converted Bool, Trancl, Rel to Isar format
authorpaulson
Sat, 22 Jun 2002 18:28:46 +0200
changeset 13239 f599984ec4c2
parent 13238 a6cb18a25cbb
child 13240 bb5f4faea1f3
converted Bool, Trancl, Rel to Isar format
src/ZF/Bool.ML
src/ZF/Bool.thy
src/ZF/Integ/EquivClass.thy
src/ZF/IsaMakefile
src/ZF/Rel.ML
src/ZF/Rel.thy
src/ZF/Trancl.ML
src/ZF/Trancl.thy
--- a/src/ZF/Bool.ML	Fri Jun 21 18:40:06 2002 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,176 +0,0 @@
-(*  Title:      ZF/bool
-    ID:         $Id$
-    Author:     Martin D Coen, Cambridge University Computer Laboratory
-    Copyright   1992  University of Cambridge
-
-Booleans in Zermelo-Fraenkel Set Theory 
-*)
-
-bind_thms ("bool_defs", [bool_def,cond_def]);
-
-Goalw [succ_def] "{0} = 1";
-by (rtac refl 1);
-qed "singleton_0";
-
-(* Introduction rules *)
-
-Goalw bool_defs "1 : bool";
-by (rtac (consI1 RS consI2) 1);
-qed "bool_1I";
-
-Goalw bool_defs "0 : bool";
-by (rtac consI1 1);
-qed "bool_0I";
-
-Addsimps [bool_1I, bool_0I];
-AddTCs   [bool_1I, bool_0I];
-
-Goalw bool_defs "1~=0";
-by (rtac succ_not_0 1);
-qed "one_not_0";
-
-(** 1=0 ==> R **)
-bind_thm ("one_neq_0", one_not_0 RS notE);
-
-val major::prems = Goalw bool_defs
-    "[| c: bool;  c=1 ==> P;  c=0 ==> P |] ==> P";
-by (rtac (major RS consE) 1);
-by (REPEAT (eresolve_tac (singletonE::prems) 1));
-qed "boolE";
-
-(** cond **)
-
-(*1 means true*)
-Goalw bool_defs "cond(1,c,d) = c";
-by (rtac (refl RS if_P) 1);
-qed "cond_1";
-
-(*0 means false*)
-Goalw bool_defs "cond(0,c,d) = d";
-by (rtac (succ_not_0 RS not_sym RS if_not_P) 1);
-qed "cond_0";
-
-Addsimps [cond_1, cond_0];
-
-fun bool_tac i = fast_tac (claset() addSEs [boolE] addss (simpset())) i;
-
-
-Goal "[| b: bool;  c: A(1);  d: A(0) |] ==> cond(b,c,d): A(b)";
-by (bool_tac 1);
-qed "cond_type";
-AddTCs [cond_type];
-
-(*For Simp_tac and Blast_tac*)
-Goal "[| b: bool;  c: A;  d: A |] ==> cond(b,c,d): A";
-by (bool_tac 1);
-qed "cond_simple_type";
-
-val [rew] = Goal "[| !!b. j(b)==cond(b,c,d) |] ==> j(1) = c";
-by (rewtac rew);
-by (rtac cond_1 1);
-qed "def_cond_1";
-
-val [rew] = Goal "[| !!b. j(b)==cond(b,c,d) |] ==> j(0) = d";
-by (rewtac rew);
-by (rtac cond_0 1);
-qed "def_cond_0";
-
-fun conds def = [standard (def RS def_cond_1), standard (def RS def_cond_0)];
-
-val [not_1, not_0] = conds not_def;
-val [and_1, and_0] = conds and_def;
-val [or_1, or_0]   = conds or_def;
-val [xor_1, xor_0] = conds xor_def;
-
-bind_thm ("not_1", not_1);
-bind_thm ("not_0", not_0);
-bind_thm ("and_1", and_1);
-bind_thm ("and_0", and_0);
-bind_thm ("or_1", or_1);
-bind_thm ("or_0", or_0);
-bind_thm ("xor_1", xor_1);
-bind_thm ("xor_0", xor_0);
-
-Addsimps [not_1,not_0,and_1,and_0,or_1,or_0,xor_1,xor_0];
-
-Goalw [not_def] "a:bool ==> not(a) : bool";
-by (Asm_simp_tac 1);
-qed "not_type";
-
-Goalw [and_def] "[| a:bool;  b:bool |] ==> a and b : bool";
-by (Asm_simp_tac 1);
-qed "and_type";
-
-Goalw [or_def] "[| a:bool;  b:bool |] ==> a or b : bool";
-by (Asm_simp_tac 1);
-qed "or_type";
-
-AddTCs [not_type, and_type, or_type];
-
-Goalw [xor_def] "[| a:bool;  b:bool |] ==> a xor b : bool";
-by (Asm_simp_tac 1);
-qed "xor_type";
-
-AddTCs [xor_type];
-
-bind_thms ("bool_typechecks",
-  [bool_1I, bool_0I, cond_type, not_type, and_type, or_type, xor_type]);
-
-(*** Laws for 'not' ***)
-
-Goal "a:bool ==> not(not(a)) = a";
