split of Imperative_HOL theories from HOL-Library
authorhaftmann
Thu, 08 Jan 2009 17:10:41 +0100
changeset 29399 ebcd69a00872
parent 29397 aab26a65e80f
child 29400 a462459fb5ce
split of Imperative_HOL theories from HOL-Library
src/HOL/Imperative_HOL/Array.thy
src/HOL/Imperative_HOL/Heap.thy
src/HOL/Imperative_HOL/Heap_Monad.thy
src/HOL/Imperative_HOL/Imperative_HOL.thy
src/HOL/Imperative_HOL/ROOT.ML
src/HOL/Imperative_HOL/Ref.thy
src/HOL/Imperative_HOL/Relational.thy
src/HOL/IsaMakefile
src/HOL/Library/Array.thy
src/HOL/Library/Heap.thy
src/HOL/Library/Heap_Monad.thy
src/HOL/Library/Imperative_HOL.thy
src/HOL/Library/Library.thy
src/HOL/Library/Ref.thy
src/HOL/Library/Relational.thy
src/HOL/Library/Subarray.thy
src/HOL/Library/Sublist.thy
src/HOL/ex/ImperativeQuicksort.thy
src/HOL/ex/Subarray.thy
src/HOL/ex/Sublist.thy
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Imperative_HOL/Array.thy	Thu Jan 08 17:10:41 2009 +0100
@@ -0,0 +1,209 @@
+(*  Title:      HOL/Library/Array.thy
+    ID:         $Id$
+    Author:     John Matthews, Galois Connections; Alexander Krauss, Lukas Bulwahn & Florian Haftmann, TU Muenchen
+*)
+
+header {* Monadic arrays *}
+
+theory Array
+imports Heap_Monad Code_Index
+begin
+
+subsection {* Primitives *}
+
+definition
+  new :: "nat \<Rightarrow> 'a\<Colon>heap \<Rightarrow> 'a array Heap" where
+  [code del]: "new n x = Heap_Monad.heap (Heap.array n x)"
+
+definition
+  of_list :: "'a\<Colon>heap list \<Rightarrow> 'a array Heap" where
+  [code del]: "of_list xs = Heap_Monad.heap (Heap.array_of_list xs)"
+
+definition
+  length :: "'a\<Colon>heap array \<Rightarrow> nat Heap" where
+  [code del]: "length arr = Heap_Monad.heap (\<lambda>h. (Heap.length arr h, h))"
+
+definition
+  nth :: "'a\<Colon>heap array \<Rightarrow> nat \<Rightarrow> 'a Heap"
+where
+  [code del]: "nth a i = (do len \<leftarrow> length a;
+                 (if i < len
+                     then Heap_Monad.heap (\<lambda>h. (get_array a h ! i, h))
+                     else raise (''array lookup: index out of range''))
+              done)"
+
+-- {* FIXME adjustion for List theory *}
+no_syntax
+  nth  :: "'a list \<Rightarrow> nat \<Rightarrow> 'a" (infixl "!" 100)
+
+abbreviation
+  nth_list :: "'a list \<Rightarrow> nat \<Rightarrow> 'a" (infixl "!" 100)
+where
+  "nth_list \<equiv> List.nth"
+
+definition
+  upd :: "nat \<Rightarrow> 'a \<Rightarrow> 'a\<Colon>heap array \<Rightarrow> 'a\<Colon>heap array Heap"
+where
+  [code del]: "upd i x a = (do len \<leftarrow> length a;
+                      (if i < len
+                           then Heap_Monad.heap (\<lambda>h. (a, Heap.upd a i x h))
+                           else raise (''array update: index out of range''))
+                   done)" 
+
+lemma upd_return:
+  "upd i x a \<guillemotright> return a = upd i x a"
+proof (rule Heap_eqI)
+  fix h
+  obtain len h' where "Heap_Monad.execute (Array.length a) h = (len, h')"
+    by (cases "Heap_Monad.execute (Array.length a) h")
+  then show "Heap_Monad.execute (upd i x a \<guillemotright> return a) h = Heap_Monad.execute (upd i x a) h"
+    by (auto simp add: upd_def bindM_def split: sum.split)
+qed
+
+
+subsection {* Derivates *}
+
+definition
+  map_entry :: "nat \<Rightarrow> ('a\<Colon>heap \<Rightarrow> 'a) \<Rightarrow> 'a array \<Rightarrow> 'a array Heap"
+where
+  "map_entry i f a = (do
+     x \<leftarrow> nth a i;
+     upd i (f x) a
+   done)"
+
+definition
+  swap :: "nat \<Rightarrow> 'a \<Rightarrow> 'a\<Colon>heap array \<Rightarrow> 'a Heap"
+where
+  "swap i x a = (do
+     y \<leftarrow> nth a i;
+     upd i x a;
+     return y
+   done)"
+
+definition
+  make :: "nat \<Rightarrow> (nat \<Rightarrow> 'a\<Colon>heap) \<Rightarrow> 'a array Heap"
+where
+  "make n f = of_list (map f [0 ..< n])"
+
+definition
+  freeze :: "'a\<Colon>heap array \<Rightarrow> 'a list Heap"
+where
+  "freeze a = (do
+     n \<leftarrow> length a;
+     mapM (nth a) [0..<n]
+   done)"
+
+definition
+   map :: "('a\<Colon>heap \<Rightarrow> 'a) \<Rightarrow> 'a array \<Rightarrow> 'a array Heap"
+where
+  "map f a = (do
+     n \<leftarrow> length a;
+     mapM (\<lambda>n. map_entry n f a) [0..<n];
+     return a
+   done)"
+
+hide (open) const new map -- {* avoid clashed with some popular names *}
+
+
+subsection {* Properties *}
+
+lemma array_make [code]:
+  "Array.new n x = make n (\<lambda>_. x)"
+  by (induct n) (simp_all add: make_def new_def Heap_Monad.heap_def
+    monad_simp array_of_list_replicate [symmetric]
+    map_replicate_trivial replicate_append_same
+    of_list_def)
+
+lemma array_of_list_make [code]:
+  "of_list xs = make (List.length xs) (\<lambda>n. xs ! n)"
+  unfolding make_def map_nth ..
+
+
+subsection {* Code generator setup *}
+
+subsubsection {* Logical intermediate layer *}
+
+definition new' where
+  [code del]: "new' = Array.new o nat_of_index"
+hide (open) const new'
+lemma [code]:
+  "Array.new = Array.new' o index_of_nat"
+  by (simp add: new'_def o_def)
+
+definition of_list' where
+  [code del]: "of_list' i xs = Array.of_list (take (nat_of_index i) xs)"
+hide (open) const of_list'
+lemma [code]:
+  "Array.of_list xs = Array.of_list' (index_of_nat (List.length xs)) xs"
+  by (simp add: of_list'_def)
+
+definition make' where
+  [code del]: "make' i f = Array.make (nat_of_index i) (f o index_of_nat)"
+hide (open) const make'
+lemma [code]:
+  "Array.make n f = Array.make' (index_of_nat n) (f o nat_of_index)"
+  by (simp add: make'_def o_def)
+
+definition length' where
+  [code del]: "length' = Array.length \<guillemotright>== liftM index_of_nat"
+hide (open) const length'
+lemma [code]:
+  "Array.length = Array.length' \<guillemotright>== liftM nat_of_index"
+  by (simp add: length'_def monad_simp',
+    simp add: liftM_def comp_def monad_simp,
+    simp add: monad_simp')
+
+definition nth' where
+  [code del]: "nth' a = Array.nth a o nat_of_index"
+hide (open) const nth'
+lemma [code]:
+  "Array.nth a n = Array.nth' a (index_of_nat n)"
+  by (simp add: nth'_def)
+
+definition upd' where
+  [code del]: "upd' a i x = Array.upd (nat_of_index i) x a \<guillemotright> return ()"
+hide (open) const upd'
+lemma [code]:
+  "Array.upd i x a = Array.upd' a (index_of_nat i) x \<guillemotright> return a"
+  by (simp add: upd'_def monad_simp upd_return)
+
+
+subsubsection {* SML *}
+
+code_type array (SML "_/ array")
+code_const Array (SML "raise/ (Fail/ \"bare Array\")")
+code_const Array.new' (SML "(fn/ ()/ =>/ Array.array/ ((_),/ (_)))")
+code_const Array.of_list (SML "(fn/ ()/ =>/ Array.fromList/ _)")
+code_const Array.make' (SML "(fn/ ()/ =>/ Array.tabulate/ ((_),/ (_)))")
+code_const Array.length' (SML "(fn/ ()/ =>/ Array.length/ _)")
+code_const Array.nth' (SML "(fn/ ()/ =>/ Array.sub/ ((_),/ (_)))")
+code_const Array.upd' (SML "(fn/ ()/ =>/ Array.update/ ((_),/ (_),/ (_)))")
+
+code_reserved SML Array
+
+
+subsubsection {* OCaml *}
+
+code_type array (OCaml "_/ array")
+code_const Array (OCaml "failwith/ \"bare Array\"")
+code_const Array.new' (OCaml "(fun/ ()/ ->/ Array.make/ _/ _)")
+code_const Array.of_list (OCaml "(fun/ ()/ ->/ Array.of'_list/ _)")
+code_const Array.make' (OCaml "(fun/ ()/ ->/ Array.init/ _/ _)")
+code_const Array.length' (OCaml "(fun/ ()/ ->/ Array.length/ _)")
+code_const Array.nth' (OCaml "(fun/ ()/ ->/ Array.get/ _/ _)")
+code_const Array.upd' (OCaml "(fun/ ()/ ->/ Array.set/ _/ _/ _)")
+
+code_reserved OCaml Array
+
+
+subsubsection {* Haskell *}
+
+code_type array (Haskell "STArray/ RealWorld/ _")
+code_const Array (Haskell "error/ \"bare Array\"")
+code_const Array.new' (Haskell "newArray/ (0,/ _)")
+code_const Array.of_list' (Haskell "newListArray/ (0,/ _)")
+code_const Array.length' (Haskell "lengthArray")
+code_const Array.nth' (Haskell "readArray")
+code_const Array.upd' (Haskell "writeArray")
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Imperative_HOL/Heap.thy	Thu Jan 08 17:10:41 2009 +0100
@@ -0,0 +1,434 @@
+(*  Title:      HOL/Library/Heap.thy
+    ID:         $Id$
+    Author:     John Matthews, Galois Connections; Alexander Krauss, TU Muenchen
+*)
+
+header {* A polymorphic heap based on cantor encodings *}
+
+theory Heap
+imports Plain "~~/src/HOL/List" Countable Typerep
+begin
+
+subsection {* Representable types *}
+
+text {* The type class of representable types *}
+
+class heap = typerep + countable
+
+text {* Instances for common HOL types *}
+
+instance nat :: heap ..
+
+instance "*" :: (heap, heap) heap ..
+
+instance "+" :: (heap, heap) heap ..
+
+instance list :: (heap) heap ..
+
+instance option :: (heap) heap ..
+
+instance int :: heap ..
+
+instance message_string :: countable
+  by (rule countable_classI [of "message_string_case to_nat"])
+   (auto split: message_string.splits)
+
+instance message_string :: heap ..
+
+text {* Reflected types themselves are heap-representable *}
+
+instantiation typerep :: countable
+begin
+
+fun to_nat_typerep :: "typerep \<Rightarrow> nat" where
+  "to_nat_typerep (Typerep.Typerep c ts) = to_nat (to_nat c, to_nat (map to_nat_typerep ts))"
+
+instance
+proof (rule countable_classI)
+  fix t t' :: typerep and ts
+  have "(\<forall>t'. to_nat_typerep t = to_nat_typerep t' \<longrightarrow> t = t')
+    \<and> (\<forall>ts'. map to_nat_typerep ts = map to_nat_typerep ts' \<longrightarrow> ts = ts')"
+  proof (induct rule: typerep.induct)
+    case (Typerep c ts) show ?case
+    proof (rule allI, rule impI)
+      fix t'
+      assume hyp: "to_nat_typerep (Typerep.Typerep c ts) = to_nat_typerep t'"
+      then obtain c' ts' where t': "t' = (Typerep.Typerep c' ts')"
+        by (cases t') auto
+      with Typerep hyp have "c = c'" and "ts = ts'" by simp_all
+      with t' show "Typerep.Typerep c ts = t'" by simp
+    qed
+  next
+    case Nil_typerep then show ?case by simp
+  next
+    case (Cons_typerep t ts) then show ?case by auto
+  qed
+  then have "to_nat_typerep t = to_nat_typerep t' \<Longrightarrow> t = t'" by auto
+  moreover assume "to_nat_typerep t = to_nat_typerep t'"
+  ultimately show "t = t'" by simp
+qed
+
+end
+
+instance typerep :: heap ..
+
+
+subsection {* A polymorphic heap with dynamic arrays and references *}
+
+types addr = nat -- "untyped heap references"
+
+datatype 'a array = Array addr
+datatype 'a ref = Ref addr -- "note the phantom type 'a "
+
+primrec addr_of_array :: "'a array \<Rightarrow> addr" where
+  "addr_of_array (Array x) = x"
+
+primrec addr_of_ref :: "'a ref \<Rightarrow> addr" where
+  "addr_of_ref (Ref x) = x"
+
+lemma addr_of_array_inj [simp]:
+  "addr_of_array a = addr_of_array a' \<longleftrightarrow> a = a'"
+  by (cases a, cases a') simp_all
+
+lemma addr_of_ref_inj [simp]:
+  "addr_of_ref r = addr_of_ref r' \<longleftrightarrow> r = r'"
+  by (cases r, cases r') simp_all
+
+instance array :: (type) countable
+  by (rule countable_classI [of addr_of_array]) simp
+
+instance ref :: (type) countable
+  by (rule countable_classI [of addr_of_ref]) simp
+
+setup {*
+  Sign.add_const_constraint (@{const_name Array}, SOME @{typ "nat \<Rightarrow> 'a\<Colon>heap array"})
+  #> Sign.add_const_constraint (@{const_name Ref}, SOME @{typ "nat \<Rightarrow> 'a\<Colon>heap ref"})
+  #> Sign.add_const_constraint (@{const_name addr_of_array}, SOME @{typ "'a\<Colon>heap array \<Rightarrow> nat"})
+  #> Sign.add_const_constraint (@{const_name addr_of_ref}, SOME @{typ "'a\<Colon>heap ref \<Rightarrow> nat"})
+*}
+
+types heap_rep = nat -- "representable values"
+
+record heap =
+  arrays :: "typerep \<Rightarrow> addr \<Rightarrow> heap_rep list"
+  refs :: "typerep \<Rightarrow> addr \<Rightarrow> heap_rep"
+  lim  :: addr
+
+definition empty :: heap where
+  "empty = \<lparr>arrays = (\<lambda>_. undefined), refs = (\<lambda>_. undefined), lim = 0\<rparr>" -- "why undefined?"
+
+
+subsection {* Imperative references and arrays *}
+
+text {*
+  References and arrays are developed in parallel,
+  but keeping them separate makes some later proofs simpler.
+*}
+
+subsubsection {* Primitive operations *}
+
+definition
+  new_ref :: "heap \<Rightarrow> ('a\<Colon>heap) ref \<times> heap" where
+  "new_ref h = (let l = lim h in (Ref l, h\<lparr>lim := l + 1\<rparr>))"
+
+definition
+  new_array :: "heap \<Rightarrow> ('a\<Colon>heap) array \<times> heap" where
+  "new_array h = (let l = lim h in (Array l, h\<lparr>lim := l + 1\<rparr>))"
+
+definition
+  ref_present :: "'a\<Colon>heap ref \<Rightarrow> heap \<Rightarrow> bool" where
+  "ref_present r h \<longleftrightarrow> addr_of_ref r < lim h"
+
+definition 
+  array_present :: "'a\<Colon>heap array \<Rightarrow> heap \<Rightarrow> bool" where
+  "array_present a h \<longleftrightarrow> addr_of_array a < lim h"
+
+definition
+  get_ref :: "'a\<Colon>heap ref \<Rightarrow> heap \<Rightarrow> 'a" where
+  "get_ref r h = from_nat (refs h (TYPEREP('a)) (addr_of_ref r))"
+
+definition
+  get_array :: "'a\<Colon>heap array \<Rightarrow> heap \<Rightarrow> 'a list" where
+  "get_array a h = map from_nat (arrays h (TYPEREP('a)) (addr_of_array a))"
+
+definition
+  set_ref :: "'a\<Colon>heap ref \<Rightarrow> 'a \<Rightarrow> heap \<Rightarrow> heap" where
+  "set_ref r x = 
+  refs_update (\<lambda>h. h(TYPEREP('a) := ((h (TYPEREP('a))) (addr_of_ref r:=to_nat x))))"
+
+definition
+  set_array :: "'a\<Colon>heap array \<Rightarrow> 'a list \<Rightarrow> heap \<Rightarrow> heap" where
+  "set_array a x = 
+  arrays_update (\<lambda>h. h(TYPEREP('a) := ((h(TYPEREP('a))) (addr_of_array a:=map to_nat x))))"
+
+subsubsection {* Interface operations *}
+
+definition
+  ref :: "'a \<Rightarrow> heap \<Rightarrow> 'a\<Colon>heap ref \<times> heap" where
+  "ref x h = (let (r, h') = new_ref h;
+                   h''    = set_ref r x h'
+         in (r, h''))"
+
+definition
+  array :: "nat \<Rightarrow> 'a \<Rightarrow> heap \<Rightarrow> 'a\<Colon>heap array \<times> heap" where
+  "array n x h = (let (r, h') = new_array h;
+                       h'' = set_array r (replicate n x) h'
+        in (r, h''))"
+
+definition
+  array_of_list :: "'a list \<Rightarrow> heap \<Rightarrow> 'a\<Colon>heap array \<times> heap" where
+  "array_of_list xs h = (let (r, h') = new_array h;
+           h'' = set_array r xs h'
+        in (r, h''))"  
+
+definition
+  upd :: "'a\<Colon>heap array \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> heap \<Rightarrow> heap" where
+  "upd a i x h = set_array a ((get_array a h)[i:=x]) h"
+
+definition
+  length :: "'a\<Colon>heap array \<Rightarrow> heap \<Rightarrow> nat" where
+  "length a h = size (get_array a h)"
+
+definition
+  array_ran :: "('a\<Colon>heap) option array \<Rightarrow> heap \<Rightarrow> 'a set" where
+  "array_ran a h = {e. Some e \<in> set (get_array a h)}"
+    -- {*FIXME*}
+
+
+subsubsection {* Reference equality *}
+
+text {* 
+  The following relations are useful for comparing arrays and references.
+*}
+
+definition
+  noteq_refs :: "('a\<Colon>heap) ref \<Rightarrow> ('b\<Colon>heap) ref \<Rightarrow> bool" (infix "=!=" 70)
+where
+  "r =!= s \<longleftrightarrow> TYPEREP('a) \<noteq> TYPEREP('b) \<or> addr_of_ref r \<noteq> addr_of_ref s"
+
+definition
+  noteq_arrs :: "('a\<Colon>heap) array \<Rightarrow> ('b\<Colon>heap) array \<Rightarrow> bool" (infix "=!!=" 70)
+where
+  "r =!!= s \<longleftrightarrow> TYPEREP('a) \<noteq> TYPEREP('b) \<or> addr_of_array r \<noteq> addr_of_array s"
+
+lemma noteq_refs_sym: "r =!= s \<Longrightarrow> s =!= r"
+  and noteq_arrs_sym: "a =!!= b \<Longrightarrow> b =!!= a"
+  and unequal_refs [simp]: "r \<noteq> r' \<longleftrightarrow> r =!= r'" -- "same types!"
+  and unequal_arrs [simp]: "a \<noteq> a' \<longleftrightarrow> a =!!= a'"
+unfolding noteq_refs_def noteq_arrs_def by auto
+
+lemma present_new_ref: "ref_present r h \<Longrightarrow> r =!= fst (ref v h)"
+  by (simp add: ref_present_def new_ref_def ref_def Let_def noteq_refs_def)
+
+lemma present_new_arr: "array_present a h \<Longrightarrow> a =!!= fst (array v x h)"
+  by (simp add: array_present_def noteq_arrs_def new_array_def array_def Let_def)
+
+
+subsubsection {* Properties of heap containers *}
+
+text {* Properties of imperative arrays *}
+
+text {* FIXME: Does there exist a "canonical" array axiomatisation in
+the literature?  *}
+
+lemma array_get_set_eq [simp]: "get_array r (set_array r x h) = x"
+  by (simp add: get_array_def set_array_def)
+
+lemma array_get_set_neq [simp]: "r =!!= s \<Longrightarrow> get_array r (set_array s x h) = get_array r h"
+  by (simp add: noteq_arrs_def get_array_def set_array_def)
+
+lemma set_array_same [simp]:
+  "set_array r x (set_array r y h) = set_array r x h"
+  by (simp add: set_array_def)
+
+lemma array_set_set_swap:
+  "r =!!= r' \<Longrightarrow> set_array r x (set_array r' x' h) = set_array r' x' (set_array r x h)"
+  by (simp add: Let_def expand_fun_eq noteq_arrs_def set_array_def)
+
+lemma array_ref_set_set_swap:
+  "set_array r x (set_ref r' x' h) = set_ref r' x' (set_array r x h)"
+  by (simp add: Let_def expand_fun_eq set_array_def set_ref_def)
+
+lemma get_array_upd_eq [simp]:
+  "get_array a (upd a i v h) = (get_array a h) [i := v]"
+  by (simp add: upd_def)
+
+lemma nth_upd_array_neq_array [simp]:
+  "a =!!= b \<Longrightarrow> get_array a (upd b j v h) ! i = get_array a h ! i"
+  by (simp add: upd_def noteq_arrs_def)
+
+lemma get_arry_array_upd_elem_neqIndex [simp]:
+  "i \<noteq> j \<Longrightarrow> get_array a (upd a j v h) ! i = get_array a h ! i"
+  by simp
+
+lemma length_upd_eq [simp]: 
+  "length a (upd a i v h) = length a h" 
+  by (simp add: length_def upd_def)
+
+lemma length_upd_neq [simp]: 
+  "length a (upd b i v h) = length a h"
+  by (simp add: upd_def length_def set_array_def get_array_def)
+
+lemma upd_swap_neqArray:
+  "a =!!= a' \<Longrightarrow> 
+  upd a i v (upd a' i' v' h) 
+  = upd a' i' v' (upd a i v h)"
+apply (unfold upd_def)
+apply simp
+apply (subst array_set_set_swap, assumption)
+apply (subst array_get_set_neq)
+apply (erule noteq_arrs_sym)
+apply (simp)
+done
+
+lemma upd_swap_neqIndex:
+  "\<lbrakk> i \<noteq> i' \<rbrakk> \<Longrightarrow> upd a i v (upd a i' v' h) = upd a i' v' (upd a i v h)"
+by (auto simp add: upd_def array_set_set_swap list_update_swap)
+
+lemma get_array_init_array_list:
+  "get_array (fst (array_of_list ls h)) (snd (array_of_list ls' h)) = ls'"
+  by (simp add: Let_def split_def array_of_list_def)
+
+lemma set_array:
+  "set_array (fst (array_of_list ls h))
+     new_ls (snd (array_of_list ls h))
+       = snd (array_of_list new_ls h)"
+  by (simp add: Let_def split_def array_of_list_def)
+
+lemma array_present_upd [simp]: 
+  "array_present a (upd b i v h) = array_present a h"
+  by (simp add: upd_def array_present_def set_array_def get_array_def)
+
+lemma array_of_list_replicate:
+  "array_of_list (replicate n x) = array n x"
+  by (simp add: expand_fun_eq array_of_list_def array_def)
+
+
+text {* Properties of imperative references *}
+
+lemma next_ref_fresh [simp]:
+  assumes "(r, h') = new_ref h"
+  shows "\<not> ref_present r h"
+  using assms by (cases h) (auto simp add: new_ref_def ref_present_def Let_def)
+
+lemma next_ref_present [simp]:
+  assumes "(r, h') = new_ref h"
+  shows "ref_present r h'"
+  using assms by (cases h) (auto simp add: new_ref_def ref_present_def Let_def)
+
+lemma ref_get_set_eq [simp]: "get_ref r (set_ref r x h) = x"
+  by (simp add: get_ref_def set_ref_def)
+
+lemma ref_get_set_neq [simp]: "r =!= s \<Longrightarrow> get_ref r (set_ref s x h) = get_ref r h"
+  by (simp add: noteq_refs_def get_ref_def set_ref_def)
+
+(* FIXME: We need some infrastructure to infer that locally generated
+  new refs (by new_ref(_no_init), new_array(')) are distinct
+  from all existing refs.
