_distributive fmul fadd"
+ "associative fadd"
+ "commutative fadd"
+ "fadd 0 0 = 0"
+ "! a. fmul a 0 = 0"
+ "! a. fmul 0 a = 0"
+ shows "r_distributive (mult_matrix fmul fadd) (combine_matrix fadd)" (is ?concl)
+proof -
+ from prems show ?concl
+ apply (simp add: r_distributive_def mult_matrix_def, auto)
+ proof -
+ fix a::"'a matrix"
+ fix u::"'b matrix"
+ fix v::"'b matrix"
+ let ?mx = "max (ncols a) (max (nrows u) (nrows v))"
+ from prems show "mult_matrix_n (max (ncols a) (nrows (combine_matrix fadd u v))) fmul fadd a (combine_matrix fadd u v) =
+ combine_matrix fadd (mult_matrix_n (max (ncols a) (nrows u)) fmul fadd a u) (mult_matrix_n (max (ncols a) (nrows v)) fmul fadd a v)"
+ apply (subst mult_matrix_nm[of _ _ _ ?mx fadd fmul])
+ apply (simp add: max1 max2 combine_nrows combine_ncols)+
+ apply (subst mult_matrix_nm[of _ _ v ?mx fadd fmul])
+ apply (simp add: max1 max2 combine_nrows combine_ncols)+
+ apply (subst mult_matrix_nm[of _ _ u ?mx fadd fmul])
+ apply (simp add: max1 max2 combine_nrows combine_ncols)+
+ apply (simp add: mult_matrix_n_def r_distributive_def foldseq_distr[of fadd])
+ apply (simp add: combine_matrix_def combine_infmatrix_def)
+ apply (rule comb[of "Abs_matrix" "Abs_matrix"], simp, (rule ext)+)
+ apply (simplesubst RepAbs_matrix)
+ apply (simp, auto)
+ apply (rule exI[of _ "nrows a"], simp add: nrows_le foldseq_zero)
+ apply (rule exI[of _ "ncols v"], simp add: ncols_le foldseq_zero)
+ apply (subst RepAbs_matrix)
+ apply (simp, auto)
+ apply (rule exI[of _ "nrows a"], simp add: nrows_le foldseq_zero)
+ apply (rule exI[of _ "ncols u"], simp add: ncols_le foldseq_zero)
+ done
+ qed
+qed
+
+lemma l_distributive_matrix:
+ assumes prems:
+ "l_distributive fmul fadd"
+ "associative fadd"
+ "commutative fadd"
+ "fadd 0 0 = 0"
+ "! a. fmul a 0 = 0"
+ "! a. fmul 0 a = 0"
+ shows "l_distributive (mult_matrix fmul fadd) (combine_matrix fadd)" (is ?concl)
+proof -
+ from prems show ?concl
+ apply (simp add: l_distributive_def mult_matrix_def, auto)
+ proof -
+ fix a::"'b matrix"
+ fix u::"'a matrix"
+ fix v::"'a matrix"
+ let ?mx = "max (nrows a) (max (ncols u) (ncols v))"
+ from prems show "mult_matrix_n (max (ncols (combine_matrix fadd u v)) (nrows a)) fmul fadd (combine_matrix fadd u v) a =
+ combine_matrix fadd (mult_matrix_n (max (ncols u) (nrows a)) fmul fadd u a) (mult_matrix_n (max (ncols v) (nrows a)) fmul fadd v a)"
+ apply (subst mult_matrix_nm[of v _ _ ?mx fadd fmul])
+ apply (simp add: max1 max2 combine_nrows combine_ncols)+
+ apply (subst mult_matrix_nm[of u _ _ ?mx fadd fmul])
+ apply (simp add: max1 max2 combine_nrows combine_ncols)+
+ apply (subst mult_matrix_nm[of _ _ _ ?mx fadd fmul])
+ apply (simp add: max1 max2 combine_nrows combine_ncols)+
+ apply (simp add: mult_matrix_n_def l_distributive_def foldseq_distr[of fadd])
+ apply (simp add: combine_matrix_def combine_infmatrix_def)
+ apply (rule comb[of "Abs_matrix" "Abs_matrix"], simp, (rule ext)+)
+ apply (simplesubst RepAbs_matrix)
+ apply (simp, auto)
+ apply (rule exI[of _ "nrows v"], simp add: nrows_le foldseq_zero)
+ apply (rule exI[of _ "ncols a"], simp add: ncols_le foldseq_zero)
+ apply (subst RepAbs_matrix)
+ apply (simp, auto)
+ apply (rule exI[of _ "nrows u"], simp add: nrows_le foldseq_zero)
+ apply (rule exI[of _ "ncols a"], simp add: ncols_le foldseq_zero)
+ done
+ qed
+qed
+
+instantiation matrix :: (zero) zero
+begin
+
+definition zero_matrix_def [code func del]: "0 = Abs_matrix (\<lambda>j i. 0)"
+
+instance ..
+
+end
+
+lemma Rep_zero_matrix_def[simp]: "Rep_matrix 0 j i = 0"
+ apply (simp add: zero_matrix_def)
+ apply (subst RepAbs_matrix)
+ by (auto)
+
+lemma zero_matrix_def_nrows[simp]: "nrows 0 = 0"
+proof -
+ have a:"!! (x::nat). x <= 0 \<Longrightarrow> x = 0" by (arith)
+ show "nrows 0 = 0" by (rule a, subst nrows_le, simp)
+qed
+
+lemma zero_matrix_def_ncols[simp]: "ncols 0 = 0"
+proof -
+ have a:"!! (x::nat). x <= 0 \<Longrightarrow> x = 0" by (arith)
+ show "ncols 0 = 0" by (rule a, subst ncols_le, simp)
+qed
+
+lemma combine_matrix_zero_l_neutral: "zero_l_neutral f \<Longrightarrow> zero_l_neutral (combine_matrix f)"
+ by (simp add: zero_l_neutral_def combine_matrix_def combine_infmatrix_def)
+
+lemma combine_matrix_zero_r_neutral: "zero_r_neutral f \<Longrightarrow> zero_r_neutral (combine_matrix f)"
+ by (simp add: zero_r_neutral_def combine_matrix_def combine_infmatrix_def)
+
+lemma mult_matrix_zero_closed: "\<lbrakk>fadd 0 0 = 0; zero_closed fmul\<rbrakk> \<Longrightarrow> zero_closed (mult_matrix fmul fadd)"
+ apply (simp add: zero_closed_def mult_matrix_def mult_matrix_n_def)
+ apply (auto)
+ by (subst foldseq_zero, (simp add: zero_matrix_def)+)+
+
+lemma mult_matrix_n_zero_right[simp]: "\<lbrakk>fadd 0 0 = 0; !a. fmul a 0 = 0\<rbrakk> \<Longrightarrow> mult_matrix_n n fmul fadd A 0 = 0"
+ apply (simp add: mult_matrix_n_def)
+ apply (subst foldseq_zero)
+ by (simp_all add: zero_matrix_def)
+
+lemma mult_matrix_n_zero_left[simp]: "\<lbrakk>fadd 0 0 = 0; !a. fmul 0 a = 0\<rbrakk> \<Longrightarrow> mult_matrix_n n fmul fadd 0 A = 0"
+ apply (simp add: mult_matrix_n_def)
+ apply (subst foldseq_zero)
+ by (simp_all add: zero_matrix_def)
+
+lemma mult_matrix_zero_left[simp]: "\<lbrakk>fadd 0 0 = 0; !a. fmul 0 a = 0\<rbrakk> \<Longrightarrow> mult_matrix fmul fadd 0 A = 0"
+by (simp add: mult_matrix_def)
+
+lemma mult_matrix_zero_right[simp]: "\<lbrakk>fadd 0 0 = 0; !a. fmul a 0 = 0\<rbrakk> \<Longrightarrow> mult_matrix fmul fadd A 0 = 0"
+by (simp add: mult_matrix_def)
+
+lemma apply_matrix_zero[simp]: "f 0 = 0 \<Longrightarrow> apply_matrix f 0 = 0"
+ apply (simp add: apply_matrix_def apply_infmatrix_def)
+ by (simp add: zero_matrix_def)
+
+lemma combine_matrix_zero: "f 0 0 = 0 \<Longrightarrow> combine_matrix f 0 0 = 0"
+ apply (simp add: combine_matrix_def combine_infmatrix_def)
+ by (simp add: zero_matrix_def)
+
+lemma transpose_matrix_zero[simp]: "transpose_matrix 0 = 0"
+apply (simp add: transpose_matrix_def transpose_infmatrix_def zero_matrix_def RepAbs_matrix)
+apply (subst Rep_matrix_inject[symmetric], (rule ext)+)
+apply (simp add: RepAbs_matrix)
+done
+
+lemma apply_zero_matrix_def[simp]: "apply_matrix (% x. 0) A = 0"
+ apply (simp add: apply_matrix_def apply_infmatrix_def)
+ by (simp add: zero_matrix_def)
+
+constdefs
+ singleton_matrix :: "nat \<Rightarrow> nat \<Rightarrow> ('a::zero) \<Rightarrow> 'a matrix"
+ "singleton_matrix j i a == Abs_matrix(% m n. if j = m & i = n then a else 0)"
+ move_matrix :: "('a::zero) matrix \<Rightarrow> int \<Rightarrow> int \<Rightarrow> 'a matrix"
+ "move_matrix A y x == Abs_matrix(% j i. if (neg ((int j)-y)) | (neg ((int i)-x)) then 0 else Rep_matrix A (nat ((int j)-y)) (nat ((int i)-x)))"
+ take_rows :: "('a::zero) matrix \<Rightarrow> nat \<Rightarrow> 'a matrix"
+ "take_rows A r == Abs_matrix(% j i. if (j < r) then (Rep_matrix A j i) else 0)"
+ take_columns :: "('a::zero) matrix \<Rightarrow> nat \<Rightarrow> 'a matrix"
+ "take_columns A c == Abs_matrix(% j i. if (i < c) then (Rep_matrix A j i) else 0)"
+
+constdefs
+ column_of_matrix :: "('a::zero) matrix \<Rightarrow> nat \<Rightarrow> 'a matrix"
+ "column_of_matrix A n == take_columns (move_matrix A 0 (- int n)) 1"
+ row_of_matrix :: "('a::zero) matrix \<Rightarrow> nat \<Rightarrow> 'a matrix"
+ "row_of_matrix A m == take_rows (move_matrix A (- int m) 0) 1"
+
+lemma Rep_singleton_matrix[simp]: "Rep_matrix (singleton_matrix j i e) m n = (if j = m & i = n then e else 0)"
+apply (simp add: singleton_matrix_def)
+apply (auto)
+apply (subst RepAbs_matrix)
+apply (rule exI[of _ "Suc m"], simp)
+apply (rule exI[of _ "Suc n"], simp+)
+by (subst RepAbs_matrix, rule exI[of _ "Suc j"], simp, rule exI[of _ "Suc i"], simp+)+
+
+lemma apply_singleton_matrix[simp]: "f 0 = 0 \<Longrightarrow> apply_matrix f (singleton_matrix j i x) = (singleton_matrix j i (f x))"
+apply (subst Rep_matrix_inject[symmetric])
+apply (rule ext)+
+apply (simp)
+done
+
+lemma singleton_matrix_zero[simp]: "singleton_matrix j i 0 = 0"
+ by (simp add: singleton_matrix_def zero_matrix_def)
+
+lemma nrows_singleton[simp]: "nrows(singleton_matrix j i e) = (if e = 0 then 0 else Suc j)"
+proof-
+have th: "\<not> (\<forall>m. m \<le> j)" "\<exists>n. \<not> n \<le> i" by arith+
+from th show ?thesis
+apply (auto)
+apply (rule le_anti_sym)
+apply (subst nrows_le)
+apply (simp add: singleton_matrix_def, auto)
+apply (subst RepAbs_matrix)
+apply auto
+apply (simp add: Suc_le_eq)
+apply (rule not_leE)
+apply (subst nrows_le)
+by simp
+qed
+
+lemma ncols_singleton[simp]: "ncols(singleton_matrix j i e) = (if e = 0 then 0 else Suc i)"
+proof-
+have th: "\<not> (\<forall>m. m \<le> j)" "\<exists>n. \<not> n \<le> i" by arith+
+from th show ?thesis
+apply (auto)
+apply (rule le_anti_sym)
+apply (subst ncols_le)
+apply (simp add: singleton_matrix_def, auto)
+apply (subst RepAbs_matrix)
+apply auto
+apply (simp add: Suc_le_eq)
+apply (rule not_leE)
+apply (subst ncols_le)
+by simp
+qed
+
+lemma combine_singleton: "f 0 0 = 0 \<Longrightarrow> combine_matrix f (singleton_matrix j i a) (singleton_matrix j i b) = singleton_matrix j i (f a b)"
+apply (simp add: singleton_matrix_def combine_matrix_def combine_infmatrix_def)
+apply (subst RepAbs_matrix)
+apply (rule exI[of _ "Suc j"], simp)
+apply (rule exI[of _ "Suc i"], simp)
+apply (rule comb[of "Abs_matrix" "Abs_matrix"], simp, (rule ext)+)
+apply (subst RepAbs_matrix)
+apply (rule exI[of _ "Suc j"], simp)
+apply (rule exI[of _ "Suc i"], simp)
+by simp
+
+lemma transpose_singleton[simp]: "transpose_matrix (singleton_matrix j i a) = singleton_matrix i j a"
+apply (subst Rep_matrix_inject[symmetric], (rule ext)+)
+apply (simp)
+done
+
+lemma Rep_move_matrix[simp]:
+ "Rep_matrix (move_matrix A y x) j i =
+ (if (neg ((int j)-y)) | (neg ((int i)-x)) then 0 else Rep_matrix A (nat((int j)-y)) (nat((int i)-x)))"
+apply (simp add: move_matrix_def)
+apply (auto)
+by (subst RepAbs_matrix,
+ rule exI[of _ "(nrows A)+(nat (abs y))"], auto, rule nrows, arith,
+ rule exI[of _ "(ncols A)+(nat (abs x))"], auto, rule ncols, arith)+
+
+lemma move_matrix_0_0[simp]: "move_matrix A 0 0 = A"
+by (simp add: move_matrix_def)
+
+lemma move_matrix_ortho: "move_matrix A j i = move_matrix (move_matrix A j 0) 0 i"
+apply (subst Rep_matrix_inject[symmetric])
+apply (rule ext)+
+apply (simp)
+done
+
+lemma transpose_move_matrix[simp]:
+ "transpose_matrix (move_matrix A x y) = move_matrix (transpose_matrix A) y x"
+apply (subst Rep_matrix_inject[symmetric], (rule ext)+)
+apply (simp)
+done
+
+lemma move_matrix_singleton[simp]: "move_matrix (singleton_matrix u v x) j i =
+ (if (j + int u < 0) | (i + int v < 0) then 0 else (singleton_matrix (nat (j + int u)) (nat (i + int v)) x))"
+ apply (subst Rep_matrix_inject[symmetric])
+ apply (rule ext)+
+ apply (case_tac "j + int u < 0")
+ apply (simp, arith)
+ apply (case_tac "i + int v < 0")
+ apply (simp add: neg_def, arith)
+ apply (simp add: neg_def)
+ apply arith
+ done
+
+lemma Rep_take_columns[simp]:
+ "Rep_matrix (take_columns A c) j i =
+ (if i < c then (Rep_matrix A j i) else 0)"
+apply (simp add: take_columns_def)
+apply (simplesubst RepAbs_matrix)
+apply (rule exI[of _ "nrows A"], auto, simp add: nrows_le)
+apply (rule exI[of _ "ncols A"], auto, simp add: ncols_le)
+done
+
+lemma Rep_take_rows[simp]:
+ "Rep_matrix (take_rows A r) j i =
+ (if j < r then (Rep_matrix A j i) else 0)"
+apply (simp add: take_rows_def)
+apply (simplesubst RepAbs_matrix)
+apply (rule exI[of _ "nrows A"], auto, simp add: nrows_le)
+apply (rule exI[of _ "ncols A"], auto, simp add: ncols_le)
+done
+
+lemma Rep_column_of_matrix[simp]:
+ "Rep_matrix (column_of_matrix A c) j i = (if i = 0 then (Rep_matrix A j c) else 0)"
+ by (simp add: column_of_matrix_def)
+
+lemma Rep_row_of_matrix[simp]:
+ "Rep_matrix (row_of_matrix A r) j i = (if j = 0 then (Rep_matrix A r i) else 0)"
+ by (simp add: row_of_matrix_def)
+
+lemma column_of_matrix: "ncols A <= n \<Longrightarrow> column_of_matrix A n = 0"
+apply (subst Rep_matrix_inject[THEN sym])