-by (bool_tac 1);
-qed "not_not";
-
-Goal "a:bool ==> not(a and b) = not(a) or not(b)";
-by (bool_tac 1);
-qed "not_and";
-
-Goal "a:bool ==> not(a or b) = not(a) and not(b)";
-by (bool_tac 1);
-qed "not_or";
-
-Addsimps [not_not, not_and, not_or];
-
-(*** Laws about 'and' ***)
-
-Goal "a: bool ==> a and a = a";
-by (bool_tac 1);
-qed "and_absorb";
-
-Addsimps [and_absorb];
-
-Goal "[| a: bool; b:bool |] ==> a and b = b and a";
-by (bool_tac 1);
-qed "and_commute";
-
-Goal "a: bool ==> (a and b) and c  =  a and (b and c)";
-by (bool_tac 1);
-qed "and_assoc";
-
-Goal "[| a: bool; b:bool; c:bool |] ==> \
-\      (a or b) and c  =  (a and c) or (b and c)";
-by (bool_tac 1);
-qed "and_or_distrib";
-
-(** binary orion **)
-
-Goal "a: bool ==> a or a = a";
-by (bool_tac 1);
-qed "or_absorb";
-
-Addsimps [or_absorb];
-
-Goal "[| a: bool; b:bool |] ==> a or b = b or a";
-by (bool_tac 1);
-qed "or_commute";
-
-Goal "a: bool ==> (a or b) or c  =  a or (b or c)";
-by (bool_tac 1);
-qed "or_assoc";
-
-Goal "[| a: bool; b: bool; c: bool |] ==> \
-\          (a and b) or c  =  (a or c) and (b or c)";
-by (bool_tac 1);
-qed "or_and_distrib";
-
--- a/src/ZF/Bool.thy	Fri Jun 21 18:40:06 2002 +0200
+++ b/src/ZF/Bool.thy	Sat Jun 22 18:28:46 2002 +0200
@@ -8,14 +8,7 @@
 2 is equal to bool, but serves a different purpose
 *)
 
-Bool = pair + 
-consts
-    bool        :: i
-    cond        :: "[i,i,i]=>i"
-    not         :: "i=>i"
-    "and"       :: "[i,i]=>i"      (infixl 70)
-    or          :: "[i,i]=>i"      (infixl 65)
-    xor         :: "[i,i]=>i"      (infixl 65)
+theory Bool = pair:
 
 syntax
     "1"         :: i             ("1")
@@ -25,11 +18,181 @@
    "1"  == "succ(0)"
    "2"  == "succ(1)"
 
-defs
-    bool_def    "bool == {0,1}"
-    cond_def    "cond(b,c,d) == if(b=1,c,d)"
-    not_def     "not(b) == cond(b,0,1)"
-    and_def     "a and b == cond(a,b,0)"
-    or_def      "a or b == cond(a,1,b)"
-    xor_def     "a xor b == cond(a,not(b),b)"
+constdefs
+  bool        :: i
+    "bool == {0,1}"
+
+  cond        :: "[i,i,i]=>i"
+    "cond(b,c,d) == if(b=1,c,d)"
+
+  not         :: "i=>i"
+    "not(b) == cond(b,0,1)"
+
+  "and"       :: "[i,i]=>i"      (infixl "and" 70)
+    "a and b == cond(a,b,0)"
+
+  or          :: "[i,i]=>i"      (infixl "or" 65)
+    "a or b == cond(a,1,b)"
+
+  xor         :: "[i,i]=>i"      (infixl "xor" 65)
+    "a xor b == cond(a,not(b),b)"
+
+
+lemmas bool_defs = bool_def cond_def
+
+lemma singleton_0: "{0} = 1"
+by (simp add: succ_def)
+
+(* Introduction rules *)
+
+lemma bool_1I [simp,TC]: "1 : bool"
+by (simp add: bool_defs )
+
+lemma bool_0I [simp,TC]: "0 : bool"
+by (simp add: bool_defs)
+
+lemma one_not_0: "1~=0"
+by (simp add: bool_defs )
+
+(** 1=0 ==> R **)
+lemmas one_neq_0 = one_not_0 [THEN notE, standard]
+
+lemma boolE:
+    "[| c: bool;  c=1 ==> P;  c=0 ==> P |] ==> P"
+by (simp add: bool_defs, blast)  
+
+(** cond **)
+
+(*1 means true*)
+lemma cond_1 [simp]: "cond(1,c,d) = c"
+by (simp add: bool_defs )
+
+(*0 means false*)
+lemma cond_0 [simp]: "cond(0,c,d) = d"
+by (simp add: bool_defs )
+
+lemma cond_type [TC]: "[| b: bool;  c: A(1);  d: A(0) |] ==> cond(b,c,d): A(b)"
+by (simp add: bool_defs , blast)
+
+(*For Simp_tac and Blast_tac*)
+lemma cond_simple_type: "[| b: bool;  c: A;  d: A |] ==> cond(b,c,d): A"
+by (simp add: bool_defs )
