liquidated 'Equiv_Relations_More' -- distinguished between choice-dependent parts and choice-independent parts
--- a/src/HOL/BNF/BNF_GFP.thy Thu Jan 16 18:37:37 2014 +0100
+++ b/src/HOL/BNF/BNF_GFP.thy Thu Jan 16 18:52:50 2014 +0100
@@ -8,7 +8,7 @@
header {* Greatest Fixed Point Operation on Bounded Natural Functors *}
theory BNF_GFP
-imports BNF_FP_Base Equiv_Relations_More List_Prefix
+imports BNF_FP_Base
keywords
"codatatype" :: thy_decl and
"primcorecursive" :: thy_goal and
@@ -293,6 +293,56 @@
lemma fun_rel_image2p: "(fun_rel R (image2p f g R)) f g"
unfolding fun_rel_def image2p_def by auto
+
+subsection {* Equivalence relations, quotients, and Hilbert's choice *}
+
+lemma equiv_Eps_in:
+"\<lbrakk>equiv A r; X \<in> A//r\<rbrakk> \<Longrightarrow> Eps (%x. x \<in> X) \<in> X"
+apply (rule someI2_ex)
+using in_quotient_imp_non_empty by blast
+
+lemma equiv_Eps_preserves:
+assumes ECH: "equiv A r" and X: "X \<in> A//r"
+shows "Eps (%x. x \<in> X) \<in> A"
+apply (rule in_mono[rule_format])
+ using assms apply (rule in_quotient_imp_subset)
+by (rule equiv_Eps_in) (rule assms)+
+
+lemma proj_Eps:
+assumes "equiv A r" and "X \<in> A//r"
+shows "proj r (Eps (%x. x \<in> X)) = X"
+unfolding proj_def proof auto
+ fix x assume x: "x \<in> X"
+ thus "(Eps (%x. x \<in> X), x) \<in> r" using assms equiv_Eps_in in_quotient_imp_in_rel by fast
+next
+ fix x assume "(Eps (%x. x \<in> X),x) \<in> r"
+ thus "x \<in> X" using in_quotient_imp_closed[OF assms equiv_Eps_in[OF assms]] by fast
+qed
+
+definition univ where "univ f X == f (Eps (%x. x \<in> X))"
+
+lemma univ_commute:
+assumes ECH: "equiv A r" and RES: "f respects r" and x: "x \<in> A"
+shows "(univ f) (proj r x) = f x"
+unfolding univ_def proof -
+ have prj: "proj r x \<in> A//r" using x proj_preserves by fast
+ hence "Eps (%y. y \<in> proj r x) \<in> A" using ECH equiv_Eps_preserves by fast
+ moreover have "proj r (Eps (%y. y \<in> proj r x)) = proj r x" using ECH prj proj_Eps by fast
+ ultimately have "(x, Eps (%y. y \<in> proj r x)) \<in> r" using x ECH proj_iff by fast
+ thus "f (Eps (%y. y \<in> proj r x)) = f x" using RES unfolding congruent_def by fastforce
+qed
+
+lemma univ_preserves:
+assumes ECH: "equiv A r" and RES: "f respects r" and
+ PRES: "\<forall> x \<in> A. f x \<in> B"
+shows "\<forall> X \<in> A//r. univ f X \<in> B"
+proof
+ fix X assume "X \<in> A//r"
+ then obtain x where x: "x \<in> A" and X: "X = proj r x" using ECH proj_image[of r A] by blast
+ hence "univ f X = f x" using assms univ_commute by fastforce
+ thus "univ f X \<in> B" using x PRES by simp
+qed
+
ML_file "Tools/bnf_gfp_rec_sugar_tactics.ML"
ML_file "Tools/bnf_gfp_rec_sugar.ML"
ML_file "Tools/bnf_gfp_util.ML"
--- a/src/HOL/BNF/Equiv_Relations_More.thy Thu Jan 16 18:37:37 2014 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,161 +0,0 @@
-(* Title: HOL/BNF/Equiv_Relations_More.thy
- Author: Andrei Popescu, TU Muenchen
- Copyright 2012
-
-Some preliminaries on equivalence relations and quotients.
