New prover for coherent logic.
authorberghofe
Mon, 22 Sep 2008 23:01:54 +0200
changeset 28326 ddd53738dae8
parent 28325 0b6b83ec8458
child 28327 4d7a0a941b79
New prover for coherent logic.
src/Provers/coherent.ML
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/Provers/coherent.ML	Mon Sep 22 23:01:54 2008 +0200
@@ -0,0 +1,234 @@
+(*  Title:      Provers/coherent.ML
+    ID:         $Id$
+    Author:     Stefan Berghofer, TU Muenchen
+                Marc Bezem, Institutt for Informatikk, Universitetet i Bergen 
+
+Prover for coherent logic, see e.g.
+
+  Marc Bezem and Thierry Coquand, Automating Coherent Logic, LPAR 2005
+
+for a description of the algorithm.
+*)
+
+signature COHERENT_DATA =
+sig
+  val atomize_elimL: thm
+  val atomize_exL: thm
+  val atomize_conjL: thm
+  val atomize_disjL: thm
+  val operator_names: string list
+end;
+
+signature COHERENT =
+sig
+  val verbose: bool ref
+  val show_facts: bool ref
+  val coherent_tac: thm list -> Proof.context -> int -> tactic
+  val coherent_meth: thm list -> Proof.context -> Proof.method
+  val setup: theory -> theory
+end;
+
+functor CoherentFun(Data: COHERENT_DATA) : COHERENT =
+struct
+
+val verbose = ref false;
+
+fun message f = if !verbose then tracing (f ()) else ();
+
+datatype cl_prf =
+  ClPrf of thm * (Type.tyenv * Envir.tenv) * ((indexname * typ) * term) list *
+  int list * (term list * cl_prf) list;
+
+fun is_atomic t = null (term_consts t inter Data.operator_names);
+
+local open Conv in
+
+fun rulify_elim_conv ct =
+  if is_atomic (Logic.strip_imp_concl (term_of ct)) then all_conv ct
+  else concl_conv (length (Logic.strip_imp_prems (term_of ct)))
+    (rewr_conv (symmetric Data.atomize_elimL) then_conv
+     MetaSimplifier.rewrite true (map symmetric
+       [Data.atomize_exL, Data.atomize_conjL, Data.atomize_disjL])) ct
+
+end;
+
+fun rulify_elim th = MetaSimplifier.norm_hhf (Conv.fconv_rule rulify_elim_conv th);
+
+(* Decompose elimination rule of the form
+   A1 ==> ... ==> Am ==> (!!xs1. Bs1 ==> P) ==> ... ==> (!!xsn. Bsn ==> P) ==> P
+*)
+fun dest_elim prop =
+  let
+    val prems = Logic.strip_imp_prems prop;
+    val concl = Logic.strip_imp_concl prop;
+    val (prems1, prems2) =
+      take_suffix (fn t => Logic.strip_assums_concl t = concl) prems;
+  in
+    (prems1,
+     if null prems2 then [([], [concl])]
+     else map (fn t =>
+       (map snd (Logic.strip_params t), Logic.strip_assums_hyp t)) prems2)
+  end;
+
+fun mk_rule th =
+  let
+    val th' = rulify_elim th;
+    val (prems, cases) = dest_elim (prop_of th')
+  in (th', prems, cases) end;
+
+fun mk_dom ts = fold (fn t =>
+  Typtab.map_default (fastype_of t, []) (fn us => us @ [t])) ts Typtab.empty;
+
+val empty_env = (Vartab.empty, Vartab.empty);
+
+(* Find matcher that makes conjunction valid in given state *)
+fun valid_conj ctxt facts env [] = Seq.single (env, [])
+  | valid_conj ctxt facts env (t :: ts) =
+      Seq.maps (fn (u, x) => Seq.map (apsnd (cons x))
+        (valid_conj ctxt facts
+           (Pattern.match (ProofContext.theory_of ctxt) (t, u) env) ts
+         handle Pattern.MATCH => Seq.empty))
+          (Seq.of_list (sort (int_ord o pairself snd) (Net.unify_term facts t)));
+
+(* Instantiate variables that only occur free in conlusion *)
+fun inst_extra_vars ctxt dom cs =
+  let
+    val vs = fold Term.add_vars (maps snd cs) [];
+    fun insts [] inst = Seq.single inst
+      | insts ((ixn, T) :: vs') inst = Seq.maps
+          (fn t => insts vs' (((ixn, T), t) :: inst))
+          (Seq.of_list (case Typtab.lookup dom T of
+             NONE => error ("Unknown domain: " ^
+               Syntax.string_of_typ ctxt T ^ "\nfor term(s) " ^
+               commas (maps (map (Syntax.string_of_term ctxt) o snd) cs))
+           | SOME ts => ts))
+  in Seq.map (fn inst =>
+    (inst, map (apsnd (map (subst_Vars (map (apfst fst) inst)))) cs))
+      (insts vs [])
+  end;
+
+(* Check whether disjunction is valid in given state *)
+fun is_valid_disj ctxt facts [] = false
+  | is_valid_disj ctxt facts ((Ts, ts) :: ds) =
+      let val vs = rev (map_index (fn (i, T) => Var (("x", i), T)) Ts)
+      in case Seq.pull (valid_conj ctxt facts empty_env
+        (map (fn t => subst_bounds (vs, t)) ts)) of
+          SOME _ => true
+        | NONE => is_valid_disj ctxt facts ds
+      end;
+
+val show_facts = ref false;
+
+fun string_of_facts ctxt s facts = space_implode "\n"
+  (s :: map (Syntax.string_of_term ctxt)
+     (map fst (sort (int_ord o pairself snd) (Net.content facts)))) ^ "\n\n";