+apply (rule ext)+
+by (simp add: ncols)
+
+lemma row_of_matrix: "nrows A <= n \<Longrightarrow> row_of_matrix A n = 0"
+apply (subst Rep_matrix_inject[THEN sym])
+apply (rule ext)+
+by (simp add: nrows)
+
+lemma mult_matrix_singleton_right[simp]:
+ assumes prems:
+ "! x. fmul x 0 = 0"
+ "! x. fmul 0 x = 0"
+ "! x. fadd 0 x = x"
+ "! x. fadd x 0 = x"
+ shows "(mult_matrix fmul fadd A (singleton_matrix j i e)) = apply_matrix (% x. fmul x e) (move_matrix (column_of_matrix A j) 0 (int i))"
+ apply (simp add: mult_matrix_def)
+ apply (subst mult_matrix_nm[of _ _ _ "max (ncols A) (Suc j)"])
+ apply (auto)
+ apply (simp add: prems)+
+ apply (simp add: mult_matrix_n_def apply_matrix_def apply_infmatrix_def)
+ apply (rule comb[of "Abs_matrix" "Abs_matrix"], auto, (rule ext)+)
+ apply (subst foldseq_almostzero[of _ j])
+ apply (simp add: prems)+
+ apply (auto)
+ proof -
+ fix k
+ fix l
+ assume a:"~neg(int l - int i)"
+ assume b:"nat (int l - int i) = 0"
+ from a b have a: "l = i" by(insert not_neg_nat[of "int l - int i"], simp add: a b)
+ assume c: "i \<noteq> l"
+ from c a show "fmul (Rep_matrix A k j) e = 0" by blast
+ qed
+
+lemma mult_matrix_ext:
+ assumes
+ eprem:
+ "? e. (! a b. a \<noteq> b \<longrightarrow> fmul a e \<noteq> fmul b e)"
+ and fprems:
+ "! a. fmul 0 a = 0"
+ "! a. fmul a 0 = 0"
+ "! a. fadd a 0 = a"
+ "! a. fadd 0 a = a"
+ and contraprems:
+ "mult_matrix fmul fadd A = mult_matrix fmul fadd B"
+ shows
+ "A = B"
+proof(rule contrapos_np[of "False"], simp)
+ assume a: "A \<noteq> B"
+ have b: "!! f g. (! x y. f x y = g x y) \<Longrightarrow> f = g" by ((rule ext)+, auto)
+ have "? j i. (Rep_matrix A j i) \<noteq> (Rep_matrix B j i)"
+ apply (rule contrapos_np[of "False"], simp+)
+ apply (insert b[of "Rep_matrix A" "Rep_matrix B"], simp)
+ by (simp add: Rep_matrix_inject a)
+ then obtain J I where c:"(Rep_matrix A J I) \<noteq> (Rep_matrix B J I)" by blast
+ from eprem obtain e where eprops:"(! a b. a \<noteq> b \<longrightarrow> fmul a e \<noteq> fmul b e)" by blast
+ let ?S = "singleton_matrix I 0 e"
+ let ?comp = "mult_matrix fmul fadd"
+ have d: "!!x f g. f = g \<Longrightarrow> f x = g x" by blast
+ have e: "(% x. fmul x e) 0 = 0" by (simp add: prems)
+ have "~(?comp A ?S = ?comp B ?S)"
+ apply (rule notI)
+ apply (simp add: fprems eprops)
+ apply (simp add: Rep_matrix_inject[THEN sym])
+ apply (drule d[of _ _ "J"], drule d[of _ _ "0"])
+ by (simp add: e c eprops)
+ with contraprems show "False" by simp
+qed
+
+constdefs
+ foldmatrix :: "('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> ('a infmatrix) \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> 'a"
+ "foldmatrix f g A m n == foldseq_transposed g (% j. foldseq f (A j) n) m"
+ foldmatrix_transposed :: "('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> ('a infmatrix) \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> 'a"
+ "foldmatrix_transposed f g A m n == foldseq g (% j. foldseq_transposed f (A j) n) m"
+
+lemma foldmatrix_transpose:
+ assumes
+ "! a b c d. g(f a b) (f c d) = f (g a c) (g b d)"
+ shows
+ "foldmatrix f g A m n = foldmatrix_transposed g f (transpose_infmatrix A) n m" (is ?concl)
+proof -
+ have forall:"!! P x. (! x. P x) \<Longrightarrow> P x" by auto
+ have tworows:"! A. foldmatrix f g A 1 n = foldmatrix_transposed g f (transpose_infmatrix A) n 1"
+ apply (induct n)
+ apply (simp add: foldmatrix_def foldmatrix_transposed_def prems)+
+ apply (auto)
+ by (drule_tac x="(% j i. A j (Suc i))" in forall, simp)
+ show "foldmatrix f g A m n = foldmatrix_transposed g f (transpose_infmatrix A) n m"
+ apply (simp add: foldmatrix_def foldmatrix_transposed_def)
+ apply (induct m, simp)
+ apply (simp)
+ apply (insert tworows)
+ apply (drule_tac x="% j i. (if j = 0 then (foldseq_transposed g (\<lambda>u. A u i) m) else (A (Suc m) i))" in spec)
+ by (simp add: foldmatrix_def foldmatrix_transposed_def)
+qed
+
+lemma foldseq_foldseq:
+assumes
+ "associative f"
+ "associative g"
+ "! a b c d. g(f a b) (f c d) = f (g a c) (g b d)"
+shows
+ "foldseq g (% j. foldseq f (A j) n) m = foldseq f (% j. foldseq g ((transpose_infmatrix A) j) m) n"
+ apply (insert foldmatrix_transpose[of g f A m n])
+ by (simp add: foldmatrix_def foldmatrix_transposed_def foldseq_assoc[THEN sym] prems)
+
+lemma mult_n_nrows:
+assumes
+"! a. fmul 0 a = 0"
+"! a. fmul a 0 = 0"
+"fadd 0 0 = 0"
+shows "nrows (mult_matrix_n n fmul fadd A B) \<le> nrows A"
+apply (subst nrows_le)
+apply (simp add: mult_matrix_n_def)
+apply (subst RepAbs_matrix)
+apply (rule_tac x="nrows A" in exI)
+apply (simp add: nrows prems foldseq_zero)
+apply (rule_tac x="ncols B" in exI)
+apply (simp add: ncols prems foldseq_zero)
+by (simp add: nrows prems foldseq_zero)
+
+lemma mult_n_ncols:
+assumes
+"! a. fmul 0 a = 0"
+"! a. fmul a 0 = 0"
+"fadd 0 0 = 0"
+shows "ncols (mult_matrix_n n fmul fadd A B) \<le> ncols B"
+apply (subst ncols_le)
+apply (simp add: mult_matrix_n_def)
+apply (subst RepAbs_matrix)
+apply (rule_tac x="nrows A" in exI)
+apply (simp add: nrows prems foldseq_zero)
+apply (rule_tac x="ncols B" in exI)
+apply (simp add: ncols prems foldseq_zero)
+by (simp add: ncols prems foldseq_zero)
+
+lemma mult_nrows:
+assumes
+"! a. fmul 0 a = 0"
+"! a. fmul a 0 = 0"
+"fadd 0 0 = 0"
+shows "nrows (mult_matrix fmul fadd A B) \<le> nrows A"
+by (simp add: mult_matrix_def mult_n_nrows prems)
+
+lemma mult_ncols:
+assumes
+"! a. fmul 0 a = 0"
+"! a. fmul a 0 = 0"
+"fadd 0 0 = 0"
+shows "ncols (mult_matrix fmul fadd A B) \<le> ncols B"
+by (simp add: mult_matrix_def mult_n_ncols prems)
+
+lemma nrows_move_matrix_le: "nrows (move_matrix A j i) <= nat((int (nrows A)) + j)"
+ apply (auto simp add: nrows_le)
+ apply (rule nrows)
+ apply (arith)
+ done
+
+lemma ncols_move_matrix_le: "ncols (move_matrix A j i) <= nat((int (ncols A)) + i)"
+ apply (auto simp add: ncols_le)
+ apply (rule ncols)
+ apply (arith)
+ done
+
+lemma mult_matrix_assoc:
+ assumes prems:
+ "! a. fmul1 0 a = 0"
+ "! a. fmul1 a 0 = 0"
+ "! a. fmul2 0 a = 0"
+ "! a. fmul2 a 0 = 0"
+ "fadd1 0 0 = 0"
+ "fadd2 0 0 = 0"
+ "! a b c d. fadd2 (fadd1 a b) (fadd1 c d) = fadd1 (fadd2 a c) (fadd2 b d)"
+ "associative fadd1"
+ "associative fadd2"
+ "! a b c. fmul2 (fmul1 a b) c = fmul1 a (fmul2 b c)"
+ "! a b c. fmul2 (fadd1 a b) c = fadd1 (fmul2 a c) (fmul2 b c)"
+ "! a b c. fmul1 c (fadd2 a b) = fadd2 (fmul1 c a) (fmul1 c b)"
+ shows "mult_matrix fmul2 fadd2 (mult_matrix fmul1 fadd1 A B) C = mult_matrix fmul1 fadd1 A (mult_matrix fmul2 fadd2 B C)" (is ?concl)
+proof -
+ have comb_left: "!! A B x y. A = B \<Longrightarrow> (Rep_matrix (Abs_matrix A)) x y = (Rep_matrix(Abs_matrix B)) x y" by blast
+ have fmul2fadd1fold: "!! x s n. fmul2 (foldseq fadd1 s n) x = foldseq fadd1 (% k. fmul2 (s k) x) n"
+ by (rule_tac g1 = "% y. fmul2 y x" in ssubst [OF foldseq_distr_unary], simp_all!)
+ have fmul1fadd2fold: "!! x s n. fmul1 x (foldseq fadd2 s n) = foldseq fadd2 (% k. fmul1 x (s k)) n"
+ by (rule_tac g1 = "% y. fmul1 x y" in ssubst [OF foldseq_distr_unary], simp_all!)
+ let ?N = "max (ncols A) (max (ncols B) (max (nrows B) (nrows C)))"
+ show ?concl
+ apply (simp add: Rep_matrix_inject[THEN sym])
+ apply (rule ext)+
+ apply (simp add: mult_matrix_def)
+ apply (simplesubst mult_matrix_nm[of _ "max (ncols (mult_matrix_n (max (ncols A) (nrows B)) fmul1 fadd1 A B)) (nrows C)" _ "max (ncols B) (nrows C)"])
+ apply (simp add: max1 max2 mult_n_ncols mult_n_nrows prems)+
+ apply (simplesubst mult_matrix_nm[of _ "max (ncols A) (nrows (mult_matrix_n (max (ncols B) (nrows C)) fmul2 fadd2 B C))" _ "max (ncols A) (nrows B)"]) apply (simp add: max1 max2 mult_n_ncols mult_n_nrows prems)+
+ apply (simplesubst mult_matrix_nm[of _ _ _ "?N"])
+ apply (simp add: max1 max2 mult_n_ncols mult_n_nrows prems)+
+ apply (simplesubst mult_matrix_nm[of _ _ _ "?N"])
+ apply (simp add: max1 max2 mult_n_ncols mult_n_nrows prems)+
+ apply (simplesubst mult_matrix_nm[of _ _ _ "?N"])
+ apply (simp add: max1 max2 mult_n_ncols mult_n_nrows prems)+
+ apply (simplesubst mult_matrix_nm[of _ _ _ "?N"])
+ apply (simp add: max1 max2 mult_n_ncols mult_n_nrows prems)+
+ apply (simp add: mult_matrix_n_def)
+ apply (rule comb_left)
+ apply ((rule ext)+, simp)
+ apply (simplesubst RepAbs_matrix)
+ apply (rule exI[of _ "nrows B"])
+ apply (simp add: nrows prems foldseq_zero)
+ apply (rule exI[of _ "ncols C"])
+ apply (simp add: prems ncols foldseq_zero)
+ apply (subst RepAbs_matrix)
+ apply (rule exI[of _ "nrows A"])
+ apply (simp add: nrows prems foldseq_zero)
+ apply (rule exI[of _ "ncols B"])
+ apply (simp add: prems ncols foldseq_zero)
+ apply (simp add: fmul2fadd1fold fmul1fadd2fold prems)
+ apply (subst foldseq_foldseq)
+ apply (simp add: prems)+
+ by (simp add: transpose_infmatrix)
+qed
+
+lemma
+ assumes prems:
+ "! a. fmul1 0 a = 0"
+ "! a. fmul1 a 0 = 0"
+ "! a. fmul2 0 a = 0"
+ "! a. fmul2 a 0 = 0"
+ "fadd1 0 0 = 0"
+ "fadd2 0 0 = 0"
+ "! a b c d. fadd2 (fadd1 a b) (fadd1 c d) = fadd1 (fadd2 a c) (fadd2 b d)"
+ "associative fadd1"
+ "associative fadd2"
+ "! a b c. fmul2 (fmul1 a b) c = fmul1 a (fmul2 b c)"
+ "! a b c. fmul2 (fadd1 a b) c = fadd1 (fmul2 a c) (fmul2 b c)"
+ "! a b c. fmul1 c (fadd2 a b) = fadd2 (fmul1 c a) (fmul1 c b)"
+ shows
+ "(mult_matrix fmul1 fadd1 A) o (mult_matrix fmul2 fadd2 B) = mult_matrix fmul2 fadd2 (mult_matrix fmul1 fadd1 A B)"
+apply (rule ext)+
+apply (simp add: comp_def )
+by (simp add: mult_matrix_assoc prems)
+
+lemma mult_matrix_assoc_simple:
+ assumes prems:
+ "! a. fmul 0 a = 0"
+ "! a. fmul a 0 = 0"
+ "fadd 0 0 = 0"
+ "associative fadd"
+ "commutative fadd"
+ "associative fmul"
+ "distributive fmul fadd"
+ shows "mult_matrix fmul fadd (mult_matrix fmul fadd A B) C = mult_matrix fmul fadd A (mult_matrix fmul fadd B C)" (is ?concl)
+proof -
+ have "!! a b c d. fadd (fadd a b) (fadd c d) = fadd (fadd a c) (fadd b d)"
+ by (simp! add: associative_def commutative_def)
+ then show ?concl
+ apply (subst mult_matrix_assoc)
+ apply (simp_all!)
+ by (simp add: associative_def distributive_def l_distributive_def r_distributive_def)+
+qed
+
+lemma transpose_apply_matrix: "f 0 = 0 \<Longrightarrow> transpose_matrix (apply_matrix f A) = apply_matrix f (transpose_matrix A)"
+apply (simp add: Rep_matrix_inject[THEN sym])
+apply (rule ext)+
+by simp
+
+lemma transpose_combine_matrix: "f 0 0 = 0 \<Longrightarrow> transpose_matrix (combine_matrix f A B) = combine_matrix f (transpose_matrix A) (transpose_matrix B)"
+apply (simp add: Rep_matrix_inject[THEN sym])
+apply (rule ext)+
+by simp
+
+lemma Rep_mult_matrix:
+ assumes
+ "! a. fmul 0 a = 0"
+ "! a. fmul a 0 = 0"
+ "fadd 0 0 = 0"
+ shows
+ "Rep_matrix(mult_matrix fmul fadd A B) j i =
+ foldseq fadd (% k. fmul (Rep_matrix A j k) (Rep_matrix B k i)) (max (ncols A) (nrows B))"
+apply (simp add: mult_matrix_def mult_matrix_n_def)
+apply (subst RepAbs_matrix)
+apply (rule exI[of _ "nrows A"], simp! add: nrows foldseq_zero)
+apply (rule exI[of _ "ncols B"], simp! add: ncols foldseq_zero)
+by simp
+
+lemma transpose_mult_matrix:
+ assumes
+ "! a. fmul 0 a = 0"
+ "! a. fmul a 0 = 0"
+ "fadd 0 0 = 0"
+ "! x y. fmul y x = fmul x y"
+ shows
+ "transpose_matrix (mult_matrix fmul fadd A B) = mult_matrix fmul fadd (transpose_matrix B) (transpose_matrix A)"
+ apply (simp add: Rep_matrix_inject[THEN sym])
+ apply (rule ext)+
+ by (simp! add: Rep_mult_matrix max_ac)
+
+lemma column_transpose_matrix: "column_of_matrix (transpose_matrix A) n = transpose_matrix (row_of_matrix A n)"
+apply (simp add: Rep_matrix_inject[THEN sym])
+apply (rule ext)+
+by simp
+
+lemma take_columns_transpose_matrix: "take_columns (transpose_matrix A) n = transpose_matrix (take_rows A n)"
+apply (simp add: Rep_matrix_inject[THEN sym])
+apply (rule ext)+
+by simp
+
+instantiation matrix :: ("{ord, zero}") ord
+begin
+
+definition
+ le_matrix_def: "A \<le> B \<longleftrightarrow> (\<forall>j i. Rep_matrix A j i \<le> Rep_matrix B j i)"
+
+definition
+ less_def: "A < (B\<Colon>'a matrix) \<longleftrightarrow> A \<le> B \<and> A \<noteq> B"
+
+instance ..
