merged
authorwenzelm
Tue, 06 Oct 2015 17:44:32 +0200
changeset 61341 e60c7d0bb4b1
parent 61334 8d40ddaa427f (current diff)
parent 61340 ce74c00de6b7 (diff)
child 61342 b98cd131e2b5
merged
src/HOL/Library/Multiset.thy
--- a/NEWS	Tue Oct 06 12:01:07 2015 +0200
+++ b/NEWS	Tue Oct 06 17:44:32 2015 +0200
@@ -7,6 +7,22 @@
 New in this Isabelle version
 ----------------------------
 
+*** General ***
+
+* Toplevel theorem statements have been simplified as follows:
+
+  theorems             ~>  lemmas
+  schematic_lemma      ~>  schematic_goal
+  schematic_theorem    ~>  schematic_goal
+  schematic_corollary  ~>  schematic_goal
+
+Command-line tool "isabelle update_theorems" updates theory sources
+accordingly.
+
+* Toplevel theorem statement 'proposition' is another alias for
+'theorem'.
+
+
 *** Prover IDE -- Isabelle/Scala/jEdit ***
 
 * Improved scheduling for urgent print tasks (e.g. command state output,
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/lib/Tools/update_theorems	Tue Oct 06 17:44:32 2015 +0200
@@ -0,0 +1,40 @@
+#!/usr/bin/env bash
+#
+# Author: Makarius
+#
+# DESCRIPTION: update toplevel theorem keywords
+
+
+## diagnostics
+
+PRG="$(basename "$0")"
+
+function usage()
+{
+  echo
+  echo "Usage: isabelle $PRG [FILES|DIRS...]"
+  echo
+  echo "  Recursively find .thy files and update toplevel theorem keywords:"
+  echo
+  echo "    theorems             ~>  lemmas"
+  echo "    schematic_theorem    ~>  schematic_goal"
+  echo "    schematic_lemma      ~>  schematic_goal"
+  echo "    schematic_corollary  ~>  schematic_goal"
+  echo
+  echo "  Old versions of files are preserved by appending \"~~\"."
+  echo
+  exit 1
+}
+
+
+## process command line
+
+[ "$#" -eq 0 -o "$1" = "-?" ] && usage
+
+SPECS="$@"; shift "$#"
+
+
+## main
+
+find $SPECS -name \*.thy -print0 | \
+  xargs -0 "$ISABELLE_TOOL" java isabelle.Update_Theorems
--- a/src/CCL/Fix.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/CCL/Fix.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -93,7 +93,7 @@
 
 (* All fixed points are lam-expressions *)
 
-schematic_lemma idgenfp_lam: "idgen(d) = d \<Longrightarrow> d = lam x. ?f(x)"
+schematic_goal idgenfp_lam: "idgen(d) = d \<Longrightarrow> d = lam x. ?f(x)"
   apply (unfold idgen_def)
   apply (erule ssubst)
   apply (rule refl)
@@ -125,7 +125,7 @@
   apply simp
   done
 
-schematic_lemma po_eta_lemma: "idgen(d) = d \<Longrightarrow> d = lam x. ?f(x)"
+schematic_goal po_eta_lemma: "idgen(d) = d \<Longrightarrow> d = lam x. ?f(x)"
   apply (unfold idgen_def)
   apply (erule sym)
   done
--- a/src/CCL/Wfd.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/CCL/Wfd.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -568,29 +568,29 @@
 
 subsection \<open>Factorial\<close>
 
-schematic_lemma
+schematic_goal
   "letrec f n be ncase(n,succ(zero),\<lambda>x. nrec(n,zero,\<lambda>y g. nrec(f(x),g,\<lambda>z h. succ(h))))  
    in f(succ(succ(zero))) ---> ?a"
   by eval
 
-schematic_lemma
+schematic_goal
   "letrec f n be ncase(n,succ(zero),\<lambda>x. nrec(n,zero,\<lambda>y g. nrec(f(x),g,\<lambda>z h. succ(h))))  
    in f(succ(succ(succ(zero)))) ---> ?a"
   by eval
 
 subsection \<open>Less Than Or Equal\<close>
 
-schematic_lemma
+schematic_goal
   "letrec f p be split(p,\<lambda>m n. ncase(m,true,\<lambda>x. ncase(n,false,\<lambda>y. f(<x,y>))))
    in f(<succ(zero), succ(zero)>) ---> ?a"
   by eval
 
-schematic_lemma
+schematic_goal
   "letrec f p be split(p,\<lambda>m n. ncase(m,true,\<lambda>x. ncase(n,false,\<lambda>y. f(<x,y>))))
    in f(<succ(zero), succ(succ(succ(succ(zero))))>) ---> ?a"
   by eval
 
-schematic_lemma
+schematic_goal
   "letrec f p be split(p,\<lambda>m n. ncase(m,true,\<lambda>x. ncase(n,false,\<lambda>y. f(<x,y>))))
    in f(<succ(succ(succ(succ(succ(zero))))), succ(succ(succ(succ(zero))))>) ---> ?a"
   by eval
@@ -598,12 +598,12 @@
 
 subsection \<open>Reverse\<close>
 
-schematic_lemma
+schematic_goal
   "letrec id l be lcase(l,[],\<lambda>x xs. x$id(xs))  
    in id(zero$succ(zero)$[]) ---> ?a"
   by eval
 
-schematic_lemma
+schematic_goal
   "letrec rev l be lcase(l,[],\<lambda>x xs. lrec(rev(xs),x$[],\<lambda>y ys g. y$g))  
    in rev(zero$succ(zero)$(succ((lam x. x)`succ(zero)))$([])) ---> ?a"
   by eval
--- a/src/CTT/Arith.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/CTT/Arith.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -266,7 +266,7 @@
 (*Addition is the inverse of subtraction: if b<=x then b#+(x-b) = x.
   An example of induction over a quantified formula (a product).
   Uses rewriting with a quantified, implicative inductive hypothesis.*)
-schematic_lemma add_diff_inverse_lemma:
+schematic_goal add_diff_inverse_lemma:
   "b:N \<Longrightarrow> ?a : PROD x:N. Eq(N, b-x, 0) --> Eq(N, b #+ (x-b), x)"
 apply (NE b)
 (*strip one "universal quantifier" but not the "implication"*)
@@ -337,7 +337,7 @@
 done
 
 (*If a+b=0 then a=0.   Surprisingly tedious*)
-schematic_lemma add_eq0_lemma: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> ?c : PROD u: Eq(N,a#+b,0) .  Eq(N,a,0)"
+schematic_goal add_eq0_lemma: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> ?c : PROD u: Eq(N,a#+b,0) .  Eq(N,a,0)"
 apply (NE a)
 apply (rule_tac [3] replace_type)
 apply arith_rew
@@ -357,7 +357,7 @@
 done
 
 (*Here is a lemma to infer a-b=0 and b-a=0 from a|-|b=0, below. *)
-schematic_lemma absdiff_eq0_lem:
+schematic_goal absdiff_eq0_lem:
   "\<lbrakk>a:N; b:N; a |-| b = 0 : N\<rbrakk> \<Longrightarrow> ?a : SUM v: Eq(N, a-b, 0) . Eq(N, b-a, 0)"
 apply (unfold absdiff_def)
 apply intr
--- a/src/CTT/ex/Elimination.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/CTT/ex/Elimination.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -14,41 +14,41 @@
 
 text "This finds the functions fst and snd!"
 
-schematic_lemma [folded basic_defs]: "A type \<Longrightarrow> ?a : (A*A) --> A"
+schematic_goal [folded basic_defs]: "A type \<Longrightarrow> ?a : (A*A) --> A"
 apply pc
 done
 
-schematic_lemma [folded basic_defs]: "A type \<Longrightarrow> ?a : (A*A) --> A"
+schematic_goal [folded basic_defs]: "A type \<Longrightarrow> ?a : (A*A) --> A"
 apply pc
 back
 done
 
 text "Double negation of the Excluded Middle"
-schematic_lemma "A type \<Longrightarrow> ?a : ((A + (A-->F)) --> F) --> F"
+schematic_goal "A type \<Longrightarrow> ?a : ((A + (A-->F)) --> F) --> F"
 apply intr
 apply (rule ProdE)
 apply assumption
 apply pc
 done
 
-schematic_lemma "\<lbrakk>A type; B type\<rbrakk> \<Longrightarrow> ?a : (A*B) \<longrightarrow> (B*A)"
+schematic_goal "\<lbrakk>A type; B type\<rbrakk> \<Longrightarrow> ?a : (A*B) \<longrightarrow> (B*A)"
 apply pc
 done
 (*The sequent version (ITT) could produce an interesting alternative
   by backtracking.  No longer.*)
 
 text "Binary sums and products"
-schematic_lemma "\<lbrakk>A type; B type; C type\<rbrakk> \<Longrightarrow> ?a : (A+B --> C) --> (A-->C) * (B-->C)"
+schematic_goal "\<lbrakk>A type; B type; C type\<rbrakk> \<Longrightarrow> ?a : (A+B --> C) --> (A-->C) * (B-->C)"
 apply pc
 done
 
 (*A distributive law*)
-schematic_lemma "\<lbrakk>A type; B type; C type\<rbrakk> \<Longrightarrow> ?a : A * (B+C)  -->  (A*B + A*C)"
+schematic_goal "\<lbrakk>A type; B type; C type\<rbrakk> \<Longrightarrow> ?a : A * (B+C)  -->  (A*B + A*C)"
 apply pc
 done
 
 (*more general version, same proof*)
-schematic_lemma
+schematic_goal
   assumes "A type"
     and "\<And>x. x:A \<Longrightarrow> B(x) type"
     and "\<And>x. x:A \<Longrightarrow> C(x) type"
@@ -57,12 +57,12 @@
 done
 
 text "Construction of the currying functional"
-schematic_lemma "\<lbrakk>A type; B type; C type\<rbrakk> \<Longrightarrow> ?a : (A*B --> C) --> (A--> (B-->C))"
+schematic_goal "\<lbrakk>A type; B type; C type\<rbrakk> \<Longrightarrow> ?a : (A*B --> C) --> (A--> (B-->C))"
 apply pc
 done
 
 (*more general goal with same proof*)
-schematic_lemma
+schematic_goal
   assumes "A type"
     and "\<And>x. x:A \<Longrightarrow> B(x) type"
     and "\<And>z. z: (SUM x:A. B(x)) \<Longrightarrow> C(z) type"
@@ -72,12 +72,12 @@
 done
 
 text "Martin-Lof (1984), page 48: axiom of sum-elimination (uncurry)"
-schematic_lemma "\<lbrakk>A type; B type; C type\<rbrakk> \<Longrightarrow> ?a : (A --> (B-->C)) --> (A*B --> C)"
+schematic_goal "\<lbrakk>A type; B type; C type\<rbrakk> \<Longrightarrow> ?a : (A --> (B-->C)) --> (A*B --> C)"
 apply pc
 done
 
 (*more general goal with same proof*)
-schematic_lemma
+schematic_goal
   assumes "A type"
     and "\<And>x. x:A \<Longrightarrow> B(x) type"
     and "\<And>z. z: (SUM x:A . B(x)) \<Longrightarrow> C(z) type"
@@ -87,12 +87,12 @@
 done
 
 text "Function application"
-schematic_lemma "\<lbrakk>A type; B type\<rbrakk> \<Longrightarrow> ?a : ((A --> B) * A) --> B"
+schematic_goal "\<lbrakk>A type; B type\<rbrakk> \<Longrightarrow> ?a : ((A --> B) * A) --> B"
 apply pc
 done
 
 text "Basic test of quantifier reasoning"
-schematic_lemma
+schematic_goal
   assumes "A type"
     and "B type"
     and "\<And>x y. \<lbrakk>x:A; y:B\<rbrakk> \<Longrightarrow> C(x,y) type"
@@ -103,7 +103,7 @@
 done
 
 text "Martin-Lof (1984) pages 36-7: the combinator S"
-schematic_lemma
+schematic_goal
   assumes "A type"
     and "\<And>x. x:A \<Longrightarrow> B(x) type"
     and "\<And>x y. \<lbrakk>x:A; y:B(x)\<rbrakk> \<Longrightarrow> C(x,y) type"
@@ -113,7 +113,7 @@
 done
 
 text "Martin-Lof (1984) page 58: the axiom of disjunction elimination"
-schematic_lemma
+schematic_goal
   assumes "A type"
     and "B type"
     and "\<And>z. z: A+B \<Longrightarrow> C(z) type"
@@ -123,7 +123,7 @@
 done
 
 (*towards AXIOM OF CHOICE*)
-schematic_lemma [folded basic_defs]:
+schematic_goal [folded basic_defs]:
   "\<lbrakk>A type; B type; C type\<rbrakk> \<Longrightarrow> ?a : (A --> B*C) --> (A-->B) * (A-->C)"
 apply pc
 done
@@ -131,7 +131,7 @@
 
 (*Martin-Lof (1984) page 50*)
 text "AXIOM OF CHOICE!  Delicate use of elimination rules"
-schematic_lemma
+schematic_goal
   assumes "A type"
     and "\<And>x. x:A \<Longrightarrow> B(x) type"
     and "\<And>x y. \<lbrakk>x:A; y:B(x)\<rbrakk> \<Longrightarrow> C(x,y) type"
@@ -149,7 +149,7 @@
 done
 
 text "Axiom of choice.  Proof without fst, snd.  Harder still!"
-schematic_lemma [folded basic_defs]:
+schematic_goal [folded basic_defs]:
   assumes "A type"
     and "\<And>x. x:A \<Longrightarrow> B(x) type"
     and "\<And>x y. \<lbrakk>x:A; y:B(x)\<rbrakk> \<Longrightarrow> C(x,y) type"
@@ -176,7 +176,7 @@
 text "Example of sequent_style deduction"
 (*When splitting z:A*B, the assumption C(z) is affected;  ?a becomes
     lam u. split(u,\<lambda>v w.split(v,\<lambda>x y.lam z. <x,<y,z>>) ` w)     *)
-schematic_lemma
+schematic_goal
   assumes "A type"
     and "B type"
     and "\<And>z. z:A*B \<Longrightarrow> C(z) type"
--- a/src/CTT/ex/Synthesis.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/CTT/ex/Synthesis.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -10,7 +10,7 @@
 begin
 
 text "discovery of predecessor function"
-schematic_lemma "?a : SUM pred:?A . Eq(N, pred`0, 0)
+schematic_goal "?a : SUM pred:?A . Eq(N, pred`0, 0)
                   *  (PROD n:N. Eq(N, pred ` succ(n), n))"
 apply intr
 apply eqintr
@@ -20,7 +20,7 @@
 done
 
 text "the function fst as an element of a function type"
-schematic_lemma [folded basic_defs]:
+schematic_goal [folded basic_defs]:
   "A type \<Longrightarrow> ?a: SUM f:?B . PROD i:A. PROD j:A. Eq(A, f ` <i,j>, i)"
 apply intr
 apply eqintr
@@ -34,7 +34,7 @@
 text "An interesting use of the eliminator, when"
 (*The early implementation of unification caused non-rigid path in occur check
   See following example.*)
-schematic_lemma "?a : PROD i:N. Eq(?A, ?b(inl(i)), <0    ,   i>)
+schematic_goal "?a : PROD i:N. Eq(?A, ?b(inl(i)), <0    ,   i>)
                    * Eq(?A, ?b(inr(i)), <succ(0), i>)"
 apply intr
 apply eqintr
@@ -46,13 +46,13 @@
  This prevents the cycle in the first unification (no longer needed).
  Requires flex-flex to preserve the dependence.
  Simpler still: make ?A into a constant type N*N.*)
-schematic_lemma "?a : PROD i:N. Eq(?A(i), ?b(inl(i)), <0   ,   i>)
+schematic_goal "?a : PROD i:N. Eq(?A(i), ?b(inl(i)), <0   ,   i>)
                   *  Eq(?A(i), ?b(inr(i)), <succ(0),i>)"
 oops
 
 text "A tricky combination of when and split"
 (*Now handled easily, but caused great problems once*)
-schematic_lemma [folded basic_defs]:
+schematic_goal [folded basic_defs]:
   "?a : PROD i:N. PROD j:N. Eq(?A, ?b(inl(<i,j>)), i)
                            *  Eq(?A, ?b(inr(<i,j>)), j)"
 apply intr
@@ -65,18 +65,18 @@
 done
 
 (*similar but allows the type to depend on i and j*)
-schematic_lemma "?a : PROD i:N. PROD j:N. Eq(?A(i,j), ?b(inl(<i,j>)), i)
+schematic_goal "?a : PROD i:N. PROD j:N. Eq(?A(i,j), ?b(inl(<i,j>)), i)
                           *   Eq(?A(i,j), ?b(inr(<i,j>)), j)"
 oops
 
 (*similar but specifying the type N simplifies the unification problems*)
-schematic_lemma "?a : PROD i:N. PROD j:N. Eq(N, ?b(inl(<i,j>)), i)
+schematic_goal "?a : PROD i:N. PROD j:N. Eq(N, ?b(inl(<i,j>)), i)
                           *   Eq(N, ?b(inr(<i,j>)), j)"
 oops
 
 
 text "Deriving the addition operator"
-schematic_lemma [folded arith_defs]:
+schematic_goal [folded arith_defs]:
   "?c : PROD n:N. Eq(N, ?f(0,n), n)
                   *  (PROD m:N. Eq(N, ?f(succ(m), n), succ(?f(m,n))))"
 apply intr
@@ -86,7 +86,7 @@
 done
 
 text "The addition function -- using explicit lambdas"
-schematic_lemma [folded arith_defs]:
+schematic_goal [folded arith_defs]:
   "?c : SUM plus : ?A .
          PROD x:N. Eq(N, plus`0`x, x)
                 *  (PROD y:N. Eq(N, plus`succ(y)`x, succ(plus`y`x)))"
--- a/src/CTT/ex/Typechecking.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/CTT/ex/Typechecking.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -11,18 +11,18 @@
 
 subsection \<open>Single-step proofs: verifying that a type is well-formed\<close>
 
-schematic_lemma "?A type"
+schematic_goal "?A type"
 apply (rule form_rls)
 done
 
-schematic_lemma "?A type"
+schematic_goal "?A type"
 apply (rule form_rls)
 back
 apply (rule form_rls)
 apply (rule form_rls)
 done
 
-schematic_lemma "PROD z:?A . N + ?B(z) type"
+schematic_goal "PROD z:?A . N + ?B(z) type"
 apply (rule form_rls)
 apply (rule form_rls)
 apply (rule form_rls)
@@ -37,30 +37,30 @@
 apply form
 done
 
-schematic_lemma "<0, succ(0)> : ?A"
+schematic_goal "<0, succ(0)> : ?A"
 apply intr
 done
 
-schematic_lemma "PROD w:N . Eq(?A,w,w) type"
+schematic_goal "PROD w:N . Eq(?A,w,w) type"
 apply typechk
 done
 
-schematic_lemma "PROD x:N . PROD y:N . Eq(?A,x,y) type"
+schematic_goal "PROD x:N . PROD y:N . Eq(?A,x,y) type"
 apply typechk
 done
 
 text "typechecking an application of fst"
-schematic_lemma "(lam u. split(u, \<lambda>v w. v)) ` <0, succ(0)> : ?A"
+schematic_goal "(lam u. split(u, \<lambda>v w. v)) ` <0, succ(0)> : ?A"
 apply typechk
 done
 
 text "typechecking the predecessor function"
-schematic_lemma "lam n. rec(n, 0, \<lambda>x y. x) : ?A"
+schematic_goal "lam n. rec(n, 0, \<lambda>x y. x) : ?A"
 apply typechk
 done
 
 text "typechecking the addition function"
-schematic_lemma "lam n. lam m. rec(n, m, \<lambda>x y. succ(y)) : ?A"
+schematic_goal "lam n. lam m. rec(n, m, \<lambda>x y. succ(y)) : ?A"
 apply typechk
 done
 
@@ -69,18 +69,18 @@
 method_setup N =
   \<open>Scan.succeed (fn ctxt => SIMPLE_METHOD (TRYALL (resolve_tac ctxt @{thms NF})))\<close>
 
-schematic_lemma "lam w. <w,w> : ?A"
+schematic_goal "lam w. <w,w> : ?A"
 apply typechk
 apply N
 done
 
-schematic_lemma "lam x. lam y. x : ?A"
+schematic_goal "lam x. lam y. x : ?A"
 apply typechk
 apply N
 done
 
 text "typechecking fst (as a function object)"
-schematic_lemma "lam i. split(i, \<lambda>j k. j) : ?A"
+schematic_goal "lam i. split(i, \<lambda>j k. j) : ?A"
 apply typechk
 apply N
 done
--- a/src/Cube/Example.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/Cube/Example.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -25,98 +25,98 @@
 
 subsection \<open>Simple types\<close>
 
-schematic_lemma "A:* \<turnstile> A\<rightarrow>A : ?T"
+schematic_goal "A:* \<turnstile> A\<rightarrow>A : ?T"
   by (depth_solve rules)
 
-schematic_lemma "A:* \<turnstile> \<Lambda> a:A. a : ?T"
+schematic_goal "A:* \<turnstile> \<Lambda> a:A. a : ?T"
   by (depth_solve rules)
 
-schematic_lemma "A:* B:* b:B \<turnstile> \<Lambda> x:A. b : ?T"
+schematic_goal "A:* B:* b:B \<turnstile> \<Lambda> x:A. b : ?T"
   by (depth_solve rules)
 
-schematic_lemma "A:* b:A \<turnstile> (\<Lambda> a:A. a)^b: ?T"
+schematic_goal "A:* b:A \<turnstile> (\<Lambda> a:A. a)^b: ?T"
   by (depth_solve rules)
 
-schematic_lemma "A:* B:* c:A b:B \<turnstile> (\<Lambda> x:A. b)^ c: ?T"
+schematic_goal "A:* B:* c:A b:B \<turnstile> (\<Lambda> x:A. b)^ c: ?T"
   by (depth_solve rules)
 
-schematic_lemma "A:* B:* \<turnstile> \<Lambda> a:A. \<Lambda> b:B. a : ?T"
+schematic_goal "A:* B:* \<turnstile> \<Lambda> a:A. \<Lambda> b:B. a : ?T"
   by (depth_solve rules)
 
 
 subsection \<open>Second-order types\<close>
 
-schematic_lemma (in L2) "\<turnstile> \<Lambda> A:*. \<Lambda> a:A. a : ?T"
+schematic_goal (in L2) "\<turnstile> \<Lambda> A:*. \<Lambda> a:A. a : ?T"
   by (depth_solve rules)
 
-schematic_lemma (in L2) "A:* \<turnstile> (\<Lambda> B:*.\<Lambda> b:B. b)^A : ?T"
+schematic_goal (in L2) "A:* \<turnstile> (\<Lambda> B:*.\<Lambda> b:B. b)^A : ?T"
   by (depth_solve rules)
 
-schematic_lemma (in L2) "A:* b:A \<turnstile> (\<Lambda> B:*.\<Lambda> b:B. b) ^ A ^ b: ?T"
+schematic_goal (in L2) "A:* b:A \<turnstile> (\<Lambda> B:*.\<Lambda> b:B. b) ^ A ^ b: ?T"
   by (depth_solve rules)
 
-schematic_lemma (in L2) "\<turnstile> \<Lambda> B:*.\<Lambda> a:(\<Pi> A:*.A).a ^ ((\<Pi> A:*.A)\<rightarrow>B) ^ a: ?T"
+schematic_goal (in L2) "\<turnstile> \<Lambda> B:*.\<Lambda> a:(\<Pi> A:*.A).a ^ ((\<Pi> A:*.A)\<rightarrow>B) ^ a: ?T"
   by (depth_solve rules)
 
 
 subsection \<open>Weakly higher-order propositional logic\<close>
 
-schematic_lemma (in Lomega) "\<turnstile> \<Lambda> A:*.A\<rightarrow>A : ?T"
+schematic_goal (in Lomega) "\<turnstile> \<Lambda> A:*.A\<rightarrow>A : ?T"
   by (depth_solve rules)
 
-schematic_lemma (in Lomega) "B:* \<turnstile> (\<Lambda> A:*.A\<rightarrow>A) ^ B : ?T"
+schematic_goal (in Lomega) "B:* \<turnstile> (\<Lambda> A:*.A\<rightarrow>A) ^ B : ?T"
   by (depth_solve rules)
 
-schematic_lemma (in Lomega) "B:* b:B \<turnstile> (\<Lambda> y:B. b): ?T"
+schematic_goal (in Lomega) "B:* b:B \<turnstile> (\<Lambda> y:B. b): ?T"
   by (depth_solve rules)
 
-schematic_lemma (in Lomega) "A:* F:*\<rightarrow>* \<turnstile> F^(F^A): ?T"
+schematic_goal (in Lomega) "A:* F:*\<rightarrow>* \<turnstile> F^(F^A): ?T"
   by (depth_solve rules)
 