+*)
+
+lemma ref_set_get: "set_ref r (get_ref r h) h = h"
+apply (simp add: set_ref_def get_ref_def)
+oops
+
+lemma set_ref_same[simp]:
+  "set_ref r x (set_ref r y h) = set_ref r x h"
+  by (simp add: set_ref_def)
+
+lemma ref_set_set_swap:
+  "r =!= r' \<Longrightarrow> set_ref r x (set_ref r' x' h) = set_ref r' x' (set_ref r x h)"
+  by (simp add: Let_def expand_fun_eq noteq_refs_def set_ref_def)
+
+lemma ref_new_set: "fst (ref v (set_ref r v' h)) = fst (ref v h)"
+  by (simp add: ref_def new_ref_def set_ref_def Let_def)
+
+lemma ref_get_new [simp]:
+  "get_ref (fst (ref v h)) (snd (ref v' h)) = v'"
+  by (simp add: ref_def Let_def split_def)
+
+lemma ref_set_new [simp]:
+  "set_ref (fst (ref v h)) new_v (snd (ref v h)) = snd (ref new_v h)"
+  by (simp add: ref_def Let_def split_def)
+
+lemma ref_get_new_neq: "r =!= (fst (ref v h)) \<Longrightarrow> 
+  get_ref r (snd (ref v h)) = get_ref r h"
+  by (simp add: get_ref_def set_ref_def ref_def Let_def new_ref_def noteq_refs_def)
+
+lemma lim_set_ref [simp]:
+  "lim (set_ref r v h) = lim h"
+  by (simp add: set_ref_def)
+
+lemma ref_present_new_ref [simp]: 
+  "ref_present r h \<Longrightarrow> ref_present r (snd (ref v h))"
+  by (simp add: new_ref_def ref_present_def ref_def Let_def)
+
+lemma ref_present_set_ref [simp]:
+  "ref_present r (set_ref r' v h) = ref_present r h"
+  by (simp add: set_ref_def ref_present_def)
+
+lemma array_ranI: "\<lbrakk> Some b = get_array a h ! i; i < Heap.length a h \<rbrakk> \<Longrightarrow> b \<in> array_ran a h"
+unfolding array_ran_def Heap.length_def by simp
+
+lemma array_ran_upd_array_Some:
+  assumes "cl \<in> array_ran a (Heap.upd a i (Some b) h)"
+  shows "cl \<in> array_ran a h \<or> cl = b"
+proof -
+  have "set (get_array a h[i := Some b]) \<subseteq> insert (Some b) (set (get_array a h))" by (rule set_update_subset_insert)
+  with assms show ?thesis 
+    unfolding array_ran_def Heap.upd_def by fastsimp
+qed
+
+lemma array_ran_upd_array_None:
+  assumes "cl \<in> array_ran a (Heap.upd a i None h)"
+  shows "cl \<in> array_ran a h"
+proof -
+  have "set (get_array a h[i := None]) \<subseteq> insert None (set (get_array a h))" by (rule set_update_subset_insert)
+  with assms show ?thesis
+    unfolding array_ran_def Heap.upd_def by auto
+qed
+
+
+text {* Non-interaction between imperative array and imperative references *}
+
+lemma get_array_set_ref [simp]: "get_array a (set_ref r v h) = get_array a h"
+  by (simp add: get_array_def set_ref_def)
+
+lemma nth_set_ref [simp]: "get_array a (set_ref r v h) ! i = get_array a h ! i"
+  by simp
+
+lemma get_ref_upd [simp]: "get_ref r (upd a i v h) = get_ref r h"
+  by (simp add: get_ref_def set_array_def upd_def)
+
+lemma new_ref_upd: "fst (ref v (upd a i v' h)) = fst (ref v h)"
+  by (simp add: set_array_def get_array_def Let_def ref_new_set upd_def ref_def  new_ref_def)
+
+text {*not actually true ???*}
+lemma upd_set_ref_swap: "upd a i v (set_ref r v' h) = set_ref r v' (upd a i v h)"
+apply (case_tac a)
+apply (simp add: Let_def upd_def)
+apply auto
+oops
+
+lemma length_new_ref[simp]: 
+  "length a (snd (ref v h)) = length a h"
+  by (simp add: get_array_def set_ref_def length_def new_ref_def ref_def Let_def)
+
+lemma get_array_new_ref [simp]: 
+  "get_array a (snd (ref v h)) = get_array a h"
+  by (simp add: new_ref_def ref_def set_ref_def get_array_def Let_def)
+
+lemma ref_present_upd [simp]: 
+  "ref_present r (upd a i v h) = ref_present r h"
+  by (simp add: upd_def ref_present_def set_array_def get_array_def)
+
+lemma array_present_set_ref [simp]:
+  "array_present a (set_ref r v h) = array_present a h"
+  by (simp add: array_present_def set_ref_def)
+
+lemma array_present_new_ref [simp]:
+  "array_present a h \<Longrightarrow> array_present a (snd (ref v h))"
+  by (simp add: array_present_def new_ref_def ref_def Let_def)
+
+hide (open) const empty array array_of_list upd length ref
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Imperative_HOL/Heap_Monad.thy	Thu Jan 08 17:10:41 2009 +0100
@@ -0,0 +1,425 @@
+(*  Title:      HOL/Library/Heap_Monad.thy
+    ID:         $Id$
+    Author:     John Matthews, Galois Connections; Alexander Krauss, Lukas Bulwahn & Florian Haftmann, TU Muenchen
+*)
+
+header {* A monad with a polymorphic heap *}
+
+theory Heap_Monad
+imports Heap
+begin
+
+subsection {* The monad *}
+
+subsubsection {* Monad combinators *}
+
+datatype exception = Exn
+
+text {* Monadic heap actions either produce values
+  and transform the heap, or fail *}
+datatype 'a Heap = Heap "heap \<Rightarrow> ('a + exception) \<times> heap"
+
+primrec
+  execute :: "'a Heap \<Rightarrow> heap \<Rightarrow> ('a + exception) \<times> heap" where
+  "execute (Heap f) = f"
+lemmas [code del] = execute.simps
+
+lemma Heap_execute [simp]:
+  "Heap (execute f) = f" by (cases f) simp_all
+
+lemma Heap_eqI:
+  "(\<And>h. execute f h = execute g h) \<Longrightarrow> f = g"
+    by (cases f, cases g) (auto simp: expand_fun_eq)
+
+lemma Heap_eqI':
+  "(\<And>h. (\<lambda>x. execute (f x) h) = (\<lambda>y. execute (g y) h)) \<Longrightarrow> f = g"
+    by (auto simp: expand_fun_eq intro: Heap_eqI)
+
+lemma Heap_strip: "(\<And>f. PROP P f) \<equiv> (\<And>g. PROP P (Heap g))"
+proof
+  fix g :: "heap \<Rightarrow> ('a + exception) \<times> heap" 
+  assume "\<And>f. PROP P f"
+  then show "PROP P (Heap g)" .
+next
+  fix f :: "'a Heap" 
+  assume assm: "\<And>g. PROP P (Heap g)"
+  then have "PROP P (Heap (execute f))" .
+  then show "PROP P f" by simp
+qed
+
+definition
+  heap :: "(heap \<Rightarrow> 'a \<times> heap) \<Rightarrow> 'a Heap" where
+  [code del]: "heap f = Heap (\<lambda>h. apfst Inl (f h))"
+
+lemma execute_heap [simp]:
+  "execute (heap f) h = apfst Inl (f h)"
+  by (simp add: heap_def)
+
+definition
+  bindM :: "'a Heap \<Rightarrow> ('a \<Rightarrow> 'b Heap) \<Rightarrow> 'b Heap" (infixl ">>=" 54) where
+  [code del]: "f >>= g = Heap (\<lambda>h. case execute f h of
+                  (Inl x, h') \<Rightarrow> execute (g x) h'
+                | r \<Rightarrow> r)"
+
+notation
+  bindM (infixl "\<guillemotright>=" 54)
+
+abbreviation
+  chainM :: "'a Heap \<Rightarrow> 'b Heap \<Rightarrow> 'b Heap"  (infixl ">>" 54) where
+  "f >> g \<equiv> f >>= (\<lambda>_. g)"
+
+notation
+  chainM (infixl "\<guillemotright>" 54)
+
+definition
+  return :: "'a \<Rightarrow> 'a Heap" where
+  [code del]: "return x = heap (Pair x)"
+
+lemma execute_return [simp]:
+  "execute (return x) h = apfst Inl (x, h)"
+  by (simp add: return_def)
+
+definition
+  raise :: "string \<Rightarrow> 'a Heap" where -- {* the string is just decoration *}
+  [code del]: "raise s = Heap (Pair (Inr Exn))"
+
+notation (latex output)
+  "raise" ("\<^raw:{\textsf{raise}}>")
+
+lemma execute_raise [simp]:
+  "execute (raise s) h = (Inr Exn, h)"
+  by (simp add: raise_def)
+
+
+subsubsection {* do-syntax *}
+
+text {*
+  We provide a convenient do-notation for monadic expressions
+  well-known from Haskell.  @{const Let} is printed
+  specially in do-expressions.
+*}
+
+nonterminals do_expr
+
+syntax
+  "_do" :: "do_expr \<Rightarrow> 'a"
+    ("(do (_)//done)" [12] 100)
+  "_bindM" :: "pttrn \<Rightarrow> 'a \<Rightarrow> do_expr \<Rightarrow> do_expr"
+    ("_ <- _;//_" [1000, 13, 12] 12)
+  "_chainM" :: "'a \<Rightarrow> do_expr \<Rightarrow> do_expr"
+    ("_;//_" [13, 12] 12)
+  "_let" :: "pttrn \<Rightarrow> 'a \<Rightarrow> do_expr \<Rightarrow> do_expr"
+    ("let _ = _;//_" [1000, 13, 12] 12)
+  "_nil" :: "'a \<Rightarrow> do_expr"
+    ("_" [12] 12)
+
+syntax (xsymbols)
+  "_bindM" :: "pttrn \<Rightarrow> 'a \<Rightarrow> do_expr \<Rightarrow> do_expr"
+    ("_ \<leftarrow> _;//_" [1000, 13, 12] 12)
+syntax (latex output)
+  "_do" :: "do_expr \<Rightarrow> 'a"
+    ("(\<^raw:{\textsf{do}}> (_))" [12] 100)
+  "_let" :: "pttrn \<Rightarrow> 'a \<Rightarrow> do_expr \<Rightarrow> do_expr"
+    ("\<^raw:\textsf{let}> _ = _;//_" [1000, 13, 12] 12)
+notation (latex output)
+  "return" ("\<^raw:{\textsf{return}}>")
+
+translations
+  "_do f" => "f"
+  "_bindM x f g" => "f \<guillemotright>= (\<lambda>x. g)"
+  "_chainM f g" => "f \<guillemotright> g"
+  "_let x t f" => "CONST Let t (\<lambda>x. f)"
+  "_nil f" => "f"
+
+print_translation {*
+let
+  fun dest_abs_eta (Abs (abs as (_, ty, _))) =
+        let
+          val (v, t) = Syntax.variant_abs abs;
+        in (Free (v, ty), t) end
+    | dest_abs_eta t =
+        let
+          val (v, t) = Syntax.variant_abs ("", dummyT, t $ Bound 0);
+        in (Free (v, dummyT), t) end;
+  fun unfold_monad (Const (@{const_syntax bindM}, _) $ f $ g) =
+        let
+          val (v, g') = dest_abs_eta g;
+          val vs = fold_aterms (fn Free (v, _) => insert (op =) v | _ => I) v [];
+          val v_used = fold_aterms
+            (fn Free (w, _) => (fn s => s orelse member (op =) vs w) | _ => I) g' false;
+        in if v_used then
+          Const ("_bindM", dummyT) $ v $ f $ unfold_monad g'
+        else
+          Const ("_chainM", dummyT) $ f $ unfold_monad g'
+        end
+    | unfold_monad (Const (@{const_syntax chainM}, _) $ f $ g) =
+        Const ("_chainM", dummyT) $ f $ unfold_monad g
+    | unfold_monad (Const (@{const_syntax Let}, _) $ f $ g) =
+        let
+          val (v, g') = dest_abs_eta g;
+        in Const ("_let", dummyT) $ v $ f $ unfold_monad g' end
+    | unfold_monad (Const (@{const_syntax Pair}, _) $ f) =
+        Const (@{const_syntax return}, dummyT) $ f
+    | unfold_monad f = f;
+  fun contains_bindM (Const (@{const_syntax bindM}, _) $ _ $ _) = true
+    | contains_bindM (Const (@{const_syntax Let}, _) $ _ $ Abs (_, _, t)) =
+        contains_bindM t;
+  fun bindM_monad_tr' (f::g::ts) = list_comb
+    (Const ("_do", dummyT) $ unfold_monad (Const (@{const_syntax bindM}, dummyT) $ f $ g), ts);
+  fun Let_monad_tr' (f :: (g as Abs (_, _, g')) :: ts) = if contains_bindM g' then list_comb
+      (Const ("_do", dummyT) $ unfold_monad (Const (@{const_syntax Let}, dummyT) $ f $ g), ts)
+    else raise Match;
+in [
+  (@{const_syntax bindM}, bindM_monad_tr'),
+  (@{const_syntax Let}, Let_monad_tr')
+] end;
+*}
+
+
+subsection {* Monad properties *}
+
+subsubsection {* Monad laws *}
+
+lemma return_bind: "return x \<guillemotright>= f = f x"
+  by (simp add: bindM_def return_def)
+
+lemma bind_return: "f \<guillemotright>= return = f"
+proof (rule Heap_eqI)
+  fix h
+  show "execute (f \<guillemotright>= return) h = execute f h"
+    by (auto simp add: bindM_def return_def split: sum.splits prod.splits)
+qed
+
+lemma bind_bind: "(f \<guillemotright>= g) \<guillemotright>= h = f \<guillemotright>= (\<lambda>x. g x \<guillemotright>= h)"
+  by (rule Heap_eqI) (auto simp add: bindM_def split: split: sum.splits prod.splits)
+
+lemma bind_bind': "f \<guillemotright>= (\<lambda>x. g x \<guillemotright>= h x) = f \<guillemotright>= (\<lambda>x. g x \<guillemotright>= (\<lambda>y. return (x, y))) \<guillemotright>= (\<lambda>(x, y). h x y)"
+  by (rule Heap_eqI) (auto simp add: bindM_def split: split: sum.splits prod.splits)
+
+lemma raise_bind: "raise e \<guillemotright>= f = raise e"
+  by (simp add: raise_def bindM_def)
+
+
+lemmas monad_simp = return_bind bind_return bind_bind raise_bind
+
+
+subsection {* Generic combinators *}
+
+definition
+  liftM :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b Heap"
+where
+  "liftM f = return o f"
+
+definition
+  compM :: "('a \<Rightarrow> 'b Heap) \<Rightarrow> ('b \<Rightarrow> 'c Heap) \<Rightarrow> 'a \<Rightarrow> 'c Heap" (infixl ">>==" 54)
+where
+  "(f >>== g) = (\<lambda>x. f x \<guillemotright>= g)"
+
+notation
+  compM (infixl "\<guillemotright>==" 54)
+
+lemma liftM_collapse: "liftM f x = return (f x)"
+  by (simp add: liftM_def)
+
+lemma liftM_compM: "liftM f \<guillemotright>== g = g o f"
+  by (auto intro: Heap_eqI' simp add: expand_fun_eq liftM_def compM_def bindM_def)
+
+lemma compM_return: "f \<guillemotright>== return = f"
+  by (simp add: compM_def monad_simp)
+
+lemma compM_compM: "(f \<guillemotright>== g) \<guillemotright>== h = f \<guillemotright>== (g \<guillemotright>== h)"
+  by (simp add: compM_def monad_simp)
+
+lemma liftM_bind:
+  "(\<lambda>x. liftM f x \<guillemotright>= liftM g) = liftM (\<lambda>x. g (f x))"
+  by (rule Heap_eqI') (simp add: monad_simp liftM_def bindM_def)
+
+lemma liftM_comp:
+  "liftM f o g = liftM (f o g)"
+  by (rule Heap_eqI') (simp add: liftM_def)
+
+lemmas monad_simp' = monad_simp liftM_compM compM_return
+  compM_compM liftM_bind liftM_comp
+
+primrec 
+  mapM :: "('a \<Rightarrow> 'b Heap) \<Rightarrow> 'a list \<Rightarrow> 'b list Heap"
+where
+  "mapM f [] = return []"
+  | "mapM f (x#xs) = do y \<leftarrow> f x;
+                        ys \<leftarrow> mapM f xs;
+                        return (y # ys)
+                     done"
+
+primrec
+  foldM :: "('a \<Rightarrow> 'b \<Rightarrow> 'b Heap) \<Rightarrow> 'a list \<Rightarrow> 'b \<Rightarrow> 'b Heap"
+where
+  "foldM f [] s = return s"
+  | "foldM f (x#xs) s = f x s \<guillemotright>= foldM f xs"
+
+definition
+  assert :: "('a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'a Heap"
+where
+  "assert P x = (if P x then return x else raise (''assert''))"
+
+lemma assert_cong [fundef_cong]:
+  assumes "P = P'"
+  assumes "\<And>x. P' x \<Longrightarrow> f x = f' x"
+  shows "(assert P x >>= f) = (assert P' x >>= f')"
+  using assms by (auto simp add: assert_def return_bind raise_bind)
+
+hide (open) const heap execute
+
+
+subsection {* Code generator setup *}
+
+subsubsection {* Logical intermediate layer *}
+
+definition
+  Fail :: "message_string \<Rightarrow> exception"
+where
+  [code del]: "Fail s = Exn"
+
+definition
+  raise_exc :: "exception \<Rightarrow> 'a Heap"
+where
+  [code del]: "raise_exc e = raise []"
+
+lemma raise_raise_exc [code, code inline]:
+  "raise s = raise_exc (Fail (STR s))"
+  unfolding Fail_def raise_exc_def raise_def ..
+
+hide (open) const Fail raise_exc
+
+
+subsubsection {* SML and OCaml *}
+
+code_type Heap (SML "unit/ ->/ _")
+code_const Heap (SML "raise/ (Fail/ \"bare Heap\")")
+code_const "op \<guillemotright>=" (SML "!(fn/ f'_/ =>/ fn/ ()/ =>/ f'_/ (_/ ())/ ())")
+code_const return (SML "!(fn/ ()/ =>/ _)")
+code_const "Heap_Monad.Fail" (SML "Fail")
+code_const "Heap_Monad.raise_exc" (SML "!(fn/ ()/ =>/ raise/ _)")
+
+code_type Heap (OCaml "_")
+code_const Heap (OCaml "failwith/ \"bare Heap\"")
+code_const "op \<guillemotright>=" (OCaml "!(fun/ f'_/ ()/ ->/ f'_/ (_/ ())/ ())")
+code_const return (OCaml "!(fun/ ()/ ->/ _)")
+code_const "Heap_Monad.Fail" (OCaml "Failure")
+code_const "Heap_Monad.raise_exc" (OCaml "!(fun/ ()/ ->/ raise/ _)")
+
+setup {* let
+  open Code_Thingol;
+
+  fun lookup naming = the o Code_Thingol.lookup_const naming;
+
+  fun imp_monad_bind'' bind' return' unit' ts =
+    let
+      val dummy_name = "";
+      val dummy_type = ITyVar dummy_name;
+      val dummy_case_term = IVar dummy_name;
+      (*assumption: dummy values are not relevant for serialization*)
+      val unitt = IConst (unit', ([], []));
+      fun dest_abs ((v, ty) `|-> t, _) = ((v, ty), t)
+        | dest_abs (t, ty) =
+            let
+              val vs = Code_Thingol.fold_varnames cons t [];
+              val v = Name.variant vs "x";
+              val ty' = (hd o fst o Code_Thingol.unfold_fun) ty;
+            in ((v, ty'), t `$ IVar v) end;
+      fun force (t as IConst (c, _) `$ t') = if c = return'
+            then t' else t `$ unitt
+        | force t = t `$ unitt;
+      fun tr_bind' [(t1, _), (t2, ty2)] =
+        let
+          val ((v, ty), t) = dest_abs (t2, ty2);
+        in ICase (((force t1, ty), [(IVar v, tr_bind'' t)]), dummy_case_term) end
+      and tr_bind'' t = case Code_Thingol.unfold_app t
+           of (IConst (c, (_, ty1 :: ty2 :: _)), [x1, x2]) => if c = bind'
+                then tr_bind' [(x1, ty1), (x2, ty2)]
+                else force t
+            | _ => force t;
+    in (dummy_name, dummy_type) `|-> ICase (((IVar dummy_name, dummy_type),
+      [(unitt, tr_bind' ts)]), dummy_case_term) end
+  and imp_monad_bind' bind' return' unit' (const as (c, (_, tys))) ts = if c = bind' then case (ts, tys)
+     of ([t1, t2], ty1 :: ty2 :: _) => imp_monad_bind'' bind' return' unit' [(t1, ty1), (t2, ty2)]
+      | ([t1, t2, t3], ty1 :: ty2 :: _) => imp_monad_bind'' bind' return' unit' [(t1, ty1), (t2, ty2)] `$ t3
+      | (ts, _) => imp_monad_bind bind' return' unit' (eta_expand 2 (const, ts))
+    else IConst const `$$ map (imp_monad_bind bind' return' unit') ts
+  and imp_monad_bind bind' return' unit' (IConst const) = imp_monad_bind' bind' return' unit' const []
+    | imp_monad_bind bind' return' unit' (t as IVar _) = t
+    | imp_monad_bind bind' return' unit' (t as _ `$ _) = (case unfold_app t
+       of (IConst const, ts) => imp_monad_bind' bind' return' unit' const ts
+        | (t, ts) => imp_monad_bind bind' return' unit' t `$$ map (imp_monad_bind bind' return' unit') ts)
+    | imp_monad_bind bind' return' unit' (v_ty `|-> t) = v_ty `|-> imp_monad_bind bind' return' unit' t
+    | imp_monad_bind bind' return' unit' (ICase (((t, ty), pats), t0)) = ICase
+        (((imp_monad_bind bind' return' unit' t, ty), (map o pairself) (imp_monad_bind bind' return' unit') pats), imp_monad_bind bind' return' unit' t0);
+
+   fun imp_program naming = (Graph.map_nodes o map_terms_stmt)
+     (imp_monad_bind (lookup naming @{const_name bindM})
+       (lookup naming @{const_name return})
+       (lookup naming @{const_name Unity}));
+
+in
+
+  Code_Target.extend_target ("SML_imp", ("SML", imp_program))
+  #> Code_Target.extend_target ("OCaml_imp", ("OCaml", imp_program))
+
+end
+*}
+
+
+code_reserved OCaml Failure raise
+
+
+subsubsection {* Haskell *}
+
+text {* Adaption layer *}
+
+code_include Haskell "STMonad"
+{*import qualified Control.Monad;
+import qualified Control.Monad.ST;
+import qualified Data.STRef;
+import qualified Data.Array.ST;
+
+type RealWorld = Control.Monad.ST.RealWorld;
+type ST s a = Control.Monad.ST.ST s a;
+type STRef s a = Data.STRef.STRef s a;
+type STArray s a = Data.Array.ST.STArray s Int a;
+
+runST :: (forall s. ST s a) -> a;
+runST s = Control.Monad.ST.runST s;
+
+newSTRef = Data.STRef.newSTRef;
+readSTRef = Data.STRef.readSTRef;
+writeSTRef = Data.STRef.writeSTRef;
+
+newArray :: (Int, Int) -> a -> ST s (STArray s a);
+newArray = Data.Array.ST.newArray;
+
+newListArray :: (Int, Int) -> [a] -> ST s (STArray s a);
+newListArray = Data.Array.ST.newListArray;
+
+lengthArray :: STArray s a -> ST s Int;
+lengthArray a = Control.Monad.liftM snd (Data.Array.ST.getBounds a);
+
+readArray :: STArray s a -> Int -> ST s a;
+readArray = Data.Array.ST.readArray;
+
+writeArray :: STArray s a -> Int -> a -> ST s ();
+writeArray = Data.Array.ST.writeArray;*}
+
+code_reserved Haskell RealWorld ST STRef Array
+  runST
+  newSTRef reasSTRef writeSTRef
+  newArray newListArray lengthArray readArray writeArray
+
+text {* Monad *}
+
+code_type Heap (Haskell "ST/ RealWorld/ _")
+code_const Heap (Haskell "error/ \"bare Heap\"")
+code_monad "op \<guillemotright>=" Haskell
+code_const return (Haskell "return")
+code_const "Heap_Monad.Fail" (Haskell "_")
+code_const "Heap_Monad.raise_exc" (Haskell "error")
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Imperative_HOL/Imperative_HOL.thy	Thu Jan 08 17:10:41 2009 +0100
@@ -0,0 +1,12 @@
+(*  Title:      HOL/Library/Imperative_HOL.thy
+    ID:         $Id$
+    Author:     John Matthews, Galois Connections; Alexander Krauss, Lukas Bulwahn & Florian Haftmann, TU Muenchen
+*)
+
+header {* Entry point into monadic imperative HOL *}
+
+theory Imperative_HOL
+imports Array Ref Relational
+begin
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Imperative_HOL/ROOT.ML	Thu Jan 08 17:10:41 2009 +0100
@@ -0,0 +1,2 @@
+
+use_thy "Imperative_HOL";
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Imperative_HOL/Ref.thy	Thu Jan 08 17:10:41 2009 +0100
@@ -0,0 +1,91 @@
+(*  Title:      HOL/Library/Ref.thy
+    ID:         $Id$
+    Author:     John Matthews, Galois Connections; Alexander Krauss, Lukas Bulwahn & Florian Haftmann, TU Muenchen
+*)
+
+header {* Monadic references *}
+
+theory Ref
+imports Heap_Monad
+begin
+
+text {*
+  Imperative reference operations; modeled after their ML counterparts.