+
+end
+
+instance matrix :: ("{order, zero}") order
+apply intro_classes
+apply (simp_all add: le_matrix_def less_def)
+apply (auto)
+apply (drule_tac x=j in spec, drule_tac x=j in spec)
+apply (drule_tac x=i in spec, drule_tac x=i in spec)
+apply (simp)
+apply (simp add: Rep_matrix_inject[THEN sym])
+apply (rule ext)+
+apply (drule_tac x=xa in spec, drule_tac x=xa in spec)
+apply (drule_tac x=xb in spec, drule_tac x=xb in spec)
+by simp
+
+lemma le_apply_matrix:
+ assumes
+ "f 0 = 0"
+ "! x y. x <= y \<longrightarrow> f x <= f y"
+ "(a::('a::{ord, zero}) matrix) <= b"
+ shows
+ "apply_matrix f a <= apply_matrix f b"
+ by (simp! add: le_matrix_def)
+
+lemma le_combine_matrix:
+ assumes
+ "f 0 0 = 0"
+ "! a b c d. a <= b & c <= d \<longrightarrow> f a c <= f b d"
+ "A <= B"
+ "C <= D"
+ shows
+ "combine_matrix f A C <= combine_matrix f B D"
+by (simp! add: le_matrix_def)
+
+lemma le_left_combine_matrix:
+ assumes
+ "f 0 0 = 0"
+ "! a b c. a <= b \<longrightarrow> f c a <= f c b"
+ "A <= B"
+ shows
+ "combine_matrix f C A <= combine_matrix f C B"
+ by (simp! add: le_matrix_def)
+
+lemma le_right_combine_matrix:
+ assumes
+ "f 0 0 = 0"
+ "! a b c. a <= b \<longrightarrow> f a c <= f b c"
+ "A <= B"
+ shows
+ "combine_matrix f A C <= combine_matrix f B C"
+ by (simp! add: le_matrix_def)
+
+lemma le_transpose_matrix: "(A <= B) = (transpose_matrix A <= transpose_matrix B)"
+ by (simp add: le_matrix_def, auto)
+
+lemma le_foldseq:
+ assumes
+ "! a b c d . a <= b & c <= d \<longrightarrow> f a c <= f b d"
+ "! i. i <= n \<longrightarrow> s i <= t i"
+ shows
+ "foldseq f s n <= foldseq f t n"
+proof -
+ have "! s t. (! i. i<=n \<longrightarrow> s i <= t i) \<longrightarrow> foldseq f s n <= foldseq f t n" by (induct_tac n, simp_all!)
+ then show "foldseq f s n <= foldseq f t n" by (simp!)
+qed
+
+lemma le_left_mult:
+ assumes
+ "! a b c d. a <= b & c <= d \<longrightarrow> fadd a c <= fadd b d"
+ "! c a b. 0 <= c & a <= b \<longrightarrow> fmul c a <= fmul c b"
+ "! a. fmul 0 a = 0"
+ "! a. fmul a 0 = 0"
+ "fadd 0 0 = 0"
+ "0 <= C"
+ "A <= B"
+ shows
+ "mult_matrix fmul fadd C A <= mult_matrix fmul fadd C B"
+ apply (simp! add: le_matrix_def Rep_mult_matrix)
+ apply (auto)
+ apply (simplesubst foldseq_zerotail[of _ _ _ "max (ncols C) (max (nrows A) (nrows B))"], simp_all add: nrows ncols max1 max2)+
+ apply (rule le_foldseq)
+ by (auto)
+
+lemma le_right_mult:
+ assumes
+ "! a b c d. a <= b & c <= d \<longrightarrow> fadd a c <= fadd b d"
+ "! c a b. 0 <= c & a <= b \<longrightarrow> fmul a c <= fmul b c"
+ "! a. fmul 0 a = 0"
+ "! a. fmul a 0 = 0"
+ "fadd 0 0 = 0"
+ "0 <= C"
+ "A <= B"
+ shows
+ "mult_matrix fmul fadd A C <= mult_matrix fmul fadd B C"
+ apply (simp! add: le_matrix_def Rep_mult_matrix)
+ apply (auto)
+ apply (simplesubst foldseq_zerotail[of _ _ _ "max (nrows C) (max (ncols A) (ncols B))"], simp_all add: nrows ncols max1 max2)+
+ apply (rule le_foldseq)
+ by (auto)
+
+lemma spec2: "! j i. P j i \<Longrightarrow> P j i" by blast
+lemma neg_imp: "(\<not> Q \<longrightarrow> \<not> P) \<Longrightarrow> P \<longrightarrow> Q" by blast
+
+lemma singleton_matrix_le[simp]: "(singleton_matrix j i a <= singleton_matrix j i b) = (a <= (b::_::order))"
+ by (auto simp add: le_matrix_def)
+
+lemma singleton_le_zero[simp]: "(singleton_matrix j i x <= 0) = (x <= (0::'a::{order,zero}))"
+ apply (auto)
+ apply (simp add: le_matrix_def)
+ apply (drule_tac j=j and i=i in spec2)
+ apply (simp)
+ apply (simp add: le_matrix_def)
+ done
+
+lemma singleton_ge_zero[simp]: "(0 <= singleton_matrix j i x) = ((0::'a::{order,zero}) <= x)"
+ apply (auto)
+ apply (simp add: le_matrix_def)
+ apply (drule_tac j=j and i=i in spec2)
+ apply (simp)
+ apply (simp add: le_matrix_def)
+ done
+
+lemma move_matrix_le_zero[simp]: "0 <= j \<Longrightarrow> 0 <= i \<Longrightarrow> (move_matrix A j i <= 0) = (A <= (0::('a::{order,zero}) matrix))"
+ apply (auto simp add: le_matrix_def neg_def)
+ apply (drule_tac j="ja+(nat j)" and i="ia+(nat i)" in spec2)
+ apply (auto)
+ done
+
+lemma move_matrix_zero_le[simp]: "0 <= j \<Longrightarrow> 0 <= i \<Longrightarrow> (0 <= move_matrix A j i) = ((0::('a::{order,zero}) matrix) <= A)"
+ apply (auto simp add: le_matrix_def neg_def)
+ apply (drule_tac j="ja+(nat j)" and i="ia+(nat i)" in spec2)
+ apply (auto)
+ done
+
+lemma move_matrix_le_move_matrix_iff[simp]: "0 <= j \<Longrightarrow> 0 <= i \<Longrightarrow> (move_matrix A j i <= move_matrix B j i) = (A <= (B::('a::{order,zero}) matrix))"
+ apply (auto simp add: le_matrix_def neg_def)
+ apply (drule_tac j="ja+(nat j)" and i="ia+(nat i)" in spec2)
+ apply (auto)
+ done
+
instantiation matrix :: ("{zero, lattice}") lattice
begin
-definition
- "inf = combine_matrix inf"
+definition [code func del]: "inf = combine_matrix inf"
-definition
- "sup = combine_matrix sup"
+definition [code func del]: "sup = combine_matrix sup"
instance
by default (auto simp add: inf_le1 inf_le2 le_infI le_matrix_def inf_matrix_def sup_matrix_def)
@@ -25,7 +1453,7 @@
begin
definition
- plus_matrix_def: "A + B = combine_matrix (op +) A B"
+ plus_matrix_def [code func del]: "A + B = combine_matrix (op +) A B"
instance ..
@@ -35,7 +1463,7 @@
begin
definition
- minus_matrix_def: "- A = apply_matrix uminus A"
+ minus_matrix_def [code func del]: "- A = apply_matrix uminus A"
instance ..
@@ -45,7 +1473,7 @@
begin
definition
- diff_matrix_def: "A - B = combine_matrix (op -) A B"
+ diff_matrix_def [code func del]: "A - B = combine_matrix (op -) A B"
instance ..
@@ -55,7 +1483,7 @@
begin
definition
- times_matrix_def: "A * B = mult_matrix (op *) (op +) A B"
+ times_matrix_def [code func del]: "A * B = mult_matrix (op *) (op +) A B"
instance ..
@@ -65,7 +1493,7 @@
begin
definition
- abs_matrix_def: "abs (A \<Colon> 'a matrix) = sup A (- A)"
+ abs_matrix_def [code func del]: "abs (A \<Colon> 'a matrix) = sup A (- A)"
instance ..
--- a/src/HOL/Matrix/MatrixGeneral.thy Thu Jul 03 20:53:44 2008 +0200
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,1434 +0,0 @@
-(* Title: HOL/Matrix/MatrixGeneral.thy
- ID: $Id$
- Author: Steven Obua
-*)
-
-theory MatrixGeneral
-imports Main
-begin
-
-types 'a infmatrix = "[nat, nat] \<Rightarrow> 'a"
-
-constdefs
- nonzero_positions :: "('a::zero) infmatrix \<Rightarrow> (nat*nat) set"
- "nonzero_positions A == {pos. A (fst pos) (snd pos) ~= 0}"
-
-typedef 'a matrix = "{(f::(('a::zero) infmatrix)). finite (nonzero_positions f)}"
-apply (rule_tac x="(% j i. 0)" in exI)
-by (simp add: nonzero_positions_def)
-
-declare Rep_matrix_inverse[simp]
-
-lemma finite_nonzero_positions : "finite (nonzero_positions (Rep_matrix A))"
-apply (rule Abs_matrix_induct)
-by (simp add: Abs_matrix_inverse matrix_def)
-
-constdefs
- nrows :: "('a::zero) matrix \<Rightarrow> nat"
- "nrows A == if nonzero_positions(Rep_matrix A) = {} then 0 else Suc(Max ((image fst) (nonzero_positions (Rep_matrix A))))"
- ncols :: "('a::zero) matrix \<Rightarrow> nat"
- "ncols A == if nonzero_positions(Rep_matrix A) = {} then 0 else Suc(Max ((image snd) (nonzero_positions (Rep_matrix A))))"
-
-lemma nrows:
- assumes hyp: "nrows A \<le> m"
- shows "(Rep_matrix A m n) = 0" (is ?concl)
-proof cases
- assume "nonzero_positions(Rep_matrix A) = {}"
- then show "(Rep_matrix A m n) = 0" by (simp add: nonzero_positions_def)
-next
- assume a: "nonzero_positions(Rep_matrix A) \<noteq> {}"
- let ?S = "fst`(nonzero_positions(Rep_matrix A))"
- have c: "finite (?S)" by (simp add: finite_nonzero_positions)
- from hyp have d: "Max (?S) < m" by (simp add: a nrows_def)
- have "m \<notin> ?S"
- proof -
- have "m \<in> ?S \<Longrightarrow> m <= Max(?S)" by (simp add: Max_ge [OF c])
- moreover from d have "~(m <= Max ?S)" by (simp)
- ultimately show "m \<notin> ?S" by (auto)
- qed
- thus "Rep_matrix A m n = 0" by (simp add: nonzero_positions_def image_Collect)
-qed
-
-constdefs
- transpose_infmatrix :: "'a infmatrix \<Rightarrow> 'a infmatrix"
- "transpose_infmatrix A j i == A i j"
- transpose_matrix :: "('a::zero) matrix \<Rightarrow> 'a matrix"
- "transpose_matrix == Abs_matrix o transpose_infmatrix o Rep_matrix"
-
-declare transpose_infmatrix_def[simp]
-
-lemma transpose_infmatrix_twice[simp]: "transpose_infmatrix (transpose_infmatrix A) = A"
-by ((rule ext)+, simp)
-
-lemma transpose_infmatrix: "transpose_infmatrix (% j i. P j i) = (% j i. P i j)"
- apply (rule ext)+
- by (simp add: transpose_infmatrix_def)
-
-lemma transpose_infmatrix_closed[simp]: "Rep_matrix (Abs_matrix (transpose_infmatrix (Rep_matrix x))) = transpose_infmatrix (Rep_matrix x)"
-apply (rule Abs_matrix_inverse)
-apply (simp add: matrix_def nonzero_positions_def image_def)
-proof -
- let ?A = "{pos. Rep_matrix x (snd pos) (fst pos) \<noteq> 0}"
- let ?swap = "% pos. (snd pos, fst pos)"
- let ?B = "{pos. Rep_matrix x (fst pos) (snd pos) \<noteq> 0}"
- have swap_image: "?swap`?A = ?B"
- apply (simp add: image_def)
- apply (rule set_ext)
- apply (simp)
- proof
- fix y
- assume hyp: "\<exists>a b. Rep_matrix x b a \<noteq> 0 \<and> y = (b, a)"
- thus "Rep_matrix x (fst y) (snd y) \<noteq> 0"
- proof -
- from hyp obtain a b where "(Rep_matrix x b a \<noteq> 0 & y = (b,a))" by blast
- then show "Rep_matrix x (fst y) (snd y) \<noteq> 0" by (simp)
- qed
- next
- fix y
- assume hyp: "Rep_matrix x (fst y) (snd y) \<noteq> 0"
- show "\<exists> a b. (Rep_matrix x b a \<noteq> 0 & y = (b,a))"
- by (rule exI[of _ "snd y"], rule exI[of _ "fst y"]) (simp add: hyp)
- qed
- then have "finite (?swap`?A)"
- proof -
- have "finite (nonzero_positions (Rep_matrix x))" by (simp add: finite_nonzero_positions)
- then have "finite ?B" by (simp add: nonzero_positions_def)
- with swap_image show "finite (?swap`?A)" by (simp)
- qed
- moreover
- have "inj_on ?swap ?A" by (simp add: inj_on_def)
- ultimately show "finite ?A"by (rule finite_imageD[of ?swap ?A])
-qed
-
-lemma infmatrixforward: "(x::'a infmatrix) = y \<Longrightarrow> \<forall> a b. x a b = y a b" by auto
-
-lemma transpose_infmatrix_inject: "(transpose_infmatrix A = transpose_infmatrix B) = (A = B)"
-apply (auto)
-apply (rule ext)+
-apply (simp add: transpose_infmatrix)
-apply (drule infmatrixforward)
-apply (simp)
-done
-
-lemma transpose_matrix_inject: "(transpose_matrix A = transpose_matrix B) = (A = B)"
-apply (simp add: transpose_matrix_def)
-apply (subst Rep_matrix_inject[THEN sym])+
-apply (simp only: transpose_infmatrix_closed transpose_infmatrix_inject)
-done
-
-lemma transpose_matrix[simp]: "Rep_matrix(transpose_matrix A) j i = Rep_matrix A i j"
-by (simp add: transpose_matrix_def)
-
-lemma transpose_transpose_id[simp]: "transpose_matrix (transpose_matrix A) = A"
-by (simp add: transpose_matrix_def)
-
-lemma nrows_transpose[simp]: "nrows (transpose_matrix A) = ncols A"
-by (simp add: nrows_def ncols_def nonzero_positions_def transpose_matrix_def image_def)
-
-lemma ncols_transpose[simp]: "ncols (transpose_matrix A) = nrows A"
-by (simp add: nrows_def ncols_def nonzero_positions_def transpose_matrix_def image_def)
-
-lemma ncols: "ncols A <= n \<Longrightarrow> Rep_matrix A m n = 0"
-proof -
- assume "ncols A <= n"
- then have "nrows (transpose_matrix A) <= n" by (simp)
- then have "Rep_matrix (transpose_matrix A) n m = 0" by (rule nrows)
- thus "Rep_matrix A m n = 0" by (simp add: transpose_matrix_def)
-qed
-
-lemma ncols_le: "(ncols A <= n) = (! j i. n <= i \<longrightarrow> (Rep_matrix A j i) = 0)" (is "_ = ?st")
-apply (auto)
-apply (simp add: ncols)
-proof (simp add: ncols_def, auto)
- let ?P = "nonzero_positions (Rep_matrix A)"
- let ?p = "snd`?P"
- have a:"finite ?p" by (simp add: finite_nonzero_positions)
- let ?m = "Max ?p"
- assume "~(Suc (?m) <= n)"
- then have b:"n <= ?m" by (simp)
- fix a b
- assume "(a,b) \<in> ?P"
- then have "?p \<noteq> {}" by (auto)
- with a have "?m \<in> ?p" by (simp)
- moreover have "!x. (x \<in> ?p \<longrightarrow> (? y. (Rep_matrix A y x) \<noteq> 0))" by (simp add: nonzero_positions_def image_def)
- ultimately have "? y. (Rep_matrix A y ?m) \<noteq> 0" by (simp)
- moreover assume ?st
- ultimately show "False" using b by (simp)
-qed
-
-lemma less_ncols: "(n < ncols A) = (? j i. n <= i & (Rep_matrix A j i) \<noteq> 0)" (is ?concl)
-proof -
- have a: "!! (a::nat) b. (a < b) = (~(b <= a))" by arith
- show ?concl by (simp add: a ncols_le)
-qed
-
-lemma le_ncols: "(n <= ncols A) = (\<forall> m. (\<forall> j i. m <= i \<longrightarrow> (Rep_matrix A j i) = 0) \<longrightarrow> n <= m)" (is ?concl)
-apply (auto)
-apply (subgoal_tac "ncols A <= m")
-apply (simp)
-apply (simp add: ncols_le)
-apply (drule_tac x="ncols A" in spec)
-by (simp add: ncols)
-
-lemma nrows_le: "(nrows A <= n) = (! j i. n <= j \<longrightarrow> (Rep_matrix A j i) = 0)" (is ?s)
-proof -
- have "(nrows A <= n) = (ncols (transpose_matrix A) <= n)" by (simp)
- also have "\<dots> = (! j i. n <= i \<longrightarrow> (Rep_matrix (transpose_matrix A) j i = 0))" by (rule ncols_le)
- also have "\<dots> = (! j i. n <= i \<longrightarrow> (Rep_matrix A i j) = 0)" by (simp)
- finally show "(nrows A <= n) = (! j i. n <= j \<longrightarrow> (Rep_matrix A j i) = 0)" by (auto)
-qed
-
-lemma less_nrows: "(m < nrows A) = (? j i. m <= j & (Rep_matrix A j i) \<noteq> 0)" (is ?concl)
-proof -
- have a: "!! (a::nat) b. (a < b) = (~(b <= a))" by arith