-schematic_lemma (in Lomega) "A:* \<turnstile> \<Lambda> F:*\<rightarrow>*.F^(F^A): ?T"
+schematic_goal (in Lomega) "A:* \<turnstile> \<Lambda> F:*\<rightarrow>*.F^(F^A): ?T"
   by (depth_solve rules)
 
 
 subsection \<open>LP\<close>
 
-schematic_lemma (in LP) "A:* \<turnstile> A \<rightarrow> * : ?T"
+schematic_goal (in LP) "A:* \<turnstile> A \<rightarrow> * : ?T"
   by (depth_solve rules)
 
-schematic_lemma (in LP) "A:* P:A\<rightarrow>* a:A \<turnstile> P^a: ?T"
+schematic_goal (in LP) "A:* P:A\<rightarrow>* a:A \<turnstile> P^a: ?T"
   by (depth_solve rules)
 
-schematic_lemma (in LP) "A:* P:A\<rightarrow>A\<rightarrow>* a:A \<turnstile> \<Pi> a:A. P^a^a: ?T"
+schematic_goal (in LP) "A:* P:A\<rightarrow>A\<rightarrow>* a:A \<turnstile> \<Pi> a:A. P^a^a: ?T"
   by (depth_solve rules)
 
-schematic_lemma (in LP) "A:* P:A\<rightarrow>* Q:A\<rightarrow>* \<turnstile> \<Pi> a:A. P^a \<rightarrow> Q^a: ?T"
+schematic_goal (in LP) "A:* P:A\<rightarrow>* Q:A\<rightarrow>* \<turnstile> \<Pi> a:A. P^a \<rightarrow> Q^a: ?T"
   by (depth_solve rules)
 
-schematic_lemma (in LP) "A:* P:A\<rightarrow>* \<turnstile> \<Pi> a:A. P^a \<rightarrow> P^a: ?T"
+schematic_goal (in LP) "A:* P:A\<rightarrow>* \<turnstile> \<Pi> a:A. P^a \<rightarrow> P^a: ?T"
   by (depth_solve rules)
 
-schematic_lemma (in LP) "A:* P:A\<rightarrow>* \<turnstile> \<Lambda> a:A. \<Lambda> x:P^a. x: ?T"
+schematic_goal (in LP) "A:* P:A\<rightarrow>* \<turnstile> \<Lambda> a:A. \<Lambda> x:P^a. x: ?T"
   by (depth_solve rules)
 
-schematic_lemma (in LP) "A:* P:A\<rightarrow>* Q:* \<turnstile> (\<Pi> a:A. P^a\<rightarrow>Q) \<rightarrow> (\<Pi> a:A. P^a) \<rightarrow> Q : ?T"
+schematic_goal (in LP) "A:* P:A\<rightarrow>* Q:* \<turnstile> (\<Pi> a:A. P^a\<rightarrow>Q) \<rightarrow> (\<Pi> a:A. P^a) \<rightarrow> Q : ?T"
   by (depth_solve rules)
 
-schematic_lemma (in LP) "A:* P:A\<rightarrow>* Q:* a0:A \<turnstile>
+schematic_goal (in LP) "A:* P:A\<rightarrow>* Q:* a0:A \<turnstile>
         \<Lambda> x:\<Pi> a:A. P^a\<rightarrow>Q. \<Lambda> y:\<Pi> a:A. P^a. x^a0^(y^a0): ?T"
   by (depth_solve rules)
 
 
 subsection \<open>Omega-order types\<close>
 
-schematic_lemma (in L2) "A:* B:* \<turnstile> \<Pi> C:*.(A\<rightarrow>B\<rightarrow>C)\<rightarrow>C : ?T"
+schematic_goal (in L2) "A:* B:* \<turnstile> \<Pi> C:*.(A\<rightarrow>B\<rightarrow>C)\<rightarrow>C : ?T"
   by (depth_solve rules)
 
-schematic_lemma (in Lomega2) "\<turnstile> \<Lambda> A:*.\<Lambda> B:*.\<Pi> C:*.(A\<rightarrow>B\<rightarrow>C)\<rightarrow>C : ?T"
+schematic_goal (in Lomega2) "\<turnstile> \<Lambda> A:*.\<Lambda> B:*.\<Pi> C:*.(A\<rightarrow>B\<rightarrow>C)\<rightarrow>C : ?T"
   by (depth_solve rules)
 
-schematic_lemma (in Lomega2) "\<turnstile> \<Lambda> A:*.\<Lambda> B:*.\<Lambda> x:A. \<Lambda> y:B. x : ?T"
+schematic_goal (in Lomega2) "\<turnstile> \<Lambda> A:*.\<Lambda> B:*.\<Lambda> x:A. \<Lambda> y:B. x : ?T"
   by (depth_solve rules)
 
-schematic_lemma (in Lomega2) "A:* B:* \<turnstile> ?p : (A\<rightarrow>B) \<rightarrow> ((B\<rightarrow>\<Pi> P:*.P)\<rightarrow>(A\<rightarrow>\<Pi> P:*.P))"
+schematic_goal (in Lomega2) "A:* B:* \<turnstile> ?p : (A\<rightarrow>B) \<rightarrow> ((B\<rightarrow>\<Pi> P:*.P)\<rightarrow>(A\<rightarrow>\<Pi> P:*.P))"
   apply (strip_asms rules)
   apply (rule lam_ss)
     apply (depth_solve1 rules)
@@ -140,14 +140,14 @@
 
 subsection \<open>Second-order Predicate Logic\<close>
 
-schematic_lemma (in LP2) "A:* P:A\<rightarrow>* \<turnstile> \<Lambda> a:A. P^a\<rightarrow>(\<Pi> A:*.A) : ?T"
+schematic_goal (in LP2) "A:* P:A\<rightarrow>* \<turnstile> \<Lambda> a:A. P^a\<rightarrow>(\<Pi> A:*.A) : ?T"
   by (depth_solve rules)
 
-schematic_lemma (in LP2) "A:* P:A\<rightarrow>A\<rightarrow>* \<turnstile>
+schematic_goal (in LP2) "A:* P:A\<rightarrow>A\<rightarrow>* \<turnstile>
     (\<Pi> a:A. \<Pi> b:A. P^a^b\<rightarrow>P^b^a\<rightarrow>\<Pi> P:*.P) \<rightarrow> \<Pi> a:A. P^a^a\<rightarrow>\<Pi> P:*.P : ?T"
   by (depth_solve rules)
 
-schematic_lemma (in LP2) "A:* P:A\<rightarrow>A\<rightarrow>* \<turnstile>
+schematic_goal (in LP2) "A:* P:A\<rightarrow>A\<rightarrow>* \<turnstile>
     ?p: (\<Pi> a:A. \<Pi> b:A. P^a^b\<rightarrow>P^b^a\<rightarrow>\<Pi> P:*.P) \<rightarrow> \<Pi> a:A. P^a^a\<rightarrow>\<Pi> P:*.P"
   -- \<open>Antisymmetry implies irreflexivity:\<close>
   apply (strip_asms rules)
@@ -169,22 +169,22 @@
 
 subsection \<open>LPomega\<close>
 
-schematic_lemma (in LPomega) "A:* \<turnstile> \<Lambda> P:A\<rightarrow>A\<rightarrow>*.\<Lambda> a:A. P^a^a : ?T"
+schematic_goal (in LPomega) "A:* \<turnstile> \<Lambda> P:A\<rightarrow>A\<rightarrow>*.\<Lambda> a:A. P^a^a : ?T"
   by (depth_solve rules)
 
-schematic_lemma (in LPomega) "\<turnstile> \<Lambda> A:*.\<Lambda> P:A\<rightarrow>A\<rightarrow>*.\<Lambda> a:A. P^a^a : ?T"
+schematic_goal (in LPomega) "\<turnstile> \<Lambda> A:*.\<Lambda> P:A\<rightarrow>A\<rightarrow>*.\<Lambda> a:A. P^a^a : ?T"
   by (depth_solve rules)
 
 
 subsection \<open>Constructions\<close>
 
-schematic_lemma (in CC) "\<turnstile> \<Lambda> A:*.\<Lambda> P:A\<rightarrow>*.\<Lambda> a:A. P^a\<rightarrow>\<Pi> P:*.P: ?T"
+schematic_goal (in CC) "\<turnstile> \<Lambda> A:*.\<Lambda> P:A\<rightarrow>*.\<Lambda> a:A. P^a\<rightarrow>\<Pi> P:*.P: ?T"
   by (depth_solve rules)
 
-schematic_lemma (in CC) "\<turnstile> \<Lambda> A:*.\<Lambda> P:A\<rightarrow>*.\<Pi> a:A. P^a: ?T"
+schematic_goal (in CC) "\<turnstile> \<Lambda> A:*.\<Lambda> P:A\<rightarrow>*.\<Pi> a:A. P^a: ?T"
   by (depth_solve rules)
 
-schematic_lemma (in CC) "A:* P:A\<rightarrow>* a:A \<turnstile> ?p : (\<Pi> a:A. P^a)\<rightarrow>P^a"
+schematic_goal (in CC) "A:* P:A\<rightarrow>* a:A \<turnstile> ?p : (\<Pi> a:A. P^a)\<rightarrow>P^a"
   apply (strip_asms rules)
   apply (rule lam_ss)
     apply (depth_solve1 rules)
@@ -196,15 +196,15 @@
 
 subsection \<open>Some random examples\<close>
 
-schematic_lemma (in LP2) "A:* c:A f:A\<rightarrow>A \<turnstile>
+schematic_goal (in LP2) "A:* c:A f:A\<rightarrow>A \<turnstile>
     \<Lambda> a:A. \<Pi> P:A\<rightarrow>*.P^c \<rightarrow> (\<Pi> x:A. P^x\<rightarrow>P^(f^x)) \<rightarrow> P^a : ?T"
   by (depth_solve rules)
 
-schematic_lemma (in CC) "\<Lambda> A:*.\<Lambda> c:A. \<Lambda> f:A\<rightarrow>A.
+schematic_goal (in CC) "\<Lambda> A:*.\<Lambda> c:A. \<Lambda> f:A\<rightarrow>A.
     \<Lambda> a:A. \<Pi> P:A\<rightarrow>*.P^c \<rightarrow> (\<Pi> x:A. P^x\<rightarrow>P^(f^x)) \<rightarrow> P^a : ?T"
   by (depth_solve rules)
 
-schematic_lemma (in LP2)
+schematic_goal (in LP2)
   "A:* a:A b:A \<turnstile> ?p: (\<Pi> P:A\<rightarrow>*.P^a\<rightarrow>P^b) \<rightarrow> (\<Pi> P:A\<rightarrow>*.P^b\<rightarrow>P^a)"
   -- \<open>Symmetry of Leibnitz equality\<close>
   apply (strip_asms rules)
--- a/src/Doc/Codegen/Evaluation.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/Doc/Codegen/Evaluation.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -228,7 +228,7 @@
 \<close>
 
 ML (*<*) \<open>\<close>
-schematic_lemma "thm": fixes x y z :: "'a::order" shows "x < y \<and> x < z \<equiv> ?P"
+schematic_goal "thm": fixes x y z :: "'a::order" shows "x < y \<and> x < z \<equiv> ?P"
 ML_prf 
 (*>*) \<open>val thm =
   Reification.conv @{context} @{thms interp.simps} @{cterm "x < y \<and> x < z"}\<close> (*<*)
--- a/src/Doc/Isar_Ref/Proof.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/Doc/Isar_Ref/Proof.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -379,9 +379,8 @@
     @{command_def "lemma"} & : & @{text "local_theory \<rightarrow> proof(prove)"} \\
     @{command_def "theorem"} & : & @{text "local_theory \<rightarrow> proof(prove)"} \\
     @{command_def "corollary"} & : & @{text "local_theory \<rightarrow> proof(prove)"} \\
-    @{command_def "schematic_lemma"} & : & @{text "local_theory \<rightarrow> proof(prove)"} \\
-    @{command_def "schematic_theorem"} & : & @{text "local_theory \<rightarrow> proof(prove)"} \\
-    @{command_def "schematic_corollary"} & : & @{text "local_theory \<rightarrow> proof(prove)"} \\
+    @{command_def "proposition"} & : & @{text "local_theory \<rightarrow> proof(prove)"} \\
+    @{command_def "schematic_goal"} & : & @{text "local_theory \<rightarrow> proof(prove)"} \\
     @{command_def "have"} & : & @{text "proof(state) | proof(chain) \<rightarrow> proof(prove)"} \\
     @{command_def "show"} & : & @{text "proof(state) | proof(chain) \<rightarrow> proof(prove)"} \\
     @{command_def "hence"} & : & @{text "proof(state) \<rightarrow> proof(prove)"} \\
@@ -389,13 +388,10 @@
     @{command_def "print_statement"}@{text "\<^sup>*"} & : & @{text "context \<rightarrow>"} \\
   \end{matharray}
 
-  From a theory context, proof mode is entered by an initial goal
-  command such as @{command "lemma"}, @{command "theorem"}, or
-  @{command "corollary"}.  Within a proof, new claims may be
-  introduced locally as well; four variants are available here to
-  indicate whether forward chaining of facts should be performed
-  initially (via @{command_ref "then"}), and whether the final result
-  is meant to solve some pending goal.
+  From a theory context, proof mode is entered by an initial goal command
+  such as @{command "lemma"}. Within a proof context, new claims may be
+  introduced locally; there are variants to interact with the overall proof
+  structure specifically, such as @{command have} or @{command show}.
 
   Goals may consist of multiple statements, resulting in a list of
   facts eventually.  A pending multi-goal is internally represented as
@@ -423,8 +419,7 @@
 
   @{rail \<open>
     (@@{command lemma} | @@{command theorem} | @@{command corollary} |
-     @@{command schematic_lemma} | @@{command schematic_theorem} |
-     @@{command schematic_corollary}) (stmt | statement)
+     @@{command proposition} | @@{command schematic_goal}) (stmt | statement)
     ;
     (@@{command have} | @@{command show} | @@{command hence} | @@{command thus})
       stmt cond_stmt @{syntax for_fixes}
@@ -457,16 +452,12 @@
   well, see also @{syntax "includes"} in \secref{sec:bundle} and
   @{syntax context_elem} in \secref{sec:locale}.
 
-  \item @{command "theorem"}~@{text "a: \<phi>"} and @{command
-  "corollary"}~@{text "a: \<phi>"} are essentially the same as @{command
-  "lemma"}~@{text "a: \<phi>"}, but the facts are internally marked as
-  being of a different kind.  This discrimination acts like a formal
-  comment.
+  \item @{command "theorem"}, @{command "corollary"}, and @{command
+  "proposition"} are the same as @{command "lemma"}. The different command
+  names merely serve as a formal comment in the theory source.
 
-  \item @{command "schematic_lemma"}, @{command "schematic_theorem"},
-  @{command "schematic_corollary"} are similar to @{command "lemma"},
-  @{command "theorem"}, @{command "corollary"}, respectively but allow
-  the statement to contain unbound schematic variables.
+  \item @{command "schematic_goal"} is similar to @{command "theorem"},
+  but allows the statement to contain unbound schematic variables.
 
   Under normal circumstances, an Isar proof text needs to specify
   claims explicitly.  Schematic goals are more like goals in Prolog,
--- a/src/Doc/Isar_Ref/Spec.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/Doc/Isar_Ref/Spec.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -446,9 +446,9 @@
 
   \item @{command "declare"}~@{text thms} declares theorems to the
   current local theory context.  No theorem binding is involved here,
-  unlike @{command "theorems"} or @{command "lemmas"} (cf.\
-  \secref{sec:theorems}), so @{command "declare"} only has the effect
-  of applying attributes as included in the theorem specification.
+  unlike @{command "lemmas"} (cf.\ \secref{sec:theorems}), so
+  @{command "declare"} only has the effect of applying attributes as
+  included in the theorem specification.
 
   \end{description}
 \<close>
@@ -1441,12 +1441,11 @@
 text \<open>
   \begin{matharray}{rcll}
     @{command_def "lemmas"} & : & @{text "local_theory \<rightarrow> local_theory"} \\
-    @{command_def "theorems"} & : & @{text "local_theory \<rightarrow> local_theory"} \\
     @{command_def "named_theorems"} & : & @{text "local_theory \<rightarrow> local_theory"} \\
   \end{matharray}
 
   @{rail \<open>
-    (@@{command lemmas} | @@{command theorems}) (@{syntax thmdef}? @{syntax thmrefs} + @'and')
+    @@{command lemmas} (@{syntax thmdef}? @{syntax thmrefs} + @'and')
       @{syntax for_fixes}
     ;
     @@{command named_theorems} (@{syntax name} @{syntax text}? + @'and')
@@ -1460,9 +1459,6 @@
   Results are standardized before being stored, i.e.\ schematic
   variables are renamed to enforce index @{text "0"} uniformly.
 
-  \item @{command "theorems"} is the same as @{command "lemmas"}, but
-  marks the result as a different kind of facts.
-
   \item @{command "named_theorems"}~@{text "name description"} declares a
   dynamic fact within the context. The same @{text name} is used to define
   an attribute with the usual @{text add}/@{text del} syntax (e.g.\ see
--- a/src/FOL/ex/Classical.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/FOL/ex/Classical.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -363,7 +363,7 @@
 
 text\<open>Non-equational version, from Manthey and Bry, CADE-9 (Springer, 1988).
   fast DISCOVERS who killed Agatha.\<close>
-schematic_lemma "lives(agatha) & lives(butler) & lives(charles) &  
+schematic_goal "lives(agatha) & lives(butler) & lives(charles) &  
    (killed(agatha,agatha) | killed(butler,agatha) | killed(charles,agatha)) &  
    (\<forall>x y. killed(x,y) --> hates(x,y) & ~richer(x,y)) &  
    (\<forall>x. hates(agatha,x) --> ~hates(charles,x)) &  
--- a/src/FOL/ex/Prolog.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/FOL/ex/Prolog.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -23,18 +23,18 @@
   revNil:  "rev(Nil,Nil)" and
   revCons: "[| rev(xs,ys);  app(ys, x:Nil, zs) |] ==> rev(x:xs, zs)"
 
-schematic_lemma "app(a:b:c:Nil, d:e:Nil, ?x)"
+schematic_goal "app(a:b:c:Nil, d:e:Nil, ?x)"
 apply (rule appNil appCons)
 apply (rule appNil appCons)
 apply (rule appNil appCons)
 apply (rule appNil appCons)
 done
 
-schematic_lemma "app(?x, c:d:Nil, a:b:c:d:Nil)"
+schematic_goal "app(?x, c:d:Nil, a:b:c:d:Nil)"
 apply (rule appNil appCons)+
 done
 
-schematic_lemma "app(?x, ?y, a:b:c:d:Nil)"
+schematic_goal "app(?x, ?y, a:b:c:d:Nil)"
 apply (rule appNil appCons)+
 back
 back
@@ -47,15 +47,15 @@
 
 lemmas rules = appNil appCons revNil revCons
 
-schematic_lemma "rev(a:b:c:d:Nil, ?x)"
+schematic_goal "rev(a:b:c:d:Nil, ?x)"
 apply (rule rules)+
 done
 
-schematic_lemma "rev(a:b:c:d:e:f:g:h:i:j:k:l:m:n:Nil, ?w)"
+schematic_goal "rev(a:b:c:d:e:f:g:h:i:j:k:l:m:n:Nil, ?w)"
 apply (rule rules)+
 done
 
-schematic_lemma "rev(?x, a:b:c:Nil)"
+schematic_goal "rev(?x, a:b:c:Nil)"
 apply (rule rules)+  -- \<open>does not solve it directly!\<close>
 back
 back
@@ -67,23 +67,23 @@
   DEPTH_FIRST (has_fewer_prems 1) (resolve_tac ctxt @{thms rules} 1)
 \<close>
 
-schematic_lemma "rev(?x, a:b:c:Nil)"
+schematic_goal "rev(?x, a:b:c:Nil)"
 apply (tactic \<open>prolog_tac @{context}\<close>)
 done
 
-schematic_lemma "rev(a:?x:c:?y:Nil, d:?z:b:?u)"
+schematic_goal "rev(a:?x:c:?y:Nil, d:?z:b:?u)"
 apply (tactic \<open>prolog_tac @{context}\<close>)
 done
 
 (*rev([a..p], ?w) requires 153 inferences *)
-schematic_lemma "rev(a:b:c:d:e:f:g:h:i:j:k:l:m:n:o:p:Nil, ?w)"
+schematic_goal "rev(a:b:c:d:e:f:g:h:i:j:k:l:m:n:o:p:Nil, ?w)"
 apply (tactic \<open>
   DEPTH_SOLVE (resolve_tac @{context} ([@{thm refl}, @{thm conjI}] @ @{thms rules}) 1)\<close>)
 done
 
 (*?x has 16, ?y has 32;  rev(?y,?w) requires 561 (rather large) inferences
   total inferences = 2 + 1 + 17 + 561 = 581*)
-schematic_lemma "a:b:c:d:e:f:g:h:i:j:k:l:m:n:o:p:Nil = ?x & app(?x,?x,?y) & rev(?y,?w)"
+schematic_goal "a:b:c:d:e:f:g:h:i:j:k:l:m:n:o:p:Nil = ?x & app(?x,?x,?y) & rev(?y,?w)"
 apply (tactic \<open>
   DEPTH_SOLVE (resolve_tac @{context} ([@{thm refl}, @{thm conjI}] @ @{thms rules}) 1)\<close>)
 done
--- a/src/FOL/ex/Quantifiers_Cla.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/FOL/ex/Quantifiers_Cla.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -58,11 +58,11 @@
   apply fast?
   oops
 
-schematic_lemma "P(?a) --> (ALL x. P(x))"
+schematic_goal "P(?a) --> (ALL x. P(x))"
   apply fast?
   oops
 
-schematic_lemma "(P(?a) --> (ALL x. Q(x))) --> (ALL x. P(x) --> Q(x))"
+schematic_goal "(P(?a) --> (ALL x. Q(x))) --> (ALL x. P(x) --> Q(x))"
   apply fast?
   oops
 
@@ -76,7 +76,7 @@
 lemma "(P --> (EX x. Q(x))) & P --> (EX x. Q(x))"
   by fast
 
-schematic_lemma "(ALL x. P(x)-->Q(f(x))) & (ALL x. Q(x)-->R(g(x))) & P(d) --> R(?a)"
+schematic_goal "(ALL x. P(x)-->Q(f(x))) & (ALL x. Q(x)-->R(g(x))) & P(d) --> R(?a)"
   by fast
 
 lemma "(ALL x. Q(x))  -->  (EX x. Q(x))"
--- a/src/FOL/ex/Quantifiers_Int.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/FOL/ex/Quantifiers_Int.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -58,11 +58,11 @@
   apply (tactic "IntPr.fast_tac @{context} 1")?
   oops
 
-schematic_lemma "P(?a) --> (ALL x. P(x))"
+schematic_goal "P(?a) --> (ALL x. P(x))"
   apply (tactic "IntPr.fast_tac @{context} 1")?
   oops
 
-schematic_lemma "(P(?a) --> (ALL x. Q(x))) --> (ALL x. P(x) --> Q(x))"
+schematic_goal "(P(?a) --> (ALL x. Q(x))) --> (ALL x. P(x) --> Q(x))"
   apply (tactic "IntPr.fast_tac @{context} 1")?
   oops
 
@@ -76,7 +76,7 @@
 lemma "(P --> (EX x. Q(x))) & P --> (EX x. Q(x))"
   by (tactic "IntPr.fast_tac @{context} 1")
 
-schematic_lemma "(ALL x. P(x)-->Q(f(x))) & (ALL x. Q(x)-->R(g(x))) & P(d) --> R(?a)"
+schematic_goal "(ALL x. P(x)-->Q(f(x))) & (ALL x. Q(x)-->R(g(x))) & P(d) --> R(?a)"
   by (tactic "IntPr.fast_tac @{context} 1")
 
 lemma "(ALL x. Q(x))  -->  (EX x. Q(x))"
--- a/src/FOLP/FOLP.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/FOLP/FOLP.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -15,7 +15,7 @@
 
 (*** Classical introduction rules for | and EX ***)
 
-schematic_lemma disjCI:
+schematic_goal disjCI:
   assumes "!!x. x:~Q ==> f(x):P"
   shows "?p : P|Q"
   apply (rule classical)
@@ -24,7 +24,7 @@
   done
 
 (*introduction rule involving only EX*)
-schematic_lemma ex_classical:
+schematic_goal ex_classical:
   assumes "!!u. u:~(EX x. P(x)) ==> f(u):P(a)"
   shows "?p : EX x. P(x)"
   apply (rule classical)
@@ -32,7 +32,7 @@
   done
 
 (*version of above, simplifying ~EX to ALL~ *)
-schematic_lemma exCI:
+schematic_goal exCI:
   assumes "!!u. u:ALL x. ~P(x) ==> f(u):P(a)"
   shows "?p : EX x. P(x)"
   apply (rule ex_classical)
@@ -41,7 +41,7 @@
   apply (erule exI)
   done
 
-schematic_lemma excluded_middle: "?p : ~P | P"
+schematic_goal excluded_middle: "?p : ~P | P"
   apply (rule disjCI)
   apply assumption
   done
@@ -50,7 +50,7 @@
 (*** Special elimination rules *)
 