+
+lemma def_cond_1: "[| !!b. j(b)==cond(b,c,d) |] ==> j(1) = c"
+by simp
+
+lemma def_cond_0: "[| !!b. j(b)==cond(b,c,d) |] ==> j(0) = d"
+by simp
+
+lemmas not_1 = not_def [THEN def_cond_1, standard, simp]
+lemmas not_0 = not_def [THEN def_cond_0, standard, simp]
+
+lemmas and_1 = and_def [THEN def_cond_1, standard, simp]
+lemmas and_0 = and_def [THEN def_cond_0, standard, simp]
+
+lemmas or_1 = or_def [THEN def_cond_1, standard, simp]
+lemmas or_0 = or_def [THEN def_cond_0, standard, simp]
+
+lemmas xor_1 = xor_def [THEN def_cond_1, standard, simp]
+lemmas xor_0 = xor_def [THEN def_cond_0, standard, simp]
+
+lemma not_type [TC]: "a:bool ==> not(a) : bool"
+by (simp add: not_def)
+
+lemma and_type [TC]: "[| a:bool;  b:bool |] ==> a and b : bool"
+by (simp add: and_def)
+
+lemma or_type [TC]: "[| a:bool;  b:bool |] ==> a or b : bool"
+by (simp add: or_def)
+
+lemma xor_type [TC]: "[| a:bool;  b:bool |] ==> a xor b : bool"
+by (simp add: xor_def)
+
+lemmas bool_typechecks = bool_1I bool_0I cond_type not_type and_type
+                         or_type xor_type
+
+(*** Laws for 'not' ***)
+
+lemma not_not [simp]: "a:bool ==> not(not(a)) = a"
+by (elim boolE, auto)
+
+lemma not_and [simp]: "a:bool ==> not(a and b) = not(a) or not(b)"
+by (elim boolE, auto)
+
+lemma not_or [simp]: "a:bool ==> not(a or b) = not(a) and not(b)"
+by (elim boolE, auto)
+
+(*** Laws about 'and' ***)
+
+lemma and_absorb [simp]: "a: bool ==> a and a = a"
+by (elim boolE, auto)
+
+lemma and_commute: "[| a: bool; b:bool |] ==> a and b = b and a"
+by (elim boolE, auto)
+
+lemma and_assoc: "a: bool ==> (a and b) and c  =  a and (b and c)"
+by (elim boolE, auto)
+
+lemma and_or_distrib: "[| a: bool; b:bool; c:bool |] ==>  
+       (a or b) and c  =  (a and c) or (b and c)"
+by (elim boolE, auto)
+
+(** binary orion **)
+
+lemma or_absorb [simp]: "a: bool ==> a or a = a"
+by (elim boolE, auto)
+
+lemma or_commute: "[| a: bool; b:bool |] ==> a or b = b or a"
+by (elim boolE, auto)
+
+lemma or_assoc: "a: bool ==> (a or b) or c  =  a or (b or c)"
+by (elim boolE, auto)
+
+lemma or_and_distrib: "[| a: bool; b: bool; c: bool |] ==>  
+           (a and b) or c  =  (a or c) and (b or c)"
+by (elim boolE, auto)
+
+ML
+{*
+val bool_def = thm "bool_def";
+
+val bool_defs = thms "bool_defs";
+val singleton_0 = thm "singleton_0";
+val bool_1I = thm "bool_1I";
+val bool_0I = thm "bool_0I";
+val one_not_0 = thm "one_not_0";
+val one_neq_0 = thm "one_neq_0";
+val boolE = thm "boolE";
+val cond_1 = thm "cond_1";
+val cond_0 = thm "cond_0";
+val cond_type = thm "cond_type";
+val cond_simple_type = thm "cond_simple_type";
+val def_cond_1 = thm "def_cond_1";
+val def_cond_0 = thm "def_cond_0";
+val not_1 = thm "not_1";
+val not_0 = thm "not_0";
+val and_1 = thm "and_1";
+val and_0 = thm "and_0";
+val or_1 = thm "or_1";
+val or_0 = thm "or_0";
+val xor_1 = thm "xor_1";
+val xor_0 = thm "xor_0";
+val not_type = thm "not_type";
+val and_type = thm "and_type";
+val or_type = thm "or_type";
+val xor_type = thm "xor_type";
+val bool_typechecks = thms "bool_typechecks";
+val not_not = thm "not_not";
+val not_and = thm "not_and";
+val not_or = thm "not_or";
+val and_absorb = thm "and_absorb";
+val and_commute = thm "and_commute";
+val and_assoc = thm "and_assoc";
+val and_or_distrib = thm "and_or_distrib";