- show ?concl by (simp add: a nrows_le)
-qed
-
-lemma le_nrows: "(n <= nrows A) = (\<forall> m. (\<forall> j i. m <= j \<longrightarrow> (Rep_matrix A j i) = 0) \<longrightarrow> n <= m)" (is ?concl)
-apply (auto)
-apply (subgoal_tac "nrows A <= m")
-apply (simp)
-apply (simp add: nrows_le)
-apply (drule_tac x="nrows A" in spec)
-by (simp add: nrows)
-
-lemma nrows_notzero: "Rep_matrix A m n \<noteq> 0 \<Longrightarrow> m < nrows A"
-apply (case_tac "nrows A <= m")
-apply (simp_all add: nrows)
-done
-
-lemma ncols_notzero: "Rep_matrix A m n \<noteq> 0 \<Longrightarrow> n < ncols A"
-apply (case_tac "ncols A <= n")
-apply (simp_all add: ncols)
-done
-
-lemma finite_natarray1: "finite {x. x < (n::nat)}"
-apply (induct n)
-apply (simp)
-proof -
- fix n
- have "{x. x < Suc n} = insert n {x. x < n}" by (rule set_ext, simp, arith)
- moreover assume "finite {x. x < n}"
- ultimately show "finite {x. x < Suc n}" by (simp)
-qed
-
-lemma finite_natarray2: "finite {pos. (fst pos) < (m::nat) & (snd pos) < (n::nat)}"
- apply (induct m)
- apply (simp+)
- proof -
- fix m::nat
- let ?s0 = "{pos. fst pos < m & snd pos < n}"
- let ?s1 = "{pos. fst pos < (Suc m) & snd pos < n}"
- let ?sd = "{pos. fst pos = m & snd pos < n}"
- assume f0: "finite ?s0"
- have f1: "finite ?sd"
- proof -
- let ?f = "% x. (m, x)"
- have "{pos. fst pos = m & snd pos < n} = ?f ` {x. x < n}" by (rule set_ext, simp add: image_def, auto)
- moreover have "finite {x. x < n}" by (simp add: finite_natarray1)
- ultimately show "finite {pos. fst pos = m & snd pos < n}" by (simp)
- qed
- have su: "?s0 \<union> ?sd = ?s1" by (rule set_ext, simp, arith)
- from f0 f1 have "finite (?s0 \<union> ?sd)" by (rule finite_UnI)
- with su show "finite ?s1" by (simp)
-qed
-
-lemma RepAbs_matrix:
- assumes aem: "? m. ! j i. m <= j \<longrightarrow> x j i = 0" (is ?em) and aen:"? n. ! j i. (n <= i \<longrightarrow> x j i = 0)" (is ?en)
- shows "(Rep_matrix (Abs_matrix x)) = x"
-apply (rule Abs_matrix_inverse)
-apply (simp add: matrix_def nonzero_positions_def)
-proof -
- from aem obtain m where a: "! j i. m <= j \<longrightarrow> x j i = 0" by (blast)
- from aen obtain n where b: "! j i. n <= i \<longrightarrow> x j i = 0" by (blast)
- let ?u = "{pos. x (fst pos) (snd pos) \<noteq> 0}"
- let ?v = "{pos. fst pos < m & snd pos < n}"
- have c: "!! (m::nat) a. ~(m <= a) \<Longrightarrow> a < m" by (arith)
- from a b have "(?u \<inter> (-?v)) = {}"
- apply (simp)
- apply (rule set_ext)
- apply (simp)
- apply auto
- by (rule c, auto)+
- then have d: "?u \<subseteq> ?v" by blast
- moreover have "finite ?v" by (simp add: finite_natarray2)
- ultimately show "finite ?u" by (rule finite_subset)
-qed
-
-constdefs
- apply_infmatrix :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a infmatrix \<Rightarrow> 'b infmatrix"
- "apply_infmatrix f == % A. (% j i. f (A j i))"
- apply_matrix :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a::zero) matrix \<Rightarrow> ('b::zero) matrix"
- "apply_matrix f == % A. Abs_matrix (apply_infmatrix f (Rep_matrix A))"
- combine_infmatrix :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a infmatrix \<Rightarrow> 'b infmatrix \<Rightarrow> 'c infmatrix"
- "combine_infmatrix f == % A B. (% j i. f (A j i) (B j i))"
- combine_matrix :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> ('a::zero) matrix \<Rightarrow> ('b::zero) matrix \<Rightarrow> ('c::zero) matrix"
- "combine_matrix f == % A B. Abs_matrix (combine_infmatrix f (Rep_matrix A) (Rep_matrix B))"
-
-lemma expand_apply_infmatrix[simp]: "apply_infmatrix f A j i = f (A j i)"
-by (simp add: apply_infmatrix_def)
-
-lemma expand_combine_infmatrix[simp]: "combine_infmatrix f A B j i = f (A j i) (B j i)"
-by (simp add: combine_infmatrix_def)
-
-constdefs
-commutative :: "('a \<Rightarrow> 'a \<Rightarrow> 'b) \<Rightarrow> bool"
-"commutative f == ! x y. f x y = f y x"
-associative :: "('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> bool"
-"associative f == ! x y z. f (f x y) z = f x (f y z)"
-
-text{*
-To reason about associativity and commutativity of operations on matrices,
-let's take a step back and look at the general situtation: Assume that we have
-sets $A$ and $B$ with $B \subset A$ and an abstraction $u: A \rightarrow B$. This abstraction has to fulfill $u(b) = b$ for all $b \in B$, but is arbitrary otherwise.
-Each function $f: A \times A \rightarrow A$ now induces a function $f': B \times B \rightarrow B$ by $f' = u \circ f$.
-It is obvious that commutativity of $f$ implies commutativity of $f'$: $f' x y = u (f x y) = u (f y x) = f' y x.$
-*}
-
-lemma combine_infmatrix_commute:
- "commutative f \<Longrightarrow> commutative (combine_infmatrix f)"
-by (simp add: commutative_def combine_infmatrix_def)
-
-lemma combine_matrix_commute:
-"commutative f \<Longrightarrow> commutative (combine_matrix f)"
-by (simp add: combine_matrix_def commutative_def combine_infmatrix_def)
-
-text{*
-On the contrary, given an associative function $f$ we cannot expect $f'$ to be associative. A counterexample is given by $A=\ganz$, $B=\{-1, 0, 1\}$,
-as $f$ we take addition on $\ganz$, which is clearly associative. The abstraction is given by $u(a) = 0$ for $a \notin B$. Then we have
-\[ f' (f' 1 1) -1 = u(f (u (f 1 1)) -1) = u(f (u 2) -1) = u (f 0 -1) = -1, \]
-but on the other hand we have
-\[ f' 1 (f' 1 -1) = u (f 1 (u (f 1 -1))) = u (f 1 0) = 1.\]
-A way out of this problem is to assume that $f(A\times A)\subset A$ holds, and this is what we are going to do:
-*}
-
-lemma nonzero_positions_combine_infmatrix[simp]: "f 0 0 = 0 \<Longrightarrow> nonzero_positions (combine_infmatrix f A B) \<subseteq> (nonzero_positions A) \<union> (nonzero_positions B)"
-by (rule subsetI, simp add: nonzero_positions_def combine_infmatrix_def, auto)
-
-lemma finite_nonzero_positions_Rep[simp]: "finite (nonzero_positions (Rep_matrix A))"
-by (insert Rep_matrix [of A], simp add: matrix_def)
-
-lemma combine_infmatrix_closed [simp]:
- "f 0 0 = 0 \<Longrightarrow> Rep_matrix (Abs_matrix (combine_infmatrix f (Rep_matrix A) (Rep_matrix B))) = combine_infmatrix f (Rep_matrix A) (Rep_matrix B)"
-apply (rule Abs_matrix_inverse)
-apply (simp add: matrix_def)
-apply (rule finite_subset[of _ "(nonzero_positions (Rep_matrix A)) \<union> (nonzero_positions (Rep_matrix B))"])
-by (simp_all)
-
-text {* We need the next two lemmas only later, but it is analog to the above one, so we prove them now: *}
-lemma nonzero_positions_apply_infmatrix[simp]: "f 0 = 0 \<Longrightarrow> nonzero_positions (apply_infmatrix f A) \<subseteq> nonzero_positions A"
-by (rule subsetI, simp add: nonzero_positions_def apply_infmatrix_def, auto)
-
-lemma apply_infmatrix_closed [simp]:
- "f 0 = 0 \<Longrightarrow> Rep_matrix (Abs_matrix (apply_infmatrix f (Rep_matrix A))) = apply_infmatrix f (Rep_matrix A)"
-apply (rule Abs_matrix_inverse)
-apply (simp add: matrix_def)
-apply (rule finite_subset[of _ "nonzero_positions (Rep_matrix A)"])
-by (simp_all)
-
-lemma combine_infmatrix_assoc[simp]: "f 0 0 = 0 \<Longrightarrow> associative f \<Longrightarrow> associative (combine_infmatrix f)"
-by (simp add: associative_def combine_infmatrix_def)
-
-lemma comb: "f = g \<Longrightarrow> x = y \<Longrightarrow> f x = g y"
-by (auto)
-
-lemma combine_matrix_assoc: "f 0 0 = 0 \<Longrightarrow> associative f \<Longrightarrow> associative (combine_matrix f)"
-apply (simp(no_asm) add: associative_def combine_matrix_def, auto)
-apply (rule comb [of Abs_matrix Abs_matrix])
-by (auto, insert combine_infmatrix_assoc[of f], simp add: associative_def)
-
-lemma Rep_apply_matrix[simp]: "f 0 = 0 \<Longrightarrow> Rep_matrix (apply_matrix f A) j i = f (Rep_matrix A j i)"
-by (simp add: apply_matrix_def)
-
-lemma Rep_combine_matrix[simp]: "f 0 0 = 0 \<Longrightarrow> Rep_matrix (combine_matrix f A B) j i = f (Rep_matrix A j i) (Rep_matrix B j i)"
- by(simp add: combine_matrix_def)
-
-lemma combine_nrows_max: "f 0 0 = 0 \<Longrightarrow> nrows (combine_matrix f A B) <= max (nrows A) (nrows B)"
-by (simp add: nrows_le)
-
-lemma combine_ncols_max: "f 0 0 = 0 \<Longrightarrow> ncols (combine_matrix f A B) <= max (ncols A) (ncols B)"
-by (simp add: ncols_le)
-
-lemma combine_nrows: "f 0 0 = 0 \<Longrightarrow> nrows A <= q \<Longrightarrow> nrows B <= q \<Longrightarrow> nrows(combine_matrix f A B) <= q"
- by (simp add: nrows_le)
-
-lemma combine_ncols: "f 0 0 = 0 \<Longrightarrow> ncols A <= q \<Longrightarrow> ncols B <= q \<Longrightarrow> ncols(combine_matrix f A B) <= q"
- by (simp add: ncols_le)
-
-constdefs
- zero_r_neutral :: "('a \<Rightarrow> 'b::zero \<Rightarrow> 'a) \<Rightarrow> bool"
- "zero_r_neutral f == ! a. f a 0 = a"
- zero_l_neutral :: "('a::zero \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> bool"
- "zero_l_neutral f == ! a. f 0 a = a"
- zero_closed :: "(('a::zero) \<Rightarrow> ('b::zero) \<Rightarrow> ('c::zero)) \<Rightarrow> bool"
- "zero_closed f == (!x. f x 0 = 0) & (!y. f 0 y = 0)"
-
-consts foldseq :: "('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> (nat \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> 'a"
-primrec
- "foldseq f s 0 = s 0"
- "foldseq f s (Suc n) = f (s 0) (foldseq f (% k. s(Suc k)) n)"
-
-consts foldseq_transposed :: "('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> (nat \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> 'a"
-primrec
- "foldseq_transposed f s 0 = s 0"
- "foldseq_transposed f s (Suc n) = f (foldseq_transposed f s n) (s (Suc n))"
-
-lemma foldseq_assoc : "associative f \<Longrightarrow> foldseq f = foldseq_transposed f"
-proof -
- assume a:"associative f"
- then have sublemma: "!! n. ! N s. N <= n \<longrightarrow> foldseq f s N = foldseq_transposed f s N"
- proof -
- fix n
- show "!N s. N <= n \<longrightarrow> foldseq f s N = foldseq_transposed f s N"
- proof (induct n)
- show "!N s. N <= 0 \<longrightarrow> foldseq f s N = foldseq_transposed f s N" by simp
- next
- fix n
- assume b:"! N s. N <= n \<longrightarrow> foldseq f s N = foldseq_transposed f s N"
- have c:"!!N s. N <= n \<Longrightarrow> foldseq f s N = foldseq_transposed f s N" by (simp add: b)
- show "! N t. N <= Suc n \<longrightarrow> foldseq f t N = foldseq_transposed f t N"
- proof (auto)
- fix N t
- assume Nsuc: "N <= Suc n"
- show "foldseq f t N = foldseq_transposed f t N"
- proof cases
- assume "N <= n"
- then show "foldseq f t N = foldseq_transposed f t N" by (simp add: b)
- next
- assume "~(N <= n)"
- with Nsuc have Nsuceq: "N = Suc n" by simp
- have neqz: "n \<noteq> 0 \<Longrightarrow> ? m. n = Suc m & Suc m <= n" by arith
- have assocf: "!! x y z. f x (f y z) = f (f x y) z" by (insert a, simp add: associative_def)
- show "foldseq f t N = foldseq_transposed f t N"
- apply (simp add: Nsuceq)
- apply (subst c)
- apply (simp)
- apply (case_tac "n = 0")
- apply (simp)
- apply (drule neqz)
- apply (erule exE)
- apply (simp)
- apply (subst assocf)
- proof -
- fix m
- assume "n = Suc m & Suc m <= n"
- then have mless: "Suc m <= n" by arith
- then have step1: "foldseq_transposed f (% k. t (Suc k)) m = foldseq f (% k. t (Suc k)) m" (is "?T1 = ?T2")
- apply (subst c)
- by simp+
- have step2: "f (t 0) ?T2 = foldseq f t (Suc m)" (is "_ = ?T3") by simp
- have step3: "?T3 = foldseq_transposed f t (Suc m)" (is "_ = ?T4")
- apply (subst c)
- by (simp add: mless)+
- have step4: "?T4 = f (foldseq_transposed f t m) (t (Suc m))" (is "_=?T5") by simp
- from step1 step2 step3 step4 show sowhat: "f (f (t 0) ?T1) (t (Suc (Suc m))) = f ?T5 (t (Suc (Suc m)))" by simp
- qed
- qed
- qed
- qed
- qed
- show "foldseq f = foldseq_transposed f" by ((rule ext)+, insert sublemma, auto)
- qed
-
-lemma foldseq_distr: "\<lbrakk>associative f; commutative f\<rbrakk> \<Longrightarrow> foldseq f (% k. f (u k) (v k)) n = f (foldseq f u n) (foldseq f v n)"
-proof -
- assume assoc: "associative f"
- assume comm: "commutative f"
- from assoc have a:"!! x y z. f (f x y) z = f x (f y z)" by (simp add: associative_def)
- from comm have b: "!! x y. f x y = f y x" by (simp add: commutative_def)
- from assoc comm have c: "!! x y z. f x (f y z) = f y (f x z)" by (simp add: commutative_def associative_def)
- have "!! n. (! u v. foldseq f (%k. f (u k) (v k)) n = f (foldseq f u n) (foldseq f v n))"
- apply (induct_tac n)
- apply (simp+, auto)
- by (simp add: a b c)
- then show "foldseq f (% k. f (u k) (v k)) n = f (foldseq f u n) (foldseq f v n)" by simp
-qed
-
-theorem "\<lbrakk>associative f; associative g; \<forall>a b c d. g (f a b) (f c d) = f (g a c) (g b d); ? x y. (f x) \<noteq> (f y); ? x y. (g x) \<noteq> (g y); f x x = x; g x x = x\<rbrakk> \<Longrightarrow> f=g | (! y. f y x = y) | (! y. g y x = y)"
-oops
-(* Model found
-
-Trying to find a model that refutes: \<lbrakk>associative f; associative g;
- \<forall>a b c d. g (f a b) (f c d) = f (g a c) (g b d); \<exists>x y. f x \<noteq> f y;
- \<exists>x y. g x \<noteq> g y; f x x = x; g x x = x\<rbrakk>
-\<Longrightarrow> f = g \<or> (\<forall>y. f y x = y) \<or> (\<forall>y. g y x = y)
-Searching for a model of size 1, translating term... invoking SAT solver... no model found.
-Searching for a model of size 2, translating term... invoking SAT solver... no model found.
-Searching for a model of size 3, translating term... invoking SAT solver...