 (*Classical implies (-->) elimination. *)
-schematic_lemma impCE:
+schematic_goal impCE:
   assumes major: "p:P-->Q"
     and r1: "!!x. x:~P ==> f(x):R"
     and r2: "!!y. y:Q ==> g(y):R"
@@ -61,7 +61,7 @@
   done
 
 (*Double negation law*)
-schematic_lemma notnotD: "p:~~P ==> ?p : P"
+schematic_goal notnotD: "p:~~P ==> ?p : P"
   apply (rule classical)
   apply (erule notE)
   apply assumption
@@ -72,7 +72,7 @@
 
 (*Classical <-> elimination.  Proof substitutes P=Q in
     ~P ==> ~Q    and    P ==> Q  *)
-schematic_lemma iffCE:
+schematic_goal iffCE:
   assumes major: "p:P<->Q"
     and r1: "!!x y.[| x:P; y:Q |] ==> f(x,y):R"
     and r2: "!!x y.[| x:~P; y:~Q |] ==> g(x,y):R"
@@ -88,7 +88,7 @@
 
 
 (*Should be used as swap since ~P becomes redundant*)
-schematic_lemma swap:
+schematic_goal swap:
   assumes major: "p:~P"
     and r: "!!x. x:~Q ==> f(x):P"
   shows "?p : Q"
@@ -130,7 +130,7 @@
     addSEs [@{thm exE}, @{thm ex1E}] addEs [@{thm all_dupE}];
 \<close>
 
-schematic_lemma cla_rews:
+schematic_goal cla_rews:
   "?p1 : P | ~P"
   "?p2 : ~P | P"
   "?p3 : ~ ~ P <-> P"
--- a/src/FOLP/IFOLP.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/FOLP/IFOLP.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -171,7 +171,7 @@
 
 (*** Sequent-style elimination rules for & --> and ALL ***)
 
-schematic_lemma conjE:
+schematic_goal conjE:
   assumes "p:P&Q"
     and "!!x y.[| x:P; y:Q |] ==> f(x,y):R"
   shows "?a:R"
@@ -180,7 +180,7 @@
   apply (rule conjunct2 [OF assms(1)])
   done
 
-schematic_lemma impE:
+schematic_goal impE:
   assumes "p:P-->Q"
     and "q:P"
     and "!!x. x:Q ==> r(x):R"
@@ -188,7 +188,7 @@
   apply (rule assms mp)+
   done
 
-schematic_lemma allE:
+schematic_goal allE:
   assumes "p:ALL x. P(x)"
     and "!!y. y:P(x) ==> q(y):R"
   shows "?p:R"
@@ -196,7 +196,7 @@
   done
 
 (*Duplicates the quantifier; for use with eresolve_tac*)
-schematic_lemma all_dupE:
+schematic_goal all_dupE:
   assumes "p:ALL x. P(x)"
     and "!!y z.[| y:P(x); z:ALL x. P(x) |] ==> q(y,z):R"
   shows "?p:R"
@@ -206,21 +206,21 @@
 
 (*** Negation rules, which translate between ~P and P-->False ***)
 
-schematic_lemma notI:
+schematic_goal notI:
   assumes "!!x. x:P ==> q(x):False"
   shows "?p:~P"
   unfolding not_def
   apply (assumption | rule assms impI)+
   done
 
-schematic_lemma notE: "p:~P \<Longrightarrow> q:P \<Longrightarrow> ?p:R"
+schematic_goal notE: "p:~P \<Longrightarrow> q:P \<Longrightarrow> ?p:R"
   unfolding not_def
   apply (drule (1) mp)
   apply (erule FalseE)
   done
 
 (*This is useful with the special implication rules for each kind of P. *)
-schematic_lemma not_to_imp:
+schematic_goal not_to_imp:
   assumes "p:~P"
     and "!!x. x:(P-->False) ==> q(x):Q"
   shows "?p:Q"
@@ -229,13 +229,13 @@
 
 (* For substitution int an assumption P, reduce Q to P-->Q, substitute into
    this implication, then apply impI to move P back into the assumptions.*)
-schematic_lemma rev_mp: "[| p:P;  q:P --> Q |] ==> ?p:Q"
+schematic_goal rev_mp: "[| p:P;  q:P --> Q |] ==> ?p:Q"
   apply (assumption | rule mp)+
   done
 
 
 (*Contrapositive of an inference rule*)
-schematic_lemma contrapos:
+schematic_goal contrapos:
   assumes major: "p:~Q"
     and minor: "!!y. y:P==>q(y):Q"
   shows "?a:~P"
@@ -286,7 +286,7 @@
 
 (*** If-and-only-if ***)
 
-schematic_lemma iffI:
+schematic_goal iffI:
   assumes "!!x. x:P ==> q(x):Q"
     and "!!x. x:Q ==> r(x):P"
   shows "?p:P<->Q"
@@ -295,7 +295,7 @@
   done
 
 
-schematic_lemma iffE:
+schematic_goal iffE:
   assumes "p:P <-> Q"
     and "!!x y.[| x:P-->Q; y:Q-->P |] ==> q(x,y):R"
   shows "?p:R"
@@ -307,28 +307,28 @@
 
 (* Destruct rules for <-> similar to Modus Ponens *)
 
-schematic_lemma iffD1: "[| p:P <-> Q; q:P |] ==> ?p:Q"
+schematic_goal iffD1: "[| p:P <-> Q; q:P |] ==> ?p:Q"
   unfolding iff_def
   apply (rule conjunct1 [THEN mp], assumption+)
   done
 
-schematic_lemma iffD2: "[| p:P <-> Q; q:Q |] ==> ?p:P"
+schematic_goal iffD2: "[| p:P <-> Q; q:Q |] ==> ?p:P"
   unfolding iff_def
   apply (rule conjunct2 [THEN mp], assumption+)
   done
 
-schematic_lemma iff_refl: "?p:P <-> P"
+schematic_goal iff_refl: "?p:P <-> P"
   apply (rule iffI)
    apply assumption+
   done
 
-schematic_lemma iff_sym: "p:Q <-> P ==> ?p:P <-> Q"
+schematic_goal iff_sym: "p:Q <-> P ==> ?p:P <-> Q"
   apply (erule iffE)
   apply (rule iffI)
    apply (erule (1) mp)+
   done
 
-schematic_lemma iff_trans: "[| p:P <-> Q; q:Q<-> R |] ==> ?p:P <-> R"
+schematic_goal iff_trans: "[| p:P <-> Q; q:Q<-> R |] ==> ?p:P <-> R"
   apply (rule iffI)
    apply (assumption | erule iffE | erule (1) impE)+
   done
@@ -339,7 +339,7 @@
  do NOT mean the same thing.  The parser treats EX!x y.P(x,y) as sequential.
 ***)
 
-schematic_lemma ex1I:
+schematic_goal ex1I:
   assumes "p:P(a)"
     and "!!x u. u:P(x) ==> f(u) : x=a"
   shows "?p:EX! x. P(x)"
@@ -347,7 +347,7 @@
   apply (assumption | rule assms exI conjI allI impI)+
   done
 
-schematic_lemma ex1E:
+schematic_goal ex1E:
   assumes "p:EX! x. P(x)"
     and "!!x u v. [| u:P(x);  v:ALL y. P(y) --> y=x |] ==> f(x,u,v):R"
   shows "?a : R"
@@ -369,7 +369,7 @@
 method_setup iff =
   \<open>Attrib.thms >> (fn prems => fn ctxt => SIMPLE_METHOD' (iff_tac ctxt prems))\<close>
 
-schematic_lemma conj_cong:
+schematic_goal conj_cong:
   assumes "p:P <-> P'"
     and "!!x. x:P' ==> q(x):Q <-> Q'"
   shows "?p:(P&Q) <-> (P'&Q')"
@@ -377,12 +377,12 @@
   apply (assumption | rule iffI conjI | erule iffE conjE mp | iff assms)+
   done
 
-schematic_lemma disj_cong:
+schematic_goal disj_cong:
   "[| p:P <-> P'; q:Q <-> Q' |] ==> ?p:(P|Q) <-> (P'|Q')"
   apply (erule iffE disjE disjI1 disjI2 | assumption | rule iffI | mp)+
   done
 
-schematic_lemma imp_cong:
+schematic_goal imp_cong:
   assumes "p:P <-> P'"
     and "!!x. x:P' ==> q(x):Q <-> Q'"
   shows "?p:(P-->Q) <-> (P'-->Q')"
@@ -390,23 +390,23 @@
   apply (assumption | rule iffI impI | erule iffE | mp | iff assms)+
   done
 
-schematic_lemma iff_cong:
+schematic_goal iff_cong:
   "[| p:P <-> P'; q:Q <-> Q' |] ==> ?p:(P<->Q) <-> (P'<->Q')"
   apply (erule iffE | assumption | rule iffI | mp)+
   done
 
-schematic_lemma not_cong:
+schematic_goal not_cong:
   "p:P <-> P' ==> ?p:~P <-> ~P'"
   apply (assumption | rule iffI notI | mp | erule iffE notE)+
   done
 
-schematic_lemma all_cong:
+schematic_goal all_cong:
   assumes "!!x. f(x):P(x) <-> Q(x)"
   shows "?p:(ALL x. P(x)) <-> (ALL x. Q(x))"
   apply (assumption | rule iffI allI | mp | erule allE | iff assms)+
   done
 
-schematic_lemma ex_cong:
+schematic_goal ex_cong:
   assumes "!!x. f(x):P(x) <-> Q(x)"
   shows "?p:(EX x. P(x)) <-> (EX x. Q(x))"
   apply (erule exE | assumption | rule iffI exI | mp | iff assms)+
@@ -425,7 +425,7 @@
 
 lemmas refl = ieqI
 
-schematic_lemma subst:
+schematic_goal subst:
   assumes prem1: "p:a=b"
     and prem2: "q:P(a)"
   shows "?p : P(b)"
@@ -435,29 +435,29 @@
   apply assumption
   done
 
-schematic_lemma sym: "q:a=b ==> ?c:b=a"
+schematic_goal sym: "q:a=b ==> ?c:b=a"
   apply (erule subst)
   apply (rule refl)
   done
 
-schematic_lemma trans: "[| p:a=b;  q:b=c |] ==> ?d:a=c"
+schematic_goal trans: "[| p:a=b;  q:b=c |] ==> ?d:a=c"
   apply (erule (1) subst)
   done
 
 (** ~ b=a ==> ~ a=b **)
-schematic_lemma not_sym: "p:~ b=a ==> ?q:~ a=b"
+schematic_goal not_sym: "p:~ b=a ==> ?q:~ a=b"
   apply (erule contrapos)
   apply (erule sym)
   done
 
-schematic_lemma ssubst: "p:b=a \<Longrightarrow> q:P(a) \<Longrightarrow> ?p:P(b)"
+schematic_goal ssubst: "p:b=a \<Longrightarrow> q:P(a) \<Longrightarrow> ?p:P(b)"
   apply (drule sym)
   apply (erule subst)
   apply assumption
   done
 
 (*A special case of ex1E that would otherwise need quantifier expansion*)
-schematic_lemma ex1_equalsE: "[| p:EX! x. P(x);  q:P(a);  r:P(b) |] ==> ?d:a=b"
+schematic_goal ex1_equalsE: "[| p:EX! x. P(x);  q:P(a);  r:P(b) |] ==> ?d:a=b"
   apply (erule ex1E)
   apply (rule trans)
    apply (rule_tac [2] sym)
@@ -466,17 +466,17 @@
 
 (** Polymorphic congruence rules **)
 
-schematic_lemma subst_context: "[| p:a=b |]  ==>  ?d:t(a)=t(b)"
+schematic_goal subst_context: "[| p:a=b |]  ==>  ?d:t(a)=t(b)"
   apply (erule ssubst)
   apply (rule refl)
   done
 
-schematic_lemma subst_context2: "[| p:a=b;  q:c=d |]  ==>  ?p:t(a,c)=t(b,d)"
+schematic_goal subst_context2: "[| p:a=b;  q:c=d |]  ==>  ?p:t(a,c)=t(b,d)"
   apply (erule ssubst)+
   apply (rule refl)
   done
 
-schematic_lemma subst_context3: "[| p:a=b;  q:c=d;  r:e=f |]  ==>  ?p:t(a,c,e)=t(b,d,f)"
+schematic_goal subst_context3: "[| p:a=b;  q:c=d;  r:e=f |]  ==>  ?p:t(a,c,e)=t(b,d,f)"
   apply (erule ssubst)+
   apply (rule refl)
   done
@@ -485,7 +485,7 @@
         a = b
         |   |
         c = d   *)
-schematic_lemma box_equals: "[| p:a=b;  q:a=c;  r:b=d |] ==> ?p:c=d"
+schematic_goal box_equals: "[| p:a=b;  q:a=c;  r:b=d |] ==> ?p:c=d"
   apply (rule trans)
    apply (rule trans)
     apply (rule sym)
@@ -493,7 +493,7 @@
   done
 
 (*Dual of box_equals: for proving equalities backwards*)
-schematic_lemma simp_equals: "[| p:a=c;  q:b=d;  r:c=d |] ==> ?p:a=b"
+schematic_goal simp_equals: "[| p:a=c;  q:b=d;  r:c=d |] ==> ?p:a=b"
   apply (rule trans)
    apply (rule trans)
     apply (assumption | rule sym)+
@@ -501,19 +501,19 @@
 
 (** Congruence rules for predicate letters **)
 
-schematic_lemma pred1_cong: "p:a=a' ==> ?p:P(a) <-> P(a')"
+schematic_goal pred1_cong: "p:a=a' ==> ?p:P(a) <-> P(a')"
   apply (rule iffI)
    apply (tactic \<open>
      DEPTH_SOLVE (assume_tac @{context} 1 ORELSE eresolve_tac @{context} [@{thm subst}, @{thm ssubst}] 1)\<close>)
   done
 
-schematic_lemma pred2_cong: "[| p:a=a';  q:b=b' |] ==> ?p:P(a,b) <-> P(a',b')"
+schematic_goal pred2_cong: "[| p:a=a';  q:b=b' |] ==> ?p:P(a,b) <-> P(a',b')"
   apply (rule iffI)
    apply (tactic \<open>
      DEPTH_SOLVE (assume_tac @{context} 1 ORELSE eresolve_tac @{context} [@{thm subst}, @{thm ssubst}] 1)\<close>)
   done
 
-schematic_lemma pred3_cong: "[| p:a=a';  q:b=b';  r:c=c' |] ==> ?p:P(a,b,c) <-> P(a',b',c')"
+schematic_goal pred3_cong: "[| p:a=a';  q:b=b';  r:c=c' |] ==> ?p:P(a,b,c) <-> P(a',b',c')"
   apply (rule iffI)
    apply (tactic \<open>
      DEPTH_SOLVE (assume_tac @{context} 1 ORELSE eresolve_tac @{context} [@{thm subst}, @{thm ssubst}] 1)\<close>)
@@ -532,14 +532,14 @@
    R. Dyckhoff, Contraction-free sequent calculi for intuitionistic logic
     (preprint, University of St Andrews, 1991)  ***)
 
-schematic_lemma conj_impE:
+schematic_goal conj_impE:
   assumes major: "p:(P&Q)-->S"
     and minor: "!!x. x:P-->(Q-->S) ==> q(x):R"
   shows "?p:R"
   apply (assumption | rule conjI impI major [THEN mp] minor)+
   done
 
-schematic_lemma disj_impE:
+schematic_goal disj_impE:
   assumes major: "p:(P|Q)-->S"
     and minor: "!!x y.[| x:P-->S; y:Q-->S |] ==> q(x,y):R"
   shows "?p:R"
@@ -550,7 +550,7 @@
 
 (*Simplifies the implication.  Classical version is stronger.
   Still UNSAFE since Q must be provable -- backtracking needed.  *)
-schematic_lemma imp_impE:
+schematic_goal imp_impE:
   assumes major: "p:(P-->Q)-->S"
     and r1: "!!x y.[| x:P; y:Q-->S |] ==> q(x,y):Q"
     and r2: "!!x. x:S ==> r(x):R"
@@ -560,7 +560,7 @@
 
 (*Simplifies the implication.  Classical version is stronger.
   Still UNSAFE since ~P must be provable -- backtracking needed.  *)
-schematic_lemma not_impE:
+schematic_goal not_impE:
   assumes major: "p:~P --> S"
     and r1: "!!y. y:P ==> q(y):False"
     and r2: "!!y. y:S ==> r(y):R"
@@ -569,7 +569,7 @@
   done
 
 (*Simplifies the implication.   UNSAFE.  *)
-schematic_lemma iff_impE:
+schematic_goal iff_impE:
   assumes major: "p:(P<->Q)-->S"
     and r1: "!!x y.[| x:P; y:Q-->S |] ==> q(x,y):Q"
     and r2: "!!x y.[| x:Q; y:P-->S |] ==> r(x,y):P"
@@ -579,7 +579,7 @@
   done
 
 (*What if (ALL x.~~P(x)) --> ~~(ALL x.P(x)) is an assumption? UNSAFE*)
-schematic_lemma all_impE:
+schematic_goal all_impE:
   assumes major: "p:(ALL x. P(x))-->S"
     and r1: "!!x. q:P(x)"
     and r2: "!!y. y:S ==> r(y):R"
@@ -588,7 +588,7 @@
   done
 
 (*Unsafe: (EX x.P(x))-->S  is equivalent to  ALL x.P(x)-->S.  *)
-schematic_lemma ex_impE:
+schematic_goal ex_impE:
   assumes major: "p:(EX x. P(x))-->S"
     and r: "!!y. y:P(a)-->S ==> q(y):R"
   shows "?p:R"
@@ -596,7 +596,7 @@
   done
 
 
-schematic_lemma rev_cut_eq:
+schematic_goal rev_cut_eq:
   assumes "p:a=b"
     and "!!x. x:a=b ==> f(x):R"
   shows "?p:R"
@@ -632,7 +632,7 @@
 
 (*** Rewrite rules ***)
 
-schematic_lemma conj_rews:
+schematic_goal conj_rews:
   "?p1 : P & True <-> P"
   "?p2 : True & P <-> P"
   "?p3 : P & False <-> False"
@@ -644,7 +644,7 @@
   apply (tactic \<open>fn st => IntPr.fast_tac @{context} 1 st\<close>)+
   done
 
-schematic_lemma disj_rews:
+schematic_goal disj_rews:
   "?p1 : P | True <-> True"
   "?p2 : True | P <-> True"
   "?p3 : P | False <-> P"
@@ -654,13 +654,13 @@
   apply (tactic \<open>IntPr.fast_tac @{context} 1\<close>)+
   done
 
-schematic_lemma not_rews:
+schematic_goal not_rews:
   "?p1 : ~ False <-> True"
   "?p2 : ~ True <-> False"
   apply (tactic \<open>IntPr.fast_tac @{context} 1\<close>)+
   done
 
-schematic_lemma imp_rews:
+schematic_goal imp_rews:
   "?p1 : (P --> False) <-> ~P"
   "?p2 : (P --> True) <-> True"
   "?p3 : (False --> P) <-> True"
@@ -670,7 +670,7 @@
   apply (tactic \<open>IntPr.fast_tac @{context} 1\<close>)+
   done
 
-schematic_lemma iff_rews:
+schematic_goal iff_rews:
   "?p1 : (True <-> P) <-> P"
   "?p2 : (P <-> True) <-> P"
   "?p3 : (P <-> P) <-> True"
@@ -679,14 +679,14 @@
   apply (tactic \<open>IntPr.fast_tac @{context} 1\<close>)+
   done
 
-schematic_lemma quant_rews:
+schematic_goal quant_rews:
   "?p1 : (ALL x. P) <-> P"
   "?p2 : (EX x. P) <-> P"
   apply (tactic \<open>IntPr.fast_tac @{context} 1\<close>)+
   done
 
 (*These are NOT supplied by default!*)
-schematic_lemma distrib_rews1:
+schematic_goal distrib_rews1:
   "?p1 : ~(P|Q) <-> ~P & ~Q"
   "?p2 : P & (Q | R) <-> P&Q | P&R"
   "?p3 : (Q | R) & P <-> Q&P | R&P"
@@ -694,7 +694,7 @@
   apply (tactic \<open>IntPr.fast_tac @{context} 1\<close>)+
   done
 
-schematic_lemma distrib_rews2:
+schematic_goal distrib_rews2:
   "?p1 : ~(EX x. NORM(P(x))) <-> (ALL x. ~NORM(P(x)))"
   "?p2 : ((EX x. NORM(P(x))) --> Q) <-> (ALL x. NORM(P(x)) --> Q)"
   "?p3 : (EX x. NORM(P(x))) & NORM(Q) <-> (EX x. NORM(P(x)) & NORM(Q))"
@@ -704,11 +704,11 @@
 
 lemmas distrib_rews = distrib_rews1 distrib_rews2
 
-schematic_lemma P_Imp_P_iff_T: "p:P ==> ?p:(P <-> True)"
+schematic_goal P_Imp_P_iff_T: "p:P ==> ?p:(P <-> True)"
   apply (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
   done
 
-schematic_lemma not_P_imp_P_iff_F: "p:~P ==> ?p:(P <-> False)"
+schematic_goal not_P_imp_P_iff_F: "p:~P ==> ?p:(P <-> False)"
   apply (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
   done
 
--- a/src/FOLP/ex/Classical.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/FOLP/ex/Classical.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -9,14 +9,14 @@
 imports FOLP
 begin
 
-schematic_lemma "?p : (P --> Q | R) --> (P-->Q) | (P-->R)"
+schematic_goal "?p : (P --> Q | R) --> (P-->Q) | (P-->R)"
   by (tactic "fast_tac @{context} FOLP_cs 1")
 
 (*If and only if*)
-schematic_lemma "?p : (P<->Q) <-> (Q<->P)"
+schematic_goal "?p : (P<->Q) <-> (Q<->P)"
   by (tactic "fast_tac @{context} FOLP_cs 1")
 
-schematic_lemma "?p : ~ (P <-> ~P)"
+schematic_goal "?p : ~ (P <-> ~P)"
   by (tactic "fast_tac @{context} FOLP_cs 1")
 
 
@@ -32,138 +32,138 @@
 
 text "Pelletier's examples"
 (*1*)
-schematic_lemma "?p : (P-->Q)  <->  (~Q --> ~P)"
+schematic_goal "?p : (P-->Q)  <->  (~Q --> ~P)"
   by (tactic "fast_tac @{context} FOLP_cs 1")
 
 (*2*)
-schematic_lemma "?p : ~ ~ P  <->  P"
+schematic_goal "?p : ~ ~ P  <->  P"
   by (tactic "fast_tac @{context} FOLP_cs 1")
 
 (*3*)
-schematic_lemma "?p : ~(P-->Q) --> (Q-->P)"
+schematic_goal "?p : ~(P-->Q) --> (Q-->P)"
   by (tactic "fast_tac @{context} FOLP_cs 1")
 
 (*4*)
-schematic_lemma "?p : (~P-->Q)  <->  (~Q --> P)"
+schematic_goal "?p : (~P-->Q)  <->  (~Q --> P)"
   by (tactic "fast_tac @{context} FOLP_cs 1")
 
 (*5*)
-schematic_lemma "?p : ((P|Q)-->(P|R)) --> (P|(Q-->R))"
+schematic_goal "?p : ((P|Q)-->(P|R)) --> (P|(Q-->R))"
   by (tactic "fast_tac @{context} FOLP_cs 1")
 
 (*6*)
-schematic_lemma "?p : P | ~ P"
+schematic_goal "?p : P | ~ P"
   by (tactic "fast_tac @{context} FOLP_cs 1")
 
 (*7*)
-schematic_lemma "?p : P | ~ ~ ~ P"
+schematic_goal "?p : P | ~ ~ ~ P"
   by (tactic "fast_tac @{context} FOLP_cs 1")
 
 (*8.  Peirce's law*)
-schematic_lemma "?p : ((P-->Q) --> P)  -->  P"
+schematic_goal "?p : ((P-->Q) --> P)  -->  P"
   by (tactic "fast_tac @{context} FOLP_cs 1")
 
 (*9*)
-schematic_lemma "?p : ((P|Q) & (~P|Q) & (P| ~Q)) --> ~ (~P | ~Q)"
+schematic_goal "?p : ((P|Q) & (~P|Q) & (P| ~Q)) --> ~ (~P | ~Q)"
   by (tactic "fast_tac @{context} FOLP_cs 1")
 
 (*10*)
-schematic_lemma "?p : (Q-->R) & (R-->P&Q) & (P-->Q|R) --> (P<->Q)"
+schematic_goal "?p : (Q-->R) & (R-->P&Q) & (P-->Q|R) --> (P<->Q)"
   by (tactic "fast_tac @{context} FOLP_cs 1")
 
 (*11.  Proved in each direction (incorrectly, says Pelletier!!)  *)
-schematic_lemma "?p : P<->P"
+schematic_goal "?p : P<->P"
   by (tactic "fast_tac @{context} FOLP_cs 1")
 
 (*12.  "Dijkstra's law"*)
-schematic_lemma "?p : ((P <-> Q) <-> R)  <->  (P <-> (Q <-> R))"
+schematic_goal "?p : ((P <-> Q) <-> R)  <->  (P <-> (Q <-> R))"
   by (tactic "fast_tac @{context} FOLP_cs 1")
 