+  See http://caml.inria.fr/pub/docs/manual-caml-light/node14.15.html
+  and http://www.smlnj.org/doc/Conversion/top-level-comparison.html
+*}
+
+subsection {* Primitives *}
+
+definition
+  new :: "'a\<Colon>heap \<Rightarrow> 'a ref Heap" where
+  [code del]: "new v = Heap_Monad.heap (Heap.ref v)"
+
+definition
+  lookup :: "'a\<Colon>heap ref \<Rightarrow> 'a Heap" ("!_" 61) where
+  [code del]: "lookup r = Heap_Monad.heap (\<lambda>h. (get_ref r h, h))"
+
+definition
+  update :: "'a ref \<Rightarrow> ('a\<Colon>heap) \<Rightarrow> unit Heap" ("_ := _" 62) where
+  [code del]: "update r e = Heap_Monad.heap (\<lambda>h. ((), set_ref r e h))"
+
+
+subsection {* Derivates *}
+
+definition
+  change :: "('a\<Colon>heap \<Rightarrow> 'a) \<Rightarrow> 'a ref \<Rightarrow> 'a Heap"
+where
+  "change f r = (do x \<leftarrow> ! r;
+                    let y = f x;
+                    r := y;
+                    return y
+                 done)"
+
+hide (open) const new lookup update change
+
+
+subsection {* Properties *}
+
+lemma lookup_chain:
+  "(!r \<guillemotright> f) = f"
+  by (cases f)
+    (auto simp add: Let_def bindM_def lookup_def expand_fun_eq)
+
+lemma update_change [code]:
+  "r := e = Ref.change (\<lambda>_. e) r \<guillemotright> return ()"
+  by (auto simp add: monad_simp change_def lookup_chain)
+
+
+subsection {* Code generator setup *}
+
+subsubsection {* SML *}
+
+code_type ref (SML "_/ ref")
+code_const Ref (SML "raise/ (Fail/ \"bare Ref\")")
+code_const Ref.new (SML "(fn/ ()/ =>/ ref/ _)")
+code_const Ref.lookup (SML "(fn/ ()/ =>/ !/ _)")
+code_const Ref.update (SML "(fn/ ()/ =>/ _/ :=/ _)")
+
+code_reserved SML ref
+
+
+subsubsection {* OCaml *}
+
+code_type ref (OCaml "_/ ref")
+code_const Ref (OCaml "failwith/ \"bare Ref\")")
+code_const Ref.new (OCaml "(fn/ ()/ =>/ ref/ _)")
+code_const Ref.lookup (OCaml "(fn/ ()/ =>/ !/ _)")
+code_const Ref.update (OCaml "(fn/ ()/ =>/ _/ :=/ _)")
+
+code_reserved OCaml ref
+
+
+subsubsection {* Haskell *}
+
+code_type ref (Haskell "STRef/ RealWorld/ _")
+code_const Ref (Haskell "error/ \"bare Ref\"")
+code_const Ref.new (Haskell "newSTRef")
+code_const Ref.lookup (Haskell "readSTRef")
+code_const Ref.update (Haskell "writeSTRef")
+
+end
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Imperative_HOL/Relational.thy	Thu Jan 08 17:10:41 2009 +0100
@@ -0,0 +1,700 @@
+theory Relational 
+imports Array Ref
+begin
+
+section{* Definition of the Relational framework *}
+
+text {* The crel predicate states that when a computation c runs with the heap h
+  will result in return value r and a heap h' (if no exception occurs). *}  
+
+definition crel :: "'a Heap \<Rightarrow> heap \<Rightarrow> heap \<Rightarrow> 'a \<Rightarrow> bool"
+where
+  crel_def': "crel c h h' r \<longleftrightarrow> Heap_Monad.execute c h = (Inl r, h')"
+
+lemma crel_def: -- FIXME
+  "crel c h h' r \<longleftrightarrow> (Inl r, h') = Heap_Monad.execute c h"
+  unfolding crel_def' by auto
+
+lemma crel_deterministic: "\<lbrakk> crel f h h' a; crel f h h'' b \<rbrakk> \<Longrightarrow> (a = b) \<and> (h' = h'')"
+unfolding crel_def' by auto
+
+section {* Elimination rules *}
+
+text {* For all commands, we define simple elimination rules. *}
+(* FIXME: consumes 1 necessary ?? *)
+
+subsection {* Elimination rules for basic monadic commands *}
+
+lemma crelE[consumes 1]:
+  assumes "crel (f >>= g) h h'' r'"
+  obtains h' r where "crel f h h' r" "crel (g r) h' h'' r'"
+  using assms
+  by (auto simp add: crel_def bindM_def Let_def prod_case_beta split_def Pair_fst_snd_eq split add: sum.split_asm)
+
+lemma crelE'[consumes 1]:
+  assumes "crel (f >> g) h h'' r'"
+  obtains h' r where "crel f h h' r" "crel g h' h'' r'"
+  using assms
+  by (elim crelE) auto
+
+lemma crel_return[consumes 1]:
+  assumes "crel (return x) h h' r"
+  obtains "r = x" "h = h'"
+  using assms
+  unfolding crel_def return_def by simp
+
+lemma crel_raise[consumes 1]:
+  assumes "crel (raise x) h h' r"
+  obtains "False"
+  using assms
+  unfolding crel_def raise_def by simp
+
+lemma crel_if:
+  assumes "crel (if c then t else e) h h' r"
+  obtains "c" "crel t h h' r"
+        | "\<not>c" "crel e h h' r"
+  using assms
+  unfolding crel_def by auto
+
+lemma crel_option_case:
+  assumes "crel (case x of None \<Rightarrow> n | Some y \<Rightarrow> s y) h h' r"
+  obtains "x = None" "crel n h h' r"
+        | y where "x = Some y" "crel (s y) h h' r" 
+  using assms
+  unfolding crel_def by auto
+
+lemma crel_mapM:
+  assumes "crel (mapM f xs) h h' r"
+  assumes "\<And>h h'. P f [] h h' []"
+  assumes "\<And>h h1 h' x xs y ys. \<lbrakk> crel (f x) h h1 y; crel (mapM f xs) h1 h' ys; P f xs h1 h' ys \<rbrakk> \<Longrightarrow> P f (x#xs) h h' (y#ys)"
+  shows "P f xs h h' r"
+using assms(1)
+proof (induct xs arbitrary: h h' r)
+  case Nil  with assms(2) show ?case
+    by (auto elim: crel_return)
+next
+  case (Cons x xs)
+  from Cons(2) obtain h1 y ys where crel_f: "crel (f x) h h1 y"
+    and crel_mapM: "crel (mapM f xs) h1 h' ys"
+    and r_def: "r = y#ys"
+    unfolding mapM.simps
+    by (auto elim!: crelE crel_return)
+  from Cons(1)[OF crel_mapM] crel_mapM crel_f assms(3) r_def
+  show ?case by auto
+qed
+
+lemma crel_heap:
+  assumes "crel (Heap_Monad.heap f) h h' r"
+  obtains "h' = snd (f h)" "r = fst (f h)"
+  using assms
+  unfolding heap_def crel_def apfst_def split_def prod_fun_def by simp_all
+
+subsection {* Elimination rules for array commands *}
+
+lemma crel_length:
+  assumes "crel (length a) h h' r"
+  obtains "h = h'" "r = Heap.length a h'"
+  using assms
+  unfolding length_def
+  by (elim crel_heap) simp
+
+(* Strong version of the lemma for this operation is missing *) 
+lemma crel_new_weak:
+  assumes "crel (Array.new n v) h h' r"
+  obtains "get_array r h' = List.replicate n v"
+  using assms unfolding  Array.new_def
+  by (elim crel_heap) (auto simp:Heap.array_def Let_def split_def)
+
+lemma crel_nth[consumes 1]:
+  assumes "crel (nth a i) h h' r"
+  obtains "r = (get_array a h) ! i" "h = h'" "i < Heap.length a h"
+  using assms
+  unfolding nth_def
+  by (auto elim!: crelE crel_if crel_raise crel_length crel_heap)
+
+lemma crel_upd[consumes 1]:
+  assumes "crel (upd i v a) h h' r"
+  obtains "r = a" "h' = Heap.upd a i v h"
+  using assms
+  unfolding upd_def
+  by (elim crelE crel_if crel_return crel_raise
+    crel_length crel_heap) auto
+
+(* Strong version of the lemma for this operation is missing *)
+lemma crel_of_list_weak:
+  assumes "crel (Array.of_list xs) h h' r"
+  obtains "get_array r h' = xs"
+  using assms
+  unfolding of_list_def 
+  by (elim crel_heap) (simp add:get_array_init_array_list)
+
+lemma crel_map_entry:
+  assumes "crel (Array.map_entry i f a) h h' r"
+  obtains "r = a" "h' = Heap.upd a i (f (get_array a h ! i)) h"
+  using assms
+  unfolding Array.map_entry_def
+  by (elim crelE crel_upd crel_nth) auto
+
+lemma crel_swap:
+  assumes "crel (Array.swap i x a) h h' r"
+  obtains "r = get_array a h ! i" "h' = Heap.upd a i x h"
+  using assms
+  unfolding Array.swap_def
+  by (elim crelE crel_upd crel_nth crel_return) auto
+
+(* Strong version of the lemma for this operation is missing *)
+lemma crel_make_weak:
+  assumes "crel (Array.make n f) h h' r"
+  obtains "i < n \<Longrightarrow> get_array r h' ! i = f i"
+  using assms
+  unfolding Array.make_def
+  by (elim crel_of_list_weak) auto
+
+lemma upt_conv_Cons':
+  assumes "Suc a \<le> b"
+  shows "[b - Suc a..<b] = (b - Suc a)#[b - a..<b]"
+proof -
+  from assms have l: "b - Suc a < b" by arith
+  from assms have "Suc (b - Suc a) = b - a" by arith
+  with l show ?thesis by (simp add: upt_conv_Cons)
+qed
+
+lemma crel_mapM_nth:
+  assumes
+  "crel (mapM (Array.nth a) [Heap.length a h - n..<Heap.length a h]) h h' xs"
+  assumes "n \<le> Heap.length a h"
+  shows "h = h' \<and> xs = drop (Heap.length a h - n) (get_array a h)"
+using assms
+proof (induct n arbitrary: xs h h')
+  case 0 thus ?case
+    by (auto elim!: crel_return simp add: Heap.length_def)
+next
+  case (Suc n)
+  from Suc(3) have "[Heap.length a h - Suc n..<Heap.length a h] = (Heap.length a h - Suc n)#[Heap.length a h - n..<Heap.length a h]"
+    by (simp add: upt_conv_Cons')
+  with Suc(2) obtain r where
+    crel_mapM: "crel (mapM (Array.nth a) [Heap.length a h - n..<Heap.length a h]) h h' r"
+    and xs_def: "xs = get_array a h ! (Heap.length a h - Suc n) # r"
+    by (auto elim!: crelE crel_nth crel_return)
+  from Suc(3) have "Heap.length a h - n = Suc (Heap.length a h - Suc n)" 
+    by arith
+  with Suc.hyps[OF crel_mapM] xs_def show ?case
+    unfolding Heap.length_def
+    by (auto simp add: nth_drop')
+qed
+
+lemma crel_freeze:
+  assumes "crel (Array.freeze a) h h' xs"
+  obtains "h = h'" "xs = get_array a h"
+proof 
+  from assms have "crel (mapM (Array.nth a) [0..<Heap.length a h]) h h' xs"
+    unfolding freeze_def
+    by (auto elim: crelE crel_length)
+  hence "crel (mapM (Array.nth a) [(Heap.length a h - Heap.length a h)..<Heap.length a h]) h h' xs"
+    by simp
+  from crel_mapM_nth[OF this] show "h = h'" and "xs = get_array a h" by auto
+qed
+
+lemma crel_mapM_map_entry_remains:
+  assumes "crel (mapM (\<lambda>n. map_entry n f a) [Heap.length a h - n..<Heap.length a h]) h h' r"
+  assumes "i < Heap.length a h - n"
+  shows "get_array a h ! i = get_array a h' ! i"
+using assms
+proof (induct n arbitrary: h h' r)
+  case 0
+  thus ?case
+    by (auto elim: crel_return)
+next
+  case (Suc n)
+  let ?h1 = "Heap.upd a (Heap.length a h - Suc n) (f (get_array a h ! (Heap.length a h - Suc n))) h"
+  from Suc(3) have "[Heap.length a h - Suc n..<Heap.length a h] = (Heap.length a h - Suc n)#[Heap.length a h - n..<Heap.length a h]"
+    by (simp add: upt_conv_Cons')
+  from Suc(2) this obtain r where
+    crel_mapM: "crel (mapM (\<lambda>n. map_entry n f a) [Heap.length a h - n..<Heap.length a h]) ?h1 h' r"
+    by (auto simp add: elim!: crelE crel_map_entry crel_return)
+  have length_remains: "Heap.length a ?h1 = Heap.length a h" by simp
+  from crel_mapM have crel_mapM': "crel (mapM (\<lambda>n. map_entry n f a) [Heap.length a ?h1 - n..<Heap.length a ?h1]) ?h1 h' r"
+    by simp
+  from Suc(1)[OF this] length_remains Suc(3) show ?case by simp
+qed
+
+lemma crel_mapM_map_entry_changes:
+  assumes "crel (mapM (\<lambda>n. map_entry n f a) [Heap.length a h - n..<Heap.length a h]) h h' r"
+  assumes "n \<le> Heap.length a h"  
+  assumes "i \<ge> Heap.length a h - n"
+  assumes "i < Heap.length a h"
+  shows "get_array a h' ! i = f (get_array a h ! i)"
+using assms
+proof (induct n arbitrary: h h' r)
+  case 0
+  thus ?case
+    by (auto elim!: crel_return)
+next
+  case (Suc n)
+  let ?h1 = "Heap.upd a (Heap.length a h - Suc n) (f (get_array a h ! (Heap.length a h - Suc n))) h"
+  from Suc(3) have "[Heap.length a h - Suc n..<Heap.length a h] = (Heap.length a h - Suc n)#[Heap.length a h - n..<Heap.length a h]"
+    by (simp add: upt_conv_Cons')
+  from Suc(2) this obtain r where
+    crel_mapM: "crel (mapM (\<lambda>n. map_entry n f a) [Heap.length a h - n..<Heap.length a h]) ?h1 h' r"
+    by (auto simp add: elim!: crelE crel_map_entry crel_return)
+  have length_remains: "Heap.length a ?h1 = Heap.length a h" by simp
+  from Suc(3) have less: "Heap.length a h - Suc n < Heap.length a h - n" by arith
+  from Suc(3) have less2: "Heap.length a h - Suc n < Heap.length a h" by arith
+  from Suc(4) length_remains have cases: "i = Heap.length a ?h1 - Suc n \<or> i \<ge> Heap.length a ?h1 - n" by arith
+  from crel_mapM have crel_mapM': "crel (mapM (\<lambda>n. map_entry n f a) [Heap.length a ?h1 - n..<Heap.length a ?h1]) ?h1 h' r"
+    by simp
+  from Suc(1)[OF this] cases Suc(3) Suc(5) length_remains
+    crel_mapM_map_entry_remains[OF this, of "Heap.length a h - Suc n", symmetric] less less2
+  show ?case
+    by (auto simp add: nth_list_update_eq Heap.length_def)
+qed
+
+lemma crel_mapM_map_entry_length:
+  assumes "crel (mapM (\<lambda>n. map_entry n f a) [Heap.length a h - n..<Heap.length a h]) h h' r"
+  assumes "n \<le> Heap.length a h"
+  shows "Heap.length a h' = Heap.length a h"
+using assms
+proof (induct n arbitrary: h h' r)
+  case 0
+  thus ?case by (auto elim!: crel_return)
+next
+  case (Suc n)
+  let ?h1 = "Heap.upd a (Heap.length a h - Suc n) (f (get_array a h ! (Heap.length a h - Suc n))) h"
+  from Suc(3) have "[Heap.length a h - Suc n..<Heap.length a h] = (Heap.length a h - Suc n)#[Heap.length a h - n..<Heap.length a h]"
+    by (simp add: upt_conv_Cons')
+  from Suc(2) this obtain r where 
+    crel_mapM: "crel (mapM (\<lambda>n. map_entry n f a) [Heap.length a h - n..<Heap.length a h]) ?h1 h' r"
+    by (auto elim!: crelE crel_map_entry crel_return)
+  have length_remains: "Heap.length a ?h1 = Heap.length a h" by simp
+  from crel_mapM have crel_mapM': "crel (mapM (\<lambda>n. map_entry n f a) [Heap.length a ?h1 - n..<Heap.length a ?h1]) ?h1 h' r"
+    by simp
+  from Suc(1)[OF this] length_remains Suc(3) show ?case by simp
+qed
+
+lemma crel_mapM_map_entry:
+assumes "crel (mapM (\<lambda>n. map_entry n f a) [0..<Heap.length a h]) h h' r"
+  shows "get_array a h' = List.map f (get_array a h)"
+proof -
+  from assms have "crel (mapM (\<lambda>n. map_entry n f a) [Heap.length a h - Heap.length a h..<Heap.length a h]) h h' r" by simp
+  from crel_mapM_map_entry_length[OF this]
+  crel_mapM_map_entry_changes[OF this] show ?thesis
+    unfolding Heap.length_def
+    by (auto intro: nth_equalityI)
+qed
+
+lemma crel_map_weak:
+  assumes crel_map: "crel (Array.map f a) h h' r"
+  obtains "r = a" "get_array a h' = List.map f (get_array a h)"
+proof
+  from assms crel_mapM_map_entry show  "get_array a h' = List.map f (get_array a h)"
+    unfolding Array.map_def
+    by (fastsimp elim!: crelE crel_length crel_return)
+  from assms show "r = a"
+    unfolding Array.map_def
+    by (elim crelE crel_return)
+qed
+
+subsection {* Elimination rules for reference commands *}
+
+(* TODO:
+maybe introduce a new predicate "extends h' h x"
+which means h' extends h with a new reference x.
+Then crel_new: would be
+assumes "crel (Ref.new v) h h' x"
+obtains "get_ref x h' = v"
+and "extends h' h x"
+
+and we would need further rules for extends:
+extends h' h x \<Longrightarrow> \<not> ref_present x h
+extends h' h x \<Longrightarrow>  ref_present x h'
+extends h' h x \<Longrightarrow> ref_present y h \<Longrightarrow> ref_present y h'
+extends h' h x \<Longrightarrow> ref_present y h \<Longrightarrow> get_ref y h = get_ref y h'
+extends h' h x \<Longrightarrow> lim h' = Suc (lim h)
+*)
+
+lemma crel_Ref_new:
+  assumes "crel (Ref.new v) h h' x"
+  obtains "get_ref x h' = v"
+  and "\<not> ref_present x h"
+  and "ref_present x h'"
+  and "\<forall>y. ref_present y h \<longrightarrow> get_ref y h = get_ref y h'"
+ (* and "lim h' = Suc (lim h)" *)
+  and "\<forall>y. ref_present y h \<longrightarrow> ref_present y h'"
+  using assms
+  unfolding Ref.new_def
+  apply (elim crel_heap)
+  unfolding Heap.ref_def
+  apply (simp add: Let_def)
+  unfolding Heap.new_ref_def
+  apply (simp add: Let_def)
+  unfolding ref_present_def
+  apply auto
+  unfolding get_ref_def set_ref_def
+  apply auto
+  done
+
+lemma crel_lookup:
+  assumes "crel (!ref) h h' r"
+  obtains "h = h'" "r = get_ref ref h"
+using assms
+unfolding Ref.lookup_def
+by (auto elim: crel_heap)
+
+lemma crel_update:
+  assumes "crel (ref := v) h h' r"
+  obtains "h' = set_ref ref v h" "r = ()"
+using assms
+unfolding Ref.update_def
+by (auto elim: crel_heap)
+
+lemma crel_change:
+  assumes "crel (Ref.change f ref) h h' r"
+  obtains "h' = set_ref ref (f (get_ref ref h)) h" "r = f (get_ref ref h)"
+using assms
+unfolding Ref.change_def Let_def
+by (auto elim!: crelE crel_lookup crel_update crel_return)
+
+subsection {* Elimination rules for the assert command *}
+
+lemma crel_assert[consumes 1]:
+  assumes "crel (assert P x) h h' r"
+  obtains "P x" "r = x" "h = h'"
+  using assms
+  unfolding assert_def
+  by (elim crel_if crel_return crel_raise) auto
+
+lemma crel_assert_eq: "(\<And>h h' r. crel f h h' r \<Longrightarrow> P r) \<Longrightarrow> f \<guillemotright>= assert P = f"
+unfolding crel_def bindM_def Let_def assert_def
+  raise_def return_def prod_case_beta
+apply (cases f)
+apply simp
+apply (simp add: expand_fun_eq split_def)
+apply auto
+apply (case_tac "fst (fun x)")
+apply (simp_all add: Pair_fst_snd_eq)
+apply (erule_tac x="x" in meta_allE)
+apply fastsimp
+done
+
+section {* Introduction rules *}
+
+subsection {* Introduction rules for basic monadic commands *}
+
+lemma crelI:
+  assumes "crel f h h' r" "crel (g r) h' h'' r'"
+  shows "crel (f >>= g) h h'' r'"
+  using assms by (simp add: crel_def' bindM_def)
+
+lemma crelI':
+  assumes "crel f h h' r" "crel g h' h'' r'"
+  shows "crel (f >> g) h h'' r'"
+  using assms by (intro crelI) auto
+
+lemma crel_returnI:
+  shows "crel (return x) h h x"
+  unfolding crel_def return_def by simp
+
+lemma crel_raiseI:
+  shows "\<not> (crel (raise x) h h' r)"
+  unfolding crel_def raise_def by simp
+
+lemma crel_ifI:
+  assumes "c \<longrightarrow> crel t h h' r"
+  "\<not>c \<longrightarrow> crel e h h' r"
+  shows "crel (if c then t else e) h h' r"
+  using assms
+  unfolding crel_def by auto
+
+lemma crel_option_caseI:
+  assumes "\<And>y. x = Some y \<Longrightarrow> crel (s y) h h' r"
+  assumes "x = None \<Longrightarrow> crel n h h' r"
+  shows "crel (case x of None \<Rightarrow> n | Some y \<Rightarrow> s y) h h' r"
+using assms
+by (auto split: option.split)
+
+lemma crel_heapI:
+  shows "crel (Heap_Monad.heap f) h (snd (f h)) (fst (f h))"
+  by (simp add: crel_def apfst_def split_def prod_fun_def)
+
+lemma crel_heapI':
+  assumes "h' = snd (f h)" "r = fst (f h)"
+  shows "crel (Heap_Monad.heap f) h h' r"
+  using assms
+  by (simp add: crel_def split_def apfst_def prod_fun_def)
+
+lemma crelI2:
+  assumes "\<exists>h' rs'. crel f h h' rs' \<and> (\<exists>h'' rs. crel (g rs') h' h'' rs)"
+  shows "\<exists>h'' rs. crel (f\<guillemotright>= g) h h'' rs"
+  oops
+
+lemma crel_ifI2:
+  assumes "c \<Longrightarrow> \<exists>h' r. crel t h h' r"
+  "\<not> c \<Longrightarrow> \<exists>h' r. crel e h h' r"
+  shows "\<exists> h' r. crel (if c then t else e) h h' r"
+  oops
+
+subsection {* Introduction rules for array commands *}
+
+lemma crel_lengthI:
+  shows "crel (length a) h h (Heap.length a h)"
+  unfolding length_def
+  by (rule crel_heapI') auto
+
+(* thm crel_newI for Array.new is missing *)
+
+lemma crel_nthI:
+  assumes "i < Heap.length a h"
+  shows "crel (nth a i) h h ((get_array a h) ! i)"
+  using assms
+  unfolding nth_def
+  by (auto intro!: crelI crel_ifI crel_raiseI crel_lengthI crel_heapI')
+
+lemma crel_updI:
+  assumes "i < Heap.length a h"
+  shows "crel (upd i v a) h (Heap.upd a i v h) a"
+  using assms
+  unfolding upd_def
+  by (auto intro!: crelI crel_ifI crel_returnI crel_raiseI
+    crel_lengthI crel_heapI')
+
+(* thm crel_of_listI is missing *)
+
+(* thm crel_map_entryI is missing *)
+
+(* thm crel_swapI is missing *)
+
+(* thm crel_makeI is missing *)
+
+(* thm crel_freezeI is missing *)
+
+(* thm crel_mapI is missing *)
+
+subsection {* Introduction rules for reference commands *}
+
+lemma crel_lookupI:
+  shows "crel (!ref) h h (get_ref ref h)"
+  unfolding lookup_def by (auto intro!: crel_heapI')
+
+lemma crel_updateI:
+  shows "crel (ref := v) h (set_ref ref v h) ()"
+  unfolding update_def by (auto intro!: crel_heapI')
+
+lemma crel_changeI: 
+  shows "crel (Ref.change f ref) h (set_ref ref (f (get_ref ref h)) h) (f (get_ref ref h))"
+unfolding change_def Let_def by (auto intro!: crelI crel_returnI crel_lookupI crel_updateI)
+
+subsection {* Introduction rules for the assert command *}
+
+lemma crel_assertI:
+  assumes "P x"
+  shows "crel (assert P x) h h x"
+  using assms
+  unfolding assert_def
+  by (auto intro!: crel_ifI crel_returnI crel_raiseI)
+ 
+section {* Defintion of the noError predicate *}
+
+text {* We add a simple definitional setting for crel intro rules
+  where we only would like to show that the computation does not result in a exception for heap h,
+  but we do not care about statements about the resulting heap and return value.*}
+
+definition noError :: "'a Heap \<Rightarrow> heap \<Rightarrow> bool"
+where
+  "noError c h \<longleftrightarrow> (\<exists>r h'. (Inl r, h') = Heap_Monad.execute c h)"
+
+lemma noError_def': -- FIXME
+  "noError c h \<longleftrightarrow> (\<exists>r h'. Heap_Monad.execute c h = (Inl r, h'))"
+  unfolding noError_def apply auto proof -
+  fix r h'
+  assume "(Inl r, h') = Heap_Monad.execute c h"
+  then have "Heap_Monad.execute c h = (Inl r, h')" ..
