--- a/src/HOL/Algebra/Divisibility.thy Thu Nov 08 19:55:37 2012 +0100
+++ b/src/HOL/Algebra/Divisibility.thy Thu Nov 08 20:02:41 2012 +0100
@@ -244,7 +244,7 @@
apply (elim dividesE, intro dividesI, assumption)
apply (rule l_cancel[of c])
apply (simp add: m_assoc carr)+
-apply (fast intro: divides_mult_lI carr)
+apply (fast intro: carr)
done
lemma (in comm_monoid) divides_mult_rI [intro]:
--- a/src/HOL/Library/Permutation.thy Thu Nov 08 19:55:37 2012 +0100
+++ b/src/HOL/Library/Permutation.thy Thu Nov 08 20:02:41 2012 +0100
@@ -193,7 +193,7 @@
show ?case
proof (intro exI[of _ "Fun.swap 0 1 id"] conjI allI impI)
show "bij_betw (Fun.swap 0 1 id) {..<length (y # x # l)} {..<length (x # y # l)}"
- by (auto simp: bij_betw_def bij_betw_swap_iff)
+ by (auto simp: bij_betw_def)
fix i assume "i < length(y#x#l)"
show "(y # x # l) ! i = (x # y # l) ! (Fun.swap 0 1 id) i"
by (cases i) (auto simp: Fun.swap_def gr0_conv_Suc)
--- a/src/HOL/Old_Number_Theory/Primes.thy Thu Nov 08 19:55:37 2012 +0100
+++ b/src/HOL/Old_Number_Theory/Primes.thy Thu Nov 08 20:02:41 2012 +0100
@@ -24,7 +24,7 @@
lemma prime_imp_relprime: "prime p ==> \<not> p dvd n ==> gcd p n = 1"
apply (auto simp add: prime_def)
- apply (metis One_nat_def gcd_dvd1 gcd_dvd2)
+ apply (metis gcd_dvd1 gcd_dvd2)
done
text {*