-Model found:
-Size of types: 'a: 3
-x: a1
-g: (a0\<mapsto>(a0\<mapsto>a1, a1\<mapsto>a0, a2\<mapsto>a1), a1\<mapsto>(a0\<mapsto>a0, a1\<mapsto>a1, a2\<mapsto>a0), a2\<mapsto>(a0\<mapsto>a1, a1\<mapsto>a0, a2\<mapsto>a1))
-f: (a0\<mapsto>(a0\<mapsto>a0, a1\<mapsto>a0, a2\<mapsto>a0), a1\<mapsto>(a0\<mapsto>a1, a1\<mapsto>a1, a2\<mapsto>a1), a2\<mapsto>(a0\<mapsto>a0, a1\<mapsto>a0, a2\<mapsto>a0))
-*)
-
-lemma foldseq_zero:
-assumes fz: "f 0 0 = 0" and sz: "! i. i <= n \<longrightarrow> s i = 0"
-shows "foldseq f s n = 0"
-proof -
- have "!! n. ! s. (! i. i <= n \<longrightarrow> s i = 0) \<longrightarrow> foldseq f s n = 0"
- apply (induct_tac n)
- apply (simp)
- by (simp add: fz)
- then show "foldseq f s n = 0" by (simp add: sz)
-qed
-
-lemma foldseq_significant_positions:
- assumes p: "! i. i <= N \<longrightarrow> S i = T i"
- shows "foldseq f S N = foldseq f T N" (is ?concl)
-proof -
- have "!! m . ! s t. (! i. i<=m \<longrightarrow> s i = t i) \<longrightarrow> foldseq f s m = foldseq f t m"
- apply (induct_tac m)
- apply (simp)
- apply (simp)
- apply (auto)
- proof -
- fix n
- fix s::"nat\<Rightarrow>'a"
- fix t::"nat\<Rightarrow>'a"
- assume a: "\<forall>s t. (\<forall>i\<le>n. s i = t i) \<longrightarrow> foldseq f s n = foldseq f t n"
- assume b: "\<forall>i\<le>Suc n. s i = t i"
- have c:"!! a b. a = b \<Longrightarrow> f (t 0) a = f (t 0) b" by blast
- have d:"!! s t. (\<forall>i\<le>n. s i = t i) \<Longrightarrow> foldseq f s n = foldseq f t n" by (simp add: a)
- show "f (t 0) (foldseq f (\<lambda>k. s (Suc k)) n) = f (t 0) (foldseq f (\<lambda>k. t (Suc k)) n)" by (rule c, simp add: d b)
- qed
- with p show ?concl by simp
-qed
-
-lemma foldseq_tail: "M <= N \<Longrightarrow> foldseq f S N = foldseq f (% k. (if k < M then (S k) else (foldseq f (% k. S(k+M)) (N-M)))) M" (is "?p \<Longrightarrow> ?concl")
-proof -
- have suc: "!! a b. \<lbrakk>a <= Suc b; a \<noteq> Suc b\<rbrakk> \<Longrightarrow> a <= b" by arith
- have a:"!! a b c . a = b \<Longrightarrow> f c a = f c b" by blast
- have "!! n. ! m s. m <= n \<longrightarrow> foldseq f s n = foldseq f (% k. (if k < m then (s k) else (foldseq f (% k. s(k+m)) (n-m)))) m"
- apply (induct_tac n)
- apply (simp)
- apply (simp)
- apply (auto)
- apply (case_tac "m = Suc na")
- apply (simp)
- apply (rule a)
- apply (rule foldseq_significant_positions)
- apply (auto)
- apply (drule suc, simp+)
- proof -
- fix na m s
- assume suba:"\<forall>m\<le>na. \<forall>s. foldseq f s na = foldseq f (\<lambda>k. if k < m then s k else foldseq f (\<lambda>k. s (k + m)) (na - m))m"
- assume subb:"m <= na"
- from suba have subc:"!! m s. m <= na \<Longrightarrow>foldseq f s na = foldseq f (\<lambda>k. if k < m then s k else foldseq f (\<lambda>k. s (k + m)) (na - m))m" by simp
- have subd: "foldseq f (\<lambda>k. if k < m then s (Suc k) else foldseq f (\<lambda>k. s (Suc (k + m))) (na - m)) m =
- foldseq f (% k. s(Suc k)) na"
- by (rule subc[of m "% k. s(Suc k)", THEN sym], simp add: subb)
- from subb have sube: "m \<noteq> 0 \<Longrightarrow> ? mm. m = Suc mm & mm <= na" by arith
- show "f (s 0) (foldseq f (\<lambda>k. if k < m then s (Suc k) else foldseq f (\<lambda>k. s (Suc (k + m))) (na - m)) m) =
- foldseq f (\<lambda>k. if k < m then s k else foldseq f (\<lambda>k. s (k + m)) (Suc na - m)) m"
- apply (simp add: subd)
- apply (case_tac "m=0")
- apply (simp)
- apply (drule sube)
- apply (auto)
- apply (rule a)
- by (simp add: subc if_def)
- qed
- then show "?p \<Longrightarrow> ?concl" by simp
-qed
-
-lemma foldseq_zerotail:
- assumes
- fz: "f 0 0 = 0"
- and sz: "! i. n <= i \<longrightarrow> s i = 0"
- and nm: "n <= m"
- shows
- "foldseq f s n = foldseq f s m"
-proof -
- show "foldseq f s n = foldseq f s m"
- apply (simp add: foldseq_tail[OF nm, of f s])
- apply (rule foldseq_significant_positions)
- apply (auto)
- apply (subst foldseq_zero)
- by (simp add: fz sz)+
-qed
-
-lemma foldseq_zerotail2:
- assumes "! x. f x 0 = x"
- and "! i. n < i \<longrightarrow> s i = 0"
- and nm: "n <= m"
- shows
- "foldseq f s n = foldseq f s m" (is ?concl)
-proof -
- have "f 0 0 = 0" by (simp add: prems)
- have b:"!! m n. n <= m \<Longrightarrow> m \<noteq> n \<Longrightarrow> ? k. m-n = Suc k" by arith
- have c: "0 <= m" by simp
- have d: "!! k. k \<noteq> 0 \<Longrightarrow> ? l. k = Suc l" by arith
- show ?concl
- apply (subst foldseq_tail[OF nm])
- apply (rule foldseq_significant_positions)
- apply (auto)
- apply (case_tac "m=n")
- apply (simp+)
- apply (drule b[OF nm])
- apply (auto)
- apply (case_tac "k=0")
- apply (simp add: prems)
- apply (drule d)
- apply (auto)
- by (simp add: prems foldseq_zero)
-qed
-
-lemma foldseq_zerostart:
- "! x. f 0 (f 0 x) = f 0 x \<Longrightarrow> ! i. i <= n \<longrightarrow> s i = 0 \<Longrightarrow> foldseq f s (Suc n) = f 0 (s (Suc n))"
-proof -
- assume f00x: "! x. f 0 (f 0 x) = f 0 x"
- have "! s. (! i. i<=n \<longrightarrow> s i = 0) \<longrightarrow> foldseq f s (Suc n) = f 0 (s (Suc n))"
- apply (induct n)
- apply (simp)
- apply (rule allI, rule impI)
- proof -
- fix n
- fix s
- have a:"foldseq f s (Suc (Suc n)) = f (s 0) (foldseq f (% k. s(Suc k)) (Suc n))" by simp
- assume b: "! s. ((\<forall>i\<le>n. s i = 0) \<longrightarrow> foldseq f s (Suc n) = f 0 (s (Suc n)))"
- from b have c:"!! s. (\<forall>i\<le>n. s i = 0) \<Longrightarrow> foldseq f s (Suc n) = f 0 (s (Suc n))" by simp
- assume d: "! i. i <= Suc n \<longrightarrow> s i = 0"
- show "foldseq f s (Suc (Suc n)) = f 0 (s (Suc (Suc n)))"
- apply (subst a)
- apply (subst c)
- by (simp add: d f00x)+
- qed
- then show "! i. i <= n \<longrightarrow> s i = 0 \<Longrightarrow> foldseq f s (Suc n) = f 0 (s (Suc n))" by simp
-qed
-
-lemma foldseq_zerostart2:
- "! x. f 0 x = x \<Longrightarrow> ! i. i < n \<longrightarrow> s i = 0 \<Longrightarrow> foldseq f s n = s n"
-proof -
- assume a:"! i. i<n \<longrightarrow> s i = 0"
- assume x:"! x. f 0 x = x"
- from x have f00x: "! x. f 0 (f 0 x) = f 0 x" by blast
- have b: "!! i l. i < Suc l = (i <= l)" by arith
- have d: "!! k. k \<noteq> 0 \<Longrightarrow> ? l. k = Suc l" by arith
- show "foldseq f s n = s n"
- apply (case_tac "n=0")
- apply (simp)
- apply (insert a)
- apply (drule d)
- apply (auto)
- apply (simp add: b)
- apply (insert f00x)
- apply (drule foldseq_zerostart)
- by (simp add: x)+
-qed
-
-lemma foldseq_almostzero:
- assumes f0x:"! x. f 0 x = x" and fx0: "! x. f x 0 = x" and s0:"! i. i \<noteq> j \<longrightarrow> s i = 0"
- shows "foldseq f s n = (if (j <= n) then (s j) else 0)" (is ?concl)
-proof -
- from s0 have a: "! i. i < j \<longrightarrow> s i = 0" by simp
- from s0 have b: "! i. j < i \<longrightarrow> s i = 0" by simp
- show ?concl
- apply auto
- apply (subst foldseq_zerotail2[of f, OF fx0, of j, OF b, of n, THEN sym])
- apply simp
- apply (subst foldseq_zerostart2)
- apply (simp add: f0x a)+
- apply (subst foldseq_zero)
- by (simp add: s0 f0x)+
-qed
-
-lemma foldseq_distr_unary:
- assumes "!! a b. g (f a b) = f (g a) (g b)"
- shows "g(foldseq f s n) = foldseq f (% x. g(s x)) n" (is ?concl)
-proof -
- have "! s. g(foldseq f s n) = foldseq f (% x. g(s x)) n"
- apply (induct_tac n)
- apply (simp)
- apply (simp)
- apply (auto)
- apply (drule_tac x="% k. s (Suc k)" in spec)
- by (simp add: prems)
- then show ?concl by simp
-qed
-
-constdefs
- mult_matrix_n :: "nat \<Rightarrow> (('a::zero) \<Rightarrow> ('b::zero) \<Rightarrow> ('c::zero)) \<Rightarrow> ('c \<Rightarrow> 'c \<Rightarrow> 'c) \<Rightarrow> 'a matrix \<Rightarrow> 'b matrix \<Rightarrow> 'c matrix"
- "mult_matrix_n n fmul fadd A B == Abs_matrix(% j i. foldseq fadd (% k. fmul (Rep_matrix A j k) (Rep_matrix B k i)) n)"
- mult_matrix :: "(('a::zero) \<Rightarrow> ('b::zero) \<Rightarrow> ('c::zero)) \<Rightarrow> ('c \<Rightarrow> 'c \<Rightarrow> 'c) \<Rightarrow> 'a matrix \<Rightarrow> 'b matrix \<Rightarrow> 'c matrix"
- "mult_matrix fmul fadd A B == mult_matrix_n (max (ncols A) (nrows B)) fmul fadd A B"
-
-lemma mult_matrix_n:
- assumes prems: "ncols A \<le> n" (is ?An) "nrows B \<le> n" (is ?Bn) "fadd 0 0 = 0" "fmul 0 0 = 0"
- shows c:"mult_matrix fmul fadd A B = mult_matrix_n n fmul fadd A B" (is ?concl)
-proof -
- show ?concl using prems
- apply (simp add: mult_matrix_def mult_matrix_n_def)
- apply (rule comb[of "Abs_matrix" "Abs_matrix"], simp, (rule ext)+)
- by (rule foldseq_zerotail, simp_all add: nrows_le ncols_le prems)
-qed
-
-lemma mult_matrix_nm:
- assumes prems: "ncols A <= n" "nrows B <= n" "ncols A <= m" "nrows B <= m" "fadd 0 0 = 0" "fmul 0 0 = 0"
- shows "mult_matrix_n n fmul fadd A B = mult_matrix_n m fmul fadd A B"
-proof -
- from prems have "mult_matrix_n n fmul fadd A B = mult_matrix fmul fadd A B" by (simp add: mult_matrix_n)
- also from prems have "\<dots> = mult_matrix_n m fmul fadd A B" by (simp add: mult_matrix_n[THEN sym])
- finally show "mult_matrix_n n fmul fadd A B = mult_matrix_n m fmul fadd A B" by simp
-qed
-
-constdefs
- r_distributive :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> bool"
- "r_distributive fmul fadd == ! a u v. fmul a (fadd u v) = fadd (fmul a u) (fmul a v)"
- l_distributive :: "('a \<Rightarrow> 'b \<Rightarrow> 'a) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> bool"
- "l_distributive fmul fadd == ! a u v. fmul (fadd u v) a = fadd (fmul u a) (fmul v a)"
- distributive :: "('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> bool"
- "distributive fmul fadd == l_distributive fmul fadd & r_distributive fmul fadd"
-
-lemma max1: "!! a x y. (a::nat) <= x \<Longrightarrow> a <= max x y" by (arith)
-lemma max2: "!! b x y. (b::nat) <= y \<Longrightarrow> b <= max x y" by (arith)
-
-lemma r_distributive_matrix:
- assumes prems:
- "r_distributive fmul fadd"
- "associative fadd"
- "commutative fadd"
- "fadd 0 0 = 0"
- "! a. fmul a 0 = 0"
- "! a. fmul 0 a = 0"
- shows "r_distributive (mult_matrix fmul fadd) (combine_matrix fadd)" (is ?concl)
-proof -
- from prems show ?concl
- apply (simp add: r_distributive_def mult_matrix_def, auto)
- proof -
- fix a::"'a matrix"
- fix u::"'b matrix"
- fix v::"'b matrix"
- let ?mx = "max (ncols a) (max (nrows u) (nrows v))"
- from prems show "mult_matrix_n (max (ncols a) (nrows (combine_matrix fadd u v))) fmul fadd a (combine_matrix fadd u v) =
- combine_matrix fadd (mult_matrix_n (max (ncols a) (nrows u)) fmul fadd a u) (mult_matrix_n (max (ncols a) (nrows v)) fmul fadd a v)"
- apply (subst mult_matrix_nm[of _ _ _ ?mx fadd fmul])
- apply (simp add: max1 max2 combine_nrows combine_ncols)+
- apply (subst mult_matrix_nm[of _ _ v ?mx fadd fmul])
- apply (simp add: max1 max2 combine_nrows combine_ncols)+
- apply (subst mult_matrix_nm[of _ _ u ?mx fadd fmul])
- apply (simp add: max1 max2 combine_nrows combine_ncols)+
- apply (simp add: mult_matrix_n_def r_distributive_def foldseq_distr[of fadd])
- apply (simp add: combine_matrix_def combine_infmatrix_def)
- apply (rule comb[of "Abs_matrix" "Abs_matrix"], simp, (rule ext)+)
- apply (simplesubst RepAbs_matrix)
- apply (simp, auto)
- apply (rule exI[of _ "nrows a"], simp add: nrows_le foldseq_zero)
- apply (rule exI[of _ "ncols v"], simp add: ncols_le foldseq_zero)
- apply (subst RepAbs_matrix)
- apply (simp, auto)
- apply (rule exI[of _ "nrows a"], simp add: nrows_le foldseq_zero)
- apply (rule exI[of _ "ncols u"], simp add: ncols_le foldseq_zero)
- done
- qed
-qed
-
-lemma l_distributive_matrix:
- assumes prems:
- "l_distributive fmul fadd"
- "associative fadd"
- "commutative fadd"
- "fadd 0 0 = 0"
- "! a. fmul a 0 = 0"
- "! a. fmul 0 a = 0"
- shows "l_distributive (mult_matrix fmul fadd) (combine_matrix fadd)" (is ?concl)
-proof -
- from prems show ?concl
- apply (simp add: l_distributive_def mult_matrix_def, auto)
- proof -
- fix a::"'b matrix"
- fix u::"'a matrix"
- fix v::"'a matrix"
- let ?mx = "max (nrows a) (max (ncols u) (ncols v))"
- from prems show "mult_matrix_n (max (ncols (combine_matrix fadd u v)) (nrows a)) fmul fadd (combine_matrix fadd u v) a =
- combine_matrix fadd (mult_matrix_n (max (ncols u) (nrows a)) fmul fadd u a) (mult_matrix_n (max (ncols v) (nrows a)) fmul fadd v a)"
- apply (subst mult_matrix_nm[of v _ _ ?mx fadd fmul])
- apply (simp add: max1 max2 combine_nrows combine_ncols)+
- apply (subst mult_matrix_nm[of u _ _ ?mx fadd fmul])
- apply (simp add: max1 max2 combine_nrows combine_ncols)+
- apply (subst mult_matrix_nm[of _ _ _ ?mx fadd fmul])
- apply (simp add: max1 max2 combine_nrows combine_ncols)+
- apply (simp add: mult_matrix_n_def l_distributive_def foldseq_distr[of fadd])
- apply (simp add: combine_matrix_def combine_infmatrix_def)
- apply (rule comb[of "Abs_matrix" "Abs_matrix"], simp, (rule ext)+)
- apply (simplesubst RepAbs_matrix)
- apply (simp, auto)
- apply (rule exI[of _ "nrows v"], simp add: nrows_le foldseq_zero)
- apply (rule exI[of _ "ncols a"], simp add: ncols_le foldseq_zero)
- apply (subst RepAbs_matrix)
- apply (simp, auto)
- apply (rule exI[of _ "nrows u"], simp add: nrows_le foldseq_zero)
- apply (rule exI[of _ "ncols a"], simp add: ncols_le foldseq_zero)
- done
- qed
-qed
-
-instance matrix :: (zero) zero ..