+  then show "\<exists>r h'. Heap_Monad.execute c h = (Inl r, h')" by blast
+qed
+
+subsection {* Introduction rules for basic monadic commands *}
+
+lemma noErrorI:
+  assumes "noError f h"
+  assumes "\<And>h' r. crel f h h' r \<Longrightarrow> noError (g r) h'"
+  shows "noError (f \<guillemotright>= g) h"
+  using assms
+  by (auto simp add: noError_def' crel_def' bindM_def)
+
+lemma noErrorI':
+  assumes "noError f h"
+  assumes "\<And>h' r. crel f h h' r \<Longrightarrow> noError g h'"
+  shows "noError (f \<guillemotright> g) h"
+  using assms
+  by (auto simp add: noError_def' crel_def' bindM_def)
+
+lemma noErrorI2:
+"\<lbrakk>crel f h h' r ; noError f h; noError (g r) h'\<rbrakk>
+\<Longrightarrow> noError (f \<guillemotright>= g) h"
+by (auto simp add: noError_def' crel_def' bindM_def)
+
+lemma noError_return: 
+  shows "noError (return x) h"
+  unfolding noError_def return_def
+  by auto
+
+lemma noError_if:
+  assumes "c \<Longrightarrow> noError t h" "\<not> c \<Longrightarrow> noError e h"
+  shows "noError (if c then t else e) h"
+  using assms
+  unfolding noError_def
+  by auto
+
+lemma noError_option_case:
+  assumes "\<And>y. x = Some y \<Longrightarrow> noError (s y) h"
+  assumes "noError n h"
+  shows "noError (case x of None \<Rightarrow> n | Some y \<Rightarrow> s y) h"
+using assms
+by (auto split: option.split)
+
+lemma noError_mapM: 
+assumes "\<forall>x \<in> set xs. noError (f x) h \<and> crel (f x) h h (r x)" 
+shows "noError (mapM f xs) h"
+using assms
+proof (induct xs)
+  case Nil
+  thus ?case
+    unfolding mapM.simps by (intro noError_return)
+next
+  case (Cons x xs)
+  thus ?case
+    unfolding mapM.simps
+    by (auto intro: noErrorI2[of "f x"] noErrorI noError_return)
+qed
+
+lemma noError_heap:
+  shows "noError (Heap_Monad.heap f) h"
+  by (simp add: noError_def' apfst_def prod_fun_def split_def)
+
+subsection {* Introduction rules for array commands *}
+
+lemma noError_length:
+  shows "noError (Array.length a) h"
+  unfolding length_def
+  by (intro noError_heap)
+
+lemma noError_new:
+  shows "noError (Array.new n v) h"
+unfolding Array.new_def by (intro noError_heap)
+
+lemma noError_upd:
+  assumes "i < Heap.length a h"
+  shows "noError (Array.upd i v a) h"
+  using assms
+  unfolding upd_def
+  by (auto intro!: noErrorI noError_if noError_return noError_length noError_heap) (auto elim: crel_length)
+
+lemma noError_nth:
+assumes "i < Heap.length a h"
+  shows "noError (Array.nth a i) h"
+  using assms
+  unfolding nth_def
+  by (auto intro!: noErrorI noError_if noError_return noError_length noError_heap) (auto elim: crel_length)
+
+lemma noError_of_list:
+  shows "noError (of_list ls) h"
+  unfolding of_list_def by (rule noError_heap)
+
+lemma noError_map_entry:
+  assumes "i < Heap.length a h"
+  shows "noError (map_entry i f a) h"
+  using assms
+  unfolding map_entry_def
+  by (auto elim: crel_nth intro!: noErrorI noError_nth noError_upd)
+
+lemma noError_swap:
+  assumes "i < Heap.length a h"
+  shows "noError (swap i x a) h"
+  using assms
+  unfolding swap_def
+  by (auto elim: crel_nth intro!: noErrorI noError_return noError_nth noError_upd)
+
+lemma noError_make:
+  shows "noError (make n f) h"
+  unfolding make_def
+  by (auto intro: noError_of_list)
+
+(*TODO: move to HeapMonad *)
+lemma mapM_append:
+  "mapM f (xs @ ys) = mapM f xs \<guillemotright>= (\<lambda>xs. mapM f ys \<guillemotright>= (\<lambda>ys. return (xs @ ys)))"
+  by (induct xs) (simp_all add: monad_simp)
+
+lemma noError_freeze:
+  shows "noError (freeze a) h"
+unfolding freeze_def
+by (auto intro!: noErrorI noError_length noError_mapM[of _ _ _ "\<lambda>x. get_array a h ! x"]
+  noError_nth crel_nthI elim: crel_length)
+
+lemma noError_mapM_map_entry:
+  assumes "n \<le> Heap.length a h"
+  shows "noError (mapM (\<lambda>n. map_entry n f a) [Heap.length a h - n..<Heap.length a h]) h"
+using assms
+proof (induct n arbitrary: h)
+  case 0
+  thus ?case by (auto intro: noError_return)
+next
+  case (Suc n)
+  from Suc.prems have "[Heap.length a h - Suc n..<Heap.length a h] = (Heap.length a h - Suc n)#[Heap.length a h - n..<Heap.length a h]"
+    by (simp add: upt_conv_Cons')
+  with Suc.hyps[of "(Heap.upd a (Heap.length a h - Suc n) (f (get_array a h ! (Heap.length a h - Suc n))) h)"] Suc.prems show ?case
+    by (auto simp add: intro!: noErrorI noError_return noError_map_entry elim: crel_map_entry)
+qed
+
+lemma noError_map:
+  shows "noError (Array.map f a) h"
+using noError_mapM_map_entry[of "Heap.length a h" a h]
+unfolding Array.map_def
+by (auto intro: noErrorI noError_length noError_return elim!: crel_length)
+
+subsection {* Introduction rules for the reference commands *}
+
+lemma noError_Ref_new:
+  shows "noError (Ref.new v) h"
+unfolding Ref.new_def by (intro noError_heap)
+
+lemma noError_lookup:
+  shows "noError (!ref) h"
+  unfolding lookup_def by (intro noError_heap)
+
+lemma noError_update:
+  shows "noError (ref := v) h"
+  unfolding update_def by (intro noError_heap)
+
+lemma noError_change:
+  shows "noError (Ref.change f ref) h"
+  unfolding Ref.change_def Let_def by (intro noErrorI noError_lookup noError_update noError_return)
+
+subsection {* Introduction rules for the assert command *}
+
+lemma noError_assert:
+  assumes "P x"
+  shows "noError (assert P x) h"
+  using assms
+  unfolding assert_def
+  by (auto intro: noError_if noError_return)
+
+section {* Cumulative lemmas *}
+
+lemmas crel_elim_all =
+  crelE crelE' crel_return crel_raise crel_if crel_option_case
+  crel_length crel_new_weak crel_nth crel_upd crel_of_list_weak crel_map_entry crel_swap crel_make_weak crel_freeze crel_map_weak
+  crel_Ref_new crel_lookup crel_update crel_change
+  crel_assert
+
+lemmas crel_intro_all =
+  crelI crelI' crel_returnI crel_raiseI crel_ifI crel_option_caseI
+  crel_lengthI (* crel_newI *) crel_nthI crel_updI (* crel_of_listI crel_map_entryI crel_swapI crel_makeI crel_freezeI crel_mapI *)
+  (* crel_Ref_newI *) crel_lookupI crel_updateI crel_changeI
+  crel_assert
+
+lemmas noError_intro_all = 
+  noErrorI noErrorI' noError_return noError_if noError_option_case
+  noError_length noError_new noError_nth noError_upd noError_of_list noError_map_entry noError_swap noError_make noError_freeze noError_map
+  noError_Ref_new noError_lookup noError_update noError_change
+  noError_assert
+
+end
\ No newline at end of file
--- a/src/HOL/IsaMakefile	Thu Jan 08 10:53:48 2009 +0100
+++ b/src/HOL/IsaMakefile	Thu Jan 08 17:10:41 2009 +0100
@@ -23,6 +23,7 @@
   HOL-IMP \
   HOL-IMPP \
   HOL-IOA \
+  HOL-Imperative_HOL \
   HOL-Induct \
   HOL-Isar_examples \
   HOL-Lambda \
@@ -325,9 +326,7 @@
   Library/Code_Char_chr.thy Library/Code_Integer.thy			\
   Library/Numeral_Type.thy			\
   Library/Boolean_Algebra.thy Library/Countable.thy	\
-  Library/Heap.thy Library/Heap_Monad.thy Library/Array.thy		\
-  Library/Relational.thy Library/Sublist.thy Library/Subarray.thy	\
-  Library/Ref.thy Library/Imperative_HOL.thy Library/RBT.thy		\
+  Library/RBT.thy		\
   Library/Enum.thy Library/Float.thy $(SRC)/Tools/float.ML $(SRC)/HOL/Tools/float_arith.ML
 	@cd Library; $(ISABELLE_TOOL) usedir $(OUT)/HOL Library
 
@@ -625,6 +624,17 @@
 	@$(ISABELLE_TOOL) usedir $(OUT)/HOL Modelcheck
 
 
+## HOL-Imperative_HOL
+
+HOL-Imperative_HOL: HOL $(LOG)/HOL-Imperative_HOL.gz
+
+$(LOG)/HOL-Imperative_HOL.gz: $(OUT)/HOL Imperative_HOL/Heap.thy \
+  Imperative_HOL/Heap_Monad.thy Imperative_HOL/Array.thy \
+  Imperative_HOL/Relational.thy \
+  Imperative_HOL/Ref.thy Imperative_HOL/Imperative_HOL.thy
+	@$(ISABELLE_TOOL) usedir $(OUT)/HOL Imperative_HOL
+
+
 ## HOL-SizeChange
 
 HOL-SizeChange: HOL $(LOG)/HOL-SizeChange.gz
@@ -796,8 +806,9 @@
   ex/ReflectionEx.thy ex/ROOT.ML ex/Recdefs.thy ex/Records.thy		\
   ex/Reflected_Presburger.thy ex/coopertac.ML				\
   ex/Refute_Examples.thy ex/SAT_Examples.thy ex/SVC_Oracle.thy		\
-  ex/Sudoku.thy ex/Tarski.thy ex/Termination.thy ex/Term_Of_Syntax.thy			\
-  ex/Unification.thy ex/document/root.bib			\
+  ex/Subarray.thy ex/Sublist.thy                                        \
+  ex/Sudoku.thy ex/Tarski.thy ex/Termination.thy ex/Term_Of_Syntax.thy	\
+  ex/Unification.thy ex/document/root.bib			        \
   ex/document/root.tex ex/Meson_Test.thy ex/reflection.ML ex/set.thy	\
   ex/svc_funcs.ML ex/svc_test.thy	\
   ex/ImperativeQuicksort.thy	\
--- a/src/HOL/Library/Array.thy	Thu Jan 08 10:53:48 2009 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,209 +0,0 @@
-(*  Title:      HOL/Library/Array.thy
-    ID:         $Id$
-    Author:     John Matthews, Galois Connections; Alexander Krauss, Lukas Bulwahn & Florian Haftmann, TU Muenchen
-*)
-
-header {* Monadic arrays *}
-
-theory Array
-imports Heap_Monad Code_Index
-begin
-
-subsection {* Primitives *}
-
-definition
-  new :: "nat \<Rightarrow> 'a\<Colon>heap \<Rightarrow> 'a array Heap" where
-  [code del]: "new n x = Heap_Monad.heap (Heap.array n x)"
-
-definition
-  of_list :: "'a\<Colon>heap list \<Rightarrow> 'a array Heap" where
-  [code del]: "of_list xs = Heap_Monad.heap (Heap.array_of_list xs)"
-
-definition
-  length :: "'a\<Colon>heap array \<Rightarrow> nat Heap" where
-  [code del]: "length arr = Heap_Monad.heap (\<lambda>h. (Heap.length arr h, h))"
-
-definition
-  nth :: "'a\<Colon>heap array \<Rightarrow> nat \<Rightarrow> 'a Heap"
-where
-  [code del]: "nth a i = (do len \<leftarrow> length a;
-                 (if i < len
-                     then Heap_Monad.heap (\<lambda>h. (get_array a h ! i, h))
-                     else raise (''array lookup: index out of range''))
-              done)"
-
--- {* FIXME adjustion for List theory *}
-no_syntax
-  nth  :: "'a list \<Rightarrow> nat \<Rightarrow> 'a" (infixl "!" 100)
-
-abbreviation
-  nth_list :: "'a list \<Rightarrow> nat \<Rightarrow> 'a" (infixl "!" 100)
-where
-  "nth_list \<equiv> List.nth"
-
-definition
-  upd :: "nat \<Rightarrow> 'a \<Rightarrow> 'a\<Colon>heap array \<Rightarrow> 'a\<Colon>heap array Heap"
-where
-  [code del]: "upd i x a = (do len \<leftarrow> length a;
-                      (if i < len
-                           then Heap_Monad.heap (\<lambda>h. (a, Heap.upd a i x h))
-                           else raise (''array update: index out of range''))
-                   done)" 
-
-lemma upd_return:
-  "upd i x a \<guillemotright> return a = upd i x a"
-proof (rule Heap_eqI)
-  fix h
-  obtain len h' where "Heap_Monad.execute (Array.length a) h = (len, h')"
-    by (cases "Heap_Monad.execute (Array.length a) h")
-  then show "Heap_Monad.execute (upd i x a \<guillemotright> return a) h = Heap_Monad.execute (upd i x a) h"
-    by (auto simp add: upd_def bindM_def split: sum.split)
-qed
-
-
-subsection {* Derivates *}
-
-definition
-  map_entry :: "nat \<Rightarrow> ('a\<Colon>heap \<Rightarrow> 'a) \<Rightarrow> 'a array \<Rightarrow> 'a array Heap"
-where
-  "map_entry i f a = (do
-     x \<leftarrow> nth a i;
-     upd i (f x) a
-   done)"
-
-definition
-  swap :: "nat \<Rightarrow> 'a \<Rightarrow> 'a\<Colon>heap array \<Rightarrow> 'a Heap"
-where
-  "swap i x a = (do
-     y \<leftarrow> nth a i;
-     upd i x a;
-     return y
-   done)"
-
-definition
-  make :: "nat \<Rightarrow> (nat \<Rightarrow> 'a\<Colon>heap) \<Rightarrow> 'a array Heap"
-where
-  "make n f = of_list (map f [0 ..< n])"
-
-definition
-  freeze :: "'a\<Colon>heap array \<Rightarrow> 'a list Heap"
-where
-  "freeze a = (do
-     n \<leftarrow> length a;
-     mapM (nth a) [0..<n]
-   done)"
-
-definition
-   map :: "('a\<Colon>heap \<Rightarrow> 'a) \<Rightarrow> 'a array \<Rightarrow> 'a array Heap"
-where
-  "map f a = (do
-     n \<leftarrow> length a;
-     mapM (\<lambda>n. map_entry n f a) [0..<n];
-     return a
-   done)"
-
-hide (open) const new map -- {* avoid clashed with some popular names *}
-
-
-subsection {* Properties *}
-
-lemma array_make [code]:
-  "Array.new n x = make n (\<lambda>_. x)"
-  by (induct n) (simp_all add: make_def new_def Heap_Monad.heap_def
-    monad_simp array_of_list_replicate [symmetric]
-    map_replicate_trivial replicate_append_same
-    of_list_def)
-
-lemma array_of_list_make [code]:
-  "of_list xs = make (List.length xs) (\<lambda>n. xs ! n)"
-  unfolding make_def map_nth ..
-
-
-subsection {* Code generator setup *}
-
-subsubsection {* Logical intermediate layer *}
-
-definition new' where
-  [code del]: "new' = Array.new o nat_of_index"
-hide (open) const new'
-lemma [code]:
-  "Array.new = Array.new' o index_of_nat"
-  by (simp add: new'_def o_def)
-
-definition of_list' where
-  [code del]: "of_list' i xs = Array.of_list (take (nat_of_index i) xs)"
-hide (open) const of_list'
-lemma [code]:
-  "Array.of_list xs = Array.of_list' (index_of_nat (List.length xs)) xs"
-  by (simp add: of_list'_def)
-
-definition make' where
-  [code del]: "make' i f = Array.make (nat_of_index i) (f o index_of_nat)"
-hide (open) const make'
-lemma [code]:
-  "Array.make n f = Array.make' (index_of_nat n) (f o nat_of_index)"
-  by (simp add: make'_def o_def)
-
-definition length' where
-  [code del]: "length' = Array.length \<guillemotright>== liftM index_of_nat"
-hide (open) const length'
-lemma [code]:
-  "Array.length = Array.length' \<guillemotright>== liftM nat_of_index"
-  by (simp add: length'_def monad_simp',
-    simp add: liftM_def comp_def monad_simp,
-    simp add: monad_simp')
-
-definition nth' where
-  [code del]: "nth' a = Array.nth a o nat_of_index"
-hide (open) const nth'
-lemma [code]:
-  "Array.nth a n = Array.nth' a (index_of_nat n)"
-  by (simp add: nth'_def)
-
-definition upd' where
-  [code del]: "upd' a i x = Array.upd (nat_of_index i) x a \<guillemotright> return ()"
-hide (open) const upd'
-lemma [code]:
-  "Array.upd i x a = Array.upd' a (index_of_nat i) x \<guillemotright> return a"
-  by (simp add: upd'_def monad_simp upd_return)
-
-
-subsubsection {* SML *}
-
-code_type array (SML "_/ array")
-code_const Array (SML "raise/ (Fail/ \"bare Array\")")
-code_const Array.new' (SML "(fn/ ()/ =>/ Array.array/ ((_),/ (_)))")
-code_const Array.of_list (SML "(fn/ ()/ =>/ Array.fromList/ _)")
-code_const Array.make' (SML "(fn/ ()/ =>/ Array.tabulate/ ((_),/ (_)))")
-code_const Array.length' (SML "(fn/ ()/ =>/ Array.length/ _)")
-code_const Array.nth' (SML "(fn/ ()/ =>/ Array.sub/ ((_),/ (_)))")
-code_const Array.upd' (SML "(fn/ ()/ =>/ Array.update/ ((_),/ (_),/ (_)))")
-
-code_reserved SML Array
-
-
-subsubsection {* OCaml *}
-
-code_type array (OCaml "_/ array")
-code_const Array (OCaml "failwith/ \"bare Array\"")
-code_const Array.new' (OCaml "(fun/ ()/ ->/ Array.make/ _/ _)")
-code_const Array.of_list (OCaml "(fun/ ()/ ->/ Array.of'_list/ _)")
-code_const Array.make' (OCaml "(fun/ ()/ ->/ Array.init/ _/ _)")
-code_const Array.length' (OCaml "(fun/ ()/ ->/ Array.length/ _)")
-code_const Array.nth' (OCaml "(fun/ ()/ ->/ Array.get/ _/ _)")
-code_const Array.upd' (OCaml "(fun/ ()/ ->/ Array.set/ _/ _/ _)")
-
-code_reserved OCaml Array
-
-
-subsubsection {* Haskell *}
-
-code_type array (Haskell "STArray/ RealWorld/ _")
-code_const Array (Haskell "error/ \"bare Array\"")
-code_const Array.new' (Haskell "newArray/ (0,/ _)")
-code_const Array.of_list' (Haskell "newListArray/ (0,/ _)")
-code_const Array.length' (Haskell "lengthArray")
-code_const Array.nth' (Haskell "readArray")
-code_const Array.upd' (Haskell "writeArray")
-
-end
--- a/src/HOL/Library/Heap.thy	Thu Jan 08 10:53:48 2009 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,434 +0,0 @@
-(*  Title:      HOL/Library/Heap.thy
-    ID:         $Id$
-    Author:     John Matthews, Galois Connections; Alexander Krauss, TU Muenchen
-*)
-
-header {* A polymorphic heap based on cantor encodings *}
-
-theory Heap
-imports Plain "~~/src/HOL/List" Countable Typerep
-begin
-
-subsection {* Representable types *}
-
-text {* The type class of representable types *}
-
-class heap = typerep + countable
-
-text {* Instances for common HOL types *}
-
-instance nat :: heap ..
-
-instance "*" :: (heap, heap) heap ..
-
-instance "+" :: (heap, heap) heap ..
-
-instance list :: (heap) heap ..
-
-instance option :: (heap) heap ..
-
-instance int :: heap ..
-
-instance message_string :: countable
-  by (rule countable_classI [of "message_string_case to_nat"])
-   (auto split: message_string.splits)
-
-instance message_string :: heap ..
-
-text {* Reflected types themselves are heap-representable *}
-
-instantiation typerep :: countable
-begin
-
-fun to_nat_typerep :: "typerep \<Rightarrow> nat" where
-  "to_nat_typerep (Typerep.Typerep c ts) = to_nat (to_nat c, to_nat (map to_nat_typerep ts))"
-
-instance
-proof (rule countable_classI)
-  fix t t' :: typerep and ts
-  have "(\<forall>t'. to_nat_typerep t = to_nat_typerep t' \<longrightarrow> t = t')
-    \<and> (\<forall>ts'. map to_nat_typerep ts = map to_nat_typerep ts' \<longrightarrow> ts = ts')"
-  proof (induct rule: typerep.induct)
-    case (Typerep c ts) show ?case
-    proof (rule allI, rule impI)
-      fix t'
-      assume hyp: "to_nat_typerep (Typerep.Typerep c ts) = to_nat_typerep t'"
-      then obtain c' ts' where t': "t' = (Typerep.Typerep c' ts')"
-        by (cases t') auto
-      with Typerep hyp have "c = c'" and "ts = ts'" by simp_all
-      with t' show "Typerep.Typerep c ts = t'" by simp
-    qed
-  next
-    case Nil_typerep then show ?case by simp
-  next
-    case (Cons_typerep t ts) then show ?case by auto
-  qed
-  then have "to_nat_typerep t = to_nat_typerep t' \<Longrightarrow> t = t'" by auto
-  moreover assume "to_nat_typerep t = to_nat_typerep t'"
-  ultimately show "t = t'" by simp
-qed
-
-end
-
-instance typerep :: heap ..
-
-
-subsection {* A polymorphic heap with dynamic arrays and references *}
-
-types addr = nat -- "untyped heap references"
-
-datatype 'a array = Array addr
-datatype 'a ref = Ref addr -- "note the phantom type 'a "
-
-primrec addr_of_array :: "'a array \<Rightarrow> addr" where
-  "addr_of_array (Array x) = x"
-
-primrec addr_of_ref :: "'a ref \<Rightarrow> addr" where
-  "addr_of_ref (Ref x) = x"
-
-lemma addr_of_array_inj [simp]:
-  "addr_of_array a = addr_of_array a' \<longleftrightarrow> a = a'"
-  by (cases a, cases a') simp_all
-
-lemma addr_of_ref_inj [simp]:
-  "addr_of_ref r = addr_of_ref r' \<longleftrightarrow> r = r'"
-  by (cases r, cases r') simp_all
-
-instance array :: (type) countable
-  by (rule countable_classI [of addr_of_array]) simp
-
-instance ref :: (type) countable
-  by (rule countable_classI [of addr_of_ref]) simp
-
-setup {*
-  Sign.add_const_constraint (@{const_name Array}, SOME @{typ "nat \<Rightarrow> 'a\<Colon>heap array"})
-  #> Sign.add_const_constraint (@{const_name Ref}, SOME @{typ "nat \<Rightarrow> 'a\<Colon>heap ref"})
-  #> Sign.add_const_constraint (@{const_name addr_of_array}, SOME @{typ "'a\<Colon>heap array \<Rightarrow> nat"})
-  #> Sign.add_const_constraint (@{const_name addr_of_ref}, SOME @{typ "'a\<Colon>heap ref \<Rightarrow> nat"})
-*}
-
-types heap_rep = nat -- "representable values"
-
-record heap =
-  arrays :: "typerep \<Rightarrow> addr \<Rightarrow> heap_rep list"
-  refs :: "typerep \<Rightarrow> addr \<Rightarrow> heap_rep"
-  lim  :: addr
-
-definition empty :: heap where
-  "empty = \<lparr>arrays = (\<lambda>_. undefined), refs = (\<lambda>_. undefined), lim = 0\<rparr>" -- "why undefined?"
-
-
-subsection {* Imperative references and arrays *}
-
-text {*
-  References and arrays are developed in parallel,
-  but keeping them separate makes some later proofs simpler.
-*}
-
-subsubsection {* Primitive operations *}
-
-definition
-  new_ref :: "heap \<Rightarrow> ('a\<Colon>heap) ref \<times> heap" where
-  "new_ref h = (let l = lim h in (Ref l, h\<lparr>lim := l + 1\<rparr>))"
-
-definition
-  new_array :: "heap \<Rightarrow> ('a\<Colon>heap) array \<times> heap" where
-  "new_array h = (let l = lim h in (Array l, h\<lparr>lim := l + 1\<rparr>))"
-
-definition
-  ref_present :: "'a\<Colon>heap ref \<Rightarrow> heap \<Rightarrow> bool" where
-  "ref_present r h \<longleftrightarrow> addr_of_ref r < lim h"
-
-definition 
-  array_present :: "'a\<Colon>heap array \<Rightarrow> heap \<Rightarrow> bool" where
-  "array_present a h \<longleftrightarrow> addr_of_array a < lim h"
-
-definition
-  get_ref :: "'a\<Colon>heap ref \<Rightarrow> heap \<Rightarrow> 'a" where
-  "get_ref r h = from_nat (refs h (TYPEREP('a)) (addr_of_ref r))"
-
-definition
-  get_array :: "'a\<Colon>heap array \<Rightarrow> heap \<Rightarrow> 'a list" where
-  "get_array a h = map from_nat (arrays h (TYPEREP('a)) (addr_of_array a))"
-
-definition
-  set_ref :: "'a\<Colon>heap ref \<Rightarrow> 'a \<Rightarrow> heap \<Rightarrow> heap" where
-  "set_ref r x = 
-  refs_update (\<lambda>h. h(TYPEREP('a) := ((h (TYPEREP('a))) (addr_of_ref r:=to_nat x))))"
-
-definition
-  set_array :: "'a\<Colon>heap array \<Rightarrow> 'a list \<Rightarrow> heap \<Rightarrow> heap" where
-  "set_array a x = 
-  arrays_update (\<lambda>h. h(TYPEREP('a) := ((h(TYPEREP('a))) (addr_of_array a:=map to_nat x))))"
-
-subsubsection {* Interface operations *}
-
-definition
-  ref :: "'a \<Rightarrow> heap \<Rightarrow> 'a\<Colon>heap ref \<times> heap" where
-  "ref x h = (let (r, h') = new_ref h;
-                   h''    = set_ref r x h'
-         in (r, h''))"
-
-definition
-  array :: "nat \<Rightarrow> 'a \<Rightarrow> heap \<Rightarrow> 'a\<Colon>heap array \<times> heap" where
-  "array n x h = (let (r, h') = new_array h;
-                       h'' = set_array r (replicate n x) h'
-        in (r, h''))"
-
-definition
-  array_of_list :: "'a list \<Rightarrow> heap \<Rightarrow> 'a\<Colon>heap array \<times> heap" where
-  "array_of_list xs h = (let (r, h') = new_array h;
-           h'' = set_array r xs h'
-        in (r, h''))"  
-
-definition
-  upd :: "'a\<Colon>heap array \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> heap \<Rightarrow> heap" where
-  "upd a i x h = set_array a ((get_array a h)[i:=x]) h"
-
-definition
-  length :: "'a\<Colon>heap array \<Rightarrow> heap \<Rightarrow> nat" where
-  "length a h = size (get_array a h)"
-
-definition
-  array_ran :: "('a\<Colon>heap) option array \<Rightarrow> heap \<Rightarrow> 'a set" where
-  "array_ran a h = {e. Some e \<in> set (get_array a h)}"
-    -- {*FIXME*}
-
-
-subsubsection {* Reference equality *}
-
-text {* 
-  The following relations are useful for comparing arrays and references.
-*}
-
-definition
-  noteq_refs :: "('a\<Colon>heap) ref \<Rightarrow> ('b\<Colon>heap) ref \<Rightarrow> bool" (infix "=!=" 70)
-where
-  "r =!= s \<longleftrightarrow> TYPEREP('a) \<noteq> TYPEREP('b) \<or> addr_of_ref r \<noteq> addr_of_ref s"
-
-definition
-  noteq_arrs :: "('a\<Colon>heap) array \<Rightarrow> ('b\<Colon>heap) array \<Rightarrow> bool" (infix "=!!=" 70)
-where
-  "r =!!= s \<longleftrightarrow> TYPEREP('a) \<noteq> TYPEREP('b) \<or> addr_of_array r \<noteq> addr_of_array s"
-
-lemma noteq_refs_sym: "r =!= s \<Longrightarrow> s =!= r"
-  and noteq_arrs_sym: "a =!!= b \<Longrightarrow> b =!!= a"
-  and unequal_refs [simp]: "r \<noteq> r' \<longleftrightarrow> r =!= r'" -- "same types!"
-  and unequal_arrs [simp]: "a \<noteq> a' \<longleftrightarrow> a =!!= a'"
-unfolding noteq_refs_def noteq_arrs_def by auto
-
-lemma present_new_ref: "ref_present r h \<Longrightarrow> r =!= fst (ref v h)"
-  by (simp add: ref_present_def new_ref_def ref_def Let_def noteq_refs_def)
-
-lemma present_new_arr: "array_present a h \<Longrightarrow> a =!!= fst (array v x h)"
-  by (simp add: array_present_def noteq_arrs_def new_array_def array_def Let_def)
-
-
-subsubsection {* Properties of heap containers *}
-
-text {* Properties of imperative arrays *}
-
-text {* FIXME: Does there exist a "canonical" array axiomatisation in
-the literature?  *}
-
-lemma array_get_set_eq [simp]: "get_array r (set_array r x h) = x"
-  by (simp add: get_array_def set_array_def)
-
-lemma array_get_set_neq [simp]: "r =!!= s \<Longrightarrow> get_array r (set_array s x h) = get_array r h"
-  by (simp add: noteq_arrs_def get_array_def set_array_def)
-
-lemma set_array_same [simp]:
-  "set_array r x (set_array r y h) = set_array r x h"
-  by (simp add: set_array_def)
-
-lemma array_set_set_swap:
-  "r =!!= r' \<Longrightarrow> set_array r x (set_array r' x' h) = set_array r' x' (set_array r x h)"
-  by (simp add: Let_def expand_fun_eq noteq_arrs_def set_array_def)
-
-lemma array_ref_set_set_swap:
-  "set_array r x (set_ref r' x' h) = set_ref r' x' (set_array r x h)"
-  by (simp add: Let_def expand_fun_eq set_array_def set_ref_def)
-
-lemma get_array_upd_eq [simp]:
-  "get_array a (upd a i v h) = (get_array a h) [i := v]"
-  by (simp add: upd_def)
-
-lemma nth_upd_array_neq_array [simp]:
-  "a =!!= b \<Longrightarrow> get_array a (upd b j v h) ! i = get_array a h ! i"
-  by (simp add: upd_def noteq_arrs_def)
-
-lemma get_arry_array_upd_elem_neqIndex [simp]:
-  "i \<noteq> j \<Longrightarrow> get_array a (upd a j v h) ! i = get_array a h ! i"
-  by simp
-
-lemma length_upd_eq [simp]: 
-  "length a (upd a i v h) = length a h" 
-  by (simp add: length_def upd_def)
-
-lemma length_upd_neq [simp]: 
-  "length a (upd b i v h) = length a h"
-  by (simp add: upd_def length_def set_array_def get_array_def)
-
-lemma upd_swap_neqArray:
-  "a =!!= a' \<Longrightarrow> 
-  upd a i v (upd a' i' v' h) 
-  = upd a' i' v' (upd a i v h)"
-apply (unfold upd_def)
-apply simp
-apply (subst array_set_set_swap, assumption)
-apply (subst array_get_set_neq)
-apply (erule noteq_arrs_sym)
-apply (simp)
-done
-
-lemma upd_swap_neqIndex:
-  "\<lbrakk> i \<noteq> i' \<rbrakk> \<Longrightarrow> upd a i v (upd a i' v' h) = upd a i' v' (upd a i v h)"
-by (auto simp add: upd_def array_set_set_swap list_update_swap)
-
-lemma get_array_init_array_list:
-  "get_array (fst (array_of_list ls h)) (snd (array_of_list ls' h)) = ls'"
-  by (simp add: Let_def split_def array_of_list_def)
-
-lemma set_array:
-  "set_array (fst (array_of_list ls h))
-     new_ls (snd (array_of_list ls h))
-       = snd (array_of_list new_ls h)"
-  by (simp add: Let_def split_def array_of_list_def)
-
-lemma array_present_upd [simp]: 
-  "array_present a (upd b i v h) = array_present a h"
-  by (simp add: upd_def array_present_def set_array_def get_array_def)
-
-lemma array_of_list_replicate:
-  "array_of_list (replicate n x) = array n x"
-  by (simp add: expand_fun_eq array_of_list_def array_def)
-
-
-text {* Properties of imperative references *}
-
-lemma next_ref_fresh [simp]:
-  assumes "(r, h') = new_ref h"
-  shows "\<not> ref_present r h"
-  using assms by (cases h) (auto simp add: new_ref_def ref_present_def Let_def)
-
-lemma next_ref_present [simp]:
-  assumes "(r, h') = new_ref h"
-  shows "ref_present r h'"
-  using assms by (cases h) (auto simp add: new_ref_def ref_present_def Let_def)
-
-lemma ref_get_set_eq [simp]: "get_ref r (set_ref r x h) = x"
-  by (simp add: get_ref_def set_ref_def)
-
-lemma ref_get_set_neq [simp]: "r =!= s \<Longrightarrow> get_ref r (set_ref s x h) = get_ref r h"
-  by (simp add: noteq_refs_def get_ref_def set_ref_def)
-
-(* FIXME: We need some infrastructure to infer that locally generated
-  new refs (by new_ref(_no_init), new_array(')) are distinct
-  from all existing refs.