+
+fun print_facts ctxt facts =
+  if !show_facts then message (fn () => string_of_facts ctxt "Facts:" facts)
+  else ();
+
+fun valid ctxt rules goal dom facts nfacts nparams =
+  let val seq = Seq.of_list rules |> Seq.maps (fn (th, ps, cs) =>
+    valid_conj ctxt facts empty_env ps |> Seq.maps (fn (env as (tye, _), is) =>
+      let val cs' = map (fn (Ts, ts) =>
+        (map (Envir.typ_subst_TVars tye) Ts, map (Envir.subst_vars env) ts)) cs
+      in
+        inst_extra_vars ctxt dom cs' |>
+          Seq.map_filter (fn (inst, cs'') =>
+            if is_valid_disj ctxt facts cs'' then NONE
+            else SOME (th, env, inst, is, cs''))
+      end))
+  in
+    case Seq.pull seq of
+      NONE => (tracing (string_of_facts ctxt "Countermodel found:" facts); NONE)
+    | SOME ((th, env, inst, is, cs), _) =>
+        if cs = [([], [goal])] then SOME (ClPrf (th, env, inst, is, []))
+        else
+          (case valid_cases ctxt rules goal dom facts nfacts nparams cs of
+             NONE => NONE
+           | SOME prfs => SOME (ClPrf (th, env, inst, is, prfs)))
+  end
+
+and valid_cases ctxt rules goal dom facts nfacts nparams [] = SOME []
+  | valid_cases ctxt rules goal dom facts nfacts nparams ((Ts, ts) :: ds) =
+      let
+        val _ = message (fn () => "case " ^ commas (map (Syntax.string_of_term ctxt) ts));
+        val params = rev (map_index (fn (i, T) =>
+          Free ("par" ^ string_of_int (nparams + i), T)) Ts);
+        val ts' = map_index (fn (i, t) =>
+          (subst_bounds (params, t), nfacts + i)) ts;
+        val dom' = fold (fn (T, p) =>
+          Typtab.map_default (T, []) (fn ps => ps @ [p]))
+            (Ts ~~ params) dom;
+        val facts' = fold (fn (t, i) => Net.insert_term op =
+          (t, (t, i))) ts' facts
+      in
+        case valid ctxt rules goal dom' facts'
+          (nfacts + length ts) (nparams + length Ts) of
+          NONE => NONE
+        | SOME prf => (case valid_cases ctxt rules goal dom facts nfacts nparams ds of
+            NONE => NONE
+          | SOME prfs => SOME ((params, prf) :: prfs))
+      end;
+
+(** proof replaying **)
+
+fun thm_of_cl_prf thy goal asms (ClPrf (th, (tye, env), insts, is, prfs)) =
+  let
+    val _ = message (fn () => space_implode "\n"
+      ("asms:" :: map Display.string_of_thm asms) ^ "\n\n");
+    val th' = Drule.implies_elim_list
+      (Thm.instantiate
+         (map (fn (ixn, (S, T)) =>
+            (Thm.ctyp_of thy (TVar ((ixn, S))), Thm.ctyp_of thy T))
+               (Vartab.dest tye),
+          map (fn (ixn, (T, t)) =>
+            (Thm.cterm_of thy (Var (ixn, Envir.typ_subst_TVars tye T)),
+             Thm.cterm_of thy t)) (Vartab.dest env) @
+          map (fn (ixnT, t) =>
+            (Thm.cterm_of thy (Var ixnT), Thm.cterm_of thy t)) insts) th)
+      (map (nth asms) is);
+    val (_, cases) = dest_elim (prop_of th')
+  in
+    case (cases, prfs) of
+      ([([], [_])], []) => th'
+    | ([([], [_])], [([], prf)]) => thm_of_cl_prf thy goal (asms @ [th']) prf
+    | _ => Drule.implies_elim_list
+        (Thm.instantiate (Thm.match
+           (Drule.strip_imp_concl (cprop_of th'), goal)) th')
+        (map (thm_of_case_prf thy goal asms) (prfs ~~ cases))
+  end
+
+and thm_of_case_prf thy goal asms ((params, prf), (_, asms')) =
+  let
+    val cparams = map (cterm_of thy) params;
+    val asms'' = map (cterm_of thy o curry subst_bounds (rev params)) asms'
+  in
+    Drule.forall_intr_list cparams (Drule.implies_intr_list asms''
+      (thm_of_cl_prf thy goal (asms @ map Thm.assume asms'') prf))
+  end;
+
+
+(** external interface **)
+
+fun coherent_tac rules ctxt = SUBPROOF (fn {prems, concl, params, context, ...} =>
+  rtac (rulify_elim_conv concl RS equal_elim_rule2) 1 THEN
+  SUBPROOF (fn {prems = prems', concl, context, ...} =>
+    let val xs = map term_of params @
+      map (fn (_, s) => Free (s, the (Variable.default_type context s)))
+        (Variable.fixes_of context)
+    in
+      case valid context (map mk_rule (prems' @ prems @ rules)) (term_of concl)
+           (mk_dom xs) Net.empty 0 0 of
+         NONE => no_tac
+       | SOME prf =>
+           rtac (thm_of_cl_prf (ProofContext.theory_of context) concl [] prf) 1
+    end) ctxt 1) ctxt;
+
+fun coherent_meth rules ctxt =
+  Method.METHOD (fn facts => coherent_tac (facts @ rules) ctxt 1);
+
+val setup = Method.add_method
+  ("coherent", Method.thms_ctxt_args coherent_meth, "Prove coherent formula");
+
+end;