--- a/src/HOL/Relation.ML Thu Feb 15 16:00:38 2001 +0100
+++ b/src/HOL/Relation.ML Thu Feb 15 16:00:40 2001 +0100
@@ -468,3 +468,13 @@
by (atac 1);
by (atac 1);
qed "fun_rel_comp_unique";
+
+
+section "inverse image";
+
+Goalw [trans_def,inv_image_def]
+ "!!r. trans r ==> trans (inv_image r f)";
+by (Simp_tac 1);
+by (Blast_tac 1);
+qed "trans_inv_image";
+
--- a/src/HOL/Relation.thy Thu Feb 15 16:00:38 2001 +0100
+++ b/src/HOL/Relation.thy Thu Feb 15 16:00:40 2001 +0100
@@ -13,47 +13,50 @@
converse :: "('a * 'b) set => ('b * 'a) set" ("(_\\<inverse>)" [1000] 999)
constdefs
- comp :: "[('b * 'c)set, ('a * 'b)set] => ('a * 'c)set" (infixr "O" 60)
+ comp :: "[('b * 'c) set, ('a * 'b) set] => ('a * 'c) set" (infixr "O" 60)
"r O s == {(x,z). ? y. (x,y):s & (y,z):r}"
- Image :: "[('a*'b) set,'a set] => 'b set" (infixl "``" 90)
+ Image :: "[('a * 'b) set, 'a set] => 'b set" (infixl "``" 90)
"r `` s == {y. ? x:s. (x,y):r}"
- Id :: "('a * 'a)set" (*the identity relation*)
+ Id :: "('a * 'a) set" (*the identity relation*)
"Id == {p. ? x. p = (x,x)}"
- diag :: "'a set => ('a * 'a)set" (*diagonal: identity over a set*)
+ diag :: "'a set => ('a * 'a) set" (*diagonal: identity over a set*)
"diag(A) == UN x:A. {(x,x)}"
- Domain :: "('a*'b) set => 'a set"
+ Domain :: "('a * 'b) set => 'a set"
"Domain(r) == {x. ? y. (x,y):r}"
- Range :: "('a*'b) set => 'b set"
+ Range :: "('a * 'b) set => 'b set"
"Range(r) == Domain(r^-1)"
- Field :: "('a*'a)set=>'a set"
+ Field :: "('a * 'a) set => 'a set"
"Field r == Domain r Un Range r"
- refl :: "['a set, ('a*'a) set] => bool" (*reflexivity over a set*)
+ refl :: "['a set, ('a * 'a) set] => bool" (*reflexivity over a set*)
"refl A r == r <= A <*> A & (ALL x: A. (x,x) : r)"
- sym :: "('a*'a) set=>bool" (*symmetry predicate*)
+ sym :: "('a * 'a) set => bool" (*symmetry predicate*)
"sym(r) == ALL x y. (x,y): r --> (y,x): r"
- antisym:: "('a * 'a)set => bool" (*antisymmetry predicate*)
+ antisym:: "('a * 'a) set => bool" (*antisymmetry predicate*)
"antisym(r) == ALL x y. (x,y):r --> (y,x):r --> x=y"
- trans :: "('a * 'a)set => bool" (*transitivity predicate*)
+ trans :: "('a * 'a) set => bool" (*transitivity predicate*)
"trans(r) == (!x y z. (x,y):r --> (y,z):r --> (x,z):r)"
- single_valued :: "('a * 'b)set => bool"
+ single_valued :: "('a * 'b) set => bool"
"single_valued r == !x y. (x,y):r --> (!z. (x,z):r --> y=z)"
fun_rel_comp :: "['a => 'b, ('b * 'c) set] => ('a => 'c) set"
"fun_rel_comp f R == {g. !x. (f x, g x) : R}"
+ inv_image :: "('b * 'b) set => ('a => 'b) => ('a * 'a) set"
+ "inv_image r f == {(x,y). (f(x), f(y)) : r}"
+
syntax
- reflexive :: "('a * 'a)set => bool" (*reflexivity over a type*)
+ reflexive :: "('a * 'a) set => bool" (*reflexivity over a type*)
translations
"reflexive" == "refl UNIV"
--- a/src/HOL/Wellfounded_Relations.thy Thu Feb 15 16:00:38 2001 +0100
+++ b/src/HOL/Wellfounded_Relations.thy Thu Feb 15 16:00:40 2001 +0100
@@ -21,9 +21,6 @@
less_than :: "(nat*nat)set"
"less_than == trancl pred_nat"
- inv_image :: "('b * 'b)set => ('a => 'b) => ('a * 'a)set"
-"inv_image r f == {(x,y). (f(x), f(y)) : r}"
-
measure :: "('a => nat) => ('a * 'a)set"
"measure == inv_image less_than"