-*)
-
-lemma ref_set_get: "set_ref r (get_ref r h) h = h"
-apply (simp add: set_ref_def get_ref_def)
-oops
-
-lemma set_ref_same[simp]:
-  "set_ref r x (set_ref r y h) = set_ref r x h"
-  by (simp add: set_ref_def)
-
-lemma ref_set_set_swap:
-  "r =!= r' \<Longrightarrow> set_ref r x (set_ref r' x' h) = set_ref r' x' (set_ref r x h)"
-  by (simp add: Let_def expand_fun_eq noteq_refs_def set_ref_def)
-
-lemma ref_new_set: "fst (ref v (set_ref r v' h)) = fst (ref v h)"
-  by (simp add: ref_def new_ref_def set_ref_def Let_def)
-
-lemma ref_get_new [simp]:
-  "get_ref (fst (ref v h)) (snd (ref v' h)) = v'"
-  by (simp add: ref_def Let_def split_def)
-
-lemma ref_set_new [simp]:
-  "set_ref (fst (ref v h)) new_v (snd (ref v h)) = snd (ref new_v h)"
-  by (simp add: ref_def Let_def split_def)
-
-lemma ref_get_new_neq: "r =!= (fst (ref v h)) \<Longrightarrow> 
-  get_ref r (snd (ref v h)) = get_ref r h"
-  by (simp add: get_ref_def set_ref_def ref_def Let_def new_ref_def noteq_refs_def)
-
-lemma lim_set_ref [simp]:
-  "lim (set_ref r v h) = lim h"
-  by (simp add: set_ref_def)
-
-lemma ref_present_new_ref [simp]: 
-  "ref_present r h \<Longrightarrow> ref_present r (snd (ref v h))"
-  by (simp add: new_ref_def ref_present_def ref_def Let_def)
-
-lemma ref_present_set_ref [simp]:
-  "ref_present r (set_ref r' v h) = ref_present r h"
-  by (simp add: set_ref_def ref_present_def)
-
-lemma array_ranI: "\<lbrakk> Some b = get_array a h ! i; i < Heap.length a h \<rbrakk> \<Longrightarrow> b \<in> array_ran a h"
-unfolding array_ran_def Heap.length_def by simp
-
-lemma array_ran_upd_array_Some:
-  assumes "cl \<in> array_ran a (Heap.upd a i (Some b) h)"
-  shows "cl \<in> array_ran a h \<or> cl = b"
-proof -
-  have "set (get_array a h[i := Some b]) \<subseteq> insert (Some b) (set (get_array a h))" by (rule set_update_subset_insert)
-  with assms show ?thesis 
-    unfolding array_ran_def Heap.upd_def by fastsimp
-qed
-
-lemma array_ran_upd_array_None:
-  assumes "cl \<in> array_ran a (Heap.upd a i None h)"
-  shows "cl \<in> array_ran a h"
-proof -
-  have "set (get_array a h[i := None]) \<subseteq> insert None (set (get_array a h))" by (rule set_update_subset_insert)
-  with assms show ?thesis
-    unfolding array_ran_def Heap.upd_def by auto
-qed
-
-
-text {* Non-interaction between imperative array and imperative references *}
-
-lemma get_array_set_ref [simp]: "get_array a (set_ref r v h) = get_array a h"
-  by (simp add: get_array_def set_ref_def)
-
-lemma nth_set_ref [simp]: "get_array a (set_ref r v h) ! i = get_array a h ! i"
-  by simp
-
-lemma get_ref_upd [simp]: "get_ref r (upd a i v h) = get_ref r h"
-  by (simp add: get_ref_def set_array_def upd_def)
-
-lemma new_ref_upd: "fst (ref v (upd a i v' h)) = fst (ref v h)"
-  by (simp add: set_array_def get_array_def Let_def ref_new_set upd_def ref_def  new_ref_def)
-
-text {*not actually true ???*}
-lemma upd_set_ref_swap: "upd a i v (set_ref r v' h) = set_ref r v' (upd a i v h)"
-apply (case_tac a)
-apply (simp add: Let_def upd_def)
-apply auto
-oops
-
-lemma length_new_ref[simp]: 
-  "length a (snd (ref v h)) = length a h"
-  by (simp add: get_array_def set_ref_def length_def new_ref_def ref_def Let_def)
-
-lemma get_array_new_ref [simp]: 
-  "get_array a (snd (ref v h)) = get_array a h"
-  by (simp add: new_ref_def ref_def set_ref_def get_array_def Let_def)
-
-lemma ref_present_upd [simp]: 
-  "ref_present r (upd a i v h) = ref_present r h"
-  by (simp add: upd_def ref_present_def set_array_def get_array_def)
-
-lemma array_present_set_ref [simp]:
-  "array_present a (set_ref r v h) = array_present a h"
-  by (simp add: array_present_def set_ref_def)
-
-lemma array_present_new_ref [simp]:
-  "array_present a h \<Longrightarrow> array_present a (snd (ref v h))"
-  by (simp add: array_present_def new_ref_def ref_def Let_def)
-
-hide (open) const empty array array_of_list upd length ref
-
-end
--- a/src/HOL/Library/Heap_Monad.thy	Thu Jan 08 10:53:48 2009 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,425 +0,0 @@
-(*  Title:      HOL/Library/Heap_Monad.thy
-    ID:         $Id$
-    Author:     John Matthews, Galois Connections; Alexander Krauss, Lukas Bulwahn & Florian Haftmann, TU Muenchen
-*)
-
-header {* A monad with a polymorphic heap *}
-
-theory Heap_Monad
-imports Heap
-begin
-
-subsection {* The monad *}
-
-subsubsection {* Monad combinators *}
-
-datatype exception = Exn
-
-text {* Monadic heap actions either produce values
-  and transform the heap, or fail *}
-datatype 'a Heap = Heap "heap \<Rightarrow> ('a + exception) \<times> heap"
-
-primrec
-  execute :: "'a Heap \<Rightarrow> heap \<Rightarrow> ('a + exception) \<times> heap" where
-  "execute (Heap f) = f"
-lemmas [code del] = execute.simps
-
-lemma Heap_execute [simp]:
-  "Heap (execute f) = f" by (cases f) simp_all
-
-lemma Heap_eqI:
-  "(\<And>h. execute f h = execute g h) \<Longrightarrow> f = g"
-    by (cases f, cases g) (auto simp: expand_fun_eq)
-
-lemma Heap_eqI':
-  "(\<And>h. (\<lambda>x. execute (f x) h) = (\<lambda>y. execute (g y) h)) \<Longrightarrow> f = g"
-    by (auto simp: expand_fun_eq intro: Heap_eqI)
-
-lemma Heap_strip: "(\<And>f. PROP P f) \<equiv> (\<And>g. PROP P (Heap g))"
-proof
-  fix g :: "heap \<Rightarrow> ('a + exception) \<times> heap" 
-  assume "\<And>f. PROP P f"
-  then show "PROP P (Heap g)" .
-next
-  fix f :: "'a Heap" 
-  assume assm: "\<And>g. PROP P (Heap g)"
-  then have "PROP P (Heap (execute f))" .
-  then show "PROP P f" by simp
-qed
-
-definition
-  heap :: "(heap \<Rightarrow> 'a \<times> heap) \<Rightarrow> 'a Heap" where
-  [code del]: "heap f = Heap (\<lambda>h. apfst Inl (f h))"
-
-lemma execute_heap [simp]:
-  "execute (heap f) h = apfst Inl (f h)"
-  by (simp add: heap_def)
-
-definition
-  bindM :: "'a Heap \<Rightarrow> ('a \<Rightarrow> 'b Heap) \<Rightarrow> 'b Heap" (infixl ">>=" 54) where
-  [code del]: "f >>= g = Heap (\<lambda>h. case execute f h of
-                  (Inl x, h') \<Rightarrow> execute (g x) h'
-                | r \<Rightarrow> r)"
-
-notation
-  bindM (infixl "\<guillemotright>=" 54)
-
-abbreviation
-  chainM :: "'a Heap \<Rightarrow> 'b Heap \<Rightarrow> 'b Heap"  (infixl ">>" 54) where
-  "f >> g \<equiv> f >>= (\<lambda>_. g)"
-
-notation
-  chainM (infixl "\<guillemotright>" 54)
-
-definition
-  return :: "'a \<Rightarrow> 'a Heap" where
-  [code del]: "return x = heap (Pair x)"
-
-lemma execute_return [simp]:
-  "execute (return x) h = apfst Inl (x, h)"
-  by (simp add: return_def)
-
-definition
-  raise :: "string \<Rightarrow> 'a Heap" where -- {* the string is just decoration *}
-  [code del]: "raise s = Heap (Pair (Inr Exn))"
-
-notation (latex output)
-  "raise" ("\<^raw:{\textsf{raise}}>")
-
-lemma execute_raise [simp]:
-  "execute (raise s) h = (Inr Exn, h)"
-  by (simp add: raise_def)
-
-
-subsubsection {* do-syntax *}
-
-text {*
-  We provide a convenient do-notation for monadic expressions
-  well-known from Haskell.  @{const Let} is printed
-  specially in do-expressions.
-*}
-
-nonterminals do_expr
-
-syntax
-  "_do" :: "do_expr \<Rightarrow> 'a"
-    ("(do (_)//done)" [12] 100)
-  "_bindM" :: "pttrn \<Rightarrow> 'a \<Rightarrow> do_expr \<Rightarrow> do_expr"
-    ("_ <- _;//_" [1000, 13, 12] 12)
-  "_chainM" :: "'a \<Rightarrow> do_expr \<Rightarrow> do_expr"
-    ("_;//_" [13, 12] 12)
-  "_let" :: "pttrn \<Rightarrow> 'a \<Rightarrow> do_expr \<Rightarrow> do_expr"
-    ("let _ = _;//_" [1000, 13, 12] 12)
-  "_nil" :: "'a \<Rightarrow> do_expr"
-    ("_" [12] 12)
-
-syntax (xsymbols)
-  "_bindM" :: "pttrn \<Rightarrow> 'a \<Rightarrow> do_expr \<Rightarrow> do_expr"
-    ("_ \<leftarrow> _;//_" [1000, 13, 12] 12)
-syntax (latex output)
-  "_do" :: "do_expr \<Rightarrow> 'a"
-    ("(\<^raw:{\textsf{do}}> (_))" [12] 100)
-  "_let" :: "pttrn \<Rightarrow> 'a \<Rightarrow> do_expr \<Rightarrow> do_expr"
-    ("\<^raw:\textsf{let}> _ = _;//_" [1000, 13, 12] 12)
-notation (latex output)
-  "return" ("\<^raw:{\textsf{return}}>")
-
-translations
-  "_do f" => "f"
-  "_bindM x f g" => "f \<guillemotright>= (\<lambda>x. g)"
-  "_chainM f g" => "f \<guillemotright> g"
-  "_let x t f" => "CONST Let t (\<lambda>x. f)"
-  "_nil f" => "f"
-
-print_translation {*
-let
-  fun dest_abs_eta (Abs (abs as (_, ty, _))) =
-        let
-          val (v, t) = Syntax.variant_abs abs;
-        in (Free (v, ty), t) end
-    | dest_abs_eta t =
-        let
-          val (v, t) = Syntax.variant_abs ("", dummyT, t $ Bound 0);
-        in (Free (v, dummyT), t) end;
-  fun unfold_monad (Const (@{const_syntax bindM}, _) $ f $ g) =
-        let
-          val (v, g') = dest_abs_eta g;
-          val vs = fold_aterms (fn Free (v, _) => insert (op =) v | _ => I) v [];
-          val v_used = fold_aterms
-            (fn Free (w, _) => (fn s => s orelse member (op =) vs w) | _ => I) g' false;
-        in if v_used then
-          Const ("_bindM", dummyT) $ v $ f $ unfold_monad g'
-        else
-          Const ("_chainM", dummyT) $ f $ unfold_monad g'
-        end
-    | unfold_monad (Const (@{const_syntax chainM}, _) $ f $ g) =
-        Const ("_chainM", dummyT) $ f $ unfold_monad g
-    | unfold_monad (Const (@{const_syntax Let}, _) $ f $ g) =
-        let
-          val (v, g') = dest_abs_eta g;
-        in Const ("_let", dummyT) $ v $ f $ unfold_monad g' end
-    | unfold_monad (Const (@{const_syntax Pair}, _) $ f) =
-        Const (@{const_syntax return}, dummyT) $ f
-    | unfold_monad f = f;
-  fun contains_bindM (Const (@{const_syntax bindM}, _) $ _ $ _) = true
-    | contains_bindM (Const (@{const_syntax Let}, _) $ _ $ Abs (_, _, t)) =
-        contains_bindM t;
-  fun bindM_monad_tr' (f::g::ts) = list_comb
-    (Const ("_do", dummyT) $ unfold_monad (Const (@{const_syntax bindM}, dummyT) $ f $ g), ts);
-  fun Let_monad_tr' (f :: (g as Abs (_, _, g')) :: ts) = if contains_bindM g' then list_comb
-      (Const ("_do", dummyT) $ unfold_monad (Const (@{const_syntax Let}, dummyT) $ f $ g), ts)
-    else raise Match;
-in [
-  (@{const_syntax bindM}, bindM_monad_tr'),
-  (@{const_syntax Let}, Let_monad_tr')
-] end;
-*}
-
-
-subsection {* Monad properties *}
-
-subsubsection {* Monad laws *}
-
-lemma return_bind: "return x \<guillemotright>= f = f x"
-  by (simp add: bindM_def return_def)
-
-lemma bind_return: "f \<guillemotright>= return = f"
-proof (rule Heap_eqI)
-  fix h
-  show "execute (f \<guillemotright>= return) h = execute f h"
-    by (auto simp add: bindM_def return_def split: sum.splits prod.splits)
-qed
-
-lemma bind_bind: "(f \<guillemotright>= g) \<guillemotright>= h = f \<guillemotright>= (\<lambda>x. g x \<guillemotright>= h)"
-  by (rule Heap_eqI) (auto simp add: bindM_def split: split: sum.splits prod.splits)
-
-lemma bind_bind': "f \<guillemotright>= (\<lambda>x. g x \<guillemotright>= h x) = f \<guillemotright>= (\<lambda>x. g x \<guillemotright>= (\<lambda>y. return (x, y))) \<guillemotright>= (\<lambda>(x, y). h x y)"
-  by (rule Heap_eqI) (auto simp add: bindM_def split: split: sum.splits prod.splits)
-
-lemma raise_bind: "raise e \<guillemotright>= f = raise e"
-  by (simp add: raise_def bindM_def)
-
-
-lemmas monad_simp = return_bind bind_return bind_bind raise_bind
-
-
-subsection {* Generic combinators *}
-
-definition
-  liftM :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b Heap"
-where
-  "liftM f = return o f"
-
-definition
-  compM :: "('a \<Rightarrow> 'b Heap) \<Rightarrow> ('b \<Rightarrow> 'c Heap) \<Rightarrow> 'a \<Rightarrow> 'c Heap" (infixl ">>==" 54)
-where
-  "(f >>== g) = (\<lambda>x. f x \<guillemotright>= g)"
-
-notation
-  compM (infixl "\<guillemotright>==" 54)
-
-lemma liftM_collapse: "liftM f x = return (f x)"
-  by (simp add: liftM_def)
-
-lemma liftM_compM: "liftM f \<guillemotright>== g = g o f"
-  by (auto intro: Heap_eqI' simp add: expand_fun_eq liftM_def compM_def bindM_def)
-
-lemma compM_return: "f \<guillemotright>== return = f"
-  by (simp add: compM_def monad_simp)
-
-lemma compM_compM: "(f \<guillemotright>== g) \<guillemotright>== h = f \<guillemotright>== (g \<guillemotright>== h)"
-  by (simp add: compM_def monad_simp)
-
-lemma liftM_bind:
-  "(\<lambda>x. liftM f x \<guillemotright>= liftM g) = liftM (\<lambda>x. g (f x))"
-  by (rule Heap_eqI') (simp add: monad_simp liftM_def bindM_def)
-
-lemma liftM_comp:
-  "liftM f o g = liftM (f o g)"
-  by (rule Heap_eqI') (simp add: liftM_def)
-
-lemmas monad_simp' = monad_simp liftM_compM compM_return
-  compM_compM liftM_bind liftM_comp
-
-primrec 
-  mapM :: "('a \<Rightarrow> 'b Heap) \<Rightarrow> 'a list \<Rightarrow> 'b list Heap"
-where
-  "mapM f [] = return []"
-  | "mapM f (x#xs) = do y \<leftarrow> f x;
-                        ys \<leftarrow> mapM f xs;
-                        return (y # ys)
-                     done"
-
-primrec
-  foldM :: "('a \<Rightarrow> 'b \<Rightarrow> 'b Heap) \<Rightarrow> 'a list \<Rightarrow> 'b \<Rightarrow> 'b Heap"
-where
-  "foldM f [] s = return s"
-  | "foldM f (x#xs) s = f x s \<guillemotright>= foldM f xs"
-
-definition
-  assert :: "('a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'a Heap"
-where
-  "assert P x = (if P x then return x else raise (''assert''))"
-
-lemma assert_cong [fundef_cong]:
-  assumes "P = P'"
-  assumes "\<And>x. P' x \<Longrightarrow> f x = f' x"
-  shows "(assert P x >>= f) = (assert P' x >>= f')"
-  using assms by (auto simp add: assert_def return_bind raise_bind)
-
-hide (open) const heap execute
-
-
-subsection {* Code generator setup *}
-
-subsubsection {* Logical intermediate layer *}
-
-definition
-  Fail :: "message_string \<Rightarrow> exception"
-where
-  [code del]: "Fail s = Exn"
-
-definition
-  raise_exc :: "exception \<Rightarrow> 'a Heap"
-where
-  [code del]: "raise_exc e = raise []"
-
-lemma raise_raise_exc [code, code inline]:
-  "raise s = raise_exc (Fail (STR s))"
-  unfolding Fail_def raise_exc_def raise_def ..
-
-hide (open) const Fail raise_exc
-
-
-subsubsection {* SML and OCaml *}
-
-code_type Heap (SML "unit/ ->/ _")
-code_const Heap (SML "raise/ (Fail/ \"bare Heap\")")
-code_const "op \<guillemotright>=" (SML "!(fn/ f'_/ =>/ fn/ ()/ =>/ f'_/ (_/ ())/ ())")
-code_const return (SML "!(fn/ ()/ =>/ _)")
-code_const "Heap_Monad.Fail" (SML "Fail")
-code_const "Heap_Monad.raise_exc" (SML "!(fn/ ()/ =>/ raise/ _)")
-
-code_type Heap (OCaml "_")
-code_const Heap (OCaml "failwith/ \"bare Heap\"")
-code_const "op \<guillemotright>=" (OCaml "!(fun/ f'_/ ()/ ->/ f'_/ (_/ ())/ ())")
-code_const return (OCaml "!(fun/ ()/ ->/ _)")
-code_const "Heap_Monad.Fail" (OCaml "Failure")
-code_const "Heap_Monad.raise_exc" (OCaml "!(fun/ ()/ ->/ raise/ _)")
-
-setup {* let
-  open Code_Thingol;
-
-  fun lookup naming = the o Code_Thingol.lookup_const naming;
-
-  fun imp_monad_bind'' bind' return' unit' ts =
-    let
-      val dummy_name = "";
-      val dummy_type = ITyVar dummy_name;
-      val dummy_case_term = IVar dummy_name;
-      (*assumption: dummy values are not relevant for serialization*)
-      val unitt = IConst (unit', ([], []));
-      fun dest_abs ((v, ty) `|-> t, _) = ((v, ty), t)
-        | dest_abs (t, ty) =
-            let
-              val vs = Code_Thingol.fold_varnames cons t [];
-              val v = Name.variant vs "x";
-              val ty' = (hd o fst o Code_Thingol.unfold_fun) ty;
-            in ((v, ty'), t `$ IVar v) end;
-      fun force (t as IConst (c, _) `$ t') = if c = return'
-            then t' else t `$ unitt
-        | force t = t `$ unitt;
-      fun tr_bind' [(t1, _), (t2, ty2)] =
-        let
-          val ((v, ty), t) = dest_abs (t2, ty2);
-        in ICase (((force t1, ty), [(IVar v, tr_bind'' t)]), dummy_case_term) end
-      and tr_bind'' t = case Code_Thingol.unfold_app t
-           of (IConst (c, (_, ty1 :: ty2 :: _)), [x1, x2]) => if c = bind'
-                then tr_bind' [(x1, ty1), (x2, ty2)]
-                else force t
-            | _ => force t;
-    in (dummy_name, dummy_type) `|-> ICase (((IVar dummy_name, dummy_type),
-      [(unitt, tr_bind' ts)]), dummy_case_term) end
-  and imp_monad_bind' bind' return' unit' (const as (c, (_, tys))) ts = if c = bind' then case (ts, tys)
-     of ([t1, t2], ty1 :: ty2 :: _) => imp_monad_bind'' bind' return' unit' [(t1, ty1), (t2, ty2)]
-      | ([t1, t2, t3], ty1 :: ty2 :: _) => imp_monad_bind'' bind' return' unit' [(t1, ty1), (t2, ty2)] `$ t3
-      | (ts, _) => imp_monad_bind bind' return' unit' (eta_expand 2 (const, ts))
-    else IConst const `$$ map (imp_monad_bind bind' return' unit') ts
-  and imp_monad_bind bind' return' unit' (IConst const) = imp_monad_bind' bind' return' unit' const []
-    | imp_monad_bind bind' return' unit' (t as IVar _) = t
-    | imp_monad_bind bind' return' unit' (t as _ `$ _) = (case unfold_app t
-       of (IConst const, ts) => imp_monad_bind' bind' return' unit' const ts
-        | (t, ts) => imp_monad_bind bind' return' unit' t `$$ map (imp_monad_bind bind' return' unit') ts)
-    | imp_monad_bind bind' return' unit' (v_ty `|-> t) = v_ty `|-> imp_monad_bind bind' return' unit' t
-    | imp_monad_bind bind' return' unit' (ICase (((t, ty), pats), t0)) = ICase
-        (((imp_monad_bind bind' return' unit' t, ty), (map o pairself) (imp_monad_bind bind' return' unit') pats), imp_monad_bind bind' return' unit' t0);
-
-   fun imp_program naming = (Graph.map_nodes o map_terms_stmt)
-     (imp_monad_bind (lookup naming @{const_name bindM})
-       (lookup naming @{const_name return})
-       (lookup naming @{const_name Unity}));
-
-in
-
-  Code_Target.extend_target ("SML_imp", ("SML", imp_program))
-  #> Code_Target.extend_target ("OCaml_imp", ("OCaml", imp_program))
-
-end
-*}
-
-
-code_reserved OCaml Failure raise
-
-
-subsubsection {* Haskell *}
-
-text {* Adaption layer *}
-
-code_include Haskell "STMonad"
-{*import qualified Control.Monad;
-import qualified Control.Monad.ST;
-import qualified Data.STRef;
-import qualified Data.Array.ST;
-
-type RealWorld = Control.Monad.ST.RealWorld;
-type ST s a = Control.Monad.ST.ST s a;
-type STRef s a = Data.STRef.STRef s a;
-type STArray s a = Data.Array.ST.STArray s Int a;
-
-runST :: (forall s. ST s a) -> a;
-runST s = Control.Monad.ST.runST s;
-
-newSTRef = Data.STRef.newSTRef;
-readSTRef = Data.STRef.readSTRef;
-writeSTRef = Data.STRef.writeSTRef;
-
-newArray :: (Int, Int) -> a -> ST s (STArray s a);
-newArray = Data.Array.ST.newArray;
-
-newListArray :: (Int, Int) -> [a] -> ST s (STArray s a);
-newListArray = Data.Array.ST.newListArray;
-
-lengthArray :: STArray s a -> ST s Int;
-lengthArray a = Control.Monad.liftM snd (Data.Array.ST.getBounds a);
-
-readArray :: STArray s a -> Int -> ST s a;
-readArray = Data.Array.ST.readArray;
-
-writeArray :: STArray s a -> Int -> a -> ST s ();
-writeArray = Data.Array.ST.writeArray;*}
-
-code_reserved Haskell RealWorld ST STRef Array
-  runST
-  newSTRef reasSTRef writeSTRef
-  newArray newListArray lengthArray readArray writeArray
-
-text {* Monad *}
-
-code_type Heap (Haskell "ST/ RealWorld/ _")
-code_const Heap (Haskell "error/ \"bare Heap\"")
-code_monad "op \<guillemotright>=" Haskell
-code_const return (Haskell "return")
-code_const "Heap_Monad.Fail" (Haskell "_")
-code_const "Heap_Monad.raise_exc" (Haskell "error")
-
-end
--- a/src/HOL/Library/Imperative_HOL.thy	Thu Jan 08 10:53:48 2009 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,12 +0,0 @@
-(*  Title:      HOL/Library/Imperative_HOL.thy
-    ID:         $Id$
-    Author:     John Matthews, Galois Connections; Alexander Krauss, Lukas Bulwahn & Florian Haftmann, TU Muenchen
-*)
-
-header {* Entry point into monadic imperative HOL *}
-
-theory Imperative_HOL
-imports Array Ref Relational
-begin
-
-end
--- a/src/HOL/Library/Library.thy	Thu Jan 08 10:53:48 2009 +0100
+++ b/src/HOL/Library/Library.thy	Thu Jan 08 17:10:41 2009 +0100
@@ -22,7 +22,6 @@
   Executable_Set
   Float
   FuncSet
-  Imperative_HOL
   Infinite_Set
   ListVector
   Multiset
--- a/src/HOL/Library/Ref.thy	Thu Jan 08 10:53:48 2009 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,91 +0,0 @@
-(*  Title:      HOL/Library/Ref.thy
-    ID:         $Id$
-    Author:     John Matthews, Galois Connections; Alexander Krauss, Lukas Bulwahn & Florian Haftmann, TU Muenchen
-*)
-
-header {* Monadic references *}
-
-theory Ref
-imports Heap_Monad
-begin
-
-text {*
-  Imperative reference operations; modeled after their ML counterparts.
