add complementary lemmas for {min,max}_least
authornoschinl
Thu, 15 Dec 2011 16:10:44 +0100
changeset 45893 e7dbb27c1308
parent 45892 8dcf6692433f
child 45895 36f3f0010b7d
add complementary lemmas for {min,max}_least
src/HOL/Orderings.thy
--- a/src/HOL/Orderings.thy	Thu Dec 15 15:55:39 2011 +0100
+++ b/src/HOL/Orderings.thy	Thu Dec 15 16:10:44 2011 +0100
@@ -1057,14 +1057,24 @@
 by (simp add: max_def)
 
 lemma min_leastR: "(\<And>x\<Colon>'a\<Colon>order. least \<le> x) \<Longrightarrow> min x least = least"
-apply (simp add: min_def)
-apply (blast intro: antisym)
-done
+by (simp add: min_def) (blast intro: antisym)
 
 lemma max_leastR: "(\<And>x\<Colon>'a\<Colon>order. least \<le> x) \<Longrightarrow> max x least = x"
-apply (simp add: max_def)
-apply (blast intro: antisym)
-done
+by (simp add: max_def) (blast intro: antisym)
+
+lemma min_greatestL: "(\<And>x::'a::order. x \<le> greatest) \<Longrightarrow> min greatest x = x"
+by (simp add: min_def) (blast intro: antisym)
+
+lemma max_greatestL: "(\<And>x::'a::order. x \<le> greatest) \<Longrightarrow> max greatest x = greatest"
+by (simp add: max_def) (blast intro: antisym)
+
+lemma min_greatestR: "(\<And>x. x \<le> greatest) \<Longrightarrow> min x greatest = x"
+by (simp add: min_def)
+
+lemma max_greatestR: "(\<And>x. x \<le> greatest) \<Longrightarrow> max x greatest = greatest"
+by (simp add: max_def)
+
+
 
 
 subsection {* (Unique) top and bottom elements *}