+val or_absorb = thm "or_absorb";
+val or_commute = thm "or_commute";
+val or_assoc = thm "or_assoc";
+val or_and_distrib = thm "or_and_distrib";
+*}
+
 end
--- a/src/ZF/Integ/EquivClass.thy	Fri Jun 21 18:40:06 2002 +0200
+++ b/src/ZF/Integ/EquivClass.thy	Sat Jun 22 18:28:46 2002 +0200
@@ -6,7 +6,7 @@
 Equivalence relations in Zermelo-Fraenkel Set Theory 
 *)
 
-EquivClass = Rel + Perm + 
+EquivClass = Trancl + Perm + 
 
 constdefs
 
--- a/src/ZF/IsaMakefile	Fri Jun 21 18:40:06 2002 +0200
+++ b/src/ZF/IsaMakefile	Sat Jun 22 18:28:46 2002 +0200
@@ -29,7 +29,7 @@
 	@cd $(SRC)/FOL; $(ISATOOL) make FOL
 
 $(OUT)/ZF: $(OUT)/FOL AC.thy Arith.thy ArithSimp.ML	\
-  ArithSimp.thy Bool.ML Bool.thy Cardinal.thy		\
+  ArithSimp.thy Bool.thy Cardinal.thy		\
   CardinalArith.thy Cardinal_AC.thy \
   Datatype.ML Datatype.thy Epsilon.thy Finite.thy	\
   Fixedpt.thy Inductive.ML Inductive.thy 	\
@@ -39,11 +39,11 @@
   Integ/twos_compl.ML Let.ML Let.thy List.ML List.thy Main.ML Main.thy	\
   Main_ZFC.ML Main_ZFC.thy Nat.thy Order.thy OrderArith.thy	\
   OrderType.thy Ordinal.thy OrdQuant.thy Perm.thy	\
-  QPair.ML QPair.thy QUniv.ML QUniv.thy ROOT.ML Rel.ML Rel.thy Sum.ML	\
+  QPair.ML QPair.thy QUniv.ML QUniv.thy ROOT.ML Sum.ML	\
   Sum.thy Tools/cartprod.ML Tools/datatype_package.ML			\
   Tools/ind_cases.ML Tools/induct_tacs.ML Tools/inductive_package.ML	\
   Tools/numeral_syntax.ML Tools/primrec_package.ML Tools/typechk.ML	\
-  Trancl.ML Trancl.thy Univ.thy Update.thy \
+  Trancl.thy Univ.thy Update.thy \
   WF.thy ZF.ML ZF.thy Zorn.thy arith_data.ML equalities.thy func.thy	\
   ind_syntax.ML mono.ML mono.thy pair.ML pair.thy simpdata.ML		\
   subset.ML subset.thy thy_syntax.ML upair.ML upair.thy
--- a/src/ZF/Rel.ML	Fri Jun 21 18:40:06 2002 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,55 +0,0 @@
-(*  Title:      ZF/Rel.ML
-    ID:         $Id$
-    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
-    Copyright   1994  University of Cambridge
-
-Relations in Zermelo-Fraenkel Set Theory 
-*)
-
-(*** Some properties of relations -- useful? ***)
-
-(* irreflexivity *)
-
-val prems = Goalw [irrefl_def]
-    "[| !!x. x:A ==> <x,x> ~: r |] ==> irrefl(A,r)";
-by (REPEAT (ares_tac (prems @ [ballI]) 1));
-qed "irreflI";
-
-Goalw [irrefl_def] "[| irrefl(A,r);  x:A |] ==>  <x,x> ~: r";
-by (Blast_tac 1);
-qed "irreflE";
-
-(* symmetry *)
-
-val prems = Goalw [sym_def]
-     "[| !!x y.<x,y>: r ==> <y,x>: r |] ==> sym(r)";
-by (REPEAT (ares_tac (prems @ [allI,impI]) 1));
-qed "symI";
-
-Goalw [sym_def] "[| sym(r); <x,y>: r |]  ==>  <y,x>: r";
-by (Blast_tac 1);
-qed "symE";
-
-(* antisymmetry *)
-
-val prems = Goalw [antisym_def]
-     "[| !!x y.[| <x,y>: r;  <y,x>: r |] ==> x=y |] ==> \
-\     antisym(r)";
-by (REPEAT (ares_tac (prems @ [allI,impI]) 1));
-qed "antisymI";
-
-Goalw [antisym_def] "[| antisym(r); <x,y>: r;  <y,x>: r |]  ==>  x=y";
-by (Blast_tac 1);
-qed "antisymE";
-
-(* transitivity *)
-
-Goalw [trans_def] "[| trans(r);  <a,b>:r;  <b,c>:r |] ==> <a,c>:r";
-by (Blast_tac 1);
-qed "transD";
-
-Goalw [trans_on_def]
-    "[| trans[A](r);  <a,b>:r;  <b,c>:r;  a:A;  b:A;  c:A |] ==> <a,c>:r";
-by (Blast_tac 1);
-qed "trans_onD";
-
--- a/src/ZF/Rel.thy	Fri Jun 21 18:40:06 2002 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,38 +0,0 @@
-(*  Title:      ZF/Rel.thy
-    ID:         $Id$