 (*13.  Distributive law*)
-schematic_lemma "?p : P | (Q & R)  <-> (P | Q) & (P | R)"
+schematic_goal "?p : P | (Q & R)  <-> (P | Q) & (P | R)"
   by (tactic "fast_tac @{context} FOLP_cs 1")
 
 (*14*)
-schematic_lemma "?p : (P <-> Q) <-> ((Q | ~P) & (~Q|P))"
+schematic_goal "?p : (P <-> Q) <-> ((Q | ~P) & (~Q|P))"
   by (tactic "fast_tac @{context} FOLP_cs 1")
 
 (*15*)
-schematic_lemma "?p : (P --> Q) <-> (~P | Q)"
+schematic_goal "?p : (P --> Q) <-> (~P | Q)"
   by (tactic "fast_tac @{context} FOLP_cs 1")
 
 (*16*)
-schematic_lemma "?p : (P-->Q) | (Q-->P)"
+schematic_goal "?p : (P-->Q) | (Q-->P)"
   by (tactic "fast_tac @{context} FOLP_cs 1")
 
 (*17*)
-schematic_lemma "?p : ((P & (Q-->R))-->S) <-> ((~P | Q | S) & (~P | ~R | S))"
+schematic_goal "?p : ((P & (Q-->R))-->S) <-> ((~P | Q | S) & (~P | ~R | S))"
   by (tactic "fast_tac @{context} FOLP_cs 1")
 
 
 text "Classical Logic: examples with quantifiers"
 
-schematic_lemma "?p : (ALL x. P(x) & Q(x)) <-> (ALL x. P(x))  &  (ALL x. Q(x))"
+schematic_goal "?p : (ALL x. P(x) & Q(x)) <-> (ALL x. P(x))  &  (ALL x. Q(x))"
   by (tactic "fast_tac @{context} FOLP_cs 1")
 
-schematic_lemma "?p : (EX x. P-->Q(x))  <->  (P --> (EX x. Q(x)))"
+schematic_goal "?p : (EX x. P-->Q(x))  <->  (P --> (EX x. Q(x)))"
   by (tactic "fast_tac @{context} FOLP_cs 1")
 
-schematic_lemma "?p : (EX x. P(x)-->Q)  <->  (ALL x. P(x)) --> Q"
+schematic_goal "?p : (EX x. P(x)-->Q)  <->  (ALL x. P(x)) --> Q"
   by (tactic "fast_tac @{context} FOLP_cs 1")
 
-schematic_lemma "?p : (ALL x. P(x)) | Q  <->  (ALL x. P(x) | Q)"
+schematic_goal "?p : (ALL x. P(x)) | Q  <->  (ALL x. P(x) | Q)"
   by (tactic "fast_tac @{context} FOLP_cs 1")
 
 
 text "Problems requiring quantifier duplication"
 
 (*Needs multiple instantiation of ALL.*)
-schematic_lemma "?p : (ALL x. P(x)-->P(f(x)))  &  P(d)-->P(f(f(f(d))))"
+schematic_goal "?p : (ALL x. P(x)-->P(f(x)))  &  P(d)-->P(f(f(f(d))))"
   by (tactic "best_tac @{context} FOLP_dup_cs 1")
 
 (*Needs double instantiation of the quantifier*)
-schematic_lemma "?p : EX x. P(x) --> P(a) & P(b)"
+schematic_goal "?p : EX x. P(x) --> P(a) & P(b)"
   by (tactic "best_tac @{context} FOLP_dup_cs 1")
 
-schematic_lemma "?p : EX z. P(z) --> (ALL x. P(x))"
+schematic_goal "?p : EX z. P(z) --> (ALL x. P(x))"
   by (tactic "best_tac @{context} FOLP_dup_cs 1")
 
 
 text "Hard examples with quantifiers"
 
 text "Problem 18"
-schematic_lemma "?p : EX y. ALL x. P(y)-->P(x)"
+schematic_goal "?p : EX y. ALL x. P(y)-->P(x)"
   by (tactic "best_tac @{context} FOLP_dup_cs 1")
 
 text "Problem 19"
-schematic_lemma "?p : EX x. ALL y z. (P(y)-->Q(z)) --> (P(x)-->Q(x))"
+schematic_goal "?p : EX x. ALL y z. (P(y)-->Q(z)) --> (P(x)-->Q(x))"
   by (tactic "best_tac @{context} FOLP_dup_cs 1")
 
 text "Problem 20"
-schematic_lemma "?p : (ALL x y. EX z. ALL w. (P(x)&Q(y)-->R(z)&S(w)))      
+schematic_goal "?p : (ALL x y. EX z. ALL w. (P(x)&Q(y)-->R(z)&S(w)))      
     --> (EX x y. P(x) & Q(y)) --> (EX z. R(z))"
   by (tactic "fast_tac @{context} FOLP_cs 1")
 
 text "Problem 21"
-schematic_lemma "?p : (EX x. P-->Q(x)) & (EX x. Q(x)-->P) --> (EX x. P<->Q(x))"
+schematic_goal "?p : (EX x. P-->Q(x)) & (EX x. Q(x)-->P) --> (EX x. P<->Q(x))"
   by (tactic "best_tac @{context} FOLP_dup_cs 1")
 
 text "Problem 22"
-schematic_lemma "?p : (ALL x. P <-> Q(x))  -->  (P <-> (ALL x. Q(x)))"
+schematic_goal "?p : (ALL x. P <-> Q(x))  -->  (P <-> (ALL x. Q(x)))"
   by (tactic "fast_tac @{context} FOLP_cs 1")
 
 text "Problem 23"
-schematic_lemma "?p : (ALL x. P | Q(x))  <->  (P | (ALL x. Q(x)))"
+schematic_goal "?p : (ALL x. P | Q(x))  <->  (P | (ALL x. Q(x)))"
   by (tactic "best_tac @{context} FOLP_dup_cs 1")
 
 text "Problem 24"
-schematic_lemma "?p : ~(EX x. S(x)&Q(x)) & (ALL x. P(x) --> Q(x)|R(x)) &   
+schematic_goal "?p : ~(EX x. S(x)&Q(x)) & (ALL x. P(x) --> Q(x)|R(x)) &   
      (~(EX x. P(x)) --> (EX x. Q(x))) & (ALL x. Q(x)|R(x) --> S(x))   
     --> (EX x. P(x)&R(x))"
   by (tactic "fast_tac @{context} FOLP_cs 1")
 
 text "Problem 25"
-schematic_lemma "?p : (EX x. P(x)) &  
+schematic_goal "?p : (EX x. P(x)) &  
        (ALL x. L(x) --> ~ (M(x) & R(x))) &  
        (ALL x. P(x) --> (M(x) & L(x))) &   
        ((ALL x. P(x)-->Q(x)) | (EX x. P(x)&R(x)))  
@@ -171,13 +171,13 @@
   oops
 
 text "Problem 26"
-schematic_lemma "?u : ((EX x. p(x)) <-> (EX x. q(x))) &   
+schematic_goal "?u : ((EX x. p(x)) <-> (EX x. q(x))) &   
      (ALL x. ALL y. p(x) & q(y) --> (r(x) <-> s(y)))   
   --> ((ALL x. p(x)-->r(x)) <-> (ALL x. q(x)-->s(x)))"
   by (tactic "fast_tac @{context} FOLP_cs 1")
 
 text "Problem 27"
-schematic_lemma "?p : (EX x. P(x) & ~Q(x)) &    
+schematic_goal "?p : (EX x. P(x) & ~Q(x)) &    
               (ALL x. P(x) --> R(x)) &    
               (ALL x. M(x) & L(x) --> P(x)) &    
               ((EX x. R(x) & ~ Q(x)) --> (ALL x. L(x) --> ~ R(x)))   
@@ -185,49 +185,49 @@
   by (tactic "fast_tac @{context} FOLP_cs 1")
 
 text "Problem 28.  AMENDED"
-schematic_lemma "?p : (ALL x. P(x) --> (ALL x. Q(x))) &    
+schematic_goal "?p : (ALL x. P(x) --> (ALL x. Q(x))) &    
         ((ALL x. Q(x)|R(x)) --> (EX x. Q(x)&S(x))) &   
         ((EX x. S(x)) --> (ALL x. L(x) --> M(x)))   
     --> (ALL x. P(x) & L(x) --> M(x))"
   by (tactic "fast_tac @{context} FOLP_cs 1")
 
 text "Problem 29.  Essentially the same as Principia Mathematica *11.71"
-schematic_lemma "?p : (EX x. P(x)) & (EX y. Q(y))   
+schematic_goal "?p : (EX x. P(x)) & (EX y. Q(y))   
     --> ((ALL x. P(x)-->R(x)) & (ALL y. Q(y)-->S(y))   <->      
          (ALL x y. P(x) & Q(y) --> R(x) & S(y)))"
   by (tactic "fast_tac @{context} FOLP_cs 1")
 
 text "Problem 30"
-schematic_lemma "?p : (ALL x. P(x) | Q(x) --> ~ R(x)) &  
+schematic_goal "?p : (ALL x. P(x) | Q(x) --> ~ R(x)) &  
         (ALL x. (Q(x) --> ~ S(x)) --> P(x) & R(x))   
     --> (ALL x. S(x))"
   by (tactic "fast_tac @{context} FOLP_cs 1")
 
 text "Problem 31"
-schematic_lemma "?p : ~(EX x. P(x) & (Q(x) | R(x))) &  
+schematic_goal "?p : ~(EX x. P(x) & (Q(x) | R(x))) &  
         (EX x. L(x) & P(x)) &  
         (ALL x. ~ R(x) --> M(x))   
     --> (EX x. L(x) & M(x))"
   by (tactic "fast_tac @{context} FOLP_cs 1")
 
 text "Problem 32"
-schematic_lemma "?p : (ALL x. P(x) & (Q(x)|R(x))-->S(x)) &  
+schematic_goal "?p : (ALL x. P(x) & (Q(x)|R(x))-->S(x)) &  
         (ALL x. S(x) & R(x) --> L(x)) &  
         (ALL x. M(x) --> R(x))   
     --> (ALL x. P(x) & M(x) --> L(x))"
   by (tactic "best_tac @{context} FOLP_dup_cs 1")
 
 text "Problem 33"
-schematic_lemma "?p : (ALL x. P(a) & (P(x)-->P(b))-->P(c))  <->     
+schematic_goal "?p : (ALL x. P(a) & (P(x)-->P(b))-->P(c))  <->     
      (ALL x. (~P(a) | P(x) | P(c)) & (~P(a) | ~P(b) | P(c)))"
   by (tactic "best_tac @{context} FOLP_dup_cs 1")
 
 text "Problem 35"
-schematic_lemma "?p : EX x y. P(x,y) -->  (ALL u v. P(u,v))"
+schematic_goal "?p : EX x y. P(x,y) -->  (ALL u v. P(u,v))"
   by (tactic "best_tac @{context} FOLP_dup_cs 1")
 
 text "Problem 36"
-schematic_lemma
+schematic_goal
 "?p : (ALL x. EX y. J(x,y)) &  
       (ALL x. EX y. G(x,y)) &  
       (ALL x y. J(x,y) | G(x,y) --> (ALL z. J(y,z) | G(y,z) --> H(x,z)))    
@@ -235,7 +235,7 @@
   by (tactic "fast_tac @{context} FOLP_cs 1")
 
 text "Problem 37"
-schematic_lemma "?p : (ALL z. EX w. ALL x. EX y.  
+schematic_goal "?p : (ALL z. EX w. ALL x. EX y.  
            (P(x,z)-->P(y,w)) & P(y,z) & (P(y,w) --> (EX u. Q(u,w)))) &  
         (ALL x z. ~P(x,z) --> (EX y. Q(y,z))) &  
         ((EX x y. Q(x,y)) --> (ALL x. R(x,x)))   
@@ -243,21 +243,21 @@
   by (tactic "fast_tac @{context} FOLP_cs 1")
 
 text "Problem 39"
-schematic_lemma "?p : ~ (EX x. ALL y. F(y,x) <-> ~F(y,y))"
+schematic_goal "?p : ~ (EX x. ALL y. F(y,x) <-> ~F(y,y))"
   by (tactic "fast_tac @{context} FOLP_cs 1")
 
 text "Problem 40.  AMENDED"
-schematic_lemma "?p : (EX y. ALL x. F(x,y) <-> F(x,x)) -->   
+schematic_goal "?p : (EX y. ALL x. F(x,y) <-> F(x,x)) -->   
               ~(ALL x. EX y. ALL z. F(z,y) <-> ~ F(z,x))"
   by (tactic "fast_tac @{context} FOLP_cs 1")
 
 text "Problem 41"
-schematic_lemma "?p : (ALL z. EX y. ALL x. f(x,y) <-> f(x,z) & ~ f(x,x))   
+schematic_goal "?p : (ALL z. EX y. ALL x. f(x,y) <-> f(x,z) & ~ f(x,x))   
           --> ~ (EX z. ALL x. f(x,z))"
   by (tactic "best_tac @{context} FOLP_dup_cs 1")
 
 text "Problem 44"
-schematic_lemma "?p : (ALL x. f(x) -->                                     
+schematic_goal "?p : (ALL x. f(x) -->                                     
               (EX y. g(y) & h(x,y) & (EX y. g(y) & ~ h(x,y))))  &        
               (EX x. j(x) & (ALL y. g(y) --> h(x,y)))                    
               --> (EX x. j(x) & ~f(x))"
@@ -266,36 +266,36 @@
 text "Problems (mainly) involving equality or functions"
 
 text "Problem 48"
-schematic_lemma "?p : (a=b | c=d) & (a=c | b=d) --> a=d | b=c"
+schematic_goal "?p : (a=b | c=d) & (a=c | b=d) --> a=d | b=c"
   by (tactic "fast_tac @{context} FOLP_cs 1")
 
 text "Problem 50"
 (*What has this to do with equality?*)
-schematic_lemma "?p : (ALL x. P(a,x) | (ALL y. P(x,y))) --> (EX x. ALL y. P(x,y))"
+schematic_goal "?p : (ALL x. P(a,x) | (ALL y. P(x,y))) --> (EX x. ALL y. P(x,y))"
   by (tactic "best_tac @{context} FOLP_dup_cs 1")
 
 text "Problem 56"
-schematic_lemma
+schematic_goal
  "?p : (ALL x. (EX y. P(y) & x=f(y)) --> P(x)) <-> (ALL x. P(x) --> P(f(x)))"
   by (tactic "fast_tac @{context} FOLP_cs 1")
 
 text "Problem 57"
-schematic_lemma
+schematic_goal
 "?p : P(f(a,b), f(b,c)) & P(f(b,c), f(a,c)) &  
       (ALL x y z. P(x,y) & P(y,z) --> P(x,z))    -->   P(f(a,b), f(a,c))"
   by (tactic "fast_tac @{context} FOLP_cs 1")
 
 text "Problem 58  NOT PROVED AUTOMATICALLY"
-schematic_lemma "?p : (ALL x y. f(x)=g(y)) --> (ALL x y. f(f(x))=f(g(y)))"
+schematic_goal "?p : (ALL x y. f(x)=g(y)) --> (ALL x y. f(f(x))=f(g(y)))"
   supply f_cong = subst_context [where t = f]
   by (tactic \<open>fast_tac @{context} (FOLP_cs addSIs [@{thm f_cong}]) 1\<close>)
 
 text "Problem 59"
-schematic_lemma "?p : (ALL x. P(x) <-> ~P(f(x))) --> (EX x. P(x) & ~P(f(x)))"
+schematic_goal "?p : (ALL x. P(x) <-> ~P(f(x))) --> (EX x. P(x) & ~P(f(x)))"
   by (tactic "best_tac @{context} FOLP_dup_cs 1")
 
 text "Problem 60"
-schematic_lemma "?p : ALL x. P(x,f(x)) <-> (EX y. (ALL z. P(z,y) --> P(z,f(x))) & P(x,y))"
+schematic_goal "?p : ALL x. P(x,f(x)) <-> (EX y. (ALL z. P(z,y) --> P(z,f(x))) & P(x,y))"
   by (tactic "fast_tac @{context} FOLP_cs 1")
 
 end
--- a/src/FOLP/ex/Foundation.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/FOLP/ex/Foundation.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -9,7 +9,7 @@
 imports IFOLP
 begin
 
-schematic_lemma "?p : A&B  --> (C-->A&C)"
+schematic_goal "?p : A&B  --> (C-->A&C)"
 apply (rule impI)
 apply (rule impI)
 apply (rule conjI)
@@ -19,7 +19,7 @@
 done
 
 text \<open>A form of conj-elimination\<close>
-schematic_lemma
+schematic_goal
   assumes "p : A & B"
     and "!!x y. x : A ==> y : B ==> f(x, y) : C"
   shows "?p : C"
@@ -30,7 +30,7 @@
 apply (rule assms)
 done
 
-schematic_lemma
+schematic_goal
   assumes "!!A x. x : ~ ~A ==> cla(x) : A"
   shows "?p : B | ~B"
 apply (rule assms)
@@ -48,7 +48,7 @@
 apply assumption
 done
 
-schematic_lemma
+schematic_goal
   assumes "!!A x. x : ~ ~A ==> cla(x) : A"
   shows "?p : B | ~B"
 apply (rule assms)
@@ -63,7 +63,7 @@
 done
 
 
-schematic_lemma
+schematic_goal
   assumes "p : A | ~A"
     and "q : ~ ~A"
   shows "?p : A"
@@ -79,7 +79,7 @@
 
 subsection "Examples with quantifiers"
 
-schematic_lemma
+schematic_goal
   assumes "p : ALL z. G(z)"
   shows "?p : ALL z. G(z)|H(z)"
 apply (rule allI)
@@ -87,20 +87,20 @@
 apply (rule assms [THEN spec])
 done
 
-schematic_lemma "?p : ALL x. EX y. x=y"
+schematic_goal "?p : ALL x. EX y. x=y"
 apply (rule allI)
 apply (rule exI)
 apply (rule refl)
 done
 
-schematic_lemma "?p : EX y. ALL x. x=y"
+schematic_goal "?p : EX y. ALL x. x=y"
 apply (rule exI)
 apply (rule allI)
 apply (rule refl)?
 oops
 
 text \<open>Parallel lifting example.\<close>
-schematic_lemma "?p : EX u. ALL x. EX v. ALL y. EX w. P(u,x,v,y,w)"
+schematic_goal "?p : EX u. ALL x. EX v. ALL y. EX w. P(u,x,v,y,w)"
 apply (rule exI allI)
 apply (rule exI allI)
 apply (rule exI allI)
@@ -108,7 +108,7 @@
 apply (rule exI allI)
 oops
 
-schematic_lemma
+schematic_goal
   assumes "p : (EX z. F(z)) & B"
   shows "?p : EX z. F(z) & B"
 apply (rule conjE)
@@ -122,7 +122,7 @@
 done
 
 text \<open>A bigger demonstration of quantifiers -- not in the paper.\<close>
-schematic_lemma "?p : (EX y. ALL x. Q(x,y)) -->  (ALL x. EX y. Q(x,y))"
+schematic_goal "?p : (EX y. ALL x. Q(x,y)) -->  (ALL x. EX y. Q(x,y))"
 apply (rule impI)
 apply (rule allI)
 apply (rule exE, assumption)
--- a/src/FOLP/ex/If.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/FOLP/ex/If.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -5,14 +5,14 @@
 definition "if" :: "[o,o,o]=>o" where
   "if(P,Q,R) == P&Q | ~P&R"
 
-schematic_lemma ifI:
+schematic_goal ifI:
   assumes "!!x. x : P ==> f(x) : Q"  "!!x. x : ~P ==> g(x) : R"
   shows "?p : if(P,Q,R)"
 apply (unfold if_def)
 apply (tactic \<open>fast_tac @{context} (FOLP_cs addIs @{thms assms}) 1\<close>)
 done
 
-schematic_lemma ifE:
+schematic_goal ifE:
   assumes 1: "p : if(P,Q,R)" and
     2: "!!x y. [| x : P; y : Q |] ==> f(x, y) : S" and
     3: "!!x y. [| x : ~P; y : R |] ==> g(x, y) : S"
@@ -22,7 +22,7 @@
 apply (tactic \<open>fast_tac @{context} (FOLP_cs addIs [@{thm 2}, @{thm 3}]) 1\<close>)
 done
 
-schematic_lemma if_commute: "?p : if(P, if(Q,A,B), if(Q,C,D)) <-> if(Q, if(P,A,C), if(P,B,D))"
+schematic_goal if_commute: "?p : if(P, if(Q,A,B), if(Q,C,D)) <-> if(Q, if(P,A,C), if(P,B,D))"
 apply (rule iffI)
 apply (erule ifE)
 apply (erule ifE)
@@ -32,11 +32,11 @@
 
 ML \<open>val if_cs = FOLP_cs addSIs [@{thm ifI}] addSEs [@{thm ifE}]\<close>
 
-schematic_lemma if_commute: "?p : if(P, if(Q,A,B), if(Q,C,D)) <-> if(Q, if(P,A,C), if(P,B,D))"
+schematic_goal if_commute: "?p : if(P, if(Q,A,B), if(Q,C,D)) <-> if(Q, if(P,A,C), if(P,B,D))"
 apply (tactic \<open>fast_tac @{context} if_cs 1\<close>)
 done
 
-schematic_lemma nested_ifs: "?p : if(if(P,Q,R), A, B) <-> if(P, if(Q,A,B), if(R,A,B))"
+schematic_goal nested_ifs: "?p : if(if(P,Q,R), A, B) <-> if(P, if(Q,A,B), if(R,A,B))"
 apply (tactic \<open>fast_tac @{context} if_cs 1\<close>)
 done
 
--- a/src/FOLP/ex/Intro.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/FOLP/ex/Intro.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -13,7 +13,7 @@
 
 subsubsection \<open>Some simple backward proofs\<close>
 
-schematic_lemma mythm: "?p : P|P --> P"
+schematic_goal mythm: "?p : P|P --> P"
 apply (rule impI)
 apply (rule disjE)
 prefer 3 apply (assumption)
@@ -21,7 +21,7 @@
 apply assumption
 done
 
-schematic_lemma "?p : (P & Q) | R --> (P | R)"
+schematic_goal "?p : (P & Q) | R --> (P | R)"
 apply (rule impI)
 apply (erule disjE)
 apply (drule conjunct1)
@@ -31,7 +31,7 @@
 done
 
 (*Correct version, delaying use of "spec" until last*)
-schematic_lemma "?p : (ALL x y. P(x,y)) --> (ALL z w. P(w,z))"
+schematic_goal "?p : (ALL x y. P(x,y)) --> (ALL z w. P(w,z))"
 apply (rule impI)
 apply (rule allI)
 apply (rule allI)
@@ -43,13 +43,13 @@
 
 subsubsection \<open>Demonstration of @{text "fast"}\<close>
 
-schematic_lemma "?p : (EX y. ALL x. J(y,x) <-> ~J(x,x))
+schematic_goal "?p : (EX y. ALL x. J(y,x) <-> ~J(x,x))
         -->  ~ (ALL x. EX y. ALL z. J(z,y) <-> ~ J(z,x))"
 apply (tactic \<open>fast_tac @{context} FOLP_cs 1\<close>)
 done
 
 
-schematic_lemma "?p : ALL x. P(x,f(x)) <->
+schematic_goal "?p : ALL x. P(x,f(x)) <->
         (EX y. (ALL z. P(z,y) --> P(z,f(x))) & P(x,y))"
 apply (tactic \<open>fast_tac @{context} FOLP_cs 1\<close>)
 done
@@ -57,7 +57,7 @@
 
 subsubsection \<open>Derivation of conjunction elimination rule\<close>
 
-schematic_lemma
+schematic_goal
   assumes major: "p : P&Q"
     and minor: "!!x y. [| x : P; y : Q |] ==> f(x, y) : R"
   shows "?p : R"
@@ -71,7 +71,7 @@
 
 text \<open>Derivation of negation introduction\<close>
 
-schematic_lemma
+schematic_goal
   assumes "!!x. x : P ==> f(x) : False"
   shows "?p : ~ P"
 apply (unfold not_def)
@@ -80,7 +80,7 @@
 apply assumption
 done
 
-schematic_lemma
+schematic_goal
   assumes major: "p : ~P"
     and minor: "q : P"
   shows "?p : R"
@@ -91,7 +91,7 @@
 done
 
 text \<open>Alternative proof of the result above\<close>
-schematic_lemma
+schematic_goal
   assumes major: "p : ~P"
     and minor: "q : P"
   shows "?p : R"
--- a/src/FOLP/ex/Intuitionistic.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/FOLP/ex/Intuitionistic.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -30,39 +30,39 @@
 imports IFOLP
 begin
 
