--- a/src/HOL/Tools/Sledgehammer/MaSh/src/server.py Thu Aug 22 08:42:27 2013 +0200
+++ b/src/HOL/Tools/Sledgehammer/MaSh/src/server.py Thu Aug 22 08:42:27 2013 +0200
@@ -108,8 +108,7 @@
# Output
predictionNames = [str(self.server.dicts.idNameDict[p]) for p in self.server.predictions[:numberOfPredictions]]
predictionValues = [str(x) for x in predictionValues[:numberOfPredictions]]
- predictionsStringList = ['%s=%s' % (predictionNames[i],predictionValues[i]) for i in range(len(predictionNames))]
- predictionsString = string.join(predictionsStringList,' ')
+ predictionsString = string.join(predictionNames,' ')
outString = '%s: %s' % (name,predictionsString)
self.request.sendall(outString)
@@ -172,4 +171,4 @@
-
\ No newline at end of file
+
--- a/src/HOL/Tools/Sledgehammer/MaSh/src/sparseNaiveBayes.py Thu Aug 22 08:42:27 2013 +0200
+++ b/src/HOL/Tools/Sledgehammer/MaSh/src/sparseNaiveBayes.py Thu Aug 22 08:42:27 2013 +0200
@@ -95,7 +95,7 @@
For each accessible, predicts the probability of it being useful given the features.
Returns a ranking of the accessibles.
"""
- tau = 0.01 # Jasmin, change value here
+ tau = 0.05 # Jasmin, change value here
predictions = []
for a in accessibles:
posA = self.counts[a][0]