-    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
-    Copyright   1994  University of Cambridge
-
-Relations in Zermelo-Fraenkel Set Theory 
-*)
-
-Rel = equalities +
-consts
-    refl     :: "[i,i]=>o"
-    irrefl   :: "[i,i]=>o"
-    equiv    :: "[i,i]=>o"
-    sym      :: "i=>o"
-    asym     :: "i=>o"
-    antisym  :: "i=>o"
-    trans    :: "i=>o"
-    trans_on :: "[i,i]=>o"  ("trans[_]'(_')")
-
-defs
-  refl_def     "refl(A,r) == (ALL x: A. <x,x> : r)"
-
-  irrefl_def   "irrefl(A,r) == ALL x: A. <x,x> ~: r"
-
-  sym_def      "sym(r) == ALL x y. <x,y>: r --> <y,x>: r"
-
-  asym_def     "asym(r) == ALL x y. <x,y>:r --> ~ <y,x>:r"
-
-  antisym_def  "antisym(r) == ALL x y.<x,y>:r --> <y,x>:r --> x=y"
-
-  trans_def    "trans(r) == ALL x y z. <x,y>: r --> <y,z>: r --> <x,z>: r"
-
-  trans_on_def "trans[A](r) == ALL x:A. ALL y:A. ALL z:A.       
-                          <x,y>: r --> <y,z>: r --> <x,z>: r"
-
-  equiv_def    "equiv(A,r) == r <= A*A & refl(A,r) & sym(r) & trans(r)"
-
-end
--- a/src/ZF/Trancl.ML	Fri Jun 21 18:40:06 2002 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,267 +0,0 @@
-(*  Title:      ZF/trancl.ML
-    ID:         $Id$
-    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
-    Copyright   1992  University of Cambridge
-
-Transitive closure of a relation
-*)
-
-Goal "bnd_mono(field(r)*field(r), %s. id(field(r)) Un (r O s))";
-by (rtac bnd_monoI 1);
-by (REPEAT (ares_tac [subset_refl, Un_mono, comp_mono] 2));
-by (Blast_tac 1);
-qed "rtrancl_bnd_mono";
-
-Goalw [rtrancl_def] "r<=s ==> r^* <= s^*";
-by (rtac lfp_mono 1);
-by (REPEAT (ares_tac [rtrancl_bnd_mono, subset_refl, id_mono,
-		      comp_mono, Un_mono, field_mono, Sigma_mono] 1));
-qed "rtrancl_mono";
-
-(* r^* = id(field(r)) Un ( r O r^* )    *)
-bind_thm ("rtrancl_unfold", rtrancl_bnd_mono RS (rtrancl_def RS def_lfp_unfold));
-
-(** The relation rtrancl **)
-
-(*  r^* <= field(r) * field(r)  *)
-bind_thm ("rtrancl_type", rtrancl_def RS def_lfp_subset);
-
-(*Reflexivity of rtrancl*)
-Goal "[| a: field(r) |] ==> <a,a> : r^*";
-by (resolve_tac [rtrancl_unfold RS ssubst] 1);
-by (etac (idI RS UnI1) 1);
-qed "rtrancl_refl";
-
-(*Closure under composition with r  *)
-Goal "[| <a,b> : r^*;  <b,c> : r |] ==> <a,c> : r^*";
-by (resolve_tac [rtrancl_unfold RS ssubst] 1);
-by (rtac (compI RS UnI2) 1);
-by (assume_tac 1);
-by (assume_tac 1);
-qed "rtrancl_into_rtrancl";
-
-(*rtrancl of r contains all pairs in r  *)
-Goal "<a,b> : r ==> <a,b> : r^*";
-by (resolve_tac [rtrancl_refl RS rtrancl_into_rtrancl] 1);
-by (REPEAT (ares_tac [fieldI1] 1));
-qed "r_into_rtrancl";
-
-(*The premise ensures that r consists entirely of pairs*)
-Goal "r <= Sigma(A,B) ==> r <= r^*";
-by (blast_tac (claset() addIs [r_into_rtrancl]) 1);
-qed "r_subset_rtrancl";
-
-Goal "field(r^*) = field(r)";
-by (blast_tac (claset() addIs [r_into_rtrancl] 
-                    addSDs [rtrancl_type RS subsetD]) 1);
-qed "rtrancl_field";
-
-
-(** standard induction rule **)
-
-val major::prems = Goal
-  "[| <a,b> : r^*; \
-\     !!x. x: field(r) ==> P(<x,x>); \
-\     !!x y z.[| P(<x,y>); <x,y>: r^*; <y,z>: r |]  ==>  P(<x,z>) |] \
-\  ==>  P(<a,b>)";
-by (rtac ([rtrancl_def, rtrancl_bnd_mono, major] MRS def_induct) 1);
-by (blast_tac (claset() addIs prems) 1);
-qed "rtrancl_full_induct";
-
-(*nice induction rule.