-
-defs(overloaded)
- zero_matrix_def: "(0::('a::zero) matrix) == Abs_matrix(% j i. 0)"
-
-lemma Rep_zero_matrix_def[simp]: "Rep_matrix 0 j i = 0"
- apply (simp add: zero_matrix_def)
- apply (subst RepAbs_matrix)
- by (auto)
-
-lemma zero_matrix_def_nrows[simp]: "nrows 0 = 0"
-proof -
- have a:"!! (x::nat). x <= 0 \<Longrightarrow> x = 0" by (arith)
- show "nrows 0 = 0" by (rule a, subst nrows_le, simp)
-qed
-
-lemma zero_matrix_def_ncols[simp]: "ncols 0 = 0"
-proof -
- have a:"!! (x::nat). x <= 0 \<Longrightarrow> x = 0" by (arith)
- show "ncols 0 = 0" by (rule a, subst ncols_le, simp)
-qed
-
-lemma combine_matrix_zero_l_neutral: "zero_l_neutral f \<Longrightarrow> zero_l_neutral (combine_matrix f)"
- by (simp add: zero_l_neutral_def combine_matrix_def combine_infmatrix_def)
-
-lemma combine_matrix_zero_r_neutral: "zero_r_neutral f \<Longrightarrow> zero_r_neutral (combine_matrix f)"
- by (simp add: zero_r_neutral_def combine_matrix_def combine_infmatrix_def)
-
-lemma mult_matrix_zero_closed: "\<lbrakk>fadd 0 0 = 0; zero_closed fmul\<rbrakk> \<Longrightarrow> zero_closed (mult_matrix fmul fadd)"
- apply (simp add: zero_closed_def mult_matrix_def mult_matrix_n_def)
- apply (auto)
- by (subst foldseq_zero, (simp add: zero_matrix_def)+)+
-
-lemma mult_matrix_n_zero_right[simp]: "\<lbrakk>fadd 0 0 = 0; !a. fmul a 0 = 0\<rbrakk> \<Longrightarrow> mult_matrix_n n fmul fadd A 0 = 0"
- apply (simp add: mult_matrix_n_def)
- apply (subst foldseq_zero)
- by (simp_all add: zero_matrix_def)
-
-lemma mult_matrix_n_zero_left[simp]: "\<lbrakk>fadd 0 0 = 0; !a. fmul 0 a = 0\<rbrakk> \<Longrightarrow> mult_matrix_n n fmul fadd 0 A = 0"
- apply (simp add: mult_matrix_n_def)
- apply (subst foldseq_zero)
- by (simp_all add: zero_matrix_def)
-
-lemma mult_matrix_zero_left[simp]: "\<lbrakk>fadd 0 0 = 0; !a. fmul 0 a = 0\<rbrakk> \<Longrightarrow> mult_matrix fmul fadd 0 A = 0"
-by (simp add: mult_matrix_def)
-
-lemma mult_matrix_zero_right[simp]: "\<lbrakk>fadd 0 0 = 0; !a. fmul a 0 = 0\<rbrakk> \<Longrightarrow> mult_matrix fmul fadd A 0 = 0"
-by (simp add: mult_matrix_def)
-
-lemma apply_matrix_zero[simp]: "f 0 = 0 \<Longrightarrow> apply_matrix f 0 = 0"
- apply (simp add: apply_matrix_def apply_infmatrix_def)
- by (simp add: zero_matrix_def)
-
-lemma combine_matrix_zero: "f 0 0 = 0 \<Longrightarrow> combine_matrix f 0 0 = 0"
- apply (simp add: combine_matrix_def combine_infmatrix_def)
- by (simp add: zero_matrix_def)
-
-lemma transpose_matrix_zero[simp]: "transpose_matrix 0 = 0"
-apply (simp add: transpose_matrix_def transpose_infmatrix_def zero_matrix_def RepAbs_matrix)
-apply (subst Rep_matrix_inject[symmetric], (rule ext)+)
-apply (simp add: RepAbs_matrix)
-done
-
-lemma apply_zero_matrix_def[simp]: "apply_matrix (% x. 0) A = 0"
- apply (simp add: apply_matrix_def apply_infmatrix_def)
- by (simp add: zero_matrix_def)
-
-constdefs
- singleton_matrix :: "nat \<Rightarrow> nat \<Rightarrow> ('a::zero) \<Rightarrow> 'a matrix"
- "singleton_matrix j i a == Abs_matrix(% m n. if j = m & i = n then a else 0)"
- move_matrix :: "('a::zero) matrix \<Rightarrow> int \<Rightarrow> int \<Rightarrow> 'a matrix"
- "move_matrix A y x == Abs_matrix(% j i. if (neg ((int j)-y)) | (neg ((int i)-x)) then 0 else Rep_matrix A (nat ((int j)-y)) (nat ((int i)-x)))"
- take_rows :: "('a::zero) matrix \<Rightarrow> nat \<Rightarrow> 'a matrix"
- "take_rows A r == Abs_matrix(% j i. if (j < r) then (Rep_matrix A j i) else 0)"
- take_columns :: "('a::zero) matrix \<Rightarrow> nat \<Rightarrow> 'a matrix"
- "take_columns A c == Abs_matrix(% j i. if (i < c) then (Rep_matrix A j i) else 0)"
-
-constdefs
- column_of_matrix :: "('a::zero) matrix \<Rightarrow> nat \<Rightarrow> 'a matrix"
- "column_of_matrix A n == take_columns (move_matrix A 0 (- int n)) 1"
- row_of_matrix :: "('a::zero) matrix \<Rightarrow> nat \<Rightarrow> 'a matrix"
- "row_of_matrix A m == take_rows (move_matrix A (- int m) 0) 1"
-
-lemma Rep_singleton_matrix[simp]: "Rep_matrix (singleton_matrix j i e) m n = (if j = m & i = n then e else 0)"
-apply (simp add: singleton_matrix_def)
-apply (auto)
-apply (subst RepAbs_matrix)
-apply (rule exI[of _ "Suc m"], simp)
-apply (rule exI[of _ "Suc n"], simp+)
-by (subst RepAbs_matrix, rule exI[of _ "Suc j"], simp, rule exI[of _ "Suc i"], simp+)+
-
-lemma apply_singleton_matrix[simp]: "f 0 = 0 \<Longrightarrow> apply_matrix f (singleton_matrix j i x) = (singleton_matrix j i (f x))"
-apply (subst Rep_matrix_inject[symmetric])
-apply (rule ext)+
-apply (simp)
-done
-
-lemma singleton_matrix_zero[simp]: "singleton_matrix j i 0 = 0"
- by (simp add: singleton_matrix_def zero_matrix_def)
-
-lemma nrows_singleton[simp]: "nrows(singleton_matrix j i e) = (if e = 0 then 0 else Suc j)"
-proof-
-have th: "\<not> (\<forall>m. m \<le> j)" "\<exists>n. \<not> n \<le> i" by arith+
-from th show ?thesis
-apply (auto)
-apply (rule le_anti_sym)
-apply (subst nrows_le)
-apply (simp add: singleton_matrix_def, auto)
-apply (subst RepAbs_matrix)
-apply auto
-apply (simp add: Suc_le_eq)
-apply (rule not_leE)
-apply (subst nrows_le)
-by simp
-qed
-
-lemma ncols_singleton[simp]: "ncols(singleton_matrix j i e) = (if e = 0 then 0 else Suc i)"
-proof-
-have th: "\<not> (\<forall>m. m \<le> j)" "\<exists>n. \<not> n \<le> i" by arith+
-from th show ?thesis
-apply (auto)
-apply (rule le_anti_sym)
-apply (subst ncols_le)
-apply (simp add: singleton_matrix_def, auto)
-apply (subst RepAbs_matrix)
-apply auto
-apply (simp add: Suc_le_eq)
-apply (rule not_leE)
-apply (subst ncols_le)
-by simp
-qed
-
-lemma combine_singleton: "f 0 0 = 0 \<Longrightarrow> combine_matrix f (singleton_matrix j i a) (singleton_matrix j i b) = singleton_matrix j i (f a b)"
-apply (simp add: singleton_matrix_def combine_matrix_def combine_infmatrix_def)
-apply (subst RepAbs_matrix)
-apply (rule exI[of _ "Suc j"], simp)
-apply (rule exI[of _ "Suc i"], simp)
-apply (rule comb[of "Abs_matrix" "Abs_matrix"], simp, (rule ext)+)
-apply (subst RepAbs_matrix)
-apply (rule exI[of _ "Suc j"], simp)
-apply (rule exI[of _ "Suc i"], simp)
-by simp
-
-lemma transpose_singleton[simp]: "transpose_matrix (singleton_matrix j i a) = singleton_matrix i j a"
-apply (subst Rep_matrix_inject[symmetric], (rule ext)+)
-apply (simp)
-done
-
-lemma Rep_move_matrix[simp]:
- "Rep_matrix (move_matrix A y x) j i =
- (if (neg ((int j)-y)) | (neg ((int i)-x)) then 0 else Rep_matrix A (nat((int j)-y)) (nat((int i)-x)))"
-apply (simp add: move_matrix_def)
-apply (auto)
-by (subst RepAbs_matrix,
- rule exI[of _ "(nrows A)+(nat (abs y))"], auto, rule nrows, arith,
- rule exI[of _ "(ncols A)+(nat (abs x))"], auto, rule ncols, arith)+
-
-lemma move_matrix_0_0[simp]: "move_matrix A 0 0 = A"
-by (simp add: move_matrix_def)
-
-lemma move_matrix_ortho: "move_matrix A j i = move_matrix (move_matrix A j 0) 0 i"
-apply (subst Rep_matrix_inject[symmetric])
-apply (rule ext)+
-apply (simp)
-done
-
-lemma transpose_move_matrix[simp]:
- "transpose_matrix (move_matrix A x y) = move_matrix (transpose_matrix A) y x"
-apply (subst Rep_matrix_inject[symmetric], (rule ext)+)
-apply (simp)
-done
-
-lemma move_matrix_singleton[simp]: "move_matrix (singleton_matrix u v x) j i =
- (if (j + int u < 0) | (i + int v < 0) then 0 else (singleton_matrix (nat (j + int u)) (nat (i + int v)) x))"
- apply (subst Rep_matrix_inject[symmetric])
- apply (rule ext)+
- apply (case_tac "j + int u < 0")
- apply (simp, arith)
- apply (case_tac "i + int v < 0")
- apply (simp add: neg_def, arith)
- apply (simp add: neg_def)
- apply arith
- done
-
-lemma Rep_take_columns[simp]:
- "Rep_matrix (take_columns A c) j i =
- (if i < c then (Rep_matrix A j i) else 0)"
-apply (simp add: take_columns_def)
-apply (simplesubst RepAbs_matrix)
-apply (rule exI[of _ "nrows A"], auto, simp add: nrows_le)
-apply (rule exI[of _ "ncols A"], auto, simp add: ncols_le)
-done
-
-lemma Rep_take_rows[simp]:
- "Rep_matrix (take_rows A r) j i =
- (if j < r then (Rep_matrix A j i) else 0)"
-apply (simp add: take_rows_def)
-apply (simplesubst RepAbs_matrix)
-apply (rule exI[of _ "nrows A"], auto, simp add: nrows_le)
-apply (rule exI[of _ "ncols A"], auto, simp add: ncols_le)
-done
-
-lemma Rep_column_of_matrix[simp]:
- "Rep_matrix (column_of_matrix A c) j i = (if i = 0 then (Rep_matrix A j c) else 0)"
- by (simp add: column_of_matrix_def)
-
-lemma Rep_row_of_matrix[simp]:
- "Rep_matrix (row_of_matrix A r) j i = (if j = 0 then (Rep_matrix A r i) else 0)"
- by (simp add: row_of_matrix_def)
-
-lemma column_of_matrix: "ncols A <= n \<Longrightarrow> column_of_matrix A n = 0"
-apply (subst Rep_matrix_inject[THEN sym])
-apply (rule ext)+
-by (simp add: ncols)
-
-lemma row_of_matrix: "nrows A <= n \<Longrightarrow> row_of_matrix A n = 0"
-apply (subst Rep_matrix_inject[THEN sym])
-apply (rule ext)+
-by (simp add: nrows)
-
-lemma mult_matrix_singleton_right[simp]:
- assumes prems:
- "! x. fmul x 0 = 0"
- "! x. fmul 0 x = 0"
- "! x. fadd 0 x = x"
- "! x. fadd x 0 = x"
- shows "(mult_matrix fmul fadd A (singleton_matrix j i e)) = apply_matrix (% x. fmul x e) (move_matrix (column_of_matrix A j) 0 (int i))"
- apply (simp add: mult_matrix_def)
- apply (subst mult_matrix_nm[of _ _ _ "max (ncols A) (Suc j)"])
- apply (auto)
- apply (simp add: prems)+
- apply (simp add: mult_matrix_n_def apply_matrix_def apply_infmatrix_def)
- apply (rule comb[of "Abs_matrix" "Abs_matrix"], auto, (rule ext)+)
- apply (subst foldseq_almostzero[of _ j])
- apply (simp add: prems)+
- apply (auto)
- proof -
- fix k
- fix l
- assume a:"~neg(int l - int i)"
- assume b:"nat (int l - int i) = 0"
- from a b have a: "l = i" by(insert not_neg_nat[of "int l - int i"], simp add: a b)
- assume c: "i \<noteq> l"
- from c a show "fmul (Rep_matrix A k j) e = 0" by blast
- qed
-
-lemma mult_matrix_ext:
- assumes
- eprem:
- "? e. (! a b. a \<noteq> b \<longrightarrow> fmul a e \<noteq> fmul b e)"
- and fprems:
- "! a. fmul 0 a = 0"
- "! a. fmul a 0 = 0"
- "! a. fadd a 0 = a"
- "! a. fadd 0 a = a"
- and contraprems:
- "mult_matrix fmul fadd A = mult_matrix fmul fadd B"
- shows
- "A = B"
-proof(rule contrapos_np[of "False"], simp)
- assume a: "A \<noteq> B"
- have b: "!! f g. (! x y. f x y = g x y) \<Longrightarrow> f = g" by ((rule ext)+, auto)
- have "? j i. (Rep_matrix A j i) \<noteq> (Rep_matrix B j i)"
- apply (rule contrapos_np[of "False"], simp+)
- apply (insert b[of "Rep_matrix A" "Rep_matrix B"], simp)
- by (simp add: Rep_matrix_inject a)
- then obtain J I where c:"(Rep_matrix A J I) \<noteq> (Rep_matrix B J I)" by blast
- from eprem obtain e where eprops:"(! a b. a \<noteq> b \<longrightarrow> fmul a e \<noteq> fmul b e)" by blast
- let ?S = "singleton_matrix I 0 e"
- let ?comp = "mult_matrix fmul fadd"
- have d: "!!x f g. f = g \<Longrightarrow> f x = g x" by blast
- have e: "(% x. fmul x e) 0 = 0" by (simp add: prems)
- have "~(?comp A ?S = ?comp B ?S)"
- apply (rule notI)
- apply (simp add: fprems eprops)
- apply (simp add: Rep_matrix_inject[THEN sym])
- apply (drule d[of _ _ "J"], drule d[of _ _ "0"])
- by (simp add: e c eprops)
- with contraprems show "False" by simp
-qed
-
-constdefs
- foldmatrix :: "('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> ('a infmatrix) \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> 'a"
- "foldmatrix f g A m n == foldseq_transposed g (% j. foldseq f (A j) n) m"
- foldmatrix_transposed :: "('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> ('a infmatrix) \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> 'a"
- "foldmatrix_transposed f g A m n == foldseq g (% j. foldseq_transposed f (A j) n) m"
-
-lemma foldmatrix_transpose:
- assumes
- "! a b c d. g(f a b) (f c d) = f (g a c) (g b d)"
- shows
- "foldmatrix f g A m n = foldmatrix_transposed g f (transpose_infmatrix A) n m" (is ?concl)
-proof -
- have forall:"!! P x. (! x. P x) \<Longrightarrow> P x" by auto
- have tworows:"! A. foldmatrix f g A 1 n = foldmatrix_transposed g f (transpose_infmatrix A) n 1"
- apply (induct n)
- apply (simp add: foldmatrix_def foldmatrix_transposed_def prems)+
- apply (auto)
- by (drule_tac x="(% j i. A j (Suc i))" in forall, simp)
- show "foldmatrix f g A m n = foldmatrix_transposed g f (transpose_infmatrix A) n m"
- apply (simp add: foldmatrix_def foldmatrix_transposed_def)
- apply (induct m, simp)
- apply (simp)
- apply (insert tworows)
- apply (drule_tac x="% j i. (if j = 0 then (foldseq_transposed g (\<lambda>u. A u i) m) else (A (Suc m) i))" in spec)
- by (simp add: foldmatrix_def foldmatrix_transposed_def)
-qed
-
-lemma foldseq_foldseq:
-assumes
- "associative f"
- "associative g"
- "! a b c d. g(f a b) (f c d) = f (g a c) (g b d)"
-shows
- "foldseq g (% j. foldseq f (A j) n) m = foldseq f (% j. foldseq g ((transpose_infmatrix A) j) m) n"
- apply (insert foldmatrix_transpose[of g f A m n])
- by (simp add: foldmatrix_def foldmatrix_transposed_def foldseq_assoc[THEN sym] prems)
-
-lemma mult_n_nrows:
-assumes
-"! a. fmul 0 a = 0"
-"! a. fmul a 0 = 0"
-"fadd 0 0 = 0"
-shows "nrows (mult_matrix_n n fmul fadd A B) \<le> nrows A"
-apply (subst nrows_le)
-apply (simp add: mult_matrix_n_def)
-apply (subst RepAbs_matrix)
-apply (rule_tac x="nrows A" in exI)
-apply (simp add: nrows prems foldseq_zero)
-apply (rule_tac x="ncols B" in exI)
-apply (simp add: ncols prems foldseq_zero)
-by (simp add: nrows prems foldseq_zero)
-
-lemma mult_n_ncols:
-assumes
-"! a. fmul 0 a = 0"
-"! a. fmul a 0 = 0"
-"fadd 0 0 = 0"
-shows "ncols (mult_matrix_n n fmul fadd A B) \<le> ncols B"
-apply (subst ncols_le)
-apply (simp add: mult_matrix_n_def)
-apply (subst RepAbs_matrix)
-apply (rule_tac x="nrows A" in exI)
-apply (simp add: nrows prems foldseq_zero)
-apply (rule_tac x="ncols B" in exI)
-apply (simp add: ncols prems foldseq_zero)
-by (simp add: ncols prems foldseq_zero)
-
-lemma mult_nrows:
-assumes
-"! a. fmul 0 a = 0"
-"! a. fmul a 0 = 0"
-"fadd 0 0 = 0"
-shows "nrows (mult_matrix fmul fadd A B) \<le> nrows A"
-by (simp add: mult_matrix_def mult_n_nrows prems)
-
-lemma mult_ncols:
-assumes
-"! a. fmul 0 a = 0"
-"! a. fmul a 0 = 0"
-"fadd 0 0 = 0"
-shows "ncols (mult_matrix fmul fadd A B) \<le> ncols B"
-by (simp add: mult_matrix_def mult_n_ncols prems)
-
-lemma nrows_move_matrix_le: "nrows (move_matrix A j i) <= nat((int (nrows A)) + j)"
- apply (auto simp add: nrows_le)
- apply (rule nrows)
- apply (arith)
- done
-
-lemma ncols_move_matrix_le: "ncols (move_matrix A j i) <= nat((int (ncols A)) + i)"
- apply (auto simp add: ncols_le)
- apply (rule ncols)
- apply (arith)
- done
-
-lemma mult_matrix_assoc:
- assumes prems:
- "! a. fmul1 0 a = 0"
- "! a. fmul1 a 0 = 0"
- "! a. fmul2 0 a = 0"
- "! a. fmul2 a 0 = 0"
- "fadd1 0 0 = 0"
- "fadd2 0 0 = 0"
- "! a b c d. fadd2 (fadd1 a b) (fadd1 c d) = fadd1 (fadd2 a c) (fadd2 b d)"
- "associative fadd1"
- "associative fadd2"
- "! a b c. fmul2 (fmul1 a b) c = fmul1 a (fmul2 b c)"
- "! a b c. fmul2 (fadd1 a b) c = fadd1 (fmul2 a c) (fmul2 b c)"
- "! a b c. fmul1 c (fadd2 a b) = fadd2 (fmul1 c a) (fmul1 c b)"
- shows "mult_matrix fmul2 fadd2 (mult_matrix fmul1 fadd1 A B) C = mult_matrix fmul1 fadd1 A (mult_matrix fmul2 fadd2 B C)" (is ?concl)
-proof -
- have comb_left: "!! A B x y. A = B \<Longrightarrow> (Rep_matrix (Abs_matrix A)) x y = (Rep_matrix(Abs_matrix B)) x y" by blast
- have fmul2fadd1fold: "!! x s n. fmul2 (foldseq fadd1 s n) x = foldseq fadd1 (% k. fmul2 (s k) x) n"
- by (rule_tac g1 = "% y. fmul2 y x" in ssubst [OF foldseq_distr_unary], simp_all!)