-*)
-
-header {* Some Preliminaries on Equivalence Relations and Quotients *}
-
-theory Equiv_Relations_More
-imports Equiv_Relations Hilbert_Choice
-begin
-
-
-(* Recall the following constants and lemmas:
-
-term Eps
-term "A//r"
-lemmas equiv_def
-lemmas refl_on_def
- -- note that "reflexivity on" also assumes inclusion of the relation's field into r
-
-*)
-
-definition proj where "proj r x = r `` {x}"
-
-definition univ where "univ f X == f (Eps (%x. x \<in> X))"
-
-lemma proj_preserves:
-"x \<in> A \<Longrightarrow> proj r x \<in> A//r"
-unfolding proj_def by (rule quotientI)
-
-lemma proj_in_iff:
-assumes "equiv A r"
-shows "(proj r x \<in> A//r) = (x \<in> A)"
-apply(rule iffI, auto simp add: proj_preserves)
-unfolding proj_def quotient_def proof clarsimp
- fix y assume y: "y \<in> A" and "r `` {x} = r `` {y}"
- moreover have "y \<in> r `` {y}" using assms y unfolding equiv_def refl_on_def by blast
- ultimately have "(x,y) \<in> r" by blast
- thus "x \<in> A" using assms unfolding equiv_def refl_on_def by blast
-qed
-
-lemma proj_iff:
-"\<lbrakk>equiv A r; {x,y} \<subseteq> A\<rbrakk> \<Longrightarrow> (proj r x = proj r y) = ((x,y) \<in> r)"
-by (simp add: proj_def eq_equiv_class_iff)
-
-(*
-lemma in_proj: "\<lbrakk>equiv A r; x \<in> A\<rbrakk> \<Longrightarrow> x \<in> proj r x"
-unfolding proj_def equiv_def refl_on_def by blast
-*)
-
-lemma proj_image: "(proj r) ` A = A//r"
-unfolding proj_def[abs_def] quotient_def by blast
-
-lemma in_quotient_imp_non_empty:
-"\<lbrakk>equiv A r; X \<in> A//r\<rbrakk> \<Longrightarrow> X \<noteq> {}"
-unfolding quotient_def using equiv_class_self by fast
-
-lemma in_quotient_imp_in_rel:
-"\<lbrakk>equiv A r; X \<in> A//r; {x,y} \<subseteq> X\<rbrakk> \<Longrightarrow> (x,y) \<in> r"
-using quotient_eq_iff[THEN iffD1] by fastforce
-
-lemma in_quotient_imp_closed:
-"\<lbrakk>equiv A r; X \<in> A//r; x \<in> X; (x,y) \<in> r\<rbrakk> \<Longrightarrow> y \<in> X"
-unfolding quotient_def equiv_def trans_def by blast
-
-lemma in_quotient_imp_subset:
-"\<lbrakk>equiv A r; X \<in> A//r\<rbrakk> \<Longrightarrow> X \<subseteq> A"
-using assms in_quotient_imp_in_rel equiv_type by fastforce
-
-lemma equiv_Eps_in:
-"\<lbrakk>equiv A r; X \<in> A//r\<rbrakk> \<Longrightarrow> Eps (%x. x \<in> X) \<in> X"
-apply (rule someI2_ex)
-using in_quotient_imp_non_empty by blast
-
-lemma equiv_Eps_preserves:
-assumes ECH: "equiv A r" and X: "X \<in> A//r"
-shows "Eps (%x. x \<in> X) \<in> A"
-apply (rule in_mono[rule_format])
- using assms apply (rule in_quotient_imp_subset)
-by (rule equiv_Eps_in) (rule assms)+
-
-lemma proj_Eps:
-assumes "equiv A r" and "X \<in> A//r"
-shows "proj r (Eps (%x. x \<in> X)) = X"
-unfolding proj_def proof auto
- fix x assume x: "x \<in> X"
- thus "(Eps (%x. x \<in> X), x) \<in> r" using assms equiv_Eps_in in_quotient_imp_in_rel by fast
-next
- fix x assume "(Eps (%x. x \<in> X),x) \<in> r"
- thus "x \<in> X" using in_quotient_imp_closed[OF assms equiv_Eps_in[OF assms]] by fast
-qed
-
-(*
-lemma Eps_proj:
-assumes "equiv A r" and "x \<in> A"
-shows "(Eps (%y. y \<in> proj r x), x) \<in> r"
-proof-
- have 1: "proj r x \<in> A//r" using assms proj_preserves by fastforce
- hence "Eps(%y. y \<in> proj r x) \<in> proj r x" using assms equiv_Eps_in by auto
- moreover have "x \<in> proj r x" using assms in_proj by fastforce
- ultimately show ?thesis using assms 1 in_quotient_imp_in_rel by fastforce
-qed
-
-lemma equiv_Eps_iff:
-assumes "equiv A r" and "{X,Y} \<subseteq> A//r"
-shows "((Eps (%x. x \<in> X),Eps (%y. y \<in> Y)) \<in> r) = (X = Y)"
-proof-
- have "Eps (%x. x \<in> X) \<in> X \<and> Eps (%y. y \<in> Y) \<in> Y" using assms equiv_Eps_in by auto
- thus ?thesis using assms quotient_eq_iff by fastforce
-qed
-
-lemma equiv_Eps_inj_on:
-assumes "equiv A r"
-shows "inj_on (%X. Eps (%x. x \<in> X)) (A//r)"
-unfolding inj_on_def proof clarify
- fix X Y assume X: "X \<in> A//r" and Y: "Y \<in> A//r" and Eps: "Eps (%x. x \<in> X) = Eps (%y. y \<in> Y)"