-schematic_lemma "?p : ~~(P&Q) <-> ~~P & ~~Q"
+schematic_goal "?p : ~~(P&Q) <-> ~~P & ~~Q"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
-schematic_lemma "?p : ~~~P <-> ~P"
+schematic_goal "?p : ~~~P <-> ~P"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
-schematic_lemma "?p : ~~((P --> Q | R)  -->  (P-->Q) | (P-->R))"
+schematic_goal "?p : ~~((P --> Q | R)  -->  (P-->Q) | (P-->R))"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
-schematic_lemma "?p : (P<->Q) <-> (Q<->P)"
+schematic_goal "?p : (P<->Q) <-> (Q<->P)"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
 
 subsection \<open>Lemmas for the propositional double-negation translation\<close>
 
-schematic_lemma "?p : P --> ~~P"
+schematic_goal "?p : P --> ~~P"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
-schematic_lemma "?p : ~~(~~P --> P)"
+schematic_goal "?p : ~~(~~P --> P)"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
-schematic_lemma "?p : ~~P & ~~(P --> Q) --> ~~Q"
+schematic_goal "?p : ~~P & ~~(P --> Q) --> ~~Q"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
 
 subsection \<open>The following are classically but not constructively valid\<close>
 
 (*The attempt to prove them terminates quickly!*)
-schematic_lemma "?p : ((P-->Q) --> P)  -->  P"
+schematic_goal "?p : ((P-->Q) --> P)  -->  P"
   apply (tactic \<open>IntPr.fast_tac @{context} 1\<close>)?
   oops
 
-schematic_lemma "?p : (P&Q-->R)  -->  (P-->R) | (Q-->R)"
+schematic_goal "?p : (P&Q-->R)  -->  (P-->R) | (Q-->R)"
   apply (tactic \<open>IntPr.fast_tac @{context} 1\<close>)?
   oops
 
@@ -70,74 +70,74 @@
 subsection \<open>Intuitionistic FOL: propositional problems based on Pelletier\<close>
 
 text "Problem ~~1"
-schematic_lemma "?p : ~~((P-->Q)  <->  (~Q --> ~P))"
+schematic_goal "?p : ~~((P-->Q)  <->  (~Q --> ~P))"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
 text "Problem ~~2"
-schematic_lemma "?p : ~~(~~P  <->  P)"
+schematic_goal "?p : ~~(~~P  <->  P)"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
 text "Problem 3"
-schematic_lemma "?p : ~(P-->Q) --> (Q-->P)"
+schematic_goal "?p : ~(P-->Q) --> (Q-->P)"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
 text "Problem ~~4"
-schematic_lemma "?p : ~~((~P-->Q)  <->  (~Q --> P))"
+schematic_goal "?p : ~~((~P-->Q)  <->  (~Q --> P))"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
 text "Problem ~~5"
-schematic_lemma "?p : ~~((P|Q-->P|R) --> P|(Q-->R))"
+schematic_goal "?p : ~~((P|Q-->P|R) --> P|(Q-->R))"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
 text "Problem ~~6"
-schematic_lemma "?p : ~~(P | ~P)"
+schematic_goal "?p : ~~(P | ~P)"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
 text "Problem ~~7"
-schematic_lemma "?p : ~~(P | ~~~P)"
+schematic_goal "?p : ~~(P | ~~~P)"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
 text "Problem ~~8.  Peirce's law"
-schematic_lemma "?p : ~~(((P-->Q) --> P)  -->  P)"
+schematic_goal "?p : ~~(((P-->Q) --> P)  -->  P)"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
 text "Problem 9"
-schematic_lemma "?p : ((P|Q) & (~P|Q) & (P| ~Q)) --> ~ (~P | ~Q)"
+schematic_goal "?p : ((P|Q) & (~P|Q) & (P| ~Q)) --> ~ (~P | ~Q)"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
 text "Problem 10"
-schematic_lemma "?p : (Q-->R) --> (R-->P&Q) --> (P-->(Q|R)) --> (P<->Q)"
+schematic_goal "?p : (Q-->R) --> (R-->P&Q) --> (P-->(Q|R)) --> (P<->Q)"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
 text "11.  Proved in each direction (incorrectly, says Pelletier!!) "
-schematic_lemma "?p : P<->P"
+schematic_goal "?p : P<->P"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
 text "Problem ~~12.  Dijkstra's law  "
-schematic_lemma "?p : ~~(((P <-> Q) <-> R)  <->  (P <-> (Q <-> R)))"
+schematic_goal "?p : ~~(((P <-> Q) <-> R)  <->  (P <-> (Q <-> R)))"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
-schematic_lemma "?p : ((P <-> Q) <-> R)  -->  ~~(P <-> (Q <-> R))"
+schematic_goal "?p : ((P <-> Q) <-> R)  -->  ~~(P <-> (Q <-> R))"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
 text "Problem 13.  Distributive law"
-schematic_lemma "?p : P | (Q & R)  <-> (P | Q) & (P | R)"
+schematic_goal "?p : P | (Q & R)  <-> (P | Q) & (P | R)"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
 text "Problem ~~14"
-schematic_lemma "?p : ~~((P <-> Q) <-> ((Q | ~P) & (~Q|P)))"
+schematic_goal "?p : ~~((P <-> Q) <-> ((Q | ~P) & (~Q|P)))"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
 text "Problem ~~15"
-schematic_lemma "?p : ~~((P --> Q) <-> (~P | Q))"
+schematic_goal "?p : ~~((P --> Q) <-> (~P | Q))"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
 text "Problem ~~16"
-schematic_lemma "?p : ~~((P-->Q) | (Q-->P))"
+schematic_goal "?p : ~~((P-->Q) | (Q-->P))"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
 text "Problem ~~17"
-schematic_lemma "?p : ~~(((P & (Q-->R))-->S) <-> ((~P | Q | S) & (~P | ~R | S)))"
+schematic_goal "?p : ~~(((P & (Q-->R))-->S) <-> ((~P | Q | S) & (~P | ~R | S)))"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)  -- slow
 
 
@@ -145,43 +145,43 @@
 
 text "The converse is classical in the following implications..."
 
-schematic_lemma "?p : (EX x. P(x)-->Q)  -->  (ALL x. P(x)) --> Q"
+schematic_goal "?p : (EX x. P(x)-->Q)  -->  (ALL x. P(x)) --> Q"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
-schematic_lemma "?p : ((ALL x. P(x))-->Q) --> ~ (ALL x. P(x) & ~Q)"
+schematic_goal "?p : ((ALL x. P(x))-->Q) --> ~ (ALL x. P(x) & ~Q)"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
-schematic_lemma "?p : ((ALL x. ~P(x))-->Q)  -->  ~ (ALL x. ~ (P(x)|Q))"
+schematic_goal "?p : ((ALL x. ~P(x))-->Q)  -->  ~ (ALL x. ~ (P(x)|Q))"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
-schematic_lemma "?p : (ALL x. P(x)) | Q  -->  (ALL x. P(x) | Q)"
+schematic_goal "?p : (ALL x. P(x)) | Q  -->  (ALL x. P(x) | Q)"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
-schematic_lemma "?p : (EX x. P --> Q(x)) --> (P --> (EX x. Q(x)))"
+schematic_goal "?p : (EX x. P --> Q(x)) --> (P --> (EX x. Q(x)))"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
 
 text "The following are not constructively valid!"
 text "The attempt to prove them terminates quickly!"
 
-schematic_lemma "?p : ((ALL x. P(x))-->Q) --> (EX x. P(x)-->Q)"
+schematic_goal "?p : ((ALL x. P(x))-->Q) --> (EX x. P(x)-->Q)"
   apply (tactic \<open>IntPr.fast_tac @{context} 1\<close>)?
   oops
 
-schematic_lemma "?p : (P --> (EX x. Q(x))) --> (EX x. P-->Q(x))"
+schematic_goal "?p : (P --> (EX x. Q(x))) --> (EX x. P-->Q(x))"
   apply (tactic \<open>IntPr.fast_tac @{context} 1\<close>)?
   oops
 
-schematic_lemma "?p : (ALL x. P(x) | Q) --> ((ALL x. P(x)) | Q)"
+schematic_goal "?p : (ALL x. P(x) | Q) --> ((ALL x. P(x)) | Q)"
   apply (tactic \<open>IntPr.fast_tac @{context} 1\<close>)?
   oops
 
-schematic_lemma "?p : (ALL x. ~~P(x)) --> ~~(ALL x. P(x))"
+schematic_goal "?p : (ALL x. ~~P(x)) --> ~~(ALL x. P(x))"
   apply (tactic \<open>IntPr.fast_tac @{context} 1\<close>)?
   oops
 
 (*Classically but not intuitionistically valid.  Proved by a bug in 1986!*)
-schematic_lemma "?p : EX x. Q(x) --> (ALL x. Q(x))"
+schematic_goal "?p : EX x. Q(x) --> (ALL x. Q(x))"
   apply (tactic \<open>IntPr.fast_tac @{context} 1\<close>)?
   oops
 
@@ -194,32 +194,32 @@
 \<close>
 
 text "Problem ~~18"
-schematic_lemma "?p : ~~(EX y. ALL x. P(y)-->P(x))" oops
+schematic_goal "?p : ~~(EX y. ALL x. P(y)-->P(x))" oops
 (*NOT PROVED*)
 
 text "Problem ~~19"
-schematic_lemma "?p : ~~(EX x. ALL y z. (P(y)-->Q(z)) --> (P(x)-->Q(x)))" oops
+schematic_goal "?p : ~~(EX x. ALL y z. (P(y)-->Q(z)) --> (P(x)-->Q(x)))" oops
 (*NOT PROVED*)
 
 text "Problem 20"
-schematic_lemma "?p : (ALL x y. EX z. ALL w. (P(x)&Q(y)-->R(z)&S(w)))      
+schematic_goal "?p : (ALL x y. EX z. ALL w. (P(x)&Q(y)-->R(z)&S(w)))      
     --> (EX x y. P(x) & Q(y)) --> (EX z. R(z))"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
 text "Problem 21"
-schematic_lemma "?p : (EX x. P-->Q(x)) & (EX x. Q(x)-->P) --> ~~(EX x. P<->Q(x))" oops
+schematic_goal "?p : (EX x. P-->Q(x)) & (EX x. Q(x)-->P) --> ~~(EX x. P<->Q(x))" oops
 (*NOT PROVED*)
 
 text "Problem 22"
-schematic_lemma "?p : (ALL x. P <-> Q(x))  -->  (P <-> (ALL x. Q(x)))"
+schematic_goal "?p : (ALL x. P <-> Q(x))  -->  (P <-> (ALL x. Q(x)))"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
 text "Problem ~~23"
-schematic_lemma "?p : ~~ ((ALL x. P | Q(x))  <->  (P | (ALL x. Q(x))))"
+schematic_goal "?p : ~~ ((ALL x. P | Q(x))  <->  (P | (ALL x. Q(x))))"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
 text "Problem 24"
-schematic_lemma "?p : ~(EX x. S(x)&Q(x)) & (ALL x. P(x) --> Q(x)|R(x)) &   
+schematic_goal "?p : ~(EX x. S(x)&Q(x)) & (ALL x. P(x) --> Q(x)|R(x)) &   
      (~(EX x. P(x)) --> (EX x. Q(x))) & (ALL x. Q(x)|R(x) --> S(x))   
     --> ~~(EX x. P(x)&R(x))"
 (*Not clear why fast_tac, best_tac, ASTAR and ITER_DEEPEN all take forever*)
@@ -230,7 +230,7 @@
   done
 
 text "Problem 25"
-schematic_lemma "?p : (EX x. P(x)) &   
+schematic_goal "?p : (EX x. P(x)) &   
         (ALL x. L(x) --> ~ (M(x) & R(x))) &   
         (ALL x. P(x) --> (M(x) & L(x))) &    
         ((ALL x. P(x)-->Q(x)) | (EX x. P(x)&R(x)))   
@@ -238,69 +238,69 @@
   by (tactic "IntPr.best_tac @{context} 1")
 
 text "Problem 29.  Essentially the same as Principia Mathematica *11.71"
-schematic_lemma "?p : (EX x. P(x)) & (EX y. Q(y))   
+schematic_goal "?p : (EX x. P(x)) & (EX y. Q(y))   
     --> ((ALL x. P(x)-->R(x)) & (ALL y. Q(y)-->S(y))   <->      
          (ALL x y. P(x) & Q(y) --> R(x) & S(y)))"
   by (tactic "IntPr.fast_tac @{context} 1")
 
 text "Problem ~~30"
-schematic_lemma "?p : (ALL x. (P(x) | Q(x)) --> ~ R(x)) &  
+schematic_goal "?p : (ALL x. (P(x) | Q(x)) --> ~ R(x)) &  
         (ALL x. (Q(x) --> ~ S(x)) --> P(x) & R(x))   
     --> (ALL x. ~~S(x))"
   by (tactic "IntPr.fast_tac @{context} 1")
 
 text "Problem 31"
-schematic_lemma "?p : ~(EX x. P(x) & (Q(x) | R(x))) &  
+schematic_goal "?p : ~(EX x. P(x) & (Q(x) | R(x))) &  
         (EX x. L(x) & P(x)) &  
         (ALL x. ~ R(x) --> M(x))   
     --> (EX x. L(x) & M(x))"
   by (tactic "IntPr.fast_tac @{context} 1")
 
 text "Problem 32"
-schematic_lemma "?p : (ALL x. P(x) & (Q(x)|R(x))-->S(x)) &  
+schematic_goal "?p : (ALL x. P(x) & (Q(x)|R(x))-->S(x)) &  
         (ALL x. S(x) & R(x) --> L(x)) &  
         (ALL x. M(x) --> R(x))   
     --> (ALL x. P(x) & M(x) --> L(x))"
   by (tactic "IntPr.best_tac @{context} 1") -- slow
 
 text "Problem 39"
-schematic_lemma "?p : ~ (EX x. ALL y. F(y,x) <-> ~F(y,y))"
+schematic_goal "?p : ~ (EX x. ALL y. F(y,x) <-> ~F(y,y))"
   by (tactic "IntPr.best_tac @{context} 1")
 
 text "Problem 40.  AMENDED"
-schematic_lemma "?p : (EX y. ALL x. F(x,y) <-> F(x,x)) -->   
+schematic_goal "?p : (EX y. ALL x. F(x,y) <-> F(x,x)) -->   
               ~(ALL x. EX y. ALL z. F(z,y) <-> ~ F(z,x))"
   by (tactic "IntPr.best_tac @{context} 1") -- slow
 
 text "Problem 44"
-schematic_lemma "?p : (ALL x. f(x) -->                                    
+schematic_goal "?p : (ALL x. f(x) -->                                    
               (EX y. g(y) & h(x,y) & (EX y. g(y) & ~ h(x,y))))  &        
               (EX x. j(x) & (ALL y. g(y) --> h(x,y)))                    
               --> (EX x. j(x) & ~f(x))"
   by (tactic "IntPr.best_tac @{context} 1")
 
 text "Problem 48"
-schematic_lemma "?p : (a=b | c=d) & (a=c | b=d) --> a=d | b=c"
+schematic_goal "?p : (a=b | c=d) & (a=c | b=d) --> a=d | b=c"
   by (tactic "IntPr.best_tac @{context} 1")
 
 text "Problem 51"
-schematic_lemma
+schematic_goal
     "?p : (EX z w. ALL x y. P(x,y) <->  (x=z & y=w)) -->   
      (EX z. ALL x. EX w. (ALL y. P(x,y) <-> y=w) <-> x=z)"
   by (tactic "IntPr.best_tac @{context} 1") -- \<open>60 seconds\<close>
 
 text "Problem 56"
-schematic_lemma "?p : (ALL x. (EX y. P(y) & x=f(y)) --> P(x)) <-> (ALL x. P(x) --> P(f(x)))"
+schematic_goal "?p : (ALL x. (EX y. P(y) & x=f(y)) --> P(x)) <-> (ALL x. P(x) --> P(f(x)))"
   by (tactic "IntPr.best_tac @{context} 1")
 
 text "Problem 57"
-schematic_lemma
+schematic_goal
     "?p : P(f(a,b), f(b,c)) & P(f(b,c), f(a,c)) &  
      (ALL x y z. P(x,y) & P(y,z) --> P(x,z))    -->   P(f(a,b), f(a,c))"
   by (tactic "IntPr.best_tac @{context} 1")
 
 text "Problem 60"
-schematic_lemma "?p : ALL x. P(x,f(x)) <-> (EX y. (ALL z. P(z,y) --> P(z,f(x))) & P(x,y))"
+schematic_goal "?p : ALL x. P(x,f(x)) <-> (EX y. (ALL z. P(z,y) --> P(z,f(x))) & P(x,y))"
   by (tactic "IntPr.best_tac @{context} 1")
 
 end
--- a/src/FOLP/ex/Nat.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/FOLP/ex/Nat.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -40,7 +40,7 @@
 
 subsection \<open>Proofs about the natural numbers\<close>
 
-schematic_lemma Suc_n_not_n: "?p : ~ (Suc(k) = k)"
+schematic_goal Suc_n_not_n: "?p : ~ (Suc(k) = k)"
 apply (rule_tac n = k in induct)
 apply (rule notI)
 apply (erule Suc_neq_0)
@@ -49,7 +49,7 @@
 apply (erule Suc_inject)
 done
 
-schematic_lemma "?p : (k+m)+n = k+(m+n)"
+schematic_goal "?p : (k+m)+n = k+(m+n)"
 apply (rule induct)
 back
 back
@@ -59,23 +59,23 @@
 back
 oops
 
-schematic_lemma add_0 [simp]: "?p : 0+n = n"
+schematic_goal add_0 [simp]: "?p : 0+n = n"
 apply (unfold add_def)
 apply (rule rec_0)
 done
 
-schematic_lemma add_Suc [simp]: "?p : Suc(m)+n = Suc(m+n)"
+schematic_goal add_Suc [simp]: "?p : Suc(m)+n = Suc(m+n)"
 apply (unfold add_def)
 apply (rule rec_Suc)
 done
 
 
-schematic_lemma Suc_cong: "p : x = y \<Longrightarrow> ?p : Suc(x) = Suc(y)"
+schematic_goal Suc_cong: "p : x = y \<Longrightarrow> ?p : Suc(x) = Suc(y)"
   apply (erule subst)
   apply (rule refl)
   done
 
-schematic_lemma Plus_cong: "[| p : a = x;  q: b = y |] ==> ?p : a + b = x + y"
+schematic_goal Plus_cong: "[| p : a = x;  q: b = y |] ==> ?p : a + b = x + y"
   apply (erule subst, erule subst, rule refl)
   done
 
@@ -87,19 +87,19 @@
     |> fold (addrew @{context}) @{thms add_0 add_Suc}
 \<close>
 
-schematic_lemma add_assoc: "?p : (k+m)+n = k+(m+n)"
+schematic_goal add_assoc: "?p : (k+m)+n = k+(m+n)"
 apply (rule_tac n = k in induct)
 apply (tactic \<open>SIMP_TAC @{context} add_ss 1\<close>)
 apply (tactic \<open>ASM_SIMP_TAC @{context} add_ss 1\<close>)
 done
 
-schematic_lemma add_0_right: "?p : m+0 = m"
+schematic_goal add_0_right: "?p : m+0 = m"
 apply (rule_tac n = m in induct)
 apply (tactic \<open>SIMP_TAC @{context} add_ss 1\<close>)
 apply (tactic \<open>ASM_SIMP_TAC @{context} add_ss 1\<close>)
 done
 
-schematic_lemma add_Suc_right: "?p : m+Suc(n) = Suc(m+n)"
+schematic_goal add_Suc_right: "?p : m+Suc(n) = Suc(m+n)"
 apply (rule_tac n = m in induct)
 apply (tactic \<open>ALLGOALS (ASM_SIMP_TAC @{context} add_ss)\<close>)
 done
--- a/src/FOLP/ex/Propositional_Cla.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/FOLP/ex/Propositional_Cla.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -11,103 +11,103 @@
 
 
 text "commutative laws of & and | "
-schematic_lemma "?p : P & Q  -->  Q & P"
+schematic_goal "?p : P & Q  -->  Q & P"
   by (tactic \<open>Cla.fast_tac @{context} FOLP_cs 1\<close>)
 
-schematic_lemma "?p : P | Q  -->  Q | P"
+schematic_goal "?p : P | Q  -->  Q | P"
   by (tactic \<open>Cla.fast_tac @{context} FOLP_cs 1\<close>)
 
 
 text "associative laws of & and | "
-schematic_lemma "?p : (P & Q) & R  -->  P & (Q & R)"
+schematic_goal "?p : (P & Q) & R  -->  P & (Q & R)"
   by (tactic \<open>Cla.fast_tac @{context} FOLP_cs 1\<close>)
 
-schematic_lemma "?p : (P | Q) | R  -->  P | (Q | R)"
+schematic_goal "?p : (P | Q) | R  -->  P | (Q | R)"
   by (tactic \<open>Cla.fast_tac @{context} FOLP_cs 1\<close>)
 
 
 text "distributive laws of & and | "
-schematic_lemma "?p : (P & Q) | R  --> (P | R) & (Q | R)"
+schematic_goal "?p : (P & Q) | R  --> (P | R) & (Q | R)"
   by (tactic \<open>Cla.fast_tac @{context} FOLP_cs 1\<close>)
 
-schematic_lemma "?p : (P | R) & (Q | R)  --> (P & Q) | R"
+schematic_goal "?p : (P | R) & (Q | R)  --> (P & Q) | R"
   by (tactic \<open>Cla.fast_tac @{context} FOLP_cs 1\<close>)
 
-schematic_lemma "?p : (P | Q) & R  --> (P & R) | (Q & R)"
+schematic_goal "?p : (P | Q) & R  --> (P & R) | (Q & R)"
   by (tactic \<open>Cla.fast_tac @{context} FOLP_cs 1\<close>)
 
 
-schematic_lemma "?p : (P & R) | (Q & R)  --> (P | Q) & R"
+schematic_goal "?p : (P & R) | (Q & R)  --> (P | Q) & R"
   by (tactic \<open>Cla.fast_tac @{context} FOLP_cs 1\<close>)
 
 
 text "Laws involving implication"
 
-schematic_lemma "?p : (P-->R) & (Q-->R) <-> (P|Q --> R)"
+schematic_goal "?p : (P-->R) & (Q-->R) <-> (P|Q --> R)"
   by (tactic \<open>Cla.fast_tac @{context} FOLP_cs 1\<close>)
 
-schematic_lemma "?p : (P & Q --> R) <-> (P--> (Q-->R))"
+schematic_goal "?p : (P & Q --> R) <-> (P--> (Q-->R))"
   by (tactic \<open>Cla.fast_tac @{context} FOLP_cs 1\<close>)
 
-schematic_lemma "?p : ((P-->R)-->R) --> ((Q-->R)-->R) --> (P&Q-->R) --> R"
+schematic_goal "?p : ((P-->R)-->R) --> ((Q-->R)-->R) --> (P&Q-->R) --> R"
   by (tactic \<open>Cla.fast_tac @{context} FOLP_cs 1\<close>)
 
-schematic_lemma "?p : ~(P-->R) --> ~(Q-->R) --> ~(P&Q-->R)"
+schematic_goal "?p : ~(P-->R) --> ~(Q-->R) --> ~(P&Q-->R)"
   by (tactic \<open>Cla.fast_tac @{context} FOLP_cs 1\<close>)
 
-schematic_lemma "?p : (P --> Q & R) <-> (P-->Q)  &  (P-->R)"
+schematic_goal "?p : (P --> Q & R) <-> (P-->Q)  &  (P-->R)"
   by (tactic \<open>Cla.fast_tac @{context} FOLP_cs 1\<close>)
 
 
 text "Propositions-as-types"
 
 (*The combinator K*)
-schematic_lemma "?p : P --> (Q --> P)"
+schematic_goal "?p : P --> (Q --> P)"
   by (tactic \<open>Cla.fast_tac @{context} FOLP_cs 1\<close>)
 
 (*The combinator S*)
-schematic_lemma "?p : (P-->Q-->R)  --> (P-->Q) --> (P-->R)"
+schematic_goal "?p : (P-->Q-->R)  --> (P-->Q) --> (P-->R)"
   by (tactic \<open>Cla.fast_tac @{context} FOLP_cs 1\<close>)
 
 
 (*Converse is classical*)
-schematic_lemma "?p : (P-->Q) | (P-->R)  -->  (P --> Q | R)"
+schematic_goal "?p : (P-->Q) | (P-->R)  -->  (P --> Q | R)"
   by (tactic \<open>Cla.fast_tac @{context} FOLP_cs 1\<close>)
 
-schematic_lemma "?p : (P-->Q)  -->  (~Q --> ~P)"
+schematic_goal "?p : (P-->Q)  -->  (~Q --> ~P)"
   by (tactic \<open>Cla.fast_tac @{context} FOLP_cs 1\<close>)
 
 
 text "Schwichtenberg's examples (via T. Nipkow)"
 
-schematic_lemma stab_imp: "?p : (((Q-->R)-->R)-->Q) --> (((P-->Q)-->R)-->R)-->P-->Q"
+schematic_goal stab_imp: "?p : (((Q-->R)-->R)-->Q) --> (((P-->Q)-->R)-->R)-->P-->Q"
   by (tactic \<open>Cla.fast_tac @{context} FOLP_cs 1\<close>)
 