- have fmul1fadd2fold: "!! x s n. fmul1 x (foldseq fadd2 s n) = foldseq fadd2 (% k. fmul1 x (s k)) n"
- by (rule_tac g1 = "% y. fmul1 x y" in ssubst [OF foldseq_distr_unary], simp_all!)
- let ?N = "max (ncols A) (max (ncols B) (max (nrows B) (nrows C)))"
- show ?concl
- apply (simp add: Rep_matrix_inject[THEN sym])
- apply (rule ext)+
- apply (simp add: mult_matrix_def)
- apply (simplesubst mult_matrix_nm[of _ "max (ncols (mult_matrix_n (max (ncols A) (nrows B)) fmul1 fadd1 A B)) (nrows C)" _ "max (ncols B) (nrows C)"])
- apply (simp add: max1 max2 mult_n_ncols mult_n_nrows prems)+
- apply (simplesubst mult_matrix_nm[of _ "max (ncols A) (nrows (mult_matrix_n (max (ncols B) (nrows C)) fmul2 fadd2 B C))" _ "max (ncols A) (nrows B)"]) apply (simp add: max1 max2 mult_n_ncols mult_n_nrows prems)+
- apply (simplesubst mult_matrix_nm[of _ _ _ "?N"])
- apply (simp add: max1 max2 mult_n_ncols mult_n_nrows prems)+
- apply (simplesubst mult_matrix_nm[of _ _ _ "?N"])
- apply (simp add: max1 max2 mult_n_ncols mult_n_nrows prems)+
- apply (simplesubst mult_matrix_nm[of _ _ _ "?N"])
- apply (simp add: max1 max2 mult_n_ncols mult_n_nrows prems)+
- apply (simplesubst mult_matrix_nm[of _ _ _ "?N"])
- apply (simp add: max1 max2 mult_n_ncols mult_n_nrows prems)+
- apply (simp add: mult_matrix_n_def)
- apply (rule comb_left)
- apply ((rule ext)+, simp)
- apply (simplesubst RepAbs_matrix)
- apply (rule exI[of _ "nrows B"])
- apply (simp add: nrows prems foldseq_zero)
- apply (rule exI[of _ "ncols C"])
- apply (simp add: prems ncols foldseq_zero)
- apply (subst RepAbs_matrix)
- apply (rule exI[of _ "nrows A"])
- apply (simp add: nrows prems foldseq_zero)
- apply (rule exI[of _ "ncols B"])
- apply (simp add: prems ncols foldseq_zero)
- apply (simp add: fmul2fadd1fold fmul1fadd2fold prems)
- apply (subst foldseq_foldseq)
- apply (simp add: prems)+
- by (simp add: transpose_infmatrix)
-qed
-
-lemma
- assumes prems:
- "! a. fmul1 0 a = 0"
- "! a. fmul1 a 0 = 0"
- "! a. fmul2 0 a = 0"
- "! a. fmul2 a 0 = 0"
- "fadd1 0 0 = 0"
- "fadd2 0 0 = 0"
- "! a b c d. fadd2 (fadd1 a b) (fadd1 c d) = fadd1 (fadd2 a c) (fadd2 b d)"
- "associative fadd1"
- "associative fadd2"
- "! a b c. fmul2 (fmul1 a b) c = fmul1 a (fmul2 b c)"
- "! a b c. fmul2 (fadd1 a b) c = fadd1 (fmul2 a c) (fmul2 b c)"
- "! a b c. fmul1 c (fadd2 a b) = fadd2 (fmul1 c a) (fmul1 c b)"
- shows
- "(mult_matrix fmul1 fadd1 A) o (mult_matrix fmul2 fadd2 B) = mult_matrix fmul2 fadd2 (mult_matrix fmul1 fadd1 A B)"
-apply (rule ext)+
-apply (simp add: comp_def )
-by (simp add: mult_matrix_assoc prems)
-
-lemma mult_matrix_assoc_simple:
- assumes prems:
- "! a. fmul 0 a = 0"
- "! a. fmul a 0 = 0"
- "fadd 0 0 = 0"
- "associative fadd"
- "commutative fadd"
- "associative fmul"
- "distributive fmul fadd"
- shows "mult_matrix fmul fadd (mult_matrix fmul fadd A B) C = mult_matrix fmul fadd A (mult_matrix fmul fadd B C)" (is ?concl)
-proof -
- have "!! a b c d. fadd (fadd a b) (fadd c d) = fadd (fadd a c) (fadd b d)"
- by (simp! add: associative_def commutative_def)
- then show ?concl
- apply (subst mult_matrix_assoc)
- apply (simp_all!)
- by (simp add: associative_def distributive_def l_distributive_def r_distributive_def)+
-qed
-
-lemma transpose_apply_matrix: "f 0 = 0 \<Longrightarrow> transpose_matrix (apply_matrix f A) = apply_matrix f (transpose_matrix A)"
-apply (simp add: Rep_matrix_inject[THEN sym])
-apply (rule ext)+
-by simp
-
-lemma transpose_combine_matrix: "f 0 0 = 0 \<Longrightarrow> transpose_matrix (combine_matrix f A B) = combine_matrix f (transpose_matrix A) (transpose_matrix B)"
-apply (simp add: Rep_matrix_inject[THEN sym])
-apply (rule ext)+
-by simp
-
-lemma Rep_mult_matrix:
- assumes
- "! a. fmul 0 a = 0"
- "! a. fmul a 0 = 0"
- "fadd 0 0 = 0"
- shows
- "Rep_matrix(mult_matrix fmul fadd A B) j i =
- foldseq fadd (% k. fmul (Rep_matrix A j k) (Rep_matrix B k i)) (max (ncols A) (nrows B))"
-apply (simp add: mult_matrix_def mult_matrix_n_def)
-apply (subst RepAbs_matrix)
-apply (rule exI[of _ "nrows A"], simp! add: nrows foldseq_zero)
-apply (rule exI[of _ "ncols B"], simp! add: ncols foldseq_zero)
-by simp
-
-lemma transpose_mult_matrix:
- assumes
- "! a. fmul 0 a = 0"
- "! a. fmul a 0 = 0"
- "fadd 0 0 = 0"
- "! x y. fmul y x = fmul x y"
- shows
- "transpose_matrix (mult_matrix fmul fadd A B) = mult_matrix fmul fadd (transpose_matrix B) (transpose_matrix A)"
- apply (simp add: Rep_matrix_inject[THEN sym])
- apply (rule ext)+
- by (simp! add: Rep_mult_matrix max_ac)
-
-lemma column_transpose_matrix: "column_of_matrix (transpose_matrix A) n = transpose_matrix (row_of_matrix A n)"
-apply (simp add: Rep_matrix_inject[THEN sym])
-apply (rule ext)+
-by simp
-
-lemma take_columns_transpose_matrix: "take_columns (transpose_matrix A) n = transpose_matrix (take_rows A n)"
-apply (simp add: Rep_matrix_inject[THEN sym])
-apply (rule ext)+
-by simp
-
-instantiation matrix :: ("{ord, zero}") ord
-begin
-
-definition
- le_matrix_def: "A \<le> B \<longleftrightarrow> (\<forall>j i. Rep_matrix A j i \<le> Rep_matrix B j i)"
-
-definition
- less_def: "A < (B\<Colon>'a matrix) \<longleftrightarrow> A \<le> B \<and> A \<noteq> B"
-
-instance ..
-
-end
-
-instance matrix :: ("{order, zero}") order
-apply intro_classes
-apply (simp_all add: le_matrix_def less_def)
-apply (auto)
-apply (drule_tac x=j in spec, drule_tac x=j in spec)
-apply (drule_tac x=i in spec, drule_tac x=i in spec)
-apply (simp)
-apply (simp add: Rep_matrix_inject[THEN sym])
-apply (rule ext)+
-apply (drule_tac x=xa in spec, drule_tac x=xa in spec)
-apply (drule_tac x=xb in spec, drule_tac x=xb in spec)
-by simp
-
-lemma le_apply_matrix:
- assumes
- "f 0 = 0"
- "! x y. x <= y \<longrightarrow> f x <= f y"
- "(a::('a::{ord, zero}) matrix) <= b"
- shows
- "apply_matrix f a <= apply_matrix f b"
- by (simp! add: le_matrix_def)
-
-lemma le_combine_matrix:
- assumes
- "f 0 0 = 0"
- "! a b c d. a <= b & c <= d \<longrightarrow> f a c <= f b d"
- "A <= B"
- "C <= D"
- shows
- "combine_matrix f A C <= combine_matrix f B D"
-by (simp! add: le_matrix_def)
-
-lemma le_left_combine_matrix:
- assumes
- "f 0 0 = 0"
- "! a b c. a <= b \<longrightarrow> f c a <= f c b"
- "A <= B"
- shows
- "combine_matrix f C A <= combine_matrix f C B"
- by (simp! add: le_matrix_def)
-
-lemma le_right_combine_matrix:
- assumes
- "f 0 0 = 0"
- "! a b c. a <= b \<longrightarrow> f a c <= f b c"
- "A <= B"
- shows
- "combine_matrix f A C <= combine_matrix f B C"
- by (simp! add: le_matrix_def)
-
-lemma le_transpose_matrix: "(A <= B) = (transpose_matrix A <= transpose_matrix B)"
- by (simp add: le_matrix_def, auto)
-
-lemma le_foldseq:
- assumes
- "! a b c d . a <= b & c <= d \<longrightarrow> f a c <= f b d"
- "! i. i <= n \<longrightarrow> s i <= t i"
- shows
- "foldseq f s n <= foldseq f t n"
-proof -
- have "! s t. (! i. i<=n \<longrightarrow> s i <= t i) \<longrightarrow> foldseq f s n <= foldseq f t n" by (induct_tac n, simp_all!)
- then show "foldseq f s n <= foldseq f t n" by (simp!)
