Back to original example theorem.
--- a/src/Doc/Locales/Examples.thy Thu Aug 25 20:08:40 2016 +0200
+++ b/src/Doc/Locales/Examples.thy Thu Aug 25 20:08:41 2016 +0200
@@ -320,7 +320,8 @@
text \<open>These assumptions refer to the predicates for infimum
and supremum defined for @{text partial_order} in the previous
- section. We now introduce the notions of meet and join.\<close>
+ section. We now introduce the notions of meet and join,
+ together with an example theorem.\<close>
definition
meet (infixl "\<sqinter>" 70) where "x \<sqinter> y = (THE inf. is_inf x y inf)"
@@ -345,8 +346,7 @@
by (rule theI) (rule is_inf_uniq [OF _ \<open>is_inf x y i\<close>])
qed
- lemma %invisible meet_left [intro?]:
- "x \<sqinter> y \<sqsubseteq> x"
+ lemma meet_left(*<*)[intro?](*>*): "x \<sqinter> y \<sqsubseteq> x"
by (rule is_inf_lower) (rule is_inf_meet)
lemma %invisible meet_right [intro?]:
@@ -568,8 +568,7 @@
text \<open>Locales for total orders and distributive lattices follow to
establish a sufficiently rich landscape of locales for
- further examples in this tutorial. Each comes with an example
- theorem.\<close>
+ further examples in this tutorial.\<close>
locale total_order = partial_order +
assumes total: "x \<sqsubseteq> y \<or> y \<sqsubseteq> x"
--- a/src/Doc/Locales/Examples3.thy Thu Aug 25 20:08:40 2016 +0200
+++ b/src/Doc/Locales/Examples3.thy Thu Aug 25 20:08:41 2016 +0200
@@ -91,8 +91,8 @@
\begin{tabular}{l}
@{thm [source] int.less_def} from locale @{text partial_order}: \\
\quad @{thm int.less_def} \\
- @{thm [source] int.ex_sup} from locale @{text lattice}: \\
- \quad @{thm int.ex_sup} \\
+ @{thm [source] int.meet_left} from locale @{text lattice}: \\
+ \quad @{thm int.meet_left} \\
@{thm [source] int.join_distr} from locale @{text distrib_lattice}: \\
\quad @{thm int.join_distr} \\
@{thm [source] int.less_total} from locale @{text total_order}: \\