-  Tried adding the typing hypotheses y,z:field(r), but these
-  caused expensive case splits!*)
-val major::prems = Goal
-  "[| <a,b> : r^*;                                              \
-\     P(a);                                                     \
-\     !!y z.[| <a,y> : r^*;  <y,z> : r;  P(y) |] ==> P(z)       \
-\  |] ==> P(b)";
-(*by induction on this formula*)
-by (subgoal_tac "ALL y. <a,b> = <a,y> --> P(y)" 1);
-(*now solve first subgoal: this formula is sufficient*)
-by (EVERY1 [etac (spec RS mp), rtac refl]);
-(*now do the induction*)
-by (resolve_tac [major RS rtrancl_full_induct] 1);
-by (ALLGOALS (blast_tac (claset() addIs prems)));
-qed "rtrancl_induct";
-
-(*transitivity of transitive closure!! -- by induction.*)
-Goalw [trans_def] "trans(r^*)";
-by (REPEAT (resolve_tac [allI,impI] 1));
-by (eres_inst_tac [("b","z")] rtrancl_induct 1);
-by (DEPTH_SOLVE (eresolve_tac [asm_rl, rtrancl_into_rtrancl] 1));
-qed "trans_rtrancl";
-
-bind_thm ("rtrancl_trans", trans_rtrancl RS transD);
-
-(*elimination of rtrancl -- by induction on a special formula*)
-val major::prems = Goal
-    "[| <a,b> : r^*;  (a=b) ==> P;                       \
-\       !!y.[| <a,y> : r^*;   <y,b> : r |] ==> P |]      \
-\    ==> P";
-by (subgoal_tac "a = b  | (EX y. <a,y> : r^* & <y,b> : r)" 1);
-(*see HOL/trancl*)
-by (rtac (major RS rtrancl_induct) 2);
-by (ALLGOALS (fast_tac (claset() addSEs prems)));
-qed "rtranclE";
-
-
-(**** The relation trancl ****)
-
-(*Transitivity of r^+ is proved by transitivity of r^*  *)
-Goalw [trans_def,trancl_def] "trans(r^+)";
-by (blast_tac (claset() addIs [rtrancl_into_rtrancl RS 
-			      (trans_rtrancl RS transD RS compI)]) 1);
-qed "trans_trancl";
-
-bind_thm ("trancl_trans", trans_trancl RS transD);
-
-(** Conversions between trancl and rtrancl **)
-
-Goalw [trancl_def] "<a,b> : r^+ ==> <a,b> : r^*";
-by (blast_tac (claset() addIs [rtrancl_into_rtrancl]) 1);
-qed "trancl_into_rtrancl";
-
-(*r^+ contains all pairs in r  *)
-Goalw [trancl_def] "<a,b> : r ==> <a,b> : r^+";
-by (blast_tac (claset() addSIs [rtrancl_refl]) 1);
-qed "r_into_trancl";
-
-(*The premise ensures that r consists entirely of pairs*)
-Goal "r <= Sigma(A,B) ==> r <= r^+";
-by (blast_tac (claset() addIs [r_into_trancl]) 1);
-qed "r_subset_trancl";
-
-(*intro rule by definition: from r^* and r  *)
-Goalw [trancl_def] "[| <a,b> : r^*;  <b,c> : r |]   ==>  <a,c> : r^+";
-by (Blast_tac 1);
-qed "rtrancl_into_trancl1";
-
-(*intro rule from r and r^*  *)
-val prems = goal (the_context ())
-    "[| <a,b> : r;  <b,c> : r^* |]   ==>  <a,c> : r^+";
-by (resolve_tac (prems RL [rtrancl_induct]) 1);
-by (resolve_tac (prems RL [r_into_trancl]) 1);
-by (etac trancl_trans 1);
-by (etac r_into_trancl 1);
-qed "rtrancl_into_trancl2";
-
-(*Nice induction rule for trancl*)
-val major::prems = Goal
-  "[| <a,b> : r^+;                                      \
-\     !!y.  [| <a,y> : r |] ==> P(y);                   \
-\     !!y z.[| <a,y> : r^+;  <y,z> : r;  P(y) |] ==> P(z)       \
-\  |] ==> P(b)";