-schematic_lemma stab_to_peirce: "?p : (((P --> R) --> R) --> P) --> (((Q --> R) --> R) --> Q)  
+schematic_goal stab_to_peirce: "?p : (((P --> R) --> R) --> P) --> (((Q --> R) --> R) --> Q)  
               --> ((P --> Q) --> P) --> P"
   by (tactic \<open>Cla.fast_tac @{context} FOLP_cs 1\<close>)
 
-schematic_lemma peirce_imp1: "?p : (((Q --> R) --> Q) --> Q)  
+schematic_goal peirce_imp1: "?p : (((Q --> R) --> Q) --> Q)  
                --> (((P --> Q) --> R) --> P --> Q) --> P --> Q"
   by (tactic \<open>Cla.fast_tac @{context} FOLP_cs 1\<close>)
   
-schematic_lemma peirce_imp2: "?p : (((P --> R) --> P) --> P) --> ((P --> Q --> R) --> P) --> P"
+schematic_goal peirce_imp2: "?p : (((P --> R) --> P) --> P) --> ((P --> Q --> R) --> P) --> P"
   by (tactic \<open>Cla.fast_tac @{context} FOLP_cs 1\<close>)
 
-schematic_lemma mints: "?p : ((((P --> Q) --> P) --> P) --> Q) --> Q"
+schematic_goal mints: "?p : ((((P --> Q) --> P) --> P) --> Q) --> Q"
   by (tactic \<open>Cla.fast_tac @{context} FOLP_cs 1\<close>)
 
-schematic_lemma mints_solovev: "?p : (P --> (Q --> R) --> Q) --> ((P --> Q) --> R) --> R"
+schematic_goal mints_solovev: "?p : (P --> (Q --> R) --> Q) --> ((P --> Q) --> R) --> R"
   by (tactic \<open>Cla.fast_tac @{context} FOLP_cs 1\<close>)
 
-schematic_lemma tatsuta: "?p : (((P7 --> P1) --> P10) --> P4 --> P5)  
+schematic_goal tatsuta: "?p : (((P7 --> P1) --> P10) --> P4 --> P5)  
           --> (((P8 --> P2) --> P9) --> P3 --> P10)  
           --> (P1 --> P8) --> P6 --> P7  
           --> (((P3 --> P2) --> P9) --> P4)  
           --> (P1 --> P3) --> (((P6 --> P1) --> P2) --> P9) --> P5"
   by (tactic \<open>Cla.fast_tac @{context} FOLP_cs 1\<close>)
 
-schematic_lemma tatsuta1: "?p : (((P8 --> P2) --> P9) --> P3 --> P10)  
+schematic_goal tatsuta1: "?p : (((P8 --> P2) --> P9) --> P3 --> P10)  
      --> (((P3 --> P2) --> P9) --> P4)  
      --> (((P6 --> P1) --> P2) --> P9)  
      --> (((P7 --> P1) --> P10) --> P4 --> P5)  
--- a/src/FOLP/ex/Propositional_Int.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/FOLP/ex/Propositional_Int.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -11,103 +11,103 @@
 
 
 text "commutative laws of & and | "
-schematic_lemma "?p : P & Q  -->  Q & P"
+schematic_goal "?p : P & Q  -->  Q & P"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
-schematic_lemma "?p : P | Q  -->  Q | P"
+schematic_goal "?p : P | Q  -->  Q | P"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
 
 text "associative laws of & and | "
-schematic_lemma "?p : (P & Q) & R  -->  P & (Q & R)"
+schematic_goal "?p : (P & Q) & R  -->  P & (Q & R)"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
-schematic_lemma "?p : (P | Q) | R  -->  P | (Q | R)"
+schematic_goal "?p : (P | Q) | R  -->  P | (Q | R)"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
 
 text "distributive laws of & and | "
-schematic_lemma "?p : (P & Q) | R  --> (P | R) & (Q | R)"
+schematic_goal "?p : (P & Q) | R  --> (P | R) & (Q | R)"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
-schematic_lemma "?p : (P | R) & (Q | R)  --> (P & Q) | R"
+schematic_goal "?p : (P | R) & (Q | R)  --> (P & Q) | R"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
-schematic_lemma "?p : (P | Q) & R  --> (P & R) | (Q & R)"
+schematic_goal "?p : (P | Q) & R  --> (P & R) | (Q & R)"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
 
-schematic_lemma "?p : (P & R) | (Q & R)  --> (P | Q) & R"
+schematic_goal "?p : (P & R) | (Q & R)  --> (P | Q) & R"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
 
 text "Laws involving implication"
 
-schematic_lemma "?p : (P-->R) & (Q-->R) <-> (P|Q --> R)"
+schematic_goal "?p : (P-->R) & (Q-->R) <-> (P|Q --> R)"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
-schematic_lemma "?p : (P & Q --> R) <-> (P--> (Q-->R))"
+schematic_goal "?p : (P & Q --> R) <-> (P--> (Q-->R))"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
-schematic_lemma "?p : ((P-->R)-->R) --> ((Q-->R)-->R) --> (P&Q-->R) --> R"
+schematic_goal "?p : ((P-->R)-->R) --> ((Q-->R)-->R) --> (P&Q-->R) --> R"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
-schematic_lemma "?p : ~(P-->R) --> ~(Q-->R) --> ~(P&Q-->R)"
+schematic_goal "?p : ~(P-->R) --> ~(Q-->R) --> ~(P&Q-->R)"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
-schematic_lemma "?p : (P --> Q & R) <-> (P-->Q)  &  (P-->R)"
+schematic_goal "?p : (P --> Q & R) <-> (P-->Q)  &  (P-->R)"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
 
 text "Propositions-as-types"
 
 (*The combinator K*)
-schematic_lemma "?p : P --> (Q --> P)"
+schematic_goal "?p : P --> (Q --> P)"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
 (*The combinator S*)
-schematic_lemma "?p : (P-->Q-->R)  --> (P-->Q) --> (P-->R)"
+schematic_goal "?p : (P-->Q-->R)  --> (P-->Q) --> (P-->R)"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
 
 (*Converse is classical*)
-schematic_lemma "?p : (P-->Q) | (P-->R)  -->  (P --> Q | R)"
+schematic_goal "?p : (P-->Q) | (P-->R)  -->  (P --> Q | R)"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
-schematic_lemma "?p : (P-->Q)  -->  (~Q --> ~P)"
+schematic_goal "?p : (P-->Q)  -->  (~Q --> ~P)"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
 
 text "Schwichtenberg's examples (via T. Nipkow)"
 
-schematic_lemma stab_imp: "?p : (((Q-->R)-->R)-->Q) --> (((P-->Q)-->R)-->R)-->P-->Q"
+schematic_goal stab_imp: "?p : (((Q-->R)-->R)-->Q) --> (((P-->Q)-->R)-->R)-->P-->Q"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
-schematic_lemma stab_to_peirce: "?p : (((P --> R) --> R) --> P) --> (((Q --> R) --> R) --> Q)  
+schematic_goal stab_to_peirce: "?p : (((P --> R) --> R) --> P) --> (((Q --> R) --> R) --> Q)  
               --> ((P --> Q) --> P) --> P"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
-schematic_lemma peirce_imp1: "?p : (((Q --> R) --> Q) --> Q)  
+schematic_goal peirce_imp1: "?p : (((Q --> R) --> Q) --> Q)  
                --> (((P --> Q) --> R) --> P --> Q) --> P --> Q"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
   
-schematic_lemma peirce_imp2: "?p : (((P --> R) --> P) --> P) --> ((P --> Q --> R) --> P) --> P"
+schematic_goal peirce_imp2: "?p : (((P --> R) --> P) --> P) --> ((P --> Q --> R) --> P) --> P"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
-schematic_lemma mints: "?p : ((((P --> Q) --> P) --> P) --> Q) --> Q"
+schematic_goal mints: "?p : ((((P --> Q) --> P) --> P) --> Q) --> Q"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
-schematic_lemma mints_solovev: "?p : (P --> (Q --> R) --> Q) --> ((P --> Q) --> R) --> R"
+schematic_goal mints_solovev: "?p : (P --> (Q --> R) --> Q) --> ((P --> Q) --> R) --> R"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
-schematic_lemma tatsuta: "?p : (((P7 --> P1) --> P10) --> P4 --> P5)  
+schematic_goal tatsuta: "?p : (((P7 --> P1) --> P10) --> P4 --> P5)  
           --> (((P8 --> P2) --> P9) --> P3 --> P10)  
           --> (P1 --> P8) --> P6 --> P7  
           --> (((P3 --> P2) --> P9) --> P4)  
           --> (P1 --> P3) --> (((P6 --> P1) --> P2) --> P9) --> P5"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
-schematic_lemma tatsuta1: "?p : (((P8 --> P2) --> P9) --> P3 --> P10)  
+schematic_goal tatsuta1: "?p : (((P8 --> P2) --> P9) --> P3 --> P10)  
      --> (((P3 --> P2) --> P9) --> P4)  
      --> (((P6 --> P1) --> P2) --> P9)  
      --> (((P7 --> P1) --> P10) --> P4 --> P5)  
--- a/src/FOLP/ex/Quantifiers_Cla.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/FOLP/ex/Quantifiers_Cla.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -10,92 +10,92 @@
 imports FOLP
 begin
 
-schematic_lemma "?p : (ALL x y. P(x,y))  -->  (ALL y x. P(x,y))"
+schematic_goal "?p : (ALL x y. P(x,y))  -->  (ALL y x. P(x,y))"
   by (tactic \<open>Cla.fast_tac @{context} FOLP_cs 1\<close>)
 
-schematic_lemma "?p : (EX x y. P(x,y)) --> (EX y x. P(x,y))"
+schematic_goal "?p : (EX x y. P(x,y)) --> (EX y x. P(x,y))"
   by (tactic \<open>Cla.fast_tac @{context} FOLP_cs 1\<close>)
 
 
 (*Converse is false*)
-schematic_lemma "?p : (ALL x. P(x)) | (ALL x. Q(x)) --> (ALL x. P(x) | Q(x))"
+schematic_goal "?p : (ALL x. P(x)) | (ALL x. Q(x)) --> (ALL x. P(x) | Q(x))"
   by (tactic \<open>Cla.fast_tac @{context} FOLP_cs 1\<close>)
 
-schematic_lemma "?p : (ALL x. P-->Q(x))  <->  (P--> (ALL x. Q(x)))"
+schematic_goal "?p : (ALL x. P-->Q(x))  <->  (P--> (ALL x. Q(x)))"
   by (tactic \<open>Cla.fast_tac @{context} FOLP_cs 1\<close>)
 
 
-schematic_lemma "?p : (ALL x. P(x)-->Q)  <->  ((EX x. P(x)) --> Q)"
+schematic_goal "?p : (ALL x. P(x)-->Q)  <->  ((EX x. P(x)) --> Q)"
   by (tactic \<open>Cla.fast_tac @{context} FOLP_cs 1\<close>)
 
 
 text "Some harder ones"
 
-schematic_lemma "?p : (EX x. P(x) | Q(x)) <-> (EX x. P(x)) | (EX x. Q(x))"
+schematic_goal "?p : (EX x. P(x) | Q(x)) <-> (EX x. P(x)) | (EX x. Q(x))"
   by (tactic \<open>Cla.fast_tac @{context} FOLP_cs 1\<close>)
 
 (*Converse is false*)
-schematic_lemma "?p : (EX x. P(x)&Q(x)) --> (EX x. P(x))  &  (EX x. Q(x))"
+schematic_goal "?p : (EX x. P(x)&Q(x)) --> (EX x. P(x))  &  (EX x. Q(x))"
   by (tactic \<open>Cla.fast_tac @{context} FOLP_cs 1\<close>)
 
 
 text "Basic test of quantifier reasoning"
 (*TRUE*)
-schematic_lemma "?p : (EX y. ALL x. Q(x,y)) -->  (ALL x. EX y. Q(x,y))"
+schematic_goal "?p : (EX y. ALL x. Q(x,y)) -->  (ALL x. EX y. Q(x,y))"
   by (tactic \<open>Cla.fast_tac @{context} FOLP_cs 1\<close>)
 
-schematic_lemma "?p : (ALL x. Q(x))  -->  (EX x. Q(x))"
+schematic_goal "?p : (ALL x. Q(x))  -->  (EX x. Q(x))"
   by (tactic \<open>Cla.fast_tac @{context} FOLP_cs 1\<close>)
 
 
 text "The following should fail, as they are false!"
 
-schematic_lemma "?p : (ALL x. EX y. Q(x,y))  -->  (EX y. ALL x. Q(x,y))"
+schematic_goal "?p : (ALL x. EX y. Q(x,y))  -->  (EX y. ALL x. Q(x,y))"
   apply (tactic \<open>Cla.fast_tac @{context} FOLP_cs 1\<close>)?
   oops
 
-schematic_lemma "?p : (EX x. Q(x))  -->  (ALL x. Q(x))"
+schematic_goal "?p : (EX x. Q(x))  -->  (ALL x. Q(x))"
   apply (tactic \<open>Cla.fast_tac @{context} FOLP_cs 1\<close>)?
   oops
 
-schematic_lemma "?p : P(?a) --> (ALL x. P(x))"
+schematic_goal "?p : P(?a) --> (ALL x. P(x))"
   apply (tactic \<open>Cla.fast_tac @{context} FOLP_cs 1\<close>)?
   oops
 
-schematic_lemma "?p : (P(?a) --> (ALL x. Q(x))) --> (ALL x. P(x) --> Q(x))"
+schematic_goal "?p : (P(?a) --> (ALL x. Q(x))) --> (ALL x. P(x) --> Q(x))"
   apply (tactic \<open>Cla.fast_tac @{context} FOLP_cs 1\<close>)?
   oops
 
 
 text "Back to things that are provable..."
 
-schematic_lemma "?p : (ALL x. P(x)-->Q(x)) & (EX x. P(x)) --> (EX x. Q(x))"
+schematic_goal "?p : (ALL x. P(x)-->Q(x)) & (EX x. P(x)) --> (EX x. Q(x))"
   by (tactic \<open>Cla.fast_tac @{context} FOLP_cs 1\<close>)
 
 
 (*An example of why exI should be delayed as long as possible*)
-schematic_lemma "?p : (P --> (EX x. Q(x))) & P --> (EX x. Q(x))"
+schematic_goal "?p : (P --> (EX x. Q(x))) & P --> (EX x. Q(x))"
   by (tactic \<open>Cla.fast_tac @{context} FOLP_cs 1\<close>)
 
-schematic_lemma "?p : (ALL x. P(x)-->Q(f(x))) & (ALL x. Q(x)-->R(g(x))) & P(d) --> R(?a)"
+schematic_goal "?p : (ALL x. P(x)-->Q(f(x))) & (ALL x. Q(x)-->R(g(x))) & P(d) --> R(?a)"
   by (tactic \<open>Cla.fast_tac @{context} FOLP_cs 1\<close>)
 
-schematic_lemma "?p : (ALL x. Q(x))  -->  (EX x. Q(x))"
+schematic_goal "?p : (ALL x. Q(x))  -->  (EX x. Q(x))"
   by (tactic \<open>Cla.fast_tac @{context} FOLP_cs 1\<close>)
 
 
 text "Some slow ones"
 
 (*Principia Mathematica *11.53  *)
-schematic_lemma "?p : (ALL x y. P(x) --> Q(y)) <-> ((EX x. P(x)) --> (ALL y. Q(y)))"
+schematic_goal "?p : (ALL x y. P(x) --> Q(y)) <-> ((EX x. P(x)) --> (ALL y. Q(y)))"
   by (tactic \<open>Cla.fast_tac @{context} FOLP_cs 1\<close>)
 
 (*Principia Mathematica *11.55  *)
-schematic_lemma "?p : (EX x y. P(x) & Q(x,y)) <-> (EX x. P(x) & (EX y. Q(x,y)))"
+schematic_goal "?p : (EX x y. P(x) & Q(x,y)) <-> (EX x. P(x) & (EX y. Q(x,y)))"
   by (tactic \<open>Cla.fast_tac @{context} FOLP_cs 1\<close>)
 
 (*Principia Mathematica *11.61  *)
-schematic_lemma "?p : (EX y. ALL x. P(x) --> Q(x,y)) --> (ALL x. P(x) --> (EX y. Q(x,y)))"
+schematic_goal "?p : (EX y. ALL x. P(x) --> Q(x,y)) --> (ALL x. P(x) --> (EX y. Q(x,y)))"
   by (tactic \<open>Cla.fast_tac @{context} FOLP_cs 1\<close>)
 
 end
--- a/src/FOLP/ex/Quantifiers_Int.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/FOLP/ex/Quantifiers_Int.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -10,92 +10,92 @@
 imports IFOLP
 begin
 
-schematic_lemma "?p : (ALL x y. P(x,y))  -->  (ALL y x. P(x,y))"
+schematic_goal "?p : (ALL x y. P(x,y))  -->  (ALL y x. P(x,y))"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
-schematic_lemma "?p : (EX x y. P(x,y)) --> (EX y x. P(x,y))"
+schematic_goal "?p : (EX x y. P(x,y)) --> (EX y x. P(x,y))"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
 
 (*Converse is false*)
-schematic_lemma "?p : (ALL x. P(x)) | (ALL x. Q(x)) --> (ALL x. P(x) | Q(x))"
+schematic_goal "?p : (ALL x. P(x)) | (ALL x. Q(x)) --> (ALL x. P(x) | Q(x))"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
-schematic_lemma "?p : (ALL x. P-->Q(x))  <->  (P--> (ALL x. Q(x)))"
+schematic_goal "?p : (ALL x. P-->Q(x))  <->  (P--> (ALL x. Q(x)))"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
 
-schematic_lemma "?p : (ALL x. P(x)-->Q)  <->  ((EX x. P(x)) --> Q)"
+schematic_goal "?p : (ALL x. P(x)-->Q)  <->  ((EX x. P(x)) --> Q)"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
 
 text "Some harder ones"
 
-schematic_lemma "?p : (EX x. P(x) | Q(x)) <-> (EX x. P(x)) | (EX x. Q(x))"
+schematic_goal "?p : (EX x. P(x) | Q(x)) <-> (EX x. P(x)) | (EX x. Q(x))"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
 (*Converse is false*)
-schematic_lemma "?p : (EX x. P(x)&Q(x)) --> (EX x. P(x))  &  (EX x. Q(x))"
+schematic_goal "?p : (EX x. P(x)&Q(x)) --> (EX x. P(x))  &  (EX x. Q(x))"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
 
 text "Basic test of quantifier reasoning"
 (*TRUE*)
-schematic_lemma "?p : (EX y. ALL x. Q(x,y)) -->  (ALL x. EX y. Q(x,y))"
+schematic_goal "?p : (EX y. ALL x. Q(x,y)) -->  (ALL x. EX y. Q(x,y))"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
-schematic_lemma "?p : (ALL x. Q(x))  -->  (EX x. Q(x))"
+schematic_goal "?p : (ALL x. Q(x))  -->  (EX x. Q(x))"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
 
 text "The following should fail, as they are false!"
 
-schematic_lemma "?p : (ALL x. EX y. Q(x,y))  -->  (EX y. ALL x. Q(x,y))"
+schematic_goal "?p : (ALL x. EX y. Q(x,y))  -->  (EX y. ALL x. Q(x,y))"
   apply (tactic \<open>IntPr.fast_tac @{context} 1\<close>)?
   oops
 
-schematic_lemma "?p : (EX x. Q(x))  -->  (ALL x. Q(x))"
+schematic_goal "?p : (EX x. Q(x))  -->  (ALL x. Q(x))"
   apply (tactic \<open>IntPr.fast_tac @{context} 1\<close>)?
   oops
 
-schematic_lemma "?p : P(?a) --> (ALL x. P(x))"
+schematic_goal "?p : P(?a) --> (ALL x. P(x))"
   apply (tactic \<open>IntPr.fast_tac @{context} 1\<close>)?
   oops
 
-schematic_lemma "?p : (P(?a) --> (ALL x. Q(x))) --> (ALL x. P(x) --> Q(x))"
+schematic_goal "?p : (P(?a) --> (ALL x. Q(x))) --> (ALL x. P(x) --> Q(x))"
   apply (tactic \<open>IntPr.fast_tac @{context} 1\<close>)?
   oops
 
 
 text "Back to things that are provable..."
 
-schematic_lemma "?p : (ALL x. P(x)-->Q(x)) & (EX x. P(x)) --> (EX x. Q(x))"
+schematic_goal "?p : (ALL x. P(x)-->Q(x)) & (EX x. P(x)) --> (EX x. Q(x))"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
 
 (*An example of why exI should be delayed as long as possible*)
-schematic_lemma "?p : (P --> (EX x. Q(x))) & P --> (EX x. Q(x))"
+schematic_goal "?p : (P --> (EX x. Q(x))) & P --> (EX x. Q(x))"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
-schematic_lemma "?p : (ALL x. P(x)-->Q(f(x))) & (ALL x. Q(x)-->R(g(x))) & P(d) --> R(?a)"
+schematic_goal "?p : (ALL x. P(x)-->Q(f(x))) & (ALL x. Q(x)-->R(g(x))) & P(d) --> R(?a)"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
-schematic_lemma "?p : (ALL x. Q(x))  -->  (EX x. Q(x))"
+schematic_goal "?p : (ALL x. Q(x))  -->  (EX x. Q(x))"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
 
 text "Some slow ones"
 
 (*Principia Mathematica *11.53  *)
-schematic_lemma "?p : (ALL x y. P(x) --> Q(y)) <-> ((EX x. P(x)) --> (ALL y. Q(y)))"
+schematic_goal "?p : (ALL x y. P(x) --> Q(y)) <-> ((EX x. P(x)) --> (ALL y. Q(y)))"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
 (*Principia Mathematica *11.55  *)
-schematic_lemma "?p : (EX x y. P(x) & Q(x,y)) <-> (EX x. P(x) & (EX y. Q(x,y)))"
+schematic_goal "?p : (EX x y. P(x) & Q(x,y)) <-> (EX x. P(x) & (EX y. Q(x,y)))"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
 (*Principia Mathematica *11.61  *)
-schematic_lemma "?p : (EX y. ALL x. P(x) --> Q(x,y)) --> (ALL x. P(x) --> (EX y. Q(x,y)))"
+schematic_goal "?p : (EX y. ALL x. P(x) --> Q(x,y)) --> (ALL x. P(x) --> (EX y. Q(x,y)))"
   by (tactic \<open>IntPr.fast_tac @{context} 1\<close>)
 
 end
--- a/src/HOL/Bali/Example.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/HOL/Bali/Example.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -1078,7 +1078,7 @@
 
 subsubsection "well-typedness"
 
-schematic_lemma wt_test: "\<lparr>prg=tprg,cls=Main,lcl=empty(VName e\<mapsto>Class Base)\<rparr>\<turnstile>test ?pTs\<Colon>\<surd>"
+schematic_goal wt_test: "\<lparr>prg=tprg,cls=Main,lcl=empty(VName e\<mapsto>Class Base)\<rparr>\<turnstile>test ?pTs\<Colon>\<surd>"
 apply (unfold test_def arr_viewed_from_def)
 (* ?pTs = [Class Base] *)
 apply (rule wtIs (* ;; *))
@@ -1130,7 +1130,7 @@
 
 subsubsection "definite assignment"
 
-schematic_lemma da_test: "\<lparr>prg=tprg,cls=Main,lcl=empty(VName e\<mapsto>Class Base)\<rparr>
+schematic_goal da_test: "\<lparr>prg=tprg,cls=Main,lcl=empty(VName e\<mapsto>Class Base)\<rparr>
                   \<turnstile>{} \<guillemotright>\<langle>test ?pTs\<rangle>\<guillemotright> \<lparr>nrm={VName e},brk=\<lambda> l. UNIV\<rparr>"
 apply (unfold test_def arr_viewed_from_def)
 apply (rule da.Comp)
@@ -1248,7 +1248,7 @@
 
 
 declare Pair_eq [simp del]
-schematic_lemma exec_test: 
+schematic_goal exec_test: 
 "\<lbrakk>the (new_Addr (heap  s1)) = a;  
   the (new_Addr (heap ?s2)) = b;  
   the (new_Addr (heap ?s3)) = c\<rbrakk> \<Longrightarrow>  
--- a/src/HOL/Eisbach/Tests.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/HOL/Eisbach/Tests.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -224,7 +224,7 @@
    by retrofitting. This needs to be done more carefully to avoid smashing
    legitimate pairs.*)
 
-schematic_lemma "?A x \<Longrightarrow> A x"
+schematic_goal "?A x \<Longrightarrow> A x"
   apply (match conclusion in "H" for H \<Rightarrow> \<open>match conclusion in Y for Y \<Rightarrow> \<open>print_term Y\<close>\<close>)
   apply assumption
   done
--- a/src/HOL/Groups.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/HOL/Groups.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -147,13 +147,13 @@
 
 declare add.left_commute [algebra_simps, field_simps]
 
