--- a/src/HOL/Limits.thy Sat May 01 07:53:42 2010 -0700
+++ b/src/HOL/Limits.thy Sat May 01 09:43:40 2010 -0700
@@ -101,26 +101,26 @@
subsection {* Finer-than relation *}
-text {* @{term "net \<le> net'"} means that @{term net'} is finer than
-@{term net}. *}
+text {* @{term "net \<le> net'"} means that @{term net} is finer than
+@{term net'}. *}
-instantiation net :: (type) "{order,top}"
+instantiation net :: (type) "{order,bot}"
begin
definition
le_net_def [code del]:
- "net \<le> net' \<longleftrightarrow> (\<forall>P. eventually P net \<longrightarrow> eventually P net')"
+ "net \<le> net' \<longleftrightarrow> (\<forall>P. eventually P net' \<longrightarrow> eventually P net)"
definition
less_net_def [code del]:
"(net :: 'a net) < net' \<longleftrightarrow> net \<le> net' \<and> \<not> net' \<le> net"
definition
- top_net_def [code del]:
- "top = Abs_net (\<lambda>P. True)"
+ bot_net_def [code del]:
+ "bot = Abs_net (\<lambda>P. True)"
-lemma eventually_top [simp]: "eventually P top"
-unfolding top_net_def
+lemma eventually_bot [simp]: "eventually P bot"
+unfolding bot_net_def
by (subst eventually_Abs_net, rule is_filter.intro, auto)
instance proof
@@ -136,22 +136,22 @@
fix x y :: "'a net" assume "x \<le> y" and "y \<le> x" thus "x = y"
unfolding le_net_def expand_net_eq by fast
next
- fix x :: "'a net" show "x \<le> top"
+ fix x :: "'a net" show "bot \<le> x"
unfolding le_net_def by simp
qed
end
lemma net_leD:
- "net \<le> net' \<Longrightarrow> eventually P net \<Longrightarrow> eventually P net'"
+ "net \<le> net' \<Longrightarrow> eventually P net' \<Longrightarrow> eventually P net"
unfolding le_net_def by simp
lemma net_leI:
- "(\<And>P. eventually P net \<Longrightarrow> eventually P net') \<Longrightarrow> net \<le> net'"
+ "(\<And>P. eventually P net' \<Longrightarrow> eventually P net) \<Longrightarrow> net \<le> net'"
unfolding le_net_def by simp
lemma eventually_False:
- "eventually (\<lambda>x. False) net \<longleftrightarrow> net = top"
+ "eventually (\<lambda>x. False) net \<longleftrightarrow> net = bot"
unfolding expand_net_eq by (auto elim: eventually_rev_mp)