-by (rtac (rewrite_rule [trancl_def] major  RS  compEpair) 1);
-(*by induction on this formula*)
-by (subgoal_tac "ALL z. <y,z> : r --> P(z)" 1);
-(*now solve first subgoal: this formula is sufficient*)
-by (Blast_tac 1);
-by (etac rtrancl_induct 1);
-by (ALLGOALS (fast_tac (claset() addIs (rtrancl_into_trancl1::prems))));
-qed "trancl_induct";
-
-(*elimination of r^+ -- NOT an induction rule*)
-val major::prems = Goal
-    "[| <a,b> : r^+;  \
-\       <a,b> : r ==> P; \
-\       !!y.[| <a,y> : r^+; <y,b> : r |] ==> P  \
-\    |] ==> P";
-by (subgoal_tac "<a,b> : r | (EX y. <a,y> : r^+  &  <y,b> : r)" 1);
-by (fast_tac (claset() addIs prems) 1);
-by (rtac (rewrite_rule [trancl_def] major RS compEpair) 1);
-by (etac rtranclE 1);
-by (ALLGOALS (blast_tac (claset() addIs [rtrancl_into_trancl1])));
-qed "tranclE";
-
-Goalw [trancl_def] "r^+ <= field(r)*field(r)";
-by (blast_tac (claset() addEs [rtrancl_type RS subsetD RS SigmaE2]) 1);
-qed "trancl_type";
-
-Goalw [trancl_def] "r<=s ==> r^+ <= s^+";
-by (REPEAT (ares_tac [comp_mono, rtrancl_mono] 1));
-qed "trancl_mono";
-
-(** Suggested by Sidi Ould Ehmety **)
-
-Goal "(r^*)^* = r^*";
-by (rtac equalityI 1);
-by Auto_tac;
-by (ALLGOALS (forward_tac [impOfSubs rtrancl_type]));
-by (ALLGOALS Clarify_tac);
-by (etac r_into_rtrancl 2);
-by (etac rtrancl_induct 1);
-by (asm_full_simp_tac (simpset() addsimps [rtrancl_refl, rtrancl_field]) 1);
-by (blast_tac (claset() addIs [rtrancl_trans]) 1);
-qed "rtrancl_idemp";
-Addsimps [rtrancl_idemp];
-
-Goal "[| R <= S; S <= R^* |] ==> S^* = R^*";
-by (dtac rtrancl_mono 1);
-by (dtac rtrancl_mono 1);
-by (ALLGOALS Asm_full_simp_tac);
-by (Blast_tac 1);
-qed "rtrancl_subset";
-
-Goal "[| r<= Sigma(A,B); s<=Sigma(C,D) |] ==> (r^* Un s^*)^* = (r Un s)^*";
-by (rtac rtrancl_subset 1);
-by (blast_tac (claset() addDs [r_subset_rtrancl]) 1);
-by (blast_tac (claset() addIs [rtrancl_mono RS subsetD]) 1);
-qed "rtrancl_Un_rtrancl";
-
-(*** "converse" laws by Sidi Ould Ehmety ***)
-
-(** rtrancl **)
-
-Goal "<x,y>:converse(r)^* ==> <x,y>:converse(r^*)";
-by (rtac converseI 1);
-by (forward_tac [rtrancl_type RS subsetD] 1);
-by (etac rtrancl_induct 1);
-by (blast_tac (claset() addIs [rtrancl_refl]) 1);
-by (blast_tac (claset() addIs [r_into_rtrancl,rtrancl_trans]) 1);
-qed "rtrancl_converseD";
-
-Goal "<x,y>:converse(r^*) ==> <x,y>:converse(r)^*";
-by (dtac converseD 1);
-by (forward_tac [rtrancl_type RS subsetD] 1);
-by (etac rtrancl_induct 1);
-by (blast_tac (claset() addIs [rtrancl_refl]) 1);
-by (blast_tac (claset() addIs [r_into_rtrancl,rtrancl_trans]) 1);
-qed "rtrancl_converseI";
-
-Goal "converse(r)^* = converse(r^*)";
-by (safe_tac (claset() addSIs [equalityI]));
-by (forward_tac [rtrancl_type RS subsetD] 1);
-by (safe_tac (claset() addSDs [rtrancl_converseD] addSIs [rtrancl_converseI]));
-qed "rtrancl_converse";
-
-(** trancl **)
-
-Goal "<a, b>:converse(r)^+ ==> <a, b>:converse(r^+)";
-by (etac trancl_induct 1);
-by (auto_tac (claset() addIs [r_into_trancl, trancl_trans], simpset()));
-qed "trancl_converseD";
-