-theorems add_ac = add.assoc add.commute add.left_commute
+lemmas add_ac = add.assoc add.commute add.left_commute
 
 end
 
 hide_fact add_commute
 
-theorems add_ac = add.assoc add.commute add.left_commute
+lemmas add_ac = add.assoc add.commute add.left_commute
 
 class semigroup_mult = times +
   assumes mult_assoc [algebra_simps, field_simps]: "(a * b) * c = a * (b * c)"
@@ -175,13 +175,13 @@
 
 declare mult.left_commute [algebra_simps, field_simps]
 
-theorems mult_ac = mult.assoc mult.commute mult.left_commute
+lemmas mult_ac = mult.assoc mult.commute mult.left_commute
 
 end
 
 hide_fact mult_commute
 
-theorems mult_ac = mult.assoc mult.commute mult.left_commute
+lemmas mult_ac = mult.assoc mult.commute mult.left_commute
 
 class monoid_add = zero + semigroup_add +
   assumes add_0_left: "0 + a = a"
--- a/src/HOL/Hahn_Banach/Vector_Space.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/HOL/Hahn_Banach/Vector_Space.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -75,7 +75,7 @@
   finally show ?thesis .
 qed
 
-theorems add_ac = add_assoc add_commute add_left_commute
+lemmas add_ac = add_assoc add_commute add_left_commute
 
 
 text \<open>The existence of the zero element of a vector space
--- a/src/HOL/IMP/Big_Step.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/HOL/IMP/Big_Step.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -26,7 +26,7 @@
 text_raw{*}%endsnip*}
 
 text_raw{*\snip{BigStepEx}{1}{2}{% *}
-schematic_lemma ex: "(''x'' ::= N 5;; ''y'' ::= V ''x'', s) \<Rightarrow> ?t"
+schematic_goal ex: "(''x'' ::= N 5;; ''y'' ::= V ''x'', s) \<Rightarrow> ?t"
 apply(rule Seq)
 apply(rule Assign)
 apply simp
--- a/src/HOL/Inductive.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/HOL/Inductive.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -343,13 +343,13 @@
 
 text \<open>Package setup.\<close>
 
-theorems basic_monos =
+lemmas basic_monos =
   subset_refl imp_refl disj_mono conj_mono ex_mono all_mono if_bool_eq_conj
   Collect_mono in_mono vimage_mono
 
 ML_file "Tools/inductive.ML"
 
-theorems [mono] =
+lemmas [mono] =
   imp_refl disj_mono conj_mono ex_mono all_mono if_bool_eq_conj
   imp_mono not_mono
   Ball_def Bex_def
--- a/src/HOL/Library/Multiset.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/HOL/Library/Multiset.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -2544,7 +2544,7 @@
   using rel_mset_imp_rel_mset' rel_mset'_imp_rel_mset by auto
 
 text \<open>The main end product for @{const rel_mset}: inductive characterization:\<close>
-theorems rel_mset_induct[case_names empty add, induct pred: rel_mset] =
+lemmas rel_mset_induct[case_names empty add, induct pred: rel_mset] =
   rel_mset'.induct[unfolded rel_mset_rel_mset'[symmetric]]
 
 
--- a/src/HOL/Library/Omega_Words_Fun.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/HOL/Library/Omega_Words_Fun.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -560,7 +560,7 @@
   thus ?thesis ..
 qed
 
-theorems limit_is_suffixE = limit_is_suffix[THEN exE]
+lemmas limit_is_suffixE = limit_is_suffix[THEN exE]
 
 
 text \<open>
--- a/src/HOL/Library/Prefix_Order.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/HOL/Library/Prefix_Order.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -25,15 +25,15 @@
 lemmas strict_prefixE' [elim?] = prefixE' [folded less_list_def]
 lemmas strict_prefixI [intro?] = prefixI [folded less_list_def]
 lemmas strict_prefixE [elim?] = prefixE [folded less_list_def]
-theorems Nil_prefix [iff] = Nil_prefixeq [folded less_eq_list_def]
-theorems prefix_Nil [simp] = prefixeq_Nil [folded less_eq_list_def]
+lemmas Nil_prefix [iff] = Nil_prefixeq [folded less_eq_list_def]
+lemmas prefix_Nil [simp] = prefixeq_Nil [folded less_eq_list_def]
 lemmas prefix_snoc [simp] = prefixeq_snoc [folded less_eq_list_def]
 lemmas Cons_prefix_Cons [simp] = Cons_prefixeq_Cons [folded less_eq_list_def]
 lemmas same_prefix_prefix [simp] = same_prefixeq_prefixeq [folded less_eq_list_def]
 lemmas same_prefix_nil [iff] = same_prefixeq_nil [folded less_eq_list_def]
 lemmas prefix_prefix [simp] = prefixeq_prefixeq [folded less_eq_list_def]
-theorems prefix_Cons = prefixeq_Cons [folded less_eq_list_def]
-theorems prefix_length_le = prefixeq_length_le [folded less_eq_list_def]
+lemmas prefix_Cons = prefixeq_Cons [folded less_eq_list_def]
+lemmas prefix_length_le = prefixeq_length_le [folded less_eq_list_def]
 lemmas strict_prefix_simps [simp, code] = prefix_simps [folded less_list_def]
 lemmas not_prefix_induct [consumes 1, case_names Nil Neq Eq] =
   not_prefixeq_induct [folded less_eq_list_def]
--- a/src/HOL/Library/Set_Algebras.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/HOL/Library/Set_Algebras.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -127,7 +127,7 @@
    apply (auto simp add: ac_simps)
   done
 
-theorems set_plus_rearranges = set_plus_rearrange set_plus_rearrange2
+lemmas set_plus_rearranges = set_plus_rearrange set_plus_rearrange2
   set_plus_rearrange3 set_plus_rearrange4
 
 lemma set_plus_mono [intro!]: "C \<subseteq> D \<Longrightarrow> a +o C \<subseteq> a +o D"
@@ -237,7 +237,7 @@
    apply (auto simp add: ac_simps)
   done
 
-theorems set_times_rearranges = set_times_rearrange set_times_rearrange2
+lemmas set_times_rearranges = set_times_rearrange set_times_rearrange2
   set_times_rearrange3 set_times_rearrange4
 
 lemma set_times_mono [intro]: "C \<subseteq> D \<Longrightarrow> a *o C \<subseteq> a *o D"
@@ -303,7 +303,7 @@
   apply auto
   done
 
-theorems set_times_plus_distribs =
+lemmas set_times_plus_distribs =
   set_times_plus_distrib
   set_times_plus_distrib2
 
--- a/src/HOL/MicroJava/J/Example.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/HOL/MicroJava/J/Example.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -373,7 +373,7 @@
 done
 
 lemmas t = ty_expr_ty_exprs_wt_stmt.intros
-schematic_lemma wt_test: "(tprg, empty(e\<mapsto>Class Base))\<turnstile>  
+schematic_goal wt_test: "(tprg, empty(e\<mapsto>Class Base))\<turnstile>  
   Expr(e::=NewC Ext);; Expr({Base}LAcc e..foo({?pTs'}[Lit Null]))\<surd>"
 apply (rule ty_expr_ty_exprs_wt_stmt.intros) -- ";;"
 apply  (rule t) -- "Expr"
@@ -402,7 +402,7 @@
 lemmas e = NewCI eval_evals_exec.intros
 declare split_if [split del]
 declare init_vars_def [simp] c_hupd_def [simp] cast_ok_def [simp]
-schematic_lemma exec_test: 
+schematic_goal exec_test: 
 " [|new_Addr (heap (snd s0)) = (a, None)|] ==>  
   tprg\<turnstile>s0 -test-> ?s"
 apply (unfold test_def)
--- a/src/HOL/Nitpick_Examples/Core_Nits.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/HOL/Nitpick_Examples/Core_Nits.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -266,27 +266,27 @@
 
 subsection {* Schematic Variables *}
 
-schematic_lemma "x = ?x"
+schematic_goal "x = ?x"
 nitpick [expect = none]
 by auto
 
-schematic_lemma "\<forall>x. x = ?x"
+schematic_goal "\<forall>x. x = ?x"
 nitpick [expect = genuine]
 oops
 
-schematic_lemma "\<exists>x. x = ?x"
+schematic_goal "\<exists>x. x = ?x"
 nitpick [expect = none]
 by auto
 
-schematic_lemma "\<exists>x::'a \<Rightarrow> 'b. x = ?x"
+schematic_goal "\<exists>x::'a \<Rightarrow> 'b. x = ?x"
 nitpick [expect = none]
 by auto
 
-schematic_lemma "\<forall>x. ?x = ?y"
+schematic_goal "\<forall>x. ?x = ?y"
 nitpick [expect = none]
 by auto
 
-schematic_lemma "\<exists>x. ?x = ?y"
+schematic_goal "\<exists>x. ?x = ?y"
 nitpick [expect = none]
 by auto
 
--- a/src/HOL/Nitpick_Examples/Refute_Nits.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/HOL/Nitpick_Examples/Refute_Nits.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -340,12 +340,12 @@
 
 subsubsection {* Schematic Variables *}
 
-schematic_lemma "?P"
+schematic_goal "?P"
 nitpick [expect = none]
 apply auto
 done
 
-schematic_lemma "x = ?y"
+schematic_goal "x = ?y"
 nitpick [expect = none]
 apply auto
 done
--- a/src/HOL/Prolog/Func.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/HOL/Prolog/Func.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -58,11 +58,11 @@
 
 lemmas prog_Func = eval
 
-schematic_lemma "eval ((S (S Z)) + (S Z)) ?X"
+schematic_goal "eval ((S (S Z)) + (S Z)) ?X"
   apply (prolog prog_Func)
   done
 
-schematic_lemma "eval (app (fix (%fact. abs(%n. cond (n eq Z) (S Z)
+schematic_goal "eval (app (fix (%fact. abs(%n. cond (n eq Z) (S Z)
                         (n * (app fact (n - (S Z))))))) (S (S (S Z)))) ?X"
   apply (prolog prog_Func)
   done
--- a/src/HOL/Prolog/Test.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/HOL/Prolog/Test.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -80,7 +80,7 @@
 
 lemmas prog_Test = append reverse mappred mapfun age eq bag_appl
 
-schematic_lemma "append ?x ?y [a,b,c,d]"
+schematic_goal "append ?x ?y [a,b,c,d]"
   apply (prolog prog_Test)
   back
   back
@@ -88,56 +88,56 @@
   back
   done
 
-schematic_lemma "append [a,b] y ?L"
+schematic_goal "append [a,b] y ?L"
   apply (prolog prog_Test)
   done
 
-schematic_lemma "!y. append [a,b] y (?L y)"
+schematic_goal "!y. append [a,b] y (?L y)"
   apply (prolog prog_Test)
   done
 
-schematic_lemma "reverse [] ?L"
+schematic_goal "reverse [] ?L"
   apply (prolog prog_Test)
   done
 
-schematic_lemma "reverse [23] ?L"
+schematic_goal "reverse [23] ?L"
   apply (prolog prog_Test)
   done
 
-schematic_lemma "reverse [23,24,?x] ?L"
+schematic_goal "reverse [23,24,?x] ?L"
   apply (prolog prog_Test)
   done
 
-schematic_lemma "reverse ?L [23,24,?x]"
+schematic_goal "reverse ?L [23,24,?x]"
   apply (prolog prog_Test)
   done
 
-schematic_lemma "mappred age ?x [23,24]"
+schematic_goal "mappred age ?x [23,24]"
   apply (prolog prog_Test)
   back
   done
 
-schematic_lemma "mappred (%x y. ? z. age z y) ?x [23,24]"
+schematic_goal "mappred (%x y. ? z. age z y) ?x [23,24]"
   apply (prolog prog_Test)
   done
 
-schematic_lemma "mappred ?P [bob,sue] [24,23]"
+schematic_goal "mappred ?P [bob,sue] [24,23]"
   apply (prolog prog_Test)
   done
 
-schematic_lemma "mapfun f [bob,bob,sue] [?x,?y,?z]"
+schematic_goal "mapfun f [bob,bob,sue] [?x,?y,?z]"
   apply (prolog prog_Test)
   done
 
-schematic_lemma "mapfun (%x. h x 25) [bob,sue] ?L"
+schematic_goal "mapfun (%x. h x 25) [bob,sue] ?L"
   apply (prolog prog_Test)
   done
 
-schematic_lemma "mapfun ?F [24,25] [h bob 24,h bob 25]"
+schematic_goal "mapfun ?F [24,25] [h bob 24,h bob 25]"
   apply (prolog prog_Test)
   done
 
-schematic_lemma "mapfun ?F [24] [h 24 24]"
+schematic_goal "mapfun ?F [24] [h 24 24]"
   apply (prolog prog_Test)
   back
   back
@@ -148,12 +148,12 @@
   apply (prolog prog_Test)
   done
 
-schematic_lemma "age ?x 24 & age ?y 23"
+schematic_goal "age ?x 24 & age ?y 23"
   apply (prolog prog_Test)
   back
   done
 
-schematic_lemma "age ?x 24 | age ?x 23"
+schematic_goal "age ?x 24 | age ?x 23"
   apply (prolog prog_Test)
   back
   back
@@ -167,7 +167,7 @@
   apply (prolog prog_Test)
   done
 
-schematic_lemma "age sue 24 .. age bob 23 => age ?x ?y"
+schematic_goal "age sue 24 .. age bob 23 => age ?x ?y"
   apply (prolog prog_Test)
   back
   back
@@ -181,7 +181,7 @@
   done
 (*reset trace_DEPTH_FIRST;*)
 
-schematic_lemma "(!x. age x 25 :- age x 23) => age ?x 25 & age ?y 25"
+schematic_goal "(!x. age x 25 :- age x 23) => age ?x 25 & age ?y 25"
   apply (prolog prog_Test)
   back
   back
@@ -192,7 +192,7 @@
   apply (prolog prog_Test)
   done
 
-schematic_lemma "? P. P & eq P ?x"
+schematic_goal "? P. P & eq P ?x"
   apply (prolog prog_Test)
 (*
   back
@@ -247,14 +247,14 @@
   by fast
 *)
 
-schematic_lemma "!Emp Stk.(
+schematic_goal "!Emp Stk.(
                        empty    (Emp::'b) .. 
          (!(X::nat) S. add    X (S::'b)         (Stk X S)) .. 
          (!(X::nat) S. remove X ((Stk X S)::'b) S))
  => bag_appl 23 24 ?X ?Y"
   oops
 
-schematic_lemma "!Qu. ( 
+schematic_goal "!Qu. ( 
           (!L.            empty    (Qu L L)) .. 
           (!(X::nat) L K. add    X (Qu L (X#K)) (Qu L K)) ..
           (!(X::nat) L K. remove X (Qu (X#L) K) (Qu L K)))
@@ -265,7 +265,7 @@
   apply (prolog prog_Test)
   done
 
-schematic_lemma "P x .. P y => P ?X"
+schematic_goal "P x .. P y => P ?X"
   apply (prolog prog_Test)
   back
   done
--- a/src/HOL/Prolog/Type.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/HOL/Prolog/Type.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -46,41 +46,41 @@
 
 lemmas prog_Type = prog_Func good_typeof common_typeof
 
-schematic_lemma "typeof (abs(%n. abs(%m. abs(%p. p and (n eq m))))) ?T"
+schematic_goal "typeof (abs(%n. abs(%m. abs(%p. p and (n eq m))))) ?T"
   apply (prolog prog_Type)
   done
 
-schematic_lemma "typeof (fix (%x. x)) ?T"
+schematic_goal "typeof (fix (%x. x)) ?T"
   apply (prolog prog_Type)
   done
 
-schematic_lemma "typeof (fix (%fact. abs(%n. (app fact (n - Z))))) ?T"
+schematic_goal "typeof (fix (%fact. abs(%n. (app fact (n - Z))))) ?T"
   apply (prolog prog_Type)
   done
 
-schematic_lemma "typeof (fix (%fact. abs(%n. cond (n eq Z) (S Z)
+schematic_goal "typeof (fix (%fact. abs(%n. cond (n eq Z) (S Z)
   (n * (app fact (n - (S Z))))))) ?T"
   apply (prolog prog_Type)
   done
 
-schematic_lemma "typeof (abs(%v. Z)) ?T" (*correct only solution (?A1 -> nat) *)
+schematic_goal "typeof (abs(%v. Z)) ?T" (*correct only solution (?A1 -> nat) *)
   apply (prolog prog_Type)
   done
 
-schematic_lemma "typeof (abs(%v. Z)) ?T"
+schematic_goal "typeof (abs(%v. Z)) ?T"
   apply (prolog bad1_typeof common_typeof) (* 1st result ok*)
   done
 
-schematic_lemma "typeof (abs(%v. Z)) ?T"
+schematic_goal "typeof (abs(%v. Z)) ?T"
   apply (prolog bad1_typeof common_typeof)
   back (* 2nd result (?A1 -> ?A1) wrong *)
   done
 
-schematic_lemma "typeof (abs(%v. abs(%v. app v v))) ?T"
+schematic_goal "typeof (abs(%v. abs(%v. app v v))) ?T"
   apply (prolog prog_Type)?  (*correctly fails*)
   oops
 
-schematic_lemma "typeof (abs(%v. abs(%v. app v v))) ?T"
+schematic_goal "typeof (abs(%v. abs(%v. app v v))) ?T"
   apply (prolog bad2_typeof common_typeof) (* wrong result ((?A3 -> ?B3) -> ?A3 -> ?B3)*)
   done
 
--- a/src/HOL/Proofs/Lambda/LambdaType.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/HOL/Proofs/Lambda/LambdaType.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -77,10 +77,10 @@
 
 subsection {* Some examples *}
 
-schematic_lemma "e \<turnstile> Abs (Abs (Abs (Var 1 \<degree> (Var 2 \<degree> Var 1 \<degree> Var 0)))) : ?T"
+schematic_goal "e \<turnstile> Abs (Abs (Abs (Var 1 \<degree> (Var 2 \<degree> Var 1 \<degree> Var 0)))) : ?T"
   by force
 
-schematic_lemma "e \<turnstile> Abs (Abs (Abs (Var 2 \<degree> Var 0 \<degree> (Var 1 \<degree> Var 0)))) : ?T"
+schematic_goal "e \<turnstile> Abs (Abs (Abs (Var 2 \<degree> Var 0 \<degree> (Var 1 \<degree> Var 0)))) : ?T"
   by force
 
 
--- a/src/HOL/Tools/Ctr_Sugar/ctr_sugar_code.ML	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/HOL/Tools/Ctr_Sugar/ctr_sugar_code.ML	Tue Oct 06 17:44:32 2015 +0200
@@ -111,7 +111,7 @@
     #-> Class.prove_instantiation_exit_result (map o Morphism.thm) tac o single
     #-> fold Code.del_eqn
     #> `(mk_free_ctr_equations fcT ctrs inject_thms distinct_thms)
-    #-> (fn (thms, thm) => Global_Theory.note_thmss Thm.lemmaK
+    #-> (fn (thms, thm) => Global_Theory.note_thmss Thm.theoremK
       [((qualify reflN, [Code.add_nbe_default_eqn_attribute]), [([thm], [])]),
         ((qualify simpsN, [Code.add_default_eqn_attribute]), [(rev thms, [])])])
     #> snd
--- a/src/HOL/Tools/Function/function_core.ML	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/HOL/Tools/Function/function_core.ML	Tue Oct 06 17:44:32 2015 +0200
@@ -86,10 +86,6 @@
 
 val acc_downward = @{thm accp_downward}
 val accI = @{thm accp.accI}
-val case_split = @{thm HOL.case_split}
-val fundef_default_value = @{thm Fun_Def.fundef_default_value}
-val not_acc_down = @{thm not_accp_down}
-
 
 
 fun find_calls tree =
@@ -259,8 +255,7 @@
 (* Generates the replacement lemma in fully quantified form. *)
 fun mk_replacement_lemma ctxt h ih_elim clause =
   let
-    val ClauseInfo {cdata=ClauseContext {qs, lhs, cqs, ags, case_hyp, ...},
-      RCs, tree, ...} = clause
+    val ClauseInfo {cdata=ClauseContext {qs, cqs, ags, case_hyp, ...}, RCs, tree, ...} = clause
     local open Conv in
       val ih_conv = arg1_conv o arg_conv o arg_conv
     end
@@ -784,50 +779,51 @@
     val Globals { domT, x, z, ... } = globals
     val acc_R = mk_acc domT R
 
-    val R' = Free ("R", fastype_of R)
+    val ([Rn], ctxt') = Variable.variant_fixes ["R"] ctxt
+    val R' = Free (Rn, fastype_of R)
 
-    val Rrel = Free ("R", HOLogic.mk_setT (HOLogic.mk_prodT (domT, domT)))
+    val Rrel = Free (Rn, HOLogic.mk_setT (HOLogic.mk_prodT (domT, domT)))
     val inrel_R = Const (@{const_name Fun_Def.in_rel},
       HOLogic.mk_setT (HOLogic.mk_prodT (domT, domT)) --> fastype_of R) $ Rrel
 
     val wfR' = HOLogic.mk_Trueprop (Const (@{const_name Wellfounded.wfP},
       (domT --> domT --> boolT) --> boolT) $ R')
-      |> Thm.cterm_of ctxt (* "wf R'" *)
+      |> Thm.cterm_of ctxt' (* "wf R'" *)
 
     (* Inductive Hypothesis: !!z. (z,x):R' ==> z : acc R *)
     val ihyp = Logic.all_const domT $ Abs ("z", domT,
       Logic.mk_implies (HOLogic.mk_Trueprop (R' $ Bound 0 $ x),
         HOLogic.mk_Trueprop (acc_R $ Bound 0)))
-      |> Thm.cterm_of ctxt
+      |> Thm.cterm_of ctxt'
 
     val ihyp_a = Thm.assume ihyp |> Thm.forall_elim_vars 0
 
-    val R_z_x = Thm.cterm_of ctxt (HOLogic.mk_Trueprop (R $ z $ x))
+    val R_z_x = Thm.cterm_of ctxt' (HOLogic.mk_Trueprop (R $ z $ x))
 
-    val (hyps, cases) = fold (mk_nest_term_case ctxt globals R' ihyp_a) clauses ([], [])
+    val (hyps, cases) = fold (mk_nest_term_case ctxt' globals R' ihyp_a) clauses ([], [])
   in
     R_cases
-    |> Thm.forall_elim (Thm.cterm_of ctxt z)
-    |> Thm.forall_elim (Thm.cterm_of ctxt x)
-    |> Thm.forall_elim (Thm.cterm_of ctxt (acc_R $ z))
+    |> Thm.forall_elim (Thm.cterm_of ctxt' z)
+    |> Thm.forall_elim (Thm.cterm_of ctxt' x)
+    |> Thm.forall_elim (Thm.cterm_of ctxt' (acc_R $ z))
     |> curry op COMP (Thm.assume R_z_x)
     |> fold_rev (curry op COMP) cases
     |> Thm.implies_intr R_z_x
-    |> Thm.forall_intr (Thm.cterm_of ctxt z)
+    |> Thm.forall_intr (Thm.cterm_of ctxt' z)
     |> (fn it => it COMP accI)
     |> Thm.implies_intr ihyp
-    |> Thm.forall_intr (Thm.cterm_of ctxt x)
+    |> Thm.forall_intr (Thm.cterm_of ctxt' x)
     |> (fn it => Drule.compose (it, 2, wf_induct_rule))
     |> curry op RS (Thm.assume wfR')
     |> forall_intr_vars
     |> (fn it => it COMP allI)
     |> fold Thm.implies_intr hyps
     |> Thm.implies_intr wfR'
-    |> Thm.forall_intr (Thm.cterm_of ctxt R')
-    |> Thm.forall_elim (Thm.cterm_of ctxt (inrel_R))
+    |> Thm.forall_intr (Thm.cterm_of ctxt' R')
+    |> Thm.forall_elim (Thm.cterm_of ctxt' inrel_R)
     |> curry op RS wf_in_rel
-    |> full_simplify (put_simpset HOL_basic_ss ctxt addsimps [in_rel_def])
-    |> Thm.forall_intr (Thm.cterm_of ctxt Rrel)
+    |> full_simplify (put_simpset HOL_basic_ss ctxt' addsimps [in_rel_def])
+    |> Thm.forall_intr_name ("R", Thm.cterm_of ctxt' Rrel)
   end
 
 
--- a/src/HOL/Tools/Function/induction_schema.ML	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/HOL/Tools/Function/induction_schema.ML	Tue Oct 06 17:44:32 2015 +0200
@@ -142,12 +142,12 @@
 fun mk_wf R (IndScheme {T, ...}) =
   HOLogic.Trueprop $ (Const (@{const_name wf}, mk_relT T --> HOLogic.boolT) $ R)
 
-fun mk_ineqs R (IndScheme {T, cases, branches}) =
+fun mk_ineqs R thesisn (IndScheme {T, cases, branches}) =
   let
     fun inject i ts =
        Sum_Tree.mk_inj T (length branches) (i + 1) (foldr1 HOLogic.mk_prod ts)
 