-qed
-
-lemma le_left_mult:
- assumes
- "! a b c d. a <= b & c <= d \<longrightarrow> fadd a c <= fadd b d"
- "! c a b. 0 <= c & a <= b \<longrightarrow> fmul c a <= fmul c b"
- "! a. fmul 0 a = 0"
- "! a. fmul a 0 = 0"
- "fadd 0 0 = 0"
- "0 <= C"
- "A <= B"
- shows
- "mult_matrix fmul fadd C A <= mult_matrix fmul fadd C B"
- apply (simp! add: le_matrix_def Rep_mult_matrix)
- apply (auto)
- apply (simplesubst foldseq_zerotail[of _ _ _ "max (ncols C) (max (nrows A) (nrows B))"], simp_all add: nrows ncols max1 max2)+
- apply (rule le_foldseq)
- by (auto)
-
-lemma le_right_mult:
- assumes
- "! a b c d. a <= b & c <= d \<longrightarrow> fadd a c <= fadd b d"
- "! c a b. 0 <= c & a <= b \<longrightarrow> fmul a c <= fmul b c"
- "! a. fmul 0 a = 0"
- "! a. fmul a 0 = 0"
- "fadd 0 0 = 0"
- "0 <= C"
- "A <= B"
- shows
- "mult_matrix fmul fadd A C <= mult_matrix fmul fadd B C"
- apply (simp! add: le_matrix_def Rep_mult_matrix)
- apply (auto)
- apply (simplesubst foldseq_zerotail[of _ _ _ "max (nrows C) (max (ncols A) (ncols B))"], simp_all add: nrows ncols max1 max2)+
- apply (rule le_foldseq)
- by (auto)
-
-lemma spec2: "! j i. P j i \<Longrightarrow> P j i" by blast
-lemma neg_imp: "(\<not> Q \<longrightarrow> \<not> P) \<Longrightarrow> P \<longrightarrow> Q" by blast
-
-lemma singleton_matrix_le[simp]: "(singleton_matrix j i a <= singleton_matrix j i b) = (a <= (b::_::order))"
- by (auto simp add: le_matrix_def)
-
-lemma singleton_le_zero[simp]: "(singleton_matrix j i x <= 0) = (x <= (0::'a::{order,zero}))"
- apply (auto)
- apply (simp add: le_matrix_def)
- apply (drule_tac j=j and i=i in spec2)
- apply (simp)
- apply (simp add: le_matrix_def)
- done
-
-lemma singleton_ge_zero[simp]: "(0 <= singleton_matrix j i x) = ((0::'a::{order,zero}) <= x)"
- apply (auto)
- apply (simp add: le_matrix_def)
- apply (drule_tac j=j and i=i in spec2)
- apply (simp)
- apply (simp add: le_matrix_def)
- done
-
-lemma move_matrix_le_zero[simp]: "0 <= j \<Longrightarrow> 0 <= i \<Longrightarrow> (move_matrix A j i <= 0) = (A <= (0::('a::{order,zero}) matrix))"
- apply (auto simp add: le_matrix_def neg_def)
- apply (drule_tac j="ja+(nat j)" and i="ia+(nat i)" in spec2)
- apply (auto)
- done
-
-lemma move_matrix_zero_le[simp]: "0 <= j \<Longrightarrow> 0 <= i \<Longrightarrow> (0 <= move_matrix A j i) = ((0::('a::{order,zero}) matrix) <= A)"
- apply (auto simp add: le_matrix_def neg_def)
- apply (drule_tac j="ja+(nat j)" and i="ia+(nat i)" in spec2)
- apply (auto)
- done
-
-lemma move_matrix_le_move_matrix_iff[simp]: "0 <= j \<Longrightarrow> 0 <= i \<Longrightarrow> (move_matrix A j i <= move_matrix B j i) = (A <= (B::('a::{order,zero}) matrix))"
- apply (auto simp add: le_matrix_def neg_def)
- apply (drule_tac j="ja+(nat j)" and i="ia+(nat i)" in spec2)
- apply (auto)
- done
-
-end
--- a/src/HOL/Matrix/ROOT.ML Thu Jul 03 20:53:44 2008 +0200
+++ b/src/HOL/Matrix/ROOT.ML Fri Jul 04 07:39:01 2008 +0200
@@ -3,4 +3,4 @@
*)
use_thy "SparseMatrix";
-with_path "cplex" use_thy "MatrixLP";
+with_path "cplex" use_thy "Cplex";
--- a/src/HOL/Matrix/SparseMatrix.thy Thu Jul 03 20:53:44 2008 +0200
+++ b/src/HOL/Matrix/SparseMatrix.thy Fri Jul 04 07:39:01 2008 +0200
@@ -3,26 +3,30 @@
Author: Steven Obua
*)
-theory SparseMatrix imports Matrix LP begin
+theory SparseMatrix
+imports Matrix
+begin
types
'a spvec = "(nat * 'a) list"
'a spmat = "('a spvec) spvec"
-consts
- sparse_row_vector :: "('a::lordered_ring) spvec \<Rightarrow> 'a matrix"
- sparse_row_matrix :: "('a::lordered_ring) spmat \<Rightarrow> 'a matrix"
+definition sparse_row_vector :: "('a::lordered_ring) spvec \<Rightarrow> 'a matrix" where
+ sparse_row_vector_def: "sparse_row_vector arr = foldl (% m x. m + (singleton_matrix 0 (fst x) (snd x))) 0 arr"
-defs
- sparse_row_vector_def : "sparse_row_vector arr == foldl (% m x. m + (singleton_matrix 0 (fst x) (snd x))) 0 arr"
- sparse_row_matrix_def : "sparse_row_matrix arr == foldl (% m r. m + (move_matrix (sparse_row_vector (snd r)) (int (fst r)) 0)) 0 arr"
+definition sparse_row_matrix :: "('a::lordered_ring) spmat \<Rightarrow> 'a matrix" where
+ sparse_row_matrix_def: "sparse_row_matrix arr = foldl (% m r. m + (move_matrix (sparse_row_vector (snd r)) (int (fst r)) 0)) 0 arr"
-lemma sparse_row_vector_empty[simp]: "sparse_row_vector [] = 0"
+code_datatype sparse_row_vector sparse_row_matrix
+
+lemma sparse_row_vector_empty [simp]: "sparse_row_vector [] = 0"
by (simp add: sparse_row_vector_def)
-lemma sparse_row_matrix_empty[simp]: "sparse_row_matrix [] = 0"
+lemma sparse_row_matrix_empty [simp]: "sparse_row_matrix [] = 0"
by (simp add: sparse_row_matrix_def)
+lemmas [code func] = sparse_row_vector_empty [symmetric]
+
lemma foldl_distrstart[rule_format]: "! a x y. (f (g x y) a = g x (f y a)) \<Longrightarrow> ! x y. (foldl f (g x y) l = g x (foldl f y l))"
by (induct l, auto)
@@ -99,18 +103,15 @@
done
consts
- abs_spvec :: "('a::lordered_ring) spvec \<Rightarrow> 'a spvec"
- minus_spvec :: "('a::lordered_ring) spvec \<Rightarrow> 'a spvec"
smult_spvec :: "('a::lordered_ring) \<Rightarrow> 'a spvec \<Rightarrow> 'a spvec"
- addmult_spvec :: "('a::lordered_ring) * 'a spvec * 'a spvec \<Rightarrow> 'a spvec"
-primrec
+primrec minus_spvec :: "('a::lordered_ring) spvec \<Rightarrow> 'a spvec" where
"minus_spvec [] = []"
- "minus_spvec (a#as) = (fst a, -(snd a))#(minus_spvec as)"
+ | "minus_spvec (a#as) = (fst a, -(snd a))#(minus_spvec as)"
-primrec
+primrec abs_spvec :: "('a::lordered_ring) spvec \<Rightarrow> 'a spvec" where
"abs_spvec [] = []"
- "abs_spvec (a#as) = (fst a, abs (snd a))#(abs_spvec as)"
+ | "abs_spvec (a#as) = (fst a, abs (snd a))#(abs_spvec as)"
lemma sparse_row_vector_minus:
"sparse_row_vector (minus_spvec v) = - (sparse_row_vector v)"
@@ -160,6 +161,7 @@
lemma smult_spvec_cons: "smult_spvec y (a#arr) = (fst a, y * (snd a)) # (smult_spvec y arr)"
by (simp add: smult_spvec_def)
+consts addmult_spvec :: "('a::lordered_ring) * 'a spvec * 'a spvec \<Rightarrow> 'a spvec"
recdef addmult_spvec "measure (% (y, a, b). length a + (length b))"
"addmult_spvec (y, arr, []) = arr"
"addmult_spvec (y, [], brr) = smult_spvec y brr"
@@ -169,10 +171,10 @@
else ((fst a, (snd a)+ y*(snd b))#(addmult_spvec (y, arr,brr)))))"
lemma addmult_spvec_empty1[simp]: "addmult_spvec (y, [], a) = smult_spvec y a"
- by (induct a, auto)
+ by (induct a) auto
lemma addmult_spvec_empty2[simp]: "addmult_spvec (y, a, []) = a"
- by (induct a, auto)
+ by (induct a) auto
lemma sparse_row_vector_map: "(! x y. f (x+y) = (f x) + (f y)) \<Longrightarrow> (f::'a\<Rightarrow>('a::lordered_ring)) 0 = 0 \<Longrightarrow>
sparse_row_vector (map (% x. (fst x, f (snd x))) a) = apply_matrix f (sparse_row_vector a)"
@@ -243,7 +245,6 @@
consts
mult_spvec_spmat :: "('a::lordered_ring) spvec * 'a spvec * 'a spmat \<Rightarrow> 'a spvec"
-
recdef mult_spvec_spmat "measure (% (c, arr, brr). (length arr) + (length brr))"
"mult_spvec_spmat (c, [], brr) = c"
"mult_spvec_spmat (c, arr, []) = c"
@@ -417,6 +418,9 @@
apply (auto simp add: sparse_row_matrix_cons sparse_row_vector_add move_matrix_add)
done
+lemmas [code func] = sparse_row_add_spmat [symmetric]
+lemmas [code func] = sparse_row_vector_add [symmetric]
+
lemma sorted_add_spvec_helper1[rule_format]: "add_spvec ((a,b)#arr, brr) = (ab, bb) # list \<longrightarrow> (ab = a | (brr \<noteq> [] & ab = fst (hd brr)))"
proof -
have "(! x ab a. x = (a,b)#arr \<longrightarrow> add_spvec (x, brr) = (ab, bb) # list \<longrightarrow> (ab = a | (ab = fst (hd brr))))"
@@ -1113,57 +1117,4 @@
by (insert prems, simp add: sparse_row_matrix_op_simps linprog_dual_estimate_1[where A=A])
*)
-lemma spm_mult_le_dual_prts:
- assumes
- "sorted_sparse_matrix A1"
- "sorted_sparse_matrix A2"
- "sorted_sparse_matrix c1"
- "sorted_sparse_matrix c2"
- "sorted_sparse_matrix y"
- "sorted_sparse_matrix r1"
- "sorted_sparse_matrix r2"
- "sorted_spvec b"
- "le_spmat ([], y)"
- "sparse_row_matrix A1 \<le> A"
- "A \<le> sparse_row_matrix A2"
- "sparse_row_matrix c1 \<le> c"
- "c \<le> sparse_row_matrix c2"
- "sparse_row_matrix r1 \<le> x"
- "x \<le> sparse_row_matrix r2"
- "A * x \<le> sparse_row_matrix (b::('a::lordered_ring) spmat)"
- shows
- "c * x \<le> sparse_row_matrix (add_spmat (mult_spmat y b,
- (let s1 = diff_spmat c1 (mult_spmat y A2); s2 = diff_spmat c2 (mult_spmat y A1) in
- add_spmat (mult_spmat (pprt_spmat s2) (pprt_spmat r2), add_spmat (mult_spmat (pprt_spmat s1) (nprt_spmat r2),
- add_spmat (mult_spmat (nprt_spmat s2) (pprt_spmat r1), mult_spmat (nprt_spmat s1) (nprt_spmat r1)))))))"
- apply (simp add: Let_def)
- apply (insert prems)
- apply (simp add: sparse_row_matrix_op_simps ring_simps)
- apply (rule mult_le_dual_prts[where A=A, simplified Let_def ring_simps])
- apply (auto)
- done
-
-lemma spm_mult_le_dual_prts_no_let:
- assumes
- "sorted_sparse_matrix A1"
- "sorted_sparse_matrix A2"
- "sorted_sparse_matrix c1"
- "sorted_sparse_matrix c2"
- "sorted_sparse_matrix y"
- "sorted_sparse_matrix r1"
- "sorted_sparse_matrix r2"
- "sorted_spvec b"
- "le_spmat ([], y)"
- "sparse_row_matrix A1 \<le> A"
- "A \<le> sparse_row_matrix A2"
- "sparse_row_matrix c1 \<le> c"
- "c \<le> sparse_row_matrix c2"
- "sparse_row_matrix r1 \<le> x"
- "x \<le> sparse_row_matrix r2"
- "A * x \<le> sparse_row_matrix (b::('a::lordered_ring) spmat)"
- shows
- "c * x \<le> sparse_row_matrix (add_spmat (mult_spmat y b,
- mult_est_spmat r1 r2 (diff_spmat c1 (mult_spmat y A2)) (diff_spmat c2 (mult_spmat y A1))))"
- by (simp add: prems mult_est_spmat_def spm_mult_le_dual_prts[where A=A, simplified Let_def])
-
end
--- a/src/HOL/Matrix/cplex/Cplex.thy Thu Jul 03 20:53:44 2008 +0200
+++ b/src/HOL/Matrix/cplex/Cplex.thy Fri Jul 04 07:39:01 2008 +0200
@@ -4,11 +4,63 @@
*)
theory Cplex
-imports FloatSparseMatrix "~~/src/HOL/Tools/ComputeNumeral"
-uses "Cplex_tools.ML" "CplexMatrixConverter.ML" "FloatSparseMatrixBuilder.ML" "fspmlp.ML"
+imports SparseMatrix LP "~~/src/HOL/Real/Float" "~~/src/HOL/Tools/ComputeNumeral"
+uses "Cplex_tools.ML" "CplexMatrixConverter.ML" "FloatSparseMatrixBuilder.ML" "fspmlp.ML" ("matrixlp.ML")
begin
-end
+lemma spm_mult_le_dual_prts:
+ assumes
+ "sorted_sparse_matrix A1"
+ "sorted_sparse_matrix A2"
+ "sorted_sparse_matrix c1"
+ "sorted_sparse_matrix c2"
+ "sorted_sparse_matrix y"
+ "sorted_sparse_matrix r1"
+ "sorted_sparse_matrix r2"
+ "sorted_spvec b"
+ "le_spmat ([], y)"
+ "sparse_row_matrix A1 \<le> A"
+ "A \<le> sparse_row_matrix A2"
+ "sparse_row_matrix c1 \<le> c"
+ "c \<le> sparse_row_matrix c2"
+ "sparse_row_matrix r1 \<le> x"
+ "x \<le> sparse_row_matrix r2"
+ "A * x \<le> sparse_row_matrix (b::('a::lordered_ring) spmat)"
+ shows
+ "c * x \<le> sparse_row_matrix (add_spmat (mult_spmat y b,
+ (let s1 = diff_spmat c1 (mult_spmat y A2); s2 = diff_spmat c2 (mult_spmat y A1) in
+ add_spmat (mult_spmat (pprt_spmat s2) (pprt_spmat r2), add_spmat (mult_spmat (pprt_spmat s1) (nprt_spmat r2),
+ add_spmat (mult_spmat (nprt_spmat s2) (pprt_spmat r1), mult_spmat (nprt_spmat s1) (nprt_spmat r1)))))))"
+ apply (simp add: Let_def)
+ apply (insert prems)
+ apply (simp add: sparse_row_matrix_op_simps ring_simps)
+ apply (rule mult_le_dual_prts[where A=A, simplified Let_def ring_simps])
+ apply (auto)
+ done
+lemma spm_mult_le_dual_prts_no_let:
+ assumes
+ "sorted_sparse_matrix A1"
+ "sorted_sparse_matrix A2"
+ "sorted_sparse_matrix c1"
+ "sorted_sparse_matrix c2"
+ "sorted_sparse_matrix y"
+ "sorted_sparse_matrix r1"
+ "sorted_sparse_matrix r2"
+ "sorted_spvec b"
+ "le_spmat ([], y)"
+ "sparse_row_matrix A1 \<le> A"
+ "A \<le> sparse_row_matrix A2"
+ "sparse_row_matrix c1 \<le> c"
+ "c \<le> sparse_row_matrix c2"
+ "sparse_row_matrix r1 \<le> x"
+ "x \<le> sparse_row_matrix r2"
+ "A * x \<le> sparse_row_matrix (b::('a::lordered_ring) spmat)"
+ shows
+ "c * x \<le> sparse_row_matrix (add_spmat (mult_spmat y b,
+ mult_est_spmat r1 r2 (diff_spmat c1 (mult_spmat y A2)) (diff_spmat c2 (mult_spmat y A1))))"
+ by (simp add: prems mult_est_spmat_def spm_mult_le_dual_prts[where A=A, simplified Let_def])
+use "matrixlp.ML"
+end
--- a/src/HOL/Matrix/cplex/FloatSparseMatrix.thy Thu Jul 03 20:53:44 2008 +0200
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,10 +0,0 @@
-(* Title: HOL/Matrix/cplex/FloatSparseMatrix.thy
- ID: $Id$
- Author: Steven Obua
-*)
-
-theory FloatSparseMatrix
-imports "../../Real/Float" SparseMatrix
-begin
-
-end
--- a/src/HOL/Matrix/cplex/MatrixLP.thy Thu Jul 03 20:53:44 2008 +0200
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,10 +0,0 @@
-(* Title: HOL/Matrix/cplex/MatrixLP.thy
- ID: $Id$
- Author: Steven Obua
-*)
-
-theory MatrixLP
-imports Cplex
-uses "matrixlp.ML"
-begin
-end
--- a/src/HOL/Matrix/cplex/matrixlp.ML Thu Jul 03 20:53:44 2008 +0200
+++ b/src/HOL/Matrix/cplex/matrixlp.ML Fri Jul 04 07:39:01 2008 +0200
@@ -25,13 +25,13 @@
local
-val cert = cterm_of @{theory "Cplex"}
+val cert = cterm_of @{theory}
in
fun lp_dual_estimate_prt_primitive (y, (A1, A2), (c1, c2), b, (r1, r2)) =
let
- val th = inst_real @{thm "SparseMatrix.spm_mult_le_dual_prts_no_let"}
+ val th = inst_real @{thm "spm_mult_le_dual_prts_no_let"}
fun var s x = (cert (Var ((s,0), FloatSparseMatrixBuilder.spmatT)), x)
val th = Thm.instantiate ([], [var "A1" A1, var "A2" A2, var "y" y, var "c1" c1, var "c2" c2,
var "r1" r1, var "r2" r2, var "b" b]) th
@@ -67,20 +67,12 @@
| inst_tvars (ty::tys) thms = inst_tvars tys (map (inst_tvar ty) thms)
local
- val matrix_lemmas = [
- "ComputeHOL.compute_list_case",
- "ComputeHOL.compute_let",
- "ComputeHOL.compute_if",
- "Float.arith",
- "SparseMatrix.sparse_row_matrix_arith_simps",
- "ComputeHOL.compute_bool",
- "ComputeHOL.compute_pair",
- "SparseMatrix.sorted_sp_simps",
- "ComputeNumeral.number_norm",
- "ComputeNumeral.natnorm"]
- fun get_thms n = ComputeHOL.prep_thms (PureThy.get_thms @{theory "Cplex"} n)
- val ths = maps get_thms matrix_lemmas
- val computer = PCompute.make Compute.SML @{theory "Cplex"} ths []
+ val ths = ComputeHOL.prep_thms @{thms "ComputeHOL.compute_list_case" "ComputeHOL.compute_let"
+ "ComputeHOL.compute_if" "Float.arith" "SparseMatrix.sparse_row_matrix_arith_simps"
+ "ComputeHOL.compute_bool" "ComputeHOL.compute_pair"
+ "SparseMatrix.sorted_sp_simps" "ComputeNumeral.number_norm"
+ "ComputeNumeral.natnorm"};
+ val computer = PCompute.make Compute.SML @{theory} ths []
in
fun matrix_compute c = hd (PCompute.rewrite computer [c])
@@ -98,7 +90,7 @@
fun prove_bound lptfile prec =
let
- val th = lp_dual_estimate_prt lptfile prec
+ val th = lp_dual_estimate_llprt lptfile prec
in
matrix_simplify th
end