-  See http://caml.inria.fr/pub/docs/manual-caml-light/node14.15.html
-  and http://www.smlnj.org/doc/Conversion/top-level-comparison.html
-*}
-
-subsection {* Primitives *}
-
-definition
-  new :: "'a\<Colon>heap \<Rightarrow> 'a ref Heap" where
-  [code del]: "new v = Heap_Monad.heap (Heap.ref v)"
-
-definition
-  lookup :: "'a\<Colon>heap ref \<Rightarrow> 'a Heap" ("!_" 61) where
-  [code del]: "lookup r = Heap_Monad.heap (\<lambda>h. (get_ref r h, h))"
-
-definition
-  update :: "'a ref \<Rightarrow> ('a\<Colon>heap) \<Rightarrow> unit Heap" ("_ := _" 62) where
-  [code del]: "update r e = Heap_Monad.heap (\<lambda>h. ((), set_ref r e h))"
-
-
-subsection {* Derivates *}
-
-definition
-  change :: "('a\<Colon>heap \<Rightarrow> 'a) \<Rightarrow> 'a ref \<Rightarrow> 'a Heap"
-where
-  "change f r = (do x \<leftarrow> ! r;
-                    let y = f x;
-                    r := y;
-                    return y
-                 done)"
-
-hide (open) const new lookup update change
-
-
-subsection {* Properties *}
-
-lemma lookup_chain:
-  "(!r \<guillemotright> f) = f"
-  by (cases f)
-    (auto simp add: Let_def bindM_def lookup_def expand_fun_eq)
-
-lemma update_change [code]:
-  "r := e = Ref.change (\<lambda>_. e) r \<guillemotright> return ()"
-  by (auto simp add: monad_simp change_def lookup_chain)
-
-
-subsection {* Code generator setup *}
-
-subsubsection {* SML *}
-
-code_type ref (SML "_/ ref")
-code_const Ref (SML "raise/ (Fail/ \"bare Ref\")")
-code_const Ref.new (SML "(fn/ ()/ =>/ ref/ _)")
-code_const Ref.lookup (SML "(fn/ ()/ =>/ !/ _)")
-code_const Ref.update (SML "(fn/ ()/ =>/ _/ :=/ _)")
-
-code_reserved SML ref
-
-
-subsubsection {* OCaml *}
-
-code_type ref (OCaml "_/ ref")
-code_const Ref (OCaml "failwith/ \"bare Ref\")")
-code_const Ref.new (OCaml "(fn/ ()/ =>/ ref/ _)")
-code_const Ref.lookup (OCaml "(fn/ ()/ =>/ !/ _)")
-code_const Ref.update (OCaml "(fn/ ()/ =>/ _/ :=/ _)")
-
-code_reserved OCaml ref
-
-
-subsubsection {* Haskell *}
-
-code_type ref (Haskell "STRef/ RealWorld/ _")
-code_const Ref (Haskell "error/ \"bare Ref\"")
-code_const Ref.new (Haskell "newSTRef")
-code_const Ref.lookup (Haskell "readSTRef")
-code_const Ref.update (Haskell "writeSTRef")
-
-end
\ No newline at end of file
--- a/src/HOL/Library/Relational.thy	Thu Jan 08 10:53:48 2009 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,700 +0,0 @@
-theory Relational 
-imports Array Ref
-begin
-
-section{* Definition of the Relational framework *}
-
-text {* The crel predicate states that when a computation c runs with the heap h
-  will result in return value r and a heap h' (if no exception occurs). *}  
-
-definition crel :: "'a Heap \<Rightarrow> heap \<Rightarrow> heap \<Rightarrow> 'a \<Rightarrow> bool"
-where
-  crel_def': "crel c h h' r \<longleftrightarrow> Heap_Monad.execute c h = (Inl r, h')"
-
-lemma crel_def: -- FIXME
-  "crel c h h' r \<longleftrightarrow> (Inl r, h') = Heap_Monad.execute c h"
-  unfolding crel_def' by auto
-
-lemma crel_deterministic: "\<lbrakk> crel f h h' a; crel f h h'' b \<rbrakk> \<Longrightarrow> (a = b) \<and> (h' = h'')"
-unfolding crel_def' by auto
-
-section {* Elimination rules *}
-
-text {* For all commands, we define simple elimination rules. *}
-(* FIXME: consumes 1 necessary ?? *)
-
-subsection {* Elimination rules for basic monadic commands *}
-
-lemma crelE[consumes 1]:
-  assumes "crel (f >>= g) h h'' r'"
-  obtains h' r where "crel f h h' r" "crel (g r) h' h'' r'"
-  using assms
-  by (auto simp add: crel_def bindM_def Let_def prod_case_beta split_def Pair_fst_snd_eq split add: sum.split_asm)
-
-lemma crelE'[consumes 1]:
-  assumes "crel (f >> g) h h'' r'"
-  obtains h' r where "crel f h h' r" "crel g h' h'' r'"
-  using assms
-  by (elim crelE) auto
-
-lemma crel_return[consumes 1]:
-  assumes "crel (return x) h h' r"
-  obtains "r = x" "h = h'"
-  using assms
-  unfolding crel_def return_def by simp
-
-lemma crel_raise[consumes 1]:
-  assumes "crel (raise x) h h' r"
-  obtains "False"
-  using assms
-  unfolding crel_def raise_def by simp
-
-lemma crel_if:
-  assumes "crel (if c then t else e) h h' r"
-  obtains "c" "crel t h h' r"
-        | "\<not>c" "crel e h h' r"
-  using assms
-  unfolding crel_def by auto
-
-lemma crel_option_case:
-  assumes "crel (case x of None \<Rightarrow> n | Some y \<Rightarrow> s y) h h' r"
-  obtains "x = None" "crel n h h' r"
-        | y where "x = Some y" "crel (s y) h h' r" 
-  using assms
-  unfolding crel_def by auto
-
-lemma crel_mapM:
-  assumes "crel (mapM f xs) h h' r"
-  assumes "\<And>h h'. P f [] h h' []"
-  assumes "\<And>h h1 h' x xs y ys. \<lbrakk> crel (f x) h h1 y; crel (mapM f xs) h1 h' ys; P f xs h1 h' ys \<rbrakk> \<Longrightarrow> P f (x#xs) h h' (y#ys)"
-  shows "P f xs h h' r"
-using assms(1)
-proof (induct xs arbitrary: h h' r)
-  case Nil  with assms(2) show ?case
-    by (auto elim: crel_return)
-next
-  case (Cons x xs)
-  from Cons(2) obtain h1 y ys where crel_f: "crel (f x) h h1 y"
-    and crel_mapM: "crel (mapM f xs) h1 h' ys"
-    and r_def: "r = y#ys"
-    unfolding mapM.simps
-    by (auto elim!: crelE crel_return)
-  from Cons(1)[OF crel_mapM] crel_mapM crel_f assms(3) r_def
-  show ?case by auto
-qed
-
-lemma crel_heap:
-  assumes "crel (Heap_Monad.heap f) h h' r"
-  obtains "h' = snd (f h)" "r = fst (f h)"
-  using assms
-  unfolding heap_def crel_def apfst_def split_def prod_fun_def by simp_all
-
-subsection {* Elimination rules for array commands *}
-
-lemma crel_length:
-  assumes "crel (length a) h h' r"
-  obtains "h = h'" "r = Heap.length a h'"
-  using assms
-  unfolding length_def
-  by (elim crel_heap) simp
-
-(* Strong version of the lemma for this operation is missing *) 
-lemma crel_new_weak:
-  assumes "crel (Array.new n v) h h' r"
-  obtains "get_array r h' = List.replicate n v"
-  using assms unfolding  Array.new_def
-  by (elim crel_heap) (auto simp:Heap.array_def Let_def split_def)
-
-lemma crel_nth[consumes 1]:
-  assumes "crel (nth a i) h h' r"
-  obtains "r = (get_array a h) ! i" "h = h'" "i < Heap.length a h"
-  using assms
-  unfolding nth_def
-  by (auto elim!: crelE crel_if crel_raise crel_length crel_heap)
-
-lemma crel_upd[consumes 1]:
-  assumes "crel (upd i v a) h h' r"
-  obtains "r = a" "h' = Heap.upd a i v h"
-  using assms
-  unfolding upd_def
-  by (elim crelE crel_if crel_return crel_raise
-    crel_length crel_heap) auto
-
-(* Strong version of the lemma for this operation is missing *)
-lemma crel_of_list_weak:
-  assumes "crel (Array.of_list xs) h h' r"
-  obtains "get_array r h' = xs"
-  using assms
-  unfolding of_list_def 
-  by (elim crel_heap) (simp add:get_array_init_array_list)
-
-lemma crel_map_entry:
-  assumes "crel (Array.map_entry i f a) h h' r"
-  obtains "r = a" "h' = Heap.upd a i (f (get_array a h ! i)) h"
-  using assms
-  unfolding Array.map_entry_def
-  by (elim crelE crel_upd crel_nth) auto
-
-lemma crel_swap:
-  assumes "crel (Array.swap i x a) h h' r"
-  obtains "r = get_array a h ! i" "h' = Heap.upd a i x h"
-  using assms
-  unfolding Array.swap_def
-  by (elim crelE crel_upd crel_nth crel_return) auto
-
-(* Strong version of the lemma for this operation is missing *)
-lemma crel_make_weak:
-  assumes "crel (Array.make n f) h h' r"
-  obtains "i < n \<Longrightarrow> get_array r h' ! i = f i"
-  using assms
-  unfolding Array.make_def
-  by (elim crel_of_list_weak) auto
-
-lemma upt_conv_Cons':
-  assumes "Suc a \<le> b"
-  shows "[b - Suc a..<b] = (b - Suc a)#[b - a..<b]"
-proof -
-  from assms have l: "b - Suc a < b" by arith
-  from assms have "Suc (b - Suc a) = b - a" by arith
-  with l show ?thesis by (simp add: upt_conv_Cons)
-qed
-
-lemma crel_mapM_nth:
-  assumes
-  "crel (mapM (Array.nth a) [Heap.length a h - n..<Heap.length a h]) h h' xs"
-  assumes "n \<le> Heap.length a h"
-  shows "h = h' \<and> xs = drop (Heap.length a h - n) (get_array a h)"
-using assms
-proof (induct n arbitrary: xs h h')
-  case 0 thus ?case
-    by (auto elim!: crel_return simp add: Heap.length_def)
-next
-  case (Suc n)
-  from Suc(3) have "[Heap.length a h - Suc n..<Heap.length a h] = (Heap.length a h - Suc n)#[Heap.length a h - n..<Heap.length a h]"
-    by (simp add: upt_conv_Cons')
-  with Suc(2) obtain r where
-    crel_mapM: "crel (mapM (Array.nth a) [Heap.length a h - n..<Heap.length a h]) h h' r"
-    and xs_def: "xs = get_array a h ! (Heap.length a h - Suc n) # r"
-    by (auto elim!: crelE crel_nth crel_return)
-  from Suc(3) have "Heap.length a h - n = Suc (Heap.length a h - Suc n)" 
-    by arith
-  with Suc.hyps[OF crel_mapM] xs_def show ?case
-    unfolding Heap.length_def
-    by (auto simp add: nth_drop')
-qed
-
-lemma crel_freeze:
-  assumes "crel (Array.freeze a) h h' xs"
-  obtains "h = h'" "xs = get_array a h"
-proof 
-  from assms have "crel (mapM (Array.nth a) [0..<Heap.length a h]) h h' xs"
-    unfolding freeze_def
-    by (auto elim: crelE crel_length)
-  hence "crel (mapM (Array.nth a) [(Heap.length a h - Heap.length a h)..<Heap.length a h]) h h' xs"
-    by simp
-  from crel_mapM_nth[OF this] show "h = h'" and "xs = get_array a h" by auto
-qed
-
-lemma crel_mapM_map_entry_remains:
-  assumes "crel (mapM (\<lambda>n. map_entry n f a) [Heap.length a h - n..<Heap.length a h]) h h' r"
-  assumes "i < Heap.length a h - n"
-  shows "get_array a h ! i = get_array a h' ! i"
-using assms
-proof (induct n arbitrary: h h' r)
-  case 0
-  thus ?case
-    by (auto elim: crel_return)
-next
-  case (Suc n)
-  let ?h1 = "Heap.upd a (Heap.length a h - Suc n) (f (get_array a h ! (Heap.length a h - Suc n))) h"
-  from Suc(3) have "[Heap.length a h - Suc n..<Heap.length a h] = (Heap.length a h - Suc n)#[Heap.length a h - n..<Heap.length a h]"
-    by (simp add: upt_conv_Cons')
-  from Suc(2) this obtain r where
-    crel_mapM: "crel (mapM (\<lambda>n. map_entry n f a) [Heap.length a h - n..<Heap.length a h]) ?h1 h' r"
-    by (auto simp add: elim!: crelE crel_map_entry crel_return)
-  have length_remains: "Heap.length a ?h1 = Heap.length a h" by simp
-  from crel_mapM have crel_mapM': "crel (mapM (\<lambda>n. map_entry n f a) [Heap.length a ?h1 - n..<Heap.length a ?h1]) ?h1 h' r"
-    by simp
-  from Suc(1)[OF this] length_remains Suc(3) show ?case by simp
-qed
-
-lemma crel_mapM_map_entry_changes:
-  assumes "crel (mapM (\<lambda>n. map_entry n f a) [Heap.length a h - n..<Heap.length a h]) h h' r"
-  assumes "n \<le> Heap.length a h"  
-  assumes "i \<ge> Heap.length a h - n"
-  assumes "i < Heap.length a h"
-  shows "get_array a h' ! i = f (get_array a h ! i)"
-using assms
-proof (induct n arbitrary: h h' r)
-  case 0
-  thus ?case
-    by (auto elim!: crel_return)
-next
-  case (Suc n)
-  let ?h1 = "Heap.upd a (Heap.length a h - Suc n) (f (get_array a h ! (Heap.length a h - Suc n))) h"
-  from Suc(3) have "[Heap.length a h - Suc n..<Heap.length a h] = (Heap.length a h - Suc n)#[Heap.length a h - n..<Heap.length a h]"
-    by (simp add: upt_conv_Cons')
-  from Suc(2) this obtain r where
-    crel_mapM: "crel (mapM (\<lambda>n. map_entry n f a) [Heap.length a h - n..<Heap.length a h]) ?h1 h' r"
-    by (auto simp add: elim!: crelE crel_map_entry crel_return)
-  have length_remains: "Heap.length a ?h1 = Heap.length a h" by simp
-  from Suc(3) have less: "Heap.length a h - Suc n < Heap.length a h - n" by arith
-  from Suc(3) have less2: "Heap.length a h - Suc n < Heap.length a h" by arith
-  from Suc(4) length_remains have cases: "i = Heap.length a ?h1 - Suc n \<or> i \<ge> Heap.length a ?h1 - n" by arith
-  from crel_mapM have crel_mapM': "crel (mapM (\<lambda>n. map_entry n f a) [Heap.length a ?h1 - n..<Heap.length a ?h1]) ?h1 h' r"
-    by simp
-  from Suc(1)[OF this] cases Suc(3) Suc(5) length_remains
-    crel_mapM_map_entry_remains[OF this, of "Heap.length a h - Suc n", symmetric] less less2
-  show ?case
-    by (auto simp add: nth_list_update_eq Heap.length_def)
-qed
-
-lemma crel_mapM_map_entry_length:
-  assumes "crel (mapM (\<lambda>n. map_entry n f a) [Heap.length a h - n..<Heap.length a h]) h h' r"
-  assumes "n \<le> Heap.length a h"
-  shows "Heap.length a h' = Heap.length a h"
-using assms
-proof (induct n arbitrary: h h' r)
-  case 0
-  thus ?case by (auto elim!: crel_return)
-next
-  case (Suc n)
-  let ?h1 = "Heap.upd a (Heap.length a h - Suc n) (f (get_array a h ! (Heap.length a h - Suc n))) h"
-  from Suc(3) have "[Heap.length a h - Suc n..<Heap.length a h] = (Heap.length a h - Suc n)#[Heap.length a h - n..<Heap.length a h]"
-    by (simp add: upt_conv_Cons')
-  from Suc(2) this obtain r where 
-    crel_mapM: "crel (mapM (\<lambda>n. map_entry n f a) [Heap.length a h - n..<Heap.length a h]) ?h1 h' r"
-    by (auto elim!: crelE crel_map_entry crel_return)
-  have length_remains: "Heap.length a ?h1 = Heap.length a h" by simp
-  from crel_mapM have crel_mapM': "crel (mapM (\<lambda>n. map_entry n f a) [Heap.length a ?h1 - n..<Heap.length a ?h1]) ?h1 h' r"
-    by simp
-  from Suc(1)[OF this] length_remains Suc(3) show ?case by simp
-qed
-
-lemma crel_mapM_map_entry:
-assumes "crel (mapM (\<lambda>n. map_entry n f a) [0..<Heap.length a h]) h h' r"
-  shows "get_array a h' = List.map f (get_array a h)"
-proof -
-  from assms have "crel (mapM (\<lambda>n. map_entry n f a) [Heap.length a h - Heap.length a h..<Heap.length a h]) h h' r" by simp
-  from crel_mapM_map_entry_length[OF this]
-  crel_mapM_map_entry_changes[OF this] show ?thesis
-    unfolding Heap.length_def
-    by (auto intro: nth_equalityI)
-qed
-
-lemma crel_map_weak:
-  assumes crel_map: "crel (Array.map f a) h h' r"
-  obtains "r = a" "get_array a h' = List.map f (get_array a h)"
-proof
-  from assms crel_mapM_map_entry show  "get_array a h' = List.map f (get_array a h)"
-    unfolding Array.map_def
-    by (fastsimp elim!: crelE crel_length crel_return)
-  from assms show "r = a"
-    unfolding Array.map_def
-    by (elim crelE crel_return)
-qed
-
-subsection {* Elimination rules for reference commands *}
-
-(* TODO:
-maybe introduce a new predicate "extends h' h x"
-which means h' extends h with a new reference x.
-Then crel_new: would be
-assumes "crel (Ref.new v) h h' x"
-obtains "get_ref x h' = v"
-and "extends h' h x"
-
-and we would need further rules for extends:
-extends h' h x \<Longrightarrow> \<not> ref_present x h
-extends h' h x \<Longrightarrow>  ref_present x h'
-extends h' h x \<Longrightarrow> ref_present y h \<Longrightarrow> ref_present y h'
-extends h' h x \<Longrightarrow> ref_present y h \<Longrightarrow> get_ref y h = get_ref y h'
-extends h' h x \<Longrightarrow> lim h' = Suc (lim h)
-*)
-
-lemma crel_Ref_new:
-  assumes "crel (Ref.new v) h h' x"
-  obtains "get_ref x h' = v"
-  and "\<not> ref_present x h"
-  and "ref_present x h'"
-  and "\<forall>y. ref_present y h \<longrightarrow> get_ref y h = get_ref y h'"
- (* and "lim h' = Suc (lim h)" *)
-  and "\<forall>y. ref_present y h \<longrightarrow> ref_present y h'"
-  using assms
-  unfolding Ref.new_def
-  apply (elim crel_heap)
-  unfolding Heap.ref_def
-  apply (simp add: Let_def)
-  unfolding Heap.new_ref_def
-  apply (simp add: Let_def)
-  unfolding ref_present_def
-  apply auto
-  unfolding get_ref_def set_ref_def
-  apply auto
-  done
-
-lemma crel_lookup:
-  assumes "crel (!ref) h h' r"
-  obtains "h = h'" "r = get_ref ref h"
-using assms
-unfolding Ref.lookup_def
-by (auto elim: crel_heap)
-
-lemma crel_update:
-  assumes "crel (ref := v) h h' r"
-  obtains "h' = set_ref ref v h" "r = ()"
-using assms
-unfolding Ref.update_def
-by (auto elim: crel_heap)
-
-lemma crel_change:
-  assumes "crel (Ref.change f ref) h h' r"
-  obtains "h' = set_ref ref (f (get_ref ref h)) h" "r = f (get_ref ref h)"
-using assms
-unfolding Ref.change_def Let_def
-by (auto elim!: crelE crel_lookup crel_update crel_return)
-
-subsection {* Elimination rules for the assert command *}
-
-lemma crel_assert[consumes 1]:
-  assumes "crel (assert P x) h h' r"
-  obtains "P x" "r = x" "h = h'"
-  using assms
-  unfolding assert_def
-  by (elim crel_if crel_return crel_raise) auto
-
-lemma crel_assert_eq: "(\<And>h h' r. crel f h h' r \<Longrightarrow> P r) \<Longrightarrow> f \<guillemotright>= assert P = f"
-unfolding crel_def bindM_def Let_def assert_def
-  raise_def return_def prod_case_beta
-apply (cases f)
-apply simp
-apply (simp add: expand_fun_eq split_def)
-apply auto
-apply (case_tac "fst (fun x)")
-apply (simp_all add: Pair_fst_snd_eq)
-apply (erule_tac x="x" in meta_allE)
-apply fastsimp
-done
-
-section {* Introduction rules *}
-
-subsection {* Introduction rules for basic monadic commands *}
-
-lemma crelI:
-  assumes "crel f h h' r" "crel (g r) h' h'' r'"
-  shows "crel (f >>= g) h h'' r'"
-  using assms by (simp add: crel_def' bindM_def)
-
-lemma crelI':
-  assumes "crel f h h' r" "crel g h' h'' r'"
-  shows "crel (f >> g) h h'' r'"
-  using assms by (intro crelI) auto
-
-lemma crel_returnI:
-  shows "crel (return x) h h x"
-  unfolding crel_def return_def by simp
-
-lemma crel_raiseI:
-  shows "\<not> (crel (raise x) h h' r)"
-  unfolding crel_def raise_def by simp
-
-lemma crel_ifI:
-  assumes "c \<longrightarrow> crel t h h' r"
-  "\<not>c \<longrightarrow> crel e h h' r"
-  shows "crel (if c then t else e) h h' r"
-  using assms
-  unfolding crel_def by auto
-
-lemma crel_option_caseI:
-  assumes "\<And>y. x = Some y \<Longrightarrow> crel (s y) h h' r"
-  assumes "x = None \<Longrightarrow> crel n h h' r"
-  shows "crel (case x of None \<Rightarrow> n | Some y \<Rightarrow> s y) h h' r"
-using assms
-by (auto split: option.split)
-
-lemma crel_heapI:
-  shows "crel (Heap_Monad.heap f) h (snd (f h)) (fst (f h))"
-  by (simp add: crel_def apfst_def split_def prod_fun_def)
-
-lemma crel_heapI':
-  assumes "h' = snd (f h)" "r = fst (f h)"
-  shows "crel (Heap_Monad.heap f) h h' r"
-  using assms
-  by (simp add: crel_def split_def apfst_def prod_fun_def)
-
-lemma crelI2:
-  assumes "\<exists>h' rs'. crel f h h' rs' \<and> (\<exists>h'' rs. crel (g rs') h' h'' rs)"
-  shows "\<exists>h'' rs. crel (f\<guillemotright>= g) h h'' rs"
-  oops
-
-lemma crel_ifI2:
-  assumes "c \<Longrightarrow> \<exists>h' r. crel t h h' r"
-  "\<not> c \<Longrightarrow> \<exists>h' r. crel e h h' r"
-  shows "\<exists> h' r. crel (if c then t else e) h h' r"
-  oops
-
-subsection {* Introduction rules for array commands *}
-
-lemma crel_lengthI:
-  shows "crel (length a) h h (Heap.length a h)"
-  unfolding length_def
-  by (rule crel_heapI') auto
-
-(* thm crel_newI for Array.new is missing *)
-
-lemma crel_nthI:
-  assumes "i < Heap.length a h"
-  shows "crel (nth a i) h h ((get_array a h) ! i)"
-  using assms
-  unfolding nth_def
-  by (auto intro!: crelI crel_ifI crel_raiseI crel_lengthI crel_heapI')
-
-lemma crel_updI:
-  assumes "i < Heap.length a h"
-  shows "crel (upd i v a) h (Heap.upd a i v h) a"
-  using assms
-  unfolding upd_def
-  by (auto intro!: crelI crel_ifI crel_returnI crel_raiseI
-    crel_lengthI crel_heapI')
-
-(* thm crel_of_listI is missing *)
-
-(* thm crel_map_entryI is missing *)
-
-(* thm crel_swapI is missing *)
-
-(* thm crel_makeI is missing *)
-
-(* thm crel_freezeI is missing *)
-
-(* thm crel_mapI is missing *)
-
-subsection {* Introduction rules for reference commands *}
-
-lemma crel_lookupI:
-  shows "crel (!ref) h h (get_ref ref h)"
-  unfolding lookup_def by (auto intro!: crel_heapI')
-
-lemma crel_updateI:
-  shows "crel (ref := v) h (set_ref ref v h) ()"
-  unfolding update_def by (auto intro!: crel_heapI')
-
-lemma crel_changeI: 
-  shows "crel (Ref.change f ref) h (set_ref ref (f (get_ref ref h)) h) (f (get_ref ref h))"
-unfolding change_def Let_def by (auto intro!: crelI crel_returnI crel_lookupI crel_updateI)
-
-subsection {* Introduction rules for the assert command *}
-
-lemma crel_assertI:
-  assumes "P x"
-  shows "crel (assert P x) h h x"
-  using assms
-  unfolding assert_def
-  by (auto intro!: crel_ifI crel_returnI crel_raiseI)
- 
-section {* Defintion of the noError predicate *}
-
-text {* We add a simple definitional setting for crel intro rules
-  where we only would like to show that the computation does not result in a exception for heap h,
-  but we do not care about statements about the resulting heap and return value.*}
-
-definition noError :: "'a Heap \<Rightarrow> heap \<Rightarrow> bool"
-where
-  "noError c h \<longleftrightarrow> (\<exists>r h'. (Inl r, h') = Heap_Monad.execute c h)"
-
-lemma noError_def': -- FIXME
-  "noError c h \<longleftrightarrow> (\<exists>r h'. Heap_Monad.execute c h = (Inl r, h'))"
-  unfolding noError_def apply auto proof -
-  fix r h'
-  assume "(Inl r, h') = Heap_Monad.execute c h"
-  then have "Heap_Monad.execute c h = (Inl r, h')" ..