-    val thesis = Free ("thesis", HOLogic.boolT) (* FIXME *)
+    val thesis = Free (thesisn, HOLogic.boolT)
 
     fun mk_pres bdx args =
       let
@@ -349,12 +349,12 @@
   let
     val (ctxt', _, cases, concl) = dest_hhf ctxt t
     val scheme as IndScheme {T=ST, branches, ...} = mk_scheme' ctxt' cases concl
-    val ([Rn, xn], ctxt'') = Variable.variant_fixes ["R", "x"] ctxt'
+    val ([Rn, xn, thesisn], ctxt'') = Variable.variant_fixes ["R", "x", "thesis"] ctxt'
     val R = Free (Rn, mk_relT ST)
     val x = Free (xn, ST)
 
     val ineqss =
-      mk_ineqs R scheme
+      mk_ineqs R thesisn scheme
       |> map (map (apply2 (Thm.assume o Thm.cterm_of ctxt'')))
     val complete =
       map_range (mk_completeness ctxt'' scheme #> Thm.cterm_of ctxt'' #> Thm.assume)
--- a/src/HOL/Wellfounded.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/HOL/Wellfounded.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -558,7 +558,7 @@
   apply fast
   done
 
-theorems accp_induct_rule = accp_induct [rule_format, induct set: accp]
+lemmas accp_induct_rule = accp_induct [rule_format, induct set: accp]
 
 theorem accp_downward: "accp r b ==> r a b ==> accp r a"
   apply (erule accp.cases)
--- a/src/HOL/ex/Classical.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/HOL/ex/Classical.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -348,7 +348,7 @@
 
 text{*Non-equational version, from Manthey and Bry, CADE-9 (Springer, 1988).
   fast DISCOVERS who killed Agatha. *}
-schematic_lemma "lives(agatha) & lives(butler) & lives(charles) &
+schematic_goal "lives(agatha) & lives(butler) & lives(charles) &
    (killed agatha agatha | killed butler agatha | killed charles agatha) &
    (\<forall>x y. killed x y --> hates x y & ~richer x y) &
    (\<forall>x. hates agatha x --> ~hates charles x) &
--- a/src/HOL/ex/Groebner_Examples.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/HOL/ex/Groebner_Examples.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -24,7 +24,7 @@
     (Conv.arg_conv (Conv.arg1_conv (Semiring_Normalizer.semiring_normalize_conv @{context})))) *})
   by (rule refl)
 
-schematic_lemma
+schematic_goal
   fixes x :: int
   shows "(x - (-2))^5  * (y - 78) ^ 8 = ?X" 
   apply (tactic {* ALLGOALS (CONVERSION
--- a/src/HOL/ex/Refute_Examples.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/HOL/ex/Refute_Examples.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -332,11 +332,11 @@
 
 subsubsection {* Schematic variables *}
 
-schematic_lemma "?P"
+schematic_goal "?P"
 refute [expect = none]
 by auto
 
-schematic_lemma "x = ?y"
+schematic_goal "x = ?y"
 refute [expect = none]
 by auto
 
--- a/src/HOL/ex/Set_Comprehension_Pointfree_Examples.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/HOL/ex/Set_Comprehension_Pointfree_Examples.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -111,7 +111,7 @@
 using assms by (auto intro!: finite_vimageI simp add: inj_on_def)
   (* injectivity to be automated with further rules and automation *)
 
-schematic_lemma (* check interaction with schematics *)
+schematic_goal (* check interaction with schematics *)
   "finite {x :: ?'A \<Rightarrow> ?'B \<Rightarrow> bool. \<exists>a b. x = Pair_Rep a b}
    = finite ((\<lambda>(b :: ?'B, a:: ?'A). Pair_Rep a b) ` (UNIV \<times> UNIV))"
   by simp
--- a/src/HOL/ex/Set_Theory.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/HOL/ex/Set_Theory.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -27,7 +27,7 @@
   Trivial example of term synthesis: apparently hard for some provers!
 *}
 
-schematic_lemma "a \<noteq> b \<Longrightarrow> a \<in> ?X \<and> b \<notin> ?X"
+schematic_goal "a \<noteq> b \<Longrightarrow> a \<in> ?X \<and> b \<notin> ?X"
   by blast
 
 
@@ -61,15 +61,15 @@
   -- {* Requires best-first search because it is undirectional. *}
   by best
 
-schematic_lemma "\<forall>f:: 'a \<Rightarrow> 'a set. \<forall>x. f x \<noteq> ?S f"
+schematic_goal "\<forall>f:: 'a \<Rightarrow> 'a set. \<forall>x. f x \<noteq> ?S f"
   -- {*This form displays the diagonal term. *}
   by best
 
-schematic_lemma "?S \<notin> range (f :: 'a \<Rightarrow> 'a set)"
+schematic_goal "?S \<notin> range (f :: 'a \<Rightarrow> 'a set)"
   -- {* This form exploits the set constructs. *}
   by (rule notI, erule rangeE, best)
 
-schematic_lemma "?S \<notin> range (f :: 'a \<Rightarrow> 'a set)"
+schematic_goal "?S \<notin> range (f :: 'a \<Rightarrow> 'a set)"
   -- {* Or just this! *}
   by best
 
--- a/src/HOL/ex/Simproc_Tests.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/HOL/ex/Simproc_Tests.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -41,7 +41,7 @@
   }
 end
 
-schematic_lemma "\<And>(y::?'b::size). size (?x::?'a::size) \<le> size y + size ?x"
+schematic_goal "\<And>(y::?'b::size). size (?x::?'a::size) \<le> size y + size ?x"
   by (tactic {* test @{context} [@{simproc natle_cancel_sums}] *}) (rule le0)
 (* TODO: test more simprocs with schematic variables *)
 
--- a/src/Pure/Isar/expression.ML	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/Pure/Isar/expression.ML	Tue Oct 06 17:44:32 2015 +0200
@@ -888,7 +888,7 @@
     val facts = map2 (fn attrs => fn eqn =>
       (attrs, [([Morphism.thm (export' $> export) eqn], [])])) attrss eqns;
     val (eqns', ctxt') = ctxt
-      |> note Thm.lemmaK facts
+      |> note Thm.theoremK facts
       |> (fn (eqns, ctxt') => (meta_rewrite ctxt' eqns, ctxt'));
     val dep_morphs =
       map2 (fn (dep, morph) => fn wits =>
--- a/src/Pure/Isar/isar_syn.ML	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/Pure/Isar/isar_syn.ML	Tue Oct 06 17:44:32 2015 +0200
@@ -152,16 +152,10 @@
 
 (* theorems *)
 
-fun theorems kind =
-  Parse_Spec.name_facts -- Parse.for_fixes
-    >> (fn (facts, fixes) => #2 oo Specification.theorems_cmd kind facts fixes);
-
 val _ =
-  Outer_Syntax.local_theory' @{command_keyword theorems} "define theorems"
-    (theorems Thm.theoremK);
-
-val _ =
-  Outer_Syntax.local_theory' @{command_keyword lemmas} "define lemmas" (theorems Thm.lemmaK);
+  Outer_Syntax.local_theory' @{command_keyword lemmas} "define theorems"
+    (Parse_Spec.name_facts -- Parse.for_fixes >>
+      (fn (facts, fixes) => #2 oo Specification.theorems_cmd Thm.theoremK facts fixes));
 
 val _ =
   Outer_Syntax.local_theory' @{command_keyword declare} "declare theorems"
@@ -494,23 +488,22 @@
 
 (* statements *)
 
-fun theorem spec schematic kind =
+fun theorem spec schematic descr =
   Outer_Syntax.local_theory_to_proof' spec
-    ("state " ^ (if schematic then "schematic " ^ kind else kind))
+    ("state " ^ descr)
     (Scan.optional (Parse_Spec.opt_thm_name ":" --|
       Scan.ahead (Parse_Spec.includes >> K "" ||
         Parse_Spec.locale_keyword || Parse_Spec.statement_keyword)) Attrib.empty_binding --
       Scan.optional Parse_Spec.includes [] --
       Parse_Spec.general_statement >> (fn ((a, includes), (elems, concl)) =>
         ((if schematic then Specification.schematic_theorem_cmd else Specification.theorem_cmd)
-          kind NONE (K I) a includes elems concl)));
+          Thm.theoremK NONE (K I) a includes elems concl)));
 
-val _ = theorem @{command_keyword theorem} false Thm.theoremK;
-val _ = theorem @{command_keyword lemma} false Thm.lemmaK;
-val _ = theorem @{command_keyword corollary} false Thm.corollaryK;
-val _ = theorem @{command_keyword schematic_theorem} true Thm.theoremK;
-val _ = theorem @{command_keyword schematic_lemma} true Thm.lemmaK;
-val _ = theorem @{command_keyword schematic_corollary} true Thm.corollaryK;
+val _ = theorem @{command_keyword theorem} false "theorem";
+val _ = theorem @{command_keyword lemma} false "lemma";
+val _ = theorem @{command_keyword corollary} false "corollary";
+val _ = theorem @{command_keyword proposition} false "proposition";
+val _ = theorem @{command_keyword schematic_goal} true "schematic goal";
 
 
 val structured_statement =
--- a/src/Pure/Pure.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/Pure/Pure.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -19,7 +19,7 @@
   and "typedecl" "type_synonym" "nonterminal" "judgment"
     "consts" "syntax" "no_syntax" "translations" "no_translations" "defs"
     "definition" "abbreviation" "type_notation" "no_type_notation" "notation"
-    "no_notation" "axiomatization" "theorems" "lemmas" "declare"
+    "no_notation" "axiomatization" "lemmas" "declare"
     "hide_class" "hide_type" "hide_const" "hide_fact" :: thy_decl
   and "SML_file" "SML_file_debug" "SML_file_no_debug" :: thy_load % "ML"
   and "SML_import" "SML_export" :: thy_decl % "ML"
@@ -43,8 +43,8 @@
   and "instance" :: thy_goal
   and "overloading" :: thy_decl_block
   and "code_datatype" :: thy_decl
-  and "theorem" "lemma" "corollary" :: thy_goal
-  and "schematic_theorem" "schematic_lemma" "schematic_corollary" :: thy_goal
+  and "theorem" "lemma" "corollary" "proposition" :: thy_goal
+  and "schematic_goal" :: thy_goal
   and "notepad" :: thy_decl_block
   and "have" :: prf_goal % "proof"
   and "hence" :: prf_goal % "proof" == "then have"
--- a/src/Pure/Tools/find_consts.ML	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/Pure/Tools/find_consts.ML	Tue Oct 06 17:44:32 2015 +0200
@@ -31,8 +31,8 @@
 fun matches_subtype thy typat =
   Term.exists_subtype (fn ty => Sign.typ_instance thy (ty, typat));
 
-fun check_const pred (nm, (ty, _)) =
-  if pred (nm, ty) then SOME (Term.size_of_typ ty) else NONE;
+fun check_const pred (c, (ty, _)) =
+  if pred (c, ty) then SOME (Term.size_of_typ ty) else NONE;
 
 fun opt_not f (c as (_, (ty, _))) =
   if is_some (f c) then NONE else SOME (Term.size_of_typ ty);
@@ -60,8 +60,7 @@
 fun pretty_const ctxt (c, ty) =
   let
     val ty' = Logic.unvarifyT_global ty;
-    val const_space = Consts.space_of (Sign.consts_of (Proof_Context.theory_of ctxt));
-    val markup = Name_Space.markup const_space c;
+    val markup = Name_Space.markup (Proof_Context.const_space ctxt) c;
   in
     Pretty.block
      [Pretty.mark markup (Pretty.str c), Pretty.str " ::", Pretty.brk 1,
@@ -76,9 +75,6 @@
     val thy = Proof_Context.theory_of ctxt;
     val low_ranking = 10000;
 
-    fun user_visible consts (nm, _) =
-      if Consts.is_concealed consts nm then NONE else SOME low_ranking;
-
     fun make_pattern crit =
       let
         val raw_T = Syntax.parse_typ ctxt crit;
@@ -104,11 +100,14 @@
     fun make_criterion (b, crit) = (if b then I else opt_not) (make_match crit);
     val criteria = map make_criterion raw_criteria;
 
-    val consts = Sign.consts_of thy;
-    val {constants, ...} = Consts.dest consts;
+    fun user_visible (c, _) =
+      if Consts.is_concealed (Proof_Context.consts_of ctxt) c
+      then NONE else SOME low_ranking;
+
     fun eval_entry c =
-      fold (filter_const c) (user_visible consts :: criteria) (SOME low_ranking);
+      fold (filter_const c) (user_visible :: criteria) (SOME low_ranking);
 
+    val {constants, ...} = Consts.dest (Sign.consts_of thy);
     val matches =
       fold (fn c => (case eval_entry c of NONE => I | SOME rank => cons (rank, c))) constants []
       |> sort (prod_ord (rev_order o int_ord) (string_ord o apply2 fst))
@@ -125,7 +124,7 @@
      else
        Pretty.str ("found " ^ string_of_int (length matches) ^ " constant(s):") ::
        grouped 10 Par_List.map (Pretty.item o single o pretty_const ctxt) matches)
-  end |> Pretty.fbreaks |> curry Pretty.blk 0;
+  end |> Pretty.chunks;
 
 fun find_consts ctxt args = Pretty.writeln (pretty_consts ctxt args);
 
@@ -175,4 +174,3 @@
       | NONE => error "Unknown context"));
 
 end;
-
--- a/src/Pure/Tools/thm_deps.ML	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/Pure/Tools/thm_deps.ML	Tue Oct 06 17:44:32 2015 +0200
@@ -92,8 +92,7 @@
     val (thms', _) = fold (fn (a, (th, concealed, group)) => fn q as (thms, seen_groups) =>
       if not concealed andalso
         (* FIXME replace by robust treatment of thm groups *)
-        member (op =) [Thm.theoremK, Thm.lemmaK, Thm.corollaryK] (Thm.legacy_get_kind th) andalso
-        is_unused a
+        Thm.legacy_get_kind th = Thm.theoremK andalso is_unused a
       then
         (case group of
            NONE => ((a, th) :: thms, seen_groups)
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/Pure/Tools/update_theorems.scala	Tue Oct 06 17:44:32 2015 +0200
@@ -0,0 +1,40 @@
+/*  Title:      Pure/Tools/update_theorems.scala
+    Author:     Makarius
+
+Update toplevel theorem keywords.
+*/
+
+package isabelle
+
+
+object Update_Theorems
+{
+  def update_theorems(path: Path)
+  {
+    val text0 = File.read(path)
+    val text1 =
+      (for (tok <- Token.explode(Keyword.Keywords.empty, text0).iterator)
+        yield {
+          tok.source match {
+            case "theorems" => "lemmas"
+            case "schematic_theorem" | "schematic_lemma" | "schematic_corollary" =>
+              "schematic_goal"
+            case s => s
+        } }).mkString
+
+    if (text0 != text1) {
+      Output.writeln("changing " + path)
+      File.write_backup2(path, text1)
+    }
+  }
+
+
+  /* command line entry point */
+
+  def main(args: Array[String])
+  {
+    Command_Line.tool0 {
+      args.foreach(arg => update_theorems(Path.explode(arg)))
+    }
+  }
+}
--- a/src/Pure/build-jars	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/Pure/build-jars	Tue Oct 06 17:44:32 2015 +0200
@@ -107,6 +107,7 @@
   Tools/update_header.scala
   Tools/update_semicolons.scala
   Tools/update_then.scala
+  Tools/update_theorems.scala
   library.scala
   term.scala
   term_xml.scala
--- a/src/Pure/more_thm.ML	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/Pure/more_thm.ML	Tue Oct 06 17:44:32 2015 +0200
@@ -64,6 +64,7 @@
   val undeclared_hyps: Context.generic -> thm -> term list
   val check_hyps: Context.generic -> thm -> thm
   val elim_implies: thm -> thm -> thm
+  val forall_intr_name: string * cterm -> thm -> thm
   val forall_elim_var: int -> thm -> thm
   val forall_elim_vars: int -> thm -> thm
   val instantiate': ctyp option list -> cterm option list -> thm -> thm
@@ -101,8 +102,6 @@
   val get_name_hint: thm -> string
   val put_name_hint: string -> thm -> thm
   val theoremK: string
-  val lemmaK: string
-  val corollaryK: string
   val legacy_get_kind: thm -> string
   val kind_rule: string -> thm -> thm
   val kind: string -> attribute
@@ -321,6 +320,15 @@
 fun elim_implies thA thAB = Thm.implies_elim thAB thA;
 
 
+(* forall_intr_name *)
+
+fun forall_intr_name (a, x) th =
+  let
+    val th' = Thm.forall_intr x th;
+    val prop' = (case Thm.prop_of th' of all $ Abs (_, T, b) => all $ Abs (a, T, b));
+  in Thm.renamed_prop prop' th' end;
+
+
 (* forall_elim_var(s) *)
 
 local
@@ -576,8 +584,6 @@
 (* theorem kinds *)
 
 val theoremK = "theorem";
-val lemmaK = "lemma";
-val corollaryK = "corollary";
 
 fun legacy_get_kind thm = the_default "" (Properties.get (Thm.get_tags thm) Markup.kindN);
 
--- a/src/Sequents/LK/Quantifiers.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/Sequents/LK/Quantifiers.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -90,13 +90,13 @@
   oops
 
 (*INVALID*)
-schematic_lemma "|- P(?a) --> (ALL x. P(x))"
+schematic_goal "|- P(?a) --> (ALL x. P(x))"
   apply fast?
   apply (rule _)
   oops
 
 (*INVALID*)
-schematic_lemma "|- (P(?a) --> (ALL x. Q(x))) --> (ALL x. P(x) --> Q(x))"
+schematic_goal "|- (P(?a) --> (ALL x. Q(x))) --> (ALL x. P(x) --> Q(x))"
   apply fast?
   apply (rule _)
   oops
@@ -114,7 +114,7 @@
 
 text "Solving for a Var"
 
-schematic_lemma "|- (ALL x. P(x)-->Q(f(x))) & (ALL x. Q(x)-->R(g(x))) & P(d) --> R(?a)"
+schematic_goal "|- (ALL x. P(x)-->Q(f(x))) & (ALL x. Q(x)-->R(g(x))) & P(d) --> R(?a)"
   by fast
 
 
--- a/src/Tools/permanent_interpretation.ML	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/Tools/permanent_interpretation.ML	Tue Oct 06 17:44:32 2015 +0200
@@ -59,7 +59,7 @@
     val facts = (Attrib.empty_binding, [(map (Morphism.thm (export' $> export)) def_eqns, [])])
       :: map2 (fn attrs => fn eqn => (attrs, [([Morphism.thm (export' $> export) eqn], [])])) attrss eqns;
     val (eqns', ctxt') = ctxt
-      |> note Thm.lemmaK facts
+      |> note Thm.theoremK facts
       |-> meta_rewrite;
     val dep_morphs = map2 (fn (dep, morph) => fn wits =>
       (dep, morph $> Element.satisfy_morphism (map (Element.transform_witness export') wits))) deps witss;
@@ -71,9 +71,9 @@
   end;
 
 fun generic_interpretation prep_interpretation setup_proof note add_registration
-    expression raw_defs raw_eqns initial_ctxt = 
+    expression raw_defs raw_eqns initial_ctxt =
   let
-    val (((propss, deps, export, export'), (def_eqns, eqns, attrss)), goal_ctxt) = 
+    val (((propss, deps, export, export'), (def_eqns, eqns, attrss)), goal_ctxt) =
       prep_interpretation expression raw_defs raw_eqns initial_ctxt;
     fun after_qed witss eqns =
       note_eqns_register note add_registration deps witss def_eqns eqns attrss export export';
--- a/src/ZF/AC/Cardinal_aux.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/ZF/AC/Cardinal_aux.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -57,7 +57,7 @@
   finally show "i \<lesssim> A \<union> B" .
 qed
 
-schematic_lemma paired_bij: "?f \<in> bij({{y,z}. y \<in> x}, x)"
+schematic_goal paired_bij: "?f \<in> bij({{y,z}. y \<in> x}, x)"
 apply (rule RepFun_bijective)
 apply (simp add: doubleton_eq_iff, blast)
 done
--- a/src/ZF/Bin.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/ZF/Bin.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -700,7 +700,7 @@
 text \<open>@{text combine_numerals_prod} (products of separate literals)\<close>
 lemma "#5 $* x $* #3 = y" apply simp oops
 
-schematic_lemma "y2 $+ ?x42 = y $+ y2" apply simp oops
+schematic_goal "y2 $+ ?x42 = y $+ y2" apply simp oops
 
 lemma "oo : int ==> l $+ (l $+ #2) $+ oo = oo" apply simp oops
 
--- a/src/ZF/Constructible/Reflection.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/ZF/Constructible/Reflection.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -268,7 +268,7 @@
 text\<open>Example 1: reflecting a simple formula.  The reflecting class is first
 given as the variable @{text ?Cl} and later retrieved from the final
 proof state.\<close>
-schematic_lemma (in reflection)
+schematic_goal (in reflection)
      "Reflects(?Cl,
                \<lambda>x. \<exists>y. M(y) & x \<in> y,
                \<lambda>a x. \<exists>y\<in>Mset(a). x \<in> y)"
@@ -285,7 +285,7 @@
 
 
 text\<open>Example 2\<close>
-schematic_lemma (in reflection)
+schematic_goal (in reflection)
      "Reflects(?Cl,
                \<lambda>x. \<exists>y. M(y) & (\<forall>z. M(z) \<longrightarrow> z \<subseteq> x \<longrightarrow> z \<in> y),
                \<lambda>a x. \<exists>y\<in>Mset(a). \<forall>z\<in>Mset(a). z \<subseteq> x \<longrightarrow> z \<in> y)"
@@ -302,14 +302,14 @@
 by fast
 
 text\<open>Example 2''.  We expand the subset relation.\<close>
-schematic_lemma (in reflection)
+schematic_goal (in reflection)
   "Reflects(?Cl,
         \<lambda>x. \<exists>y. M(y) & (\<forall>z. M(z) \<longrightarrow> (\<forall>w. M(w) \<longrightarrow> w\<in>z \<longrightarrow> w\<in>x) \<longrightarrow> z\<in>y),
         \<lambda>a x. \<exists>y\<in>Mset(a). \<forall>z\<in>Mset(a). (\<forall>w\<in>Mset(a). w\<in>z \<longrightarrow> w\<in>x) \<longrightarrow> z\<in>y)"
 by fast
 
 text\<open>Example 2'''.  Single-step version, to reveal the reflecting class.\<close>
-schematic_lemma (in reflection)
+schematic_goal (in reflection)
      "Reflects(?Cl,
                \<lambda>x. \<exists>y. M(y) & (\<forall>z. M(z) \<longrightarrow> z \<subseteq> x \<longrightarrow> z \<in> y),
                \<lambda>a x. \<exists>y\<in>Mset(a). \<forall>z\<in>Mset(a). z \<subseteq> x \<longrightarrow> z \<in> y)"
@@ -329,21 +329,21 @@
 
 text\<open>Example 3.  Warning: the following examples make sense only
 if @{term P} is quantifier-free, since it is not being relativized.\<close>
-schematic_lemma (in reflection)
+schematic_goal (in reflection)
      "Reflects(?Cl,
                \<lambda>x. \<exists>y. M(y) & (\<forall>z. M(z) \<longrightarrow> z \<in> y \<longleftrightarrow> z \<in> x & P(z)),
                \<lambda>a x. \<exists>y\<in>Mset(a). \<forall>z\<in>Mset(a). z \<in> y \<longleftrightarrow> z \<in> x & P(z))"
 by fast
 
 text\<open>Example 3'\<close>
-schematic_lemma (in reflection)
+schematic_goal (in reflection)
      "Reflects(?Cl,
                \<lambda>x. \<exists>y. M(y) & y = Collect(x,P),
                \<lambda>a x. \<exists>y\<in>Mset(a). y = Collect(x,P))"
 by fast
 
 text\<open>Example 3''\<close>
-schematic_lemma (in reflection)
+schematic_goal (in reflection)
      "Reflects(?Cl,
                \<lambda>x. \<exists>y. M(y) & y = Replace(x,P),
                \<lambda>a x. \<exists>y\<in>Mset(a). y = Replace(x,P))"
@@ -351,7 +351,7 @@
 
 text\<open>Example 4: Axiom of Choice.  Possibly wrong, since @{text \<Pi>} needs
 to be relativized.\<close>
-schematic_lemma (in reflection)
+schematic_goal (in reflection)
      "Reflects(?Cl,
                \<lambda>A. 0\<notin>A \<longrightarrow> (\<exists>f. M(f) & f \<in> (\<Pi> X \<in> A. X)),
                \<lambda>a A. 0\<notin>A \<longrightarrow> (\<exists>f\<in>Mset(a). f \<in> (\<Pi> X \<in> A. X)))"
--- a/src/ZF/ex/misc.thy	Tue Oct 06 12:01:07 2015 +0200
+++ b/src/ZF/ex/misc.thy	Tue Oct 06 17:44:32 2015 +0200
@@ -44,7 +44,7 @@
 by (blast intro!: equalityI)
 
 text\<open>trivial example of term synthesis: apparently hard for some provers!\<close>
-schematic_lemma "a \<noteq> b ==> a:?X & b \<notin> ?X"
+schematic_goal "a \<noteq> b ==> a:?X & b \<notin> ?X"
 by blast
 
 text\<open>Nice blast benchmark.  Proved in 0.3s; old tactics can't manage it!\<close>