- hence "Eps (%x. x \<in> X) \<in> A" using assms equiv_Eps_preserves by auto
- hence "(Eps (%x. x \<in> X), Eps (%y. y \<in> Y)) \<in> r"
- using assms Eps unfolding quotient_def equiv_def refl_on_def by auto
- thus "X= Y" using X Y assms equiv_Eps_iff by auto
-qed
-*)
-
-lemma univ_commute:
-assumes ECH: "equiv A r" and RES: "f respects r" and x: "x \<in> A"
-shows "(univ f) (proj r x) = f x"
-unfolding univ_def proof -
- have prj: "proj r x \<in> A//r" using x proj_preserves by fast
- hence "Eps (%y. y \<in> proj r x) \<in> A" using ECH equiv_Eps_preserves by fast
- moreover have "proj r (Eps (%y. y \<in> proj r x)) = proj r x" using ECH prj proj_Eps by fast
- ultimately have "(x, Eps (%y. y \<in> proj r x)) \<in> r" using x ECH proj_iff by fast
- thus "f (Eps (%y. y \<in> proj r x)) = f x" using RES unfolding congruent_def by fastforce
-qed
-
-(*
-lemma univ_unique:
-assumes ECH: "equiv A r" and
- RES: "f respects r" and COM: "\<forall> x \<in> A. G (proj r x) = f x"
-shows "\<forall> X \<in> A//r. G X = univ f X"
-proof
- fix X assume "X \<in> A//r"
- then obtain x where x: "x \<in> A" and X: "X = proj r x" using ECH proj_image[of r A] by blast
- have "G X = f x" unfolding X using x COM by simp
- thus "G X = univ f X" unfolding X using ECH RES x univ_commute by fastforce
-qed
-*)
-
-lemma univ_preserves:
-assumes ECH: "equiv A r" and RES: "f respects r" and
- PRES: "\<forall> x \<in> A. f x \<in> B"
-shows "\<forall> X \<in> A//r. univ f X \<in> B"
-proof
- fix X assume "X \<in> A//r"
- then obtain x where x: "x \<in> A" and X: "X = proj r x" using ECH proj_image[of r A] by blast
- hence "univ f X = f x" using assms univ_commute by fastforce
- thus "univ f X \<in> B" using x PRES by simp
-qed
-
-end
--- a/src/HOL/Equiv_Relations.thy Thu Jan 16 18:37:37 2014 +0100
+++ b/src/HOL/Equiv_Relations.thy Thu Jan 16 18:52:50 2014 +0100
@@ -160,6 +160,7 @@
apply blast
done
+
subsection {* Defining unary operations upon equivalence classes *}
text{*A congruence-preserving function*}
@@ -354,6 +355,54 @@
done
+subsection {* Projection *}
+
+definition proj where "proj r x = r `` {x}"
+
+lemma proj_preserves:
+"x \<in> A \<Longrightarrow> proj r x \<in> A//r"
+unfolding proj_def by (rule quotientI)
+
+lemma proj_in_iff:
+assumes "equiv A r"
+shows "(proj r x \<in> A//r) = (x \<in> A)"
+apply(rule iffI, auto simp add: proj_preserves)
+unfolding proj_def quotient_def proof clarsimp
+ fix y assume y: "y \<in> A" and "r `` {x} = r `` {y}"
+ moreover have "y \<in> r `` {y}" using assms y unfolding equiv_def refl_on_def by blast
+ ultimately have "(x,y) \<in> r" by blast
+ thus "x \<in> A" using assms unfolding equiv_def refl_on_def by blast
+qed
+
+lemma proj_iff:
+"\<lbrakk>equiv A r; {x,y} \<subseteq> A\<rbrakk> \<Longrightarrow> (proj r x = proj r y) = ((x,y) \<in> r)"
+by (simp add: proj_def eq_equiv_class_iff)
+
+(*
+lemma in_proj: "\<lbrakk>equiv A r; x \<in> A\<rbrakk> \<Longrightarrow> x \<in> proj r x"
+unfolding proj_def equiv_def refl_on_def by blast
+*)
+
+lemma proj_image: "(proj r) ` A = A//r"
+unfolding proj_def[abs_def] quotient_def by blast
+
+lemma in_quotient_imp_non_empty:
+"\<lbrakk>equiv A r; X \<in> A//r\<rbrakk> \<Longrightarrow> X \<noteq> {}"
+unfolding quotient_def using equiv_class_self by fast
+
+lemma in_quotient_imp_in_rel:
+"\<lbrakk>equiv A r; X \<in> A//r; {x,y} \<subseteq> X\<rbrakk> \<Longrightarrow> (x,y) \<in> r"
+using quotient_eq_iff[THEN iffD1] by fastforce
+
+lemma in_quotient_imp_closed:
+"\<lbrakk>equiv A r; X \<in> A//r; x \<in> X; (x,y) \<in> r\<rbrakk> \<Longrightarrow> y \<in> X"
+unfolding quotient_def equiv_def trans_def by blast
+
+lemma in_quotient_imp_subset:
+"\<lbrakk>equiv A r; X \<in> A//r\<rbrakk> \<Longrightarrow> X \<subseteq> A"
+using assms in_quotient_imp_in_rel equiv_type by fastforce
+
+
subsection {* Equivalence relations -- predicate version *}
text {* Partial equivalences *}