-  then show "\<exists>r h'. Heap_Monad.execute c h = (Inl r, h')" by blast
-qed
-
-subsection {* Introduction rules for basic monadic commands *}
-
-lemma noErrorI:
-  assumes "noError f h"
-  assumes "\<And>h' r. crel f h h' r \<Longrightarrow> noError (g r) h'"
-  shows "noError (f \<guillemotright>= g) h"
-  using assms
-  by (auto simp add: noError_def' crel_def' bindM_def)
-
-lemma noErrorI':
-  assumes "noError f h"
-  assumes "\<And>h' r. crel f h h' r \<Longrightarrow> noError g h'"
-  shows "noError (f \<guillemotright> g) h"
-  using assms
-  by (auto simp add: noError_def' crel_def' bindM_def)
-
-lemma noErrorI2:
-"\<lbrakk>crel f h h' r ; noError f h; noError (g r) h'\<rbrakk>
-\<Longrightarrow> noError (f \<guillemotright>= g) h"
-by (auto simp add: noError_def' crel_def' bindM_def)
-
-lemma noError_return: 
-  shows "noError (return x) h"
-  unfolding noError_def return_def
-  by auto
-
-lemma noError_if:
-  assumes "c \<Longrightarrow> noError t h" "\<not> c \<Longrightarrow> noError e h"
-  shows "noError (if c then t else e) h"
-  using assms
-  unfolding noError_def
-  by auto
-
-lemma noError_option_case:
-  assumes "\<And>y. x = Some y \<Longrightarrow> noError (s y) h"
-  assumes "noError n h"
-  shows "noError (case x of None \<Rightarrow> n | Some y \<Rightarrow> s y) h"
-using assms
-by (auto split: option.split)
-
-lemma noError_mapM: 
-assumes "\<forall>x \<in> set xs. noError (f x) h \<and> crel (f x) h h (r x)" 
-shows "noError (mapM f xs) h"
-using assms
-proof (induct xs)
-  case Nil
-  thus ?case
-    unfolding mapM.simps by (intro noError_return)
-next
-  case (Cons x xs)
-  thus ?case
-    unfolding mapM.simps
-    by (auto intro: noErrorI2[of "f x"] noErrorI noError_return)
-qed
-
-lemma noError_heap:
-  shows "noError (Heap_Monad.heap f) h"
-  by (simp add: noError_def' apfst_def prod_fun_def split_def)
-
-subsection {* Introduction rules for array commands *}
-
-lemma noError_length:
-  shows "noError (Array.length a) h"
-  unfolding length_def
-  by (intro noError_heap)
-
-lemma noError_new:
-  shows "noError (Array.new n v) h"
-unfolding Array.new_def by (intro noError_heap)
-
-lemma noError_upd:
-  assumes "i < Heap.length a h"
-  shows "noError (Array.upd i v a) h"
-  using assms
-  unfolding upd_def
-  by (auto intro!: noErrorI noError_if noError_return noError_length noError_heap) (auto elim: crel_length)
-
-lemma noError_nth:
-assumes "i < Heap.length a h"
-  shows "noError (Array.nth a i) h"
-  using assms
-  unfolding nth_def
-  by (auto intro!: noErrorI noError_if noError_return noError_length noError_heap) (auto elim: crel_length)
-
-lemma noError_of_list:
-  shows "noError (of_list ls) h"
-  unfolding of_list_def by (rule noError_heap)
-
-lemma noError_map_entry:
-  assumes "i < Heap.length a h"
-  shows "noError (map_entry i f a) h"
-  using assms
-  unfolding map_entry_def
-  by (auto elim: crel_nth intro!: noErrorI noError_nth noError_upd)
-
-lemma noError_swap:
-  assumes "i < Heap.length a h"
-  shows "noError (swap i x a) h"
-  using assms
-  unfolding swap_def
-  by (auto elim: crel_nth intro!: noErrorI noError_return noError_nth noError_upd)
-
-lemma noError_make:
-  shows "noError (make n f) h"
-  unfolding make_def
-  by (auto intro: noError_of_list)
-
-(*TODO: move to HeapMonad *)
-lemma mapM_append:
-  "mapM f (xs @ ys) = mapM f xs \<guillemotright>= (\<lambda>xs. mapM f ys \<guillemotright>= (\<lambda>ys. return (xs @ ys)))"
-  by (induct xs) (simp_all add: monad_simp)
-
-lemma noError_freeze:
-  shows "noError (freeze a) h"
-unfolding freeze_def
-by (auto intro!: noErrorI noError_length noError_mapM[of _ _ _ "\<lambda>x. get_array a h ! x"]
-  noError_nth crel_nthI elim: crel_length)
-
-lemma noError_mapM_map_entry:
-  assumes "n \<le> Heap.length a h"
-  shows "noError (mapM (\<lambda>n. map_entry n f a) [Heap.length a h - n..<Heap.length a h]) h"
-using assms
-proof (induct n arbitrary: h)
-  case 0
-  thus ?case by (auto intro: noError_return)
-next
-  case (Suc n)
-  from Suc.prems have "[Heap.length a h - Suc n..<Heap.length a h] = (Heap.length a h - Suc n)#[Heap.length a h - n..<Heap.length a h]"
-    by (simp add: upt_conv_Cons')
-  with Suc.hyps[of "(Heap.upd a (Heap.length a h - Suc n) (f (get_array a h ! (Heap.length a h - Suc n))) h)"] Suc.prems show ?case
-    by (auto simp add: intro!: noErrorI noError_return noError_map_entry elim: crel_map_entry)
-qed
-
-lemma noError_map:
-  shows "noError (Array.map f a) h"
-using noError_mapM_map_entry[of "Heap.length a h" a h]
-unfolding Array.map_def
-by (auto intro: noErrorI noError_length noError_return elim!: crel_length)
-
-subsection {* Introduction rules for the reference commands *}
-
-lemma noError_Ref_new:
-  shows "noError (Ref.new v) h"
-unfolding Ref.new_def by (intro noError_heap)
-
-lemma noError_lookup:
-  shows "noError (!ref) h"
-  unfolding lookup_def by (intro noError_heap)
-
-lemma noError_update:
-  shows "noError (ref := v) h"
-  unfolding update_def by (intro noError_heap)
-
-lemma noError_change:
-  shows "noError (Ref.change f ref) h"
-  unfolding Ref.change_def Let_def by (intro noErrorI noError_lookup noError_update noError_return)
-
-subsection {* Introduction rules for the assert command *}
-
-lemma noError_assert:
-  assumes "P x"
-  shows "noError (assert P x) h"
-  using assms
-  unfolding assert_def
-  by (auto intro: noError_if noError_return)
-
-section {* Cumulative lemmas *}
-
-lemmas crel_elim_all =
-  crelE crelE' crel_return crel_raise crel_if crel_option_case
-  crel_length crel_new_weak crel_nth crel_upd crel_of_list_weak crel_map_entry crel_swap crel_make_weak crel_freeze crel_map_weak
-  crel_Ref_new crel_lookup crel_update crel_change
-  crel_assert
-
-lemmas crel_intro_all =
-  crelI crelI' crel_returnI crel_raiseI crel_ifI crel_option_caseI
-  crel_lengthI (* crel_newI *) crel_nthI crel_updI (* crel_of_listI crel_map_entryI crel_swapI crel_makeI crel_freezeI crel_mapI *)
-  (* crel_Ref_newI *) crel_lookupI crel_updateI crel_changeI
-  crel_assert
-
-lemmas noError_intro_all = 
-  noErrorI noErrorI' noError_return noError_if noError_option_case
-  noError_length noError_new noError_nth noError_upd noError_of_list noError_map_entry noError_swap noError_make noError_freeze noError_map
-  noError_Ref_new noError_lookup noError_update noError_change
-  noError_assert
-
-end
\ No newline at end of file
--- a/src/HOL/Library/Subarray.thy	Thu Jan 08 10:53:48 2009 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,66 +0,0 @@
-theory Subarray
-imports Array Sublist
-begin
-
-definition subarray :: "nat \<Rightarrow> nat \<Rightarrow> ('a::heap) array \<Rightarrow> heap \<Rightarrow> 'a list"
-where
-  "subarray n m a h \<equiv> sublist' n m (get_array a h)"
-
-lemma subarray_upd: "i \<ge> m \<Longrightarrow> subarray n m a (Heap.upd a i v h) = subarray n m a h"
-apply (simp add: subarray_def Heap.upd_def)
-apply (simp add: sublist'_update1)
-done
-
-lemma subarray_upd2: " i < n  \<Longrightarrow> subarray n m a (Heap.upd a i v h) = subarray n m a h"
-apply (simp add: subarray_def Heap.upd_def)
-apply (subst sublist'_update2)
-apply fastsimp
-apply simp
-done
-
-lemma subarray_upd3: "\<lbrakk> n \<le> i; i < m\<rbrakk> \<Longrightarrow> subarray n m a (Heap.upd a i v h) = subarray n m a h[i - n := v]"
-unfolding subarray_def Heap.upd_def
-by (simp add: sublist'_update3)
-
-lemma subarray_Nil: "n \<ge> m \<Longrightarrow> subarray n m a h = []"
-by (simp add: subarray_def sublist'_Nil')
-
-lemma subarray_single: "\<lbrakk> n < Heap.length a h \<rbrakk> \<Longrightarrow> subarray n (Suc n) a h = [get_array a h ! n]" 
-by (simp add: subarray_def Heap.length_def sublist'_single)
-
-lemma length_subarray: "m \<le> Heap.length a h \<Longrightarrow> List.length (subarray n m a h) = m - n"
-by (simp add: subarray_def Heap.length_def length_sublist')
-
-lemma length_subarray_0: "m \<le> Heap.length a h \<Longrightarrow> List.length (subarray 0 m a h) = m"
-by (simp add: length_subarray)
-
-lemma subarray_nth_array_Cons: "\<lbrakk> i < Heap.length a h; i < j \<rbrakk> \<Longrightarrow> (get_array a h ! i) # subarray (Suc i) j a h = subarray i j a h"
-unfolding Heap.length_def subarray_def
-by (simp add: sublist'_front)
-
-lemma subarray_nth_array_back: "\<lbrakk> i < j; j \<le> Heap.length a h\<rbrakk> \<Longrightarrow> subarray i j a h = subarray i (j - 1) a h @ [get_array a h ! (j - 1)]"
-unfolding Heap.length_def subarray_def
-by (simp add: sublist'_back)
-
-lemma subarray_append: "\<lbrakk> i < j; j < k \<rbrakk> \<Longrightarrow> subarray i j a h @ subarray j k a h = subarray i k a h"
-unfolding subarray_def
-by (simp add: sublist'_append)
-
-lemma subarray_all: "subarray 0 (Heap.length a h) a h = get_array a h"
-unfolding Heap.length_def subarray_def
-by (simp add: sublist'_all)
-
-lemma nth_subarray: "\<lbrakk> k < j - i; j \<le> Heap.length a h \<rbrakk> \<Longrightarrow> subarray i j a h ! k = get_array a h ! (i + k)"
-unfolding Heap.length_def subarray_def
-by (simp add: nth_sublist')
-
-lemma subarray_eq_samelength_iff: "Heap.length a h = Heap.length a h' \<Longrightarrow> (subarray i j a h = subarray i j a h') = (\<forall>i'. i \<le> i' \<and> i' < j \<longrightarrow> get_array a h ! i' = get_array a h' ! i')"
-unfolding Heap.length_def subarray_def by (rule sublist'_eq_samelength_iff)
-
-lemma all_in_set_subarray_conv: "(\<forall>j. j \<in> set (subarray l r a h) \<longrightarrow> P j) = (\<forall>k. l \<le> k \<and> k < r \<and> k < Heap.length a h \<longrightarrow> P (get_array a h ! k))"
-unfolding subarray_def Heap.length_def by (rule all_in_set_sublist'_conv)
-
-lemma ball_in_set_subarray_conv: "(\<forall>j \<in> set (subarray l r a h). P j) = (\<forall>k. l \<le> k \<and> k < r \<and> k < Heap.length a h \<longrightarrow> P (get_array a h ! k))"
-unfolding subarray_def Heap.length_def by (rule ball_in_set_sublist'_conv)
-
-end
\ No newline at end of file
--- a/src/HOL/Library/Sublist.thy	Thu Jan 08 10:53:48 2009 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,507 +0,0 @@
-(* $Id$ *)
-
-header {* Slices of lists *}
-
-theory Sublist
-imports Multiset
-begin
-
-
-lemma sublist_split: "i \<le> j \<and> j \<le> k \<Longrightarrow> sublist xs {i..<j} @ sublist xs {j..<k} = sublist xs {i..<k}" 
-apply (induct xs arbitrary: i j k)
-apply simp
-apply (simp only: sublist_Cons)
-apply simp
-apply safe
-apply simp
-apply (erule_tac x="0" in meta_allE)
-apply (erule_tac x="j - 1" in meta_allE)
-apply (erule_tac x="k - 1" in meta_allE)
-apply (subgoal_tac "0 \<le> j - 1 \<and> j - 1 \<le> k - 1")
-apply simp
-apply (subgoal_tac "{ja. Suc ja < j} = {0..<j - Suc 0}")
-apply (subgoal_tac "{ja. j \<le> Suc ja \<and> Suc ja < k} = {j - Suc 0..<k - Suc 0}")
-apply (subgoal_tac "{j. Suc j < k} = {0..<k - Suc 0}")
-apply simp
-apply fastsimp
-apply fastsimp
-apply fastsimp
-apply fastsimp
-apply (erule_tac x="i - 1" in meta_allE)
-apply (erule_tac x="j - 1" in meta_allE)
-apply (erule_tac x="k - 1" in meta_allE)
-apply (subgoal_tac " {ja. i \<le> Suc ja \<and> Suc ja < j} = {i - 1 ..<j - 1}")
-apply (subgoal_tac " {ja. j \<le> Suc ja \<and> Suc ja < k} = {j - 1..<k - 1}")
-apply (subgoal_tac "{j. i \<le> Suc j \<and> Suc j < k} = {i - 1..<k - 1}")
-apply (subgoal_tac " i - 1 \<le> j - 1 \<and> j - 1 \<le> k - 1")
-apply simp
-apply fastsimp
-apply fastsimp
-apply fastsimp
-apply fastsimp
-done
-
-lemma sublist_update1: "i \<notin> inds \<Longrightarrow> sublist (xs[i := v]) inds = sublist xs inds"
-apply (induct xs arbitrary: i inds)
-apply simp
-apply (case_tac i)
-apply (simp add: sublist_Cons)
-apply (simp add: sublist_Cons)
-done
-
-lemma sublist_update2: "i \<in> inds \<Longrightarrow> sublist (xs[i := v]) inds = (sublist xs inds)[(card {k \<in> inds. k < i}):= v]"
-proof (induct xs arbitrary: i inds)
-  case Nil thus ?case by simp
-next
-  case (Cons x xs)
-  thus ?case
-  proof (cases i)
-    case 0 with Cons show ?thesis by (simp add: sublist_Cons)
-  next
-    case (Suc i')
-    with Cons show ?thesis
-      apply simp
-      apply (simp add: sublist_Cons)
-      apply auto
-      apply (auto simp add: nat.split)
-      apply (simp add: card_less)
-      apply (simp add: card_less)
-      apply (simp add: card_less_Suc[symmetric])
-      apply (simp add: card_less_Suc2)
-      done
-  qed
-qed
-
-lemma sublist_update: "sublist (xs[i := v]) inds = (if i \<in> inds then (sublist xs inds)[(card {k \<in> inds. k < i}) := v] else sublist xs inds)"
-by (simp add: sublist_update1 sublist_update2)
-
-lemma sublist_take: "sublist xs {j. j < m} = take m xs"
-apply (induct xs arbitrary: m)
-apply simp
-apply (case_tac m)
-apply simp
-apply (simp add: sublist_Cons)
-done
-
-lemma sublist_take': "sublist xs {0..<m} = take m xs"
-apply (induct xs arbitrary: m)
-apply simp
-apply (case_tac m)
-apply simp
-apply (simp add: sublist_Cons sublist_take)
-done
-
-lemma sublist_all[simp]: "sublist xs {j. j < length xs} = xs"
-apply (induct xs)
-apply simp
-apply (simp add: sublist_Cons)
-done
-
-lemma sublist_all'[simp]: "sublist xs {0..<length xs} = xs"
-apply (induct xs)
-apply simp
-apply (simp add: sublist_Cons)
-done
-
-lemma sublist_single: "a < length xs \<Longrightarrow> sublist xs {a} = [xs ! a]"
-apply (induct xs arbitrary: a)
-apply simp
-apply(case_tac aa)
-apply simp
-apply (simp add: sublist_Cons)
-apply simp
-apply (simp add: sublist_Cons)
-done
-
-lemma sublist_is_Nil: "\<forall>i \<in> inds. i \<ge> length xs \<Longrightarrow> sublist xs inds = []" 
-apply (induct xs arbitrary: inds)
-apply simp
-apply (simp add: sublist_Cons)
-apply auto
-apply (erule_tac x="{j. Suc j \<in> inds}" in meta_allE)
-apply auto
-done
-
-lemma sublist_Nil': "sublist xs inds = [] \<Longrightarrow> \<forall>i \<in> inds. i \<ge> length xs"
-apply (induct xs arbitrary: inds)
-apply simp
-apply (simp add: sublist_Cons)
-apply (auto split: if_splits)
-apply (erule_tac x="{j. Suc j \<in> inds}" in meta_allE)
-apply (case_tac x, auto)
-done
-
-lemma sublist_Nil[simp]: "(sublist xs inds = []) = (\<forall>i \<in> inds. i \<ge> length xs)"
-apply (induct xs arbitrary: inds)
-apply simp
-apply (simp add: sublist_Cons)
-apply auto
-apply (erule_tac x="{j. Suc j \<in> inds}" in meta_allE)
-apply (case_tac x, auto)
-done
-
-lemma sublist_eq_subseteq: " \<lbrakk> inds' \<subseteq> inds; sublist xs inds = sublist ys inds \<rbrakk> \<Longrightarrow> sublist xs inds' = sublist ys inds'"
-apply (induct xs arbitrary: ys inds inds')
-apply simp
-apply (drule sym, rule sym)
-apply (simp add: sublist_Nil, fastsimp)
-apply (case_tac ys)
-apply (simp add: sublist_Nil, fastsimp)
-apply (auto simp add: sublist_Cons)
-apply (erule_tac x="list" in meta_allE)
-apply (erule_tac x="{j. Suc j \<in> inds}" in meta_allE)
-apply (erule_tac x="{j. Suc j \<in> inds'}" in meta_allE)
-apply fastsimp
-apply (erule_tac x="list" in meta_allE)
-apply (erule_tac x="{j. Suc j \<in> inds}" in meta_allE)
-apply (erule_tac x="{j. Suc j \<in> inds'}" in meta_allE)
-apply fastsimp
-done
-
-lemma sublist_eq: "\<lbrakk> \<forall>i \<in> inds. ((i < length xs) \<and> (i < length ys)) \<or> ((i \<ge> length xs ) \<and> (i \<ge> length ys)); \<forall>i \<in> inds. xs ! i = ys ! i \<rbrakk> \<Longrightarrow> sublist xs inds = sublist ys inds"
-apply (induct xs arbitrary: ys inds)
-apply simp
-apply (rule sym, simp add: sublist_Nil)
-apply (case_tac ys)
-apply (simp add: sublist_Nil)
-apply (auto simp add: sublist_Cons)
-apply (erule_tac x="list" in meta_allE)
-apply (erule_tac x="{j. Suc j \<in> inds}" in meta_allE)
-apply fastsimp
-apply (erule_tac x="list" in meta_allE)
-apply (erule_tac x="{j. Suc j \<in> inds}" in meta_allE)
-apply fastsimp
-done
-
-lemma sublist_eq_samelength: "\<lbrakk> length xs = length ys; \<forall>i \<in> inds. xs ! i = ys ! i \<rbrakk> \<Longrightarrow> sublist xs inds = sublist ys inds"
-by (rule sublist_eq, auto)
-
-lemma sublist_eq_samelength_iff: "length xs = length ys \<Longrightarrow> (sublist xs inds = sublist ys inds) = (\<forall>i \<in> inds. xs ! i = ys ! i)"
-apply (induct xs arbitrary: ys inds)
-apply simp
-apply (rule sym, simp add: sublist_Nil)
-apply (case_tac ys)
-apply (simp add: sublist_Nil)
-apply (auto simp add: sublist_Cons)
-apply (case_tac i)
-apply auto
-apply (case_tac i)
-apply auto
-done
-
-section {* Another sublist function *}
-
-function sublist' :: "nat \<Rightarrow> nat \<Rightarrow> 'a list \<Rightarrow> 'a list"
-where
-  "sublist' n m [] = []"
-| "sublist' n 0 xs = []"
-| "sublist' 0 (Suc m) (x#xs) = (x#sublist' 0 m xs)"
-| "sublist' (Suc n) (Suc m) (x#xs) = sublist' n m xs"
-by pat_completeness auto
-termination by lexicographic_order
-
-subsection {* Proving equivalence to the other sublist command *}
-
-lemma sublist'_sublist: "sublist' n m xs = sublist xs {j. n \<le> j \<and> j < m}"
-apply (induct xs arbitrary: n m)
-apply simp
-apply (case_tac n)
-apply (case_tac m)
-apply simp
-apply (simp add: sublist_Cons)
-apply (case_tac m)
-apply simp
-apply (simp add: sublist_Cons)
-done
-
-
-lemma "sublist' n m xs = sublist xs {n..<m}"
-apply (induct xs arbitrary: n m)
-apply simp
-apply (case_tac n, case_tac m)
-apply simp
-apply simp
-apply (simp add: sublist_take')
-apply (case_tac m)
-apply simp
-apply (simp add: sublist_Cons sublist'_sublist)
-done
-
-
-subsection {* Showing equivalence to use of drop and take for definition *}
-
-lemma "sublist' n m xs = take (m - n) (drop n xs)"
-apply (induct xs arbitrary: n m)
-apply simp
-apply (case_tac m)
-apply simp
-apply (case_tac n)
-apply simp
-apply simp
-done
-
-subsection {* General lemma about sublist *}
-
-lemma sublist'_Nil[simp]: "sublist' i j [] = []"
-by simp
-
-lemma sublist'_Cons[simp]: "sublist' i (Suc j) (x#xs) = (case i of 0 \<Rightarrow> (x # sublist' 0 j xs) | Suc i' \<Rightarrow>  sublist' i' j xs)"
-by (cases i) auto
-
-lemma sublist'_Cons2[simp]: "sublist' i j (x#xs) = (if (j = 0) then [] else ((if (i = 0) then [x] else []) @ sublist' (i - 1) (j - 1) xs))"
-apply (cases j)
-apply auto
-apply (cases i)
-apply auto
-done
-
-lemma sublist_n_0: "sublist' n 0 xs = []"
-by (induct xs, auto)
-
-lemma sublist'_Nil': "n \<ge> m \<Longrightarrow> sublist' n m xs = []"
-apply (induct xs arbitrary: n m)
-apply simp
-apply (case_tac m)
-apply simp
-apply (case_tac n)
-apply simp
-apply simp
-done
-
-lemma sublist'_Nil2: "n \<ge> length xs \<Longrightarrow> sublist' n m xs = []"
-apply (induct xs arbitrary: n m)
-apply simp
-apply (case_tac m)
-apply simp
-apply (case_tac n)
-apply simp
-apply simp
-done
-
-lemma sublist'_Nil3: "(sublist' n m xs = []) = ((n \<ge> m) \<or> (n \<ge> length xs))"
-apply (induct xs arbitrary: n m)
-apply simp
-apply (case_tac m)
-apply simp
-apply (case_tac n)
-apply simp
-apply simp
-done
-
-lemma sublist'_notNil: "\<lbrakk> n < length xs; n < m \<rbrakk> \<Longrightarrow> sublist' n m xs \<noteq> []"
-apply (induct xs arbitrary: n m)
-apply simp
-apply (case_tac m)
-apply simp
-apply (case_tac n)
-apply simp
-apply simp
-done
-
-lemma sublist'_single: "n < length xs \<Longrightarrow> sublist' n (Suc n) xs = [xs ! n]"
-apply (induct xs arbitrary: n)
-apply simp
-apply simp
-apply (case_tac n)
-apply (simp add: sublist_n_0)
-apply simp
-done
-
-lemma sublist'_update1: "i \<ge> m \<Longrightarrow> sublist' n m (xs[i:=v]) = sublist' n m xs"
-apply (induct xs arbitrary: n m i)
-apply simp
-apply simp
-apply (case_tac i)
-apply simp
-apply simp
-done
-
-lemma sublist'_update2: "i < n \<Longrightarrow> sublist' n m (xs[i:=v]) = sublist' n m xs"
-apply (induct xs arbitrary: n m i)
-apply simp
-apply simp
-apply (case_tac i)
-apply simp
-apply simp
-done
-
-lemma sublist'_update3: "\<lbrakk>n \<le> i; i < m\<rbrakk> \<Longrightarrow> sublist' n m (xs[i := v]) = (sublist' n m xs)[i - n := v]"
-proof (induct xs arbitrary: n m i)
-  case Nil thus ?case by auto
-next
-  case (Cons x xs)
-  thus ?case
-    apply -
-    apply auto
-    apply (cases i)
-    apply auto
-    apply (cases i)
-    apply auto
-    done
-qed
-
-lemma "\<lbrakk> sublist' i j xs = sublist' i j ys; n \<ge> i; m \<le> j \<rbrakk> \<Longrightarrow> sublist' n m xs = sublist' n m ys"
-proof (induct xs arbitrary: i j ys n m)
-  case Nil
-  thus ?case
-    apply -
-    apply (rule sym, drule sym)
-    apply (simp add: sublist'_Nil)
-    apply (simp add: sublist'_Nil3)
-    apply arith
-    done
-next
-  case (Cons x xs i j ys n m)
-  note c = this
-  thus ?case
-  proof (cases m)
-    case 0 thus ?thesis by (simp add: sublist_n_0)
-  next
-    case (Suc m')
-    note a = this
-    thus ?thesis
-    proof (cases n)
-      case 0 note b = this
-      show ?thesis
-      proof (cases ys)
-	case Nil  with a b Cons.prems show ?thesis by (simp add: sublist'_Nil3)
-      next
-	case (Cons y ys)
-	show ?thesis
-	proof (cases j)
-	  case 0 with a b Cons.prems show ?thesis by simp
-	next
-	  case (Suc j') with a b Cons.prems Cons show ?thesis 
-	    apply -
-	    apply (simp, rule Cons.hyps [of "0" "j'" "ys" "0" "m'"], auto)
-	    done
-	qed
-      qed
-    next
-      case (Suc n')
-      show ?thesis
-      proof (cases ys)
-	case Nil with Suc a Cons.prems show ?thesis by (auto simp add: sublist'_Nil3)
-      next
-	case (Cons y ys) with Suc a Cons.prems show ?thesis
-	  apply -
-	  apply simp
-	  apply (cases j)
-	  apply simp
-	  apply (cases i)
-	  apply simp
-	  apply (rule_tac j="nat" in Cons.hyps [of "0" _ "ys" "n'" "m'"])
-	  apply simp
-	  apply simp
-	  apply simp
-	  apply simp
-	  apply (rule_tac i="nata" and j="nat" in Cons.hyps [of _ _ "ys" "n'" "m'"])
-	  apply simp
-	  apply simp
-	  apply simp
-	  done
-      qed
-    qed
-  qed
-qed
-
-lemma length_sublist': "j \<le> length xs \<Longrightarrow> length (sublist' i j xs) = j - i"
-by (induct xs arbitrary: i j, auto)
-
-lemma sublist'_front: "\<lbrakk> i < j; i < length xs \<rbrakk> \<Longrightarrow> sublist' i j xs = xs ! i # sublist' (Suc i) j xs"
-apply (induct xs arbitrary: a i j)
-apply simp
-apply (case_tac j)
-apply simp
-apply (case_tac i)
-apply simp
-apply simp
-done
-
-lemma sublist'_back: "\<lbrakk> i < j; j \<le> length xs \<rbrakk> \<Longrightarrow> sublist' i j xs = sublist' i (j - 1) xs @ [xs ! (j - 1)]"
-apply (induct xs arbitrary: a i j)
-apply simp
-apply simp
-apply (case_tac j)
-apply simp
-apply auto
-apply (case_tac nat)
-apply auto
-done
-
-(* suffices that j \<le> length xs and length ys *) 
-lemma sublist'_eq_samelength_iff: "length xs = length ys \<Longrightarrow> (sublist' i j xs  = sublist' i j ys) = (\<forall>i'. i \<le> i' \<and> i' < j \<longrightarrow> xs ! i' = ys ! i')"
-proof (induct xs arbitrary: ys i j)
-  case Nil thus ?case by simp
-next
-  case (Cons x xs)
-  thus ?case
-    apply -
-    apply (cases ys)
-    apply simp
-    apply simp
-    apply auto
-    apply (case_tac i', auto)
-    apply (erule_tac x="Suc i'" in allE, auto)
-    apply (erule_tac x="i' - 1" in allE, auto)
-    apply (case_tac i', auto)
-    apply (erule_tac x="Suc i'" in allE, auto)
-    done
-qed
-
-lemma sublist'_all[simp]: "sublist' 0 (length xs) xs = xs"
-by (induct xs, auto)
-
-lemma sublist'_sublist': "sublist' n m (sublist' i j xs) = sublist' (i + n) (min (i + m) j) xs" 
-by (induct xs arbitrary: i j n m) (auto simp add: min_diff)
-
-lemma sublist'_append: "\<lbrakk> i \<le> j; j \<le> k \<rbrakk> \<Longrightarrow>(sublist' i j xs) @ (sublist' j k xs) = sublist' i k xs"
-by (induct xs arbitrary: i j k) auto
-
-lemma nth_sublist': "\<lbrakk> k < j - i; j \<le> length xs \<rbrakk> \<Longrightarrow> (sublist' i j xs) ! k = xs ! (i + k)"
-apply (induct xs arbitrary: i j k)
-apply auto
-apply (case_tac k)
-apply auto
-apply (case_tac i)
-apply auto
-done
-
-lemma set_sublist': "set (sublist' i j xs) = {x. \<exists>k. i \<le> k \<and> k < j \<and> k < List.length xs \<and> x = xs ! k}"
-apply (simp add: sublist'_sublist)
-apply (simp add: set_sublist)
-apply auto
-done
-
-lemma all_in_set_sublist'_conv: "(\<forall>j. j \<in> set (sublist' l r xs) \<longrightarrow> P j) = (\<forall>k. l \<le> k \<and> k < r \<and> k < List.length xs \<longrightarrow> P (xs ! k))"
-unfolding set_sublist' by blast
-
-lemma ball_in_set_sublist'_conv: "(\<forall>j \<in> set (sublist' l r xs). P j) = (\<forall>k. l \<le> k \<and> k < r \<and> k < List.length xs \<longrightarrow> P (xs ! k))"
-unfolding set_sublist' by blast
-
-
-lemma multiset_of_sublist:
-assumes l_r: "l \<le> r \<and> r \<le> List.length xs"
-assumes left: "\<forall> i. i < l \<longrightarrow> (xs::'a list) ! i = ys ! i"
-assumes right: "\<forall> i. i \<ge> r \<longrightarrow> (xs::'a list) ! i = ys ! i"
-assumes multiset: "multiset_of xs = multiset_of ys"
-  shows "multiset_of (sublist' l r xs) = multiset_of (sublist' l r ys)"
-proof -
-  from l_r have xs_def: "xs = (sublist' 0 l xs) @ (sublist' l r xs) @ (sublist' r (List.length xs) xs)" (is "_ = ?xs_long") 
-    by (simp add: sublist'_append)
-  from multiset have length_eq: "List.length xs = List.length ys" by (rule multiset_of_eq_length)
-  with l_r have ys_def: "ys = (sublist' 0 l ys) @ (sublist' l r ys) @ (sublist' r (List.length ys) ys)" (is "_ = ?ys_long") 
-    by (simp add: sublist'_append)
-  from xs_def ys_def multiset have "multiset_of ?xs_long = multiset_of ?ys_long" by simp
-  moreover
-  from left l_r length_eq have "sublist' 0 l xs = sublist' 0 l ys"
-    by (auto simp add: length_sublist' nth_sublist' intro!: nth_equalityI)
-  moreover
-  from right l_r length_eq have "sublist' r (List.length xs) xs = sublist' r (List.length ys) ys"
-    by (auto simp add: length_sublist' nth_sublist' intro!: nth_equalityI)
-  moreover
-  ultimately show ?thesis by (simp add: multiset_of_append)
-qed
-
-
-end
--- a/src/HOL/ex/ImperativeQuicksort.thy	Thu Jan 08 10:53:48 2009 +0100
+++ b/src/HOL/ex/ImperativeQuicksort.thy	Thu Jan 08 17:10:41 2009 +0100
@@ -1,5 +1,5 @@
 theory ImperativeQuicksort
-imports Imperative_HOL Subarray Multiset Efficient_Nat
+imports "~~/src/HOL/Imperative_HOL/Imperative_HOL" Subarray Multiset Efficient_Nat
 begin
 
 text {* We prove QuickSort correct in the Relational Calculus. *}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/ex/Subarray.thy	Thu Jan 08 17:10:41 2009 +0100
@@ -0,0 +1,66 @@
+theory Subarray
+imports Array Sublist
+begin
+
+definition subarray :: "nat \<Rightarrow> nat \<Rightarrow> ('a::heap) array \<Rightarrow> heap \<Rightarrow> 'a list"
+where
+  "subarray n m a h \<equiv> sublist' n m (get_array a h)"
+
+lemma subarray_upd: "i \<ge> m \<Longrightarrow> subarray n m a (Heap.upd a i v h) = subarray n m a h"
+apply (simp add: subarray_def Heap.upd_def)
+apply (simp add: sublist'_update1)
+done
+
+lemma subarray_upd2: " i < n  \<Longrightarrow> subarray n m a (Heap.upd a i v h) = subarray n m a h"
+apply (simp add: subarray_def Heap.upd_def)
+apply (subst sublist'_update2)
+apply fastsimp
+apply simp
+done
+
+lemma subarray_upd3: "\<lbrakk> n \<le> i; i < m\<rbrakk> \<Longrightarrow> subarray n m a (Heap.upd a i v h) = subarray n m a h[i - n := v]"
+unfolding subarray_def Heap.upd_def
+by (simp add: sublist'_update3)
+
+lemma subarray_Nil: "n \<ge> m \<Longrightarrow> subarray n m a h = []"
+by (simp add: subarray_def sublist'_Nil')
+
+lemma subarray_single: "\<lbrakk> n < Heap.length a h \<rbrakk> \<Longrightarrow> subarray n (Suc n) a h = [get_array a h ! n]" 
+by (simp add: subarray_def Heap.length_def sublist'_single)
+
+lemma length_subarray: "m \<le> Heap.length a h \<Longrightarrow> List.length (subarray n m a h) = m - n"
+by (simp add: subarray_def Heap.length_def length_sublist')
+
+lemma length_subarray_0: "m \<le> Heap.length a h \<Longrightarrow> List.length (subarray 0 m a h) = m"
+by (simp add: length_subarray)
+
+lemma subarray_nth_array_Cons: "\<lbrakk> i < Heap.length a h; i < j \<rbrakk> \<Longrightarrow> (get_array a h ! i) # subarray (Suc i) j a h = subarray i j a h"
+unfolding Heap.length_def subarray_def
+by (simp add: sublist'_front)
+
+lemma subarray_nth_array_back: "\<lbrakk> i < j; j \<le> Heap.length a h\<rbrakk> \<Longrightarrow> subarray i j a h = subarray i (j - 1) a h @ [get_array a h ! (j - 1)]"
+unfolding Heap.length_def subarray_def
+by (simp add: sublist'_back)
+
+lemma subarray_append: "\<lbrakk> i < j; j < k \<rbrakk> \<Longrightarrow> subarray i j a h @ subarray j k a h = subarray i k a h"
+unfolding subarray_def
+by (simp add: sublist'_append)
+
+lemma subarray_all: "subarray 0 (Heap.length a h) a h = get_array a h"
+unfolding Heap.length_def subarray_def
+by (simp add: sublist'_all)
+
+lemma nth_subarray: "\<lbrakk> k < j - i; j \<le> Heap.length a h \<rbrakk> \<Longrightarrow> subarray i j a h ! k = get_array a h ! (i + k)"
+unfolding Heap.length_def subarray_def
+by (simp add: nth_sublist')
+
+lemma subarray_eq_samelength_iff: "Heap.length a h = Heap.length a h' \<Longrightarrow> (subarray i j a h = subarray i j a h') = (\<forall>i'. i \<le> i' \<and> i' < j \<longrightarrow> get_array a h ! i' = get_array a h' ! i')"
+unfolding Heap.length_def subarray_def by (rule sublist'_eq_samelength_iff)
+
+lemma all_in_set_subarray_conv: "(\<forall>j. j \<in> set (subarray l r a h) \<longrightarrow> P j) = (\<forall>k. l \<le> k \<and> k < r \<and> k < Heap.length a h \<longrightarrow> P (get_array a h ! k))"
+unfolding subarray_def Heap.length_def by (rule all_in_set_sublist'_conv)
+
+lemma ball_in_set_subarray_conv: "(\<forall>j \<in> set (subarray l r a h). P j) = (\<forall>k. l \<le> k \<and> k < r \<and> k < Heap.length a h \<longrightarrow> P (get_array a h ! k))"
+unfolding subarray_def Heap.length_def by (rule ball_in_set_sublist'_conv)
+
+end
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/ex/Sublist.thy	Thu Jan 08 17:10:41 2009 +0100
@@ -0,0 +1,507 @@
+(* $Id$ *)
+
+header {* Slices of lists *}
+
+theory Sublist
+imports Multiset
+begin
+
+
+lemma sublist_split: "i \<le> j \<and> j \<le> k \<Longrightarrow> sublist xs {i..<j} @ sublist xs {j..<k} = sublist xs {i..<k}" 
+apply (induct xs arbitrary: i j k)
+apply simp
+apply (simp only: sublist_Cons)
+apply simp
+apply safe
+apply simp
+apply (erule_tac x="0" in meta_allE)
+apply (erule_tac x="j - 1" in meta_allE)
+apply (erule_tac x="k - 1" in meta_allE)
+apply (subgoal_tac "0 \<le> j - 1 \<and> j - 1 \<le> k - 1")
+apply simp
+apply (subgoal_tac "{ja. Suc ja < j} = {0..<j - Suc 0}")
+apply (subgoal_tac "{ja. j \<le> Suc ja \<and> Suc ja < k} = {j - Suc 0..<k - Suc 0}")
+apply (subgoal_tac "{j. Suc j < k} = {0..<k - Suc 0}")
+apply simp
+apply fastsimp
+apply fastsimp
+apply fastsimp
+apply fastsimp
+apply (erule_tac x="i - 1" in meta_allE)
+apply (erule_tac x="j - 1" in meta_allE)
+apply (erule_tac x="k - 1" in meta_allE)
+apply (subgoal_tac " {ja. i \<le> Suc ja \<and> Suc ja < j} = {i - 1 ..<j - 1}")
+apply (subgoal_tac " {ja. j \<le> Suc ja \<and> Suc ja < k} = {j - 1..<k - 1}")
+apply (subgoal_tac "{j. i \<le> Suc j \<and> Suc j < k} = {i - 1..<k - 1}")
+apply (subgoal_tac " i - 1 \<le> j - 1 \<and> j - 1 \<le> k - 1")
+apply simp
+apply fastsimp
+apply fastsimp
+apply fastsimp
+apply fastsimp
+done
+
+lemma sublist_update1: "i \<notin> inds \<Longrightarrow> sublist (xs[i := v]) inds = sublist xs inds"
+apply (induct xs arbitrary: i inds)
+apply simp
+apply (case_tac i)
+apply (simp add: sublist_Cons)
+apply (simp add: sublist_Cons)
+done
+
+lemma sublist_update2: "i \<in> inds \<Longrightarrow> sublist (xs[i := v]) inds = (sublist xs inds)[(card {k \<in> inds. k < i}):= v]"
+proof (induct xs arbitrary: i inds)
+  case Nil thus ?case by simp
+next
+  case (Cons x xs)
+  thus ?case
+  proof (cases i)
+    case 0 with Cons show ?thesis by (simp add: sublist_Cons)
+  next
+    case (Suc i')
+    with Cons show ?thesis
+      apply simp
+      apply (simp add: sublist_Cons)
+      apply auto
+      apply (auto simp add: nat.split)
+      apply (simp add: card_less)
+      apply (simp add: card_less)
+      apply (simp add: card_less_Suc[symmetric])
+      apply (simp add: card_less_Suc2)
+      done
+  qed
+qed
+
+lemma sublist_update: "sublist (xs[i := v]) inds = (if i \<in> inds then (sublist xs inds)[(card {k \<in> inds. k < i}) := v] else sublist xs inds)"
+by (simp add: sublist_update1 sublist_update2)
+
+lemma sublist_take: "sublist xs {j. j < m} = take m xs"
+apply (induct xs arbitrary: m)
+apply simp
+apply (case_tac m)
+apply simp
+apply (simp add: sublist_Cons)
+done
+
+lemma sublist_take': "sublist xs {0..<m} = take m xs"
+apply (induct xs arbitrary: m)
+apply simp
+apply (case_tac m)
+apply simp
+apply (simp add: sublist_Cons sublist_take)
+done
+
+lemma sublist_all[simp]: "sublist xs {j. j < length xs} = xs"
+apply (induct xs)
+apply simp
+apply (simp add: sublist_Cons)
+done
+
+lemma sublist_all'[simp]: "sublist xs {0..<length xs} = xs"
+apply (induct xs)
+apply simp
+apply (simp add: sublist_Cons)
+done
+
+lemma sublist_single: "a < length xs \<Longrightarrow> sublist xs {a} = [xs ! a]"
+apply (induct xs arbitrary: a)
+apply simp
+apply(case_tac aa)
+apply simp
+apply (simp add: sublist_Cons)
+apply simp
+apply (simp add: sublist_Cons)
+done
+
+lemma sublist_is_Nil: "\<forall>i \<in> inds. i \<ge> length xs \<Longrightarrow> sublist xs inds = []" 
+apply (induct xs arbitrary: inds)
+apply simp
+apply (simp add: sublist_Cons)
+apply auto
+apply (erule_tac x="{j. Suc j \<in> inds}" in meta_allE)
+apply auto
+done
+
+lemma sublist_Nil': "sublist xs inds = [] \<Longrightarrow> \<forall>i \<in> inds. i \<ge> length xs"
+apply (induct xs arbitrary: inds)
+apply simp
+apply (simp add: sublist_Cons)
+apply (auto split: if_splits)
+apply (erule_tac x="{j. Suc j \<in> inds}" in meta_allE)
+apply (case_tac x, auto)
+done
+
+lemma sublist_Nil[simp]: "(sublist xs inds = []) = (\<forall>i \<in> inds. i \<ge> length xs)"
+apply (induct xs arbitrary: inds)
+apply simp
+apply (simp add: sublist_Cons)
+apply auto
+apply (erule_tac x="{j. Suc j \<in> inds}" in meta_allE)
+apply (case_tac x, auto)
+done
+
+lemma sublist_eq_subseteq: " \<lbrakk> inds' \<subseteq> inds; sublist xs inds = sublist ys inds \<rbrakk> \<Longrightarrow> sublist xs inds' = sublist ys inds'"
+apply (induct xs arbitrary: ys inds inds')
+apply simp
+apply (drule sym, rule sym)
+apply (simp add: sublist_Nil, fastsimp)
+apply (case_tac ys)
+apply (simp add: sublist_Nil, fastsimp)
+apply (auto simp add: sublist_Cons)
+apply (erule_tac x="list" in meta_allE)
+apply (erule_tac x="{j. Suc j \<in> inds}" in meta_allE)
+apply (erule_tac x="{j. Suc j \<in> inds'}" in meta_allE)
+apply fastsimp
+apply (erule_tac x="list" in meta_allE)
+apply (erule_tac x="{j. Suc j \<in> inds}" in meta_allE)
+apply (erule_tac x="{j. Suc j \<in> inds'}" in meta_allE)
+apply fastsimp
+done
+
+lemma sublist_eq: "\<lbrakk> \<forall>i \<in> inds. ((i < length xs) \<and> (i < length ys)) \<or> ((i \<ge> length xs ) \<and> (i \<ge> length ys)); \<forall>i \<in> inds. xs ! i = ys ! i \<rbrakk> \<Longrightarrow> sublist xs inds = sublist ys inds"
+apply (induct xs arbitrary: ys inds)
+apply simp
+apply (rule sym, simp add: sublist_Nil)
+apply (case_tac ys)
+apply (simp add: sublist_Nil)
+apply (auto simp add: sublist_Cons)
+apply (erule_tac x="list" in meta_allE)
+apply (erule_tac x="{j. Suc j \<in> inds}" in meta_allE)
+apply fastsimp
+apply (erule_tac x="list" in meta_allE)
+apply (erule_tac x="{j. Suc j \<in> inds}" in meta_allE)
+apply fastsimp
+done
+
+lemma sublist_eq_samelength: "\<lbrakk> length xs = length ys; \<forall>i \<in> inds. xs ! i = ys ! i \<rbrakk> \<Longrightarrow> sublist xs inds = sublist ys inds"
+by (rule sublist_eq, auto)
+
+lemma sublist_eq_samelength_iff: "length xs = length ys \<Longrightarrow> (sublist xs inds = sublist ys inds) = (\<forall>i \<in> inds. xs ! i = ys ! i)"
+apply (induct xs arbitrary: ys inds)
+apply simp
+apply (rule sym, simp add: sublist_Nil)
+apply (case_tac ys)
+apply (simp add: sublist_Nil)
+apply (auto simp add: sublist_Cons)
+apply (case_tac i)
+apply auto
+apply (case_tac i)
+apply auto
+done
+
+section {* Another sublist function *}
+
+function sublist' :: "nat \<Rightarrow> nat \<Rightarrow> 'a list \<Rightarrow> 'a list"
+where
+  "sublist' n m [] = []"
+| "sublist' n 0 xs = []"
+| "sublist' 0 (Suc m) (x#xs) = (x#sublist' 0 m xs)"
+| "sublist' (Suc n) (Suc m) (x#xs) = sublist' n m xs"
+by pat_completeness auto
+termination by lexicographic_order
+
+subsection {* Proving equivalence to the other sublist command *}
+
+lemma sublist'_sublist: "sublist' n m xs = sublist xs {j. n \<le> j \<and> j < m}"
+apply (induct xs arbitrary: n m)
+apply simp
+apply (case_tac n)
+apply (case_tac m)
+apply simp
+apply (simp add: sublist_Cons)
+apply (case_tac m)
+apply simp
+apply (simp add: sublist_Cons)
+done
+
+
+lemma "sublist' n m xs = sublist xs {n..<m}"
+apply (induct xs arbitrary: n m)
+apply simp
+apply (case_tac n, case_tac m)
+apply simp
+apply simp
+apply (simp add: sublist_take')
+apply (case_tac m)
+apply simp
+apply (simp add: sublist_Cons sublist'_sublist)
+done
+
+
+subsection {* Showing equivalence to use of drop and take for definition *}
+
+lemma "sublist' n m xs = take (m - n) (drop n xs)"
+apply (induct xs arbitrary: n m)
+apply simp
+apply (case_tac m)
+apply simp
+apply (case_tac n)
+apply simp
+apply simp
+done
+
+subsection {* General lemma about sublist *}
+
+lemma sublist'_Nil[simp]: "sublist' i j [] = []"
+by simp
+
+lemma sublist'_Cons[simp]: "sublist' i (Suc j) (x#xs) = (case i of 0 \<Rightarrow> (x # sublist' 0 j xs) | Suc i' \<Rightarrow>  sublist' i' j xs)"
+by (cases i) auto
+
+lemma sublist'_Cons2[simp]: "sublist' i j (x#xs) = (if (j = 0) then [] else ((if (i = 0) then [x] else []) @ sublist' (i - 1) (j - 1) xs))"
+apply (cases j)
+apply auto
+apply (cases i)
+apply auto
+done
+
+lemma sublist_n_0: "sublist' n 0 xs = []"
+by (induct xs, auto)
+
+lemma sublist'_Nil': "n \<ge> m \<Longrightarrow> sublist' n m xs = []"
+apply (induct xs arbitrary: n m)
+apply simp
+apply (case_tac m)
+apply simp
+apply (case_tac n)
+apply simp
+apply simp
+done
+
+lemma sublist'_Nil2: "n \<ge> length xs \<Longrightarrow> sublist' n m xs = []"
+apply (induct xs arbitrary: n m)
+apply simp
+apply (case_tac m)
+apply simp
+apply (case_tac n)
+apply simp
+apply simp
+done
+
+lemma sublist'_Nil3: "(sublist' n m xs = []) = ((n \<ge> m) \<or> (n \<ge> length xs))"
+apply (induct xs arbitrary: n m)
+apply simp
+apply (case_tac m)
+apply simp
+apply (case_tac n)
+apply simp
+apply simp
+done
+
+lemma sublist'_notNil: "\<lbrakk> n < length xs; n < m \<rbrakk> \<Longrightarrow> sublist' n m xs \<noteq> []"
+apply (induct xs arbitrary: n m)
+apply simp
+apply (case_tac m)
+apply simp
+apply (case_tac n)
+apply simp
+apply simp
+done
+
+lemma sublist'_single: "n < length xs \<Longrightarrow> sublist' n (Suc n) xs = [xs ! n]"
+apply (induct xs arbitrary: n)
+apply simp
+apply simp
+apply (case_tac n)
+apply (simp add: sublist_n_0)
+apply simp
+done
+
+lemma sublist'_update1: "i \<ge> m \<Longrightarrow> sublist' n m (xs[i:=v]) = sublist' n m xs"
+apply (induct xs arbitrary: n m i)
+apply simp
+apply simp
+apply (case_tac i)
+apply simp
+apply simp
+done
+
+lemma sublist'_update2: "i < n \<Longrightarrow> sublist' n m (xs[i:=v]) = sublist' n m xs"
+apply (induct xs arbitrary: n m i)
+apply simp
+apply simp
+apply (case_tac i)
+apply simp
+apply simp
+done
+
+lemma sublist'_update3: "\<lbrakk>n \<le> i; i < m\<rbrakk> \<Longrightarrow> sublist' n m (xs[i := v]) = (sublist' n m xs)[i - n := v]"
+proof (induct xs arbitrary: n m i)
+  case Nil thus ?case by auto
+next
+  case (Cons x xs)
+  thus ?case
+    apply -
+    apply auto
+    apply (cases i)
+    apply auto
+    apply (cases i)
+    apply auto
+    done
+qed
+
+lemma "\<lbrakk> sublist' i j xs = sublist' i j ys; n \<ge> i; m \<le> j \<rbrakk> \<Longrightarrow> sublist' n m xs = sublist' n m ys"
+proof (induct xs arbitrary: i j ys n m)
+  case Nil
+  thus ?case
+    apply -
+    apply (rule sym, drule sym)
+    apply (simp add: sublist'_Nil)
+    apply (simp add: sublist'_Nil3)
+    apply arith
+    done
+next
+  case (Cons x xs i j ys n m)
+  note c = this
+  thus ?case
+  proof (cases m)
+    case 0 thus ?thesis by (simp add: sublist_n_0)
+  next
+    case (Suc m')
+    note a = this
+    thus ?thesis
+    proof (cases n)
+      case 0 note b = this
+      show ?thesis
+      proof (cases ys)
+	case Nil  with a b Cons.prems show ?thesis by (simp add: sublist'_Nil3)
+      next
+	case (Cons y ys)
+	show ?thesis
+	proof (cases j)
+	  case 0 with a b Cons.prems show ?thesis by simp
+	next
+	  case (Suc j') with a b Cons.prems Cons show ?thesis 
+	    apply -
+	    apply (simp, rule Cons.hyps [of "0" "j'" "ys" "0" "m'"], auto)
+	    done
+	qed
+      qed
+    next
+      case (Suc n')
+      show ?thesis
+      proof (cases ys)
+	case Nil with Suc a Cons.prems show ?thesis by (auto simp add: sublist'_Nil3)
+      next
+	case (Cons y ys) with Suc a Cons.prems show ?thesis
+	  apply -
+	  apply simp
+	  apply (cases j)
+	  apply simp
+	  apply (cases i)
+	  apply simp
+	  apply (rule_tac j="nat" in Cons.hyps [of "0" _ "ys" "n'" "m'"])
+	  apply simp
+	  apply simp
+	  apply simp
+	  apply simp
+	  apply (rule_tac i="nata" and j="nat" in Cons.hyps [of _ _ "ys" "n'" "m'"])
+	  apply simp
+	  apply simp
+	  apply simp
+	  done
+      qed
+    qed
+  qed
+qed
+
+lemma length_sublist': "j \<le> length xs \<Longrightarrow> length (sublist' i j xs) = j - i"
+by (induct xs arbitrary: i j, auto)
+
+lemma sublist'_front: "\<lbrakk> i < j; i < length xs \<rbrakk> \<Longrightarrow> sublist' i j xs = xs ! i # sublist' (Suc i) j xs"
+apply (induct xs arbitrary: a i j)
+apply simp
+apply (case_tac j)
+apply simp
+apply (case_tac i)
+apply simp
+apply simp
+done
+
+lemma sublist'_back: "\<lbrakk> i < j; j \<le> length xs \<rbrakk> \<Longrightarrow> sublist' i j xs = sublist' i (j - 1) xs @ [xs ! (j - 1)]"
+apply (induct xs arbitrary: a i j)
+apply simp
+apply simp
+apply (case_tac j)
+apply simp
+apply auto
+apply (case_tac nat)
+apply auto
+done
+
+(* suffices that j \<le> length xs and length ys *) 
+lemma sublist'_eq_samelength_iff: "length xs = length ys \<Longrightarrow> (sublist' i j xs  = sublist' i j ys) = (\<forall>i'. i \<le> i' \<and> i' < j \<longrightarrow> xs ! i' = ys ! i')"
+proof (induct xs arbitrary: ys i j)
+  case Nil thus ?case by simp
+next
+  case (Cons x xs)
+  thus ?case
+    apply -
+    apply (cases ys)
+    apply simp
+    apply simp
+    apply auto
+    apply (case_tac i', auto)
+    apply (erule_tac x="Suc i'" in allE, auto)
+    apply (erule_tac x="i' - 1" in allE, auto)
+    apply (case_tac i', auto)
+    apply (erule_tac x="Suc i'" in allE, auto)
+    done
+qed
+
+lemma sublist'_all[simp]: "sublist' 0 (length xs) xs = xs"
+by (induct xs, auto)
+
+lemma sublist'_sublist': "sublist' n m (sublist' i j xs) = sublist' (i + n) (min (i + m) j) xs" 
+by (induct xs arbitrary: i j n m) (auto simp add: min_diff)
+
+lemma sublist'_append: "\<lbrakk> i \<le> j; j \<le> k \<rbrakk> \<Longrightarrow>(sublist' i j xs) @ (sublist' j k xs) = sublist' i k xs"
+by (induct xs arbitrary: i j k) auto
+
+lemma nth_sublist': "\<lbrakk> k < j - i; j \<le> length xs \<rbrakk> \<Longrightarrow> (sublist' i j xs) ! k = xs ! (i + k)"
+apply (induct xs arbitrary: i j k)
+apply auto
+apply (case_tac k)
+apply auto
+apply (case_tac i)
+apply auto
+done
+
+lemma set_sublist': "set (sublist' i j xs) = {x. \<exists>k. i \<le> k \<and> k < j \<and> k < List.length xs \<and> x = xs ! k}"
+apply (simp add: sublist'_sublist)
+apply (simp add: set_sublist)
+apply auto
+done
+
+lemma all_in_set_sublist'_conv: "(\<forall>j. j \<in> set (sublist' l r xs) \<longrightarrow> P j) = (\<forall>k. l \<le> k \<and> k < r \<and> k < List.length xs \<longrightarrow> P (xs ! k))"
+unfolding set_sublist' by blast
+
+lemma ball_in_set_sublist'_conv: "(\<forall>j \<in> set (sublist' l r xs). P j) = (\<forall>k. l \<le> k \<and> k < r \<and> k < List.length xs \<longrightarrow> P (xs ! k))"
+unfolding set_sublist' by blast
+
+
+lemma multiset_of_sublist:
+assumes l_r: "l \<le> r \<and> r \<le> List.length xs"
+assumes left: "\<forall> i. i < l \<longrightarrow> (xs::'a list) ! i = ys ! i"
+assumes right: "\<forall> i. i \<ge> r \<longrightarrow> (xs::'a list) ! i = ys ! i"
+assumes multiset: "multiset_of xs = multiset_of ys"
+  shows "multiset_of (sublist' l r xs) = multiset_of (sublist' l r ys)"
+proof -
+  from l_r have xs_def: "xs = (sublist' 0 l xs) @ (sublist' l r xs) @ (sublist' r (List.length xs) xs)" (is "_ = ?xs_long") 
+    by (simp add: sublist'_append)
+  from multiset have length_eq: "List.length xs = List.length ys" by (rule multiset_of_eq_length)
+  with l_r have ys_def: "ys = (sublist' 0 l ys) @ (sublist' l r ys) @ (sublist' r (List.length ys) ys)" (is "_ = ?ys_long") 
+    by (simp add: sublist'_append)
+  from xs_def ys_def multiset have "multiset_of ?xs_long = multiset_of ?ys_long" by simp
+  moreover
+  from left l_r length_eq have "sublist' 0 l xs = sublist' 0 l ys"
+    by (auto simp add: length_sublist' nth_sublist' intro!: nth_equalityI)
+  moreover
+  from right l_r length_eq have "sublist' r (List.length xs) xs = sublist' r (List.length ys) ys"
+    by (auto simp add: length_sublist' nth_sublist' intro!: nth_equalityI)
+  moreover
+  ultimately show ?thesis by (simp add: multiset_of_append)
+qed
+
+
+end