-Goal "<x,y>:converse(r^+) ==> <x,y>:converse(r)^+";
-by (dtac converseD 1);
-by (etac trancl_induct 1);
-by (auto_tac (claset() addIs [r_into_trancl, trancl_trans], simpset()));
-qed "trancl_converseI";
-
-Goal "converse(r)^+ = converse(r^+)";
-by (safe_tac (claset() addSIs [equalityI]));
-by (forward_tac [trancl_type RS subsetD] 1);
-by (safe_tac (claset() addSDs [trancl_converseD] addSIs [trancl_converseI]));
-qed "trancl_converse";
-
-val major::prems = Goal 
-"[| <a, b>:r^+; !!y. <y, b> :r ==> P(y); \
-\     !!y z. [| <y, z> : r; <z, b> : r^+; P(z) |] ==> P(y) |] \
-\      ==> P(a)";
-by (cut_facts_tac [major] 1);
-by (dtac converseI 1);
-by (full_simp_tac (simpset() addsimps [trancl_converse RS sym]) 1);
-by (etac trancl_induct 1);
-by (auto_tac (claset() addIs prems, 
-              simpset() addsimps [trancl_converse]));
-qed "converse_trancl_induct";
--- a/src/ZF/Trancl.thy	Fri Jun 21 18:40:06 2002 +0200
+++ b/src/ZF/Trancl.thy	Sat Jun 22 18:28:46 2002 +0200
@@ -3,15 +3,422 @@
     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1992  University of Cambridge
 
-Transitive closure of a relation
+1. General Properties of relations
+2. Transitive closure of a relation
 *)
 
-Trancl = Fixedpt + Perm + mono + Rel + 
-consts
-    rtrancl :: "i=>i"  ("(_^*)" [100] 100)  (*refl/transitive closure*)
-    trancl  :: "i=>i"  ("(_^+)" [100] 100)  (*transitive closure*)
+theory Trancl = Fixedpt + Perm + mono:
+
+constdefs
+  refl     :: "[i,i]=>o"
+    "refl(A,r) == (ALL x: A. <x,x> : r)"
+
+  irrefl   :: "[i,i]=>o"
+    "irrefl(A,r) == ALL x: A. <x,x> ~: r"
+
+  equiv    :: "[i,i]=>o"
+    "equiv(A,r) == r <= A*A & refl(A,r) & sym(r) & trans(r)"
+
+  sym      :: "i=>o"
+    "sym(r) == ALL x y. <x,y>: r --> <y,x>: r"
+
+  asym     :: "i=>o"
+    "asym(r) == ALL x y. <x,y>:r --> ~ <y,x>:r"
+
+  antisym  :: "i=>o"
+    "antisym(r) == ALL x y.<x,y>:r --> <y,x>:r --> x=y"
+
+  trans    :: "i=>o"
+    "trans(r) == ALL x y z. <x,y>: r --> <y,z>: r --> <x,z>: r"
+
+  trans_on :: "[i,i]=>o"  ("trans[_]'(_')")
+    "trans[A](r) == ALL x:A. ALL y:A. ALL z:A.       
+                          <x,y>: r --> <y,z>: r --> <x,z>: r"
+
+  rtrancl :: "i=>i"  ("(_^*)" [100] 100)  (*refl/transitive closure*)
+    "r^* == lfp(field(r)*field(r), %s. id(field(r)) Un (r O s))"
+
+  trancl  :: "i=>i"  ("(_^+)" [100] 100)  (*transitive closure*)
+    "r^+ == r O r^*"
+
+subsection{*General properties of relations*}
+
+subsubsection{*irreflexivity*}
+
+lemma irreflI:
+    "[| !!x. x:A ==> <x,x> ~: r |] ==> irrefl(A,r)"
+by (simp add: irrefl_def); 
+
+lemma symI: "[| irrefl(A,r);  x:A |] ==>  <x,x> ~: r"
+apply (simp add: irrefl_def)
+done
+
+subsubsection{*symmetry*}
+
+lemma symI:
+     "[| !!x y.<x,y>: r ==> <y,x>: r |] ==> sym(r)"
+apply (unfold sym_def); 
+apply (blast intro: elim:); 
+done
+
+lemma antisymI: "[| sym(r); <x,y>: r |]  ==>  <y,x>: r"
+apply (unfold sym_def)
+apply blast
+done
+
+subsubsection{*antisymmetry*}
+
+lemma antisymI:
+     "[| !!x y.[| <x,y>: r;  <y,x>: r |] ==> x=y |] ==> antisym(r)"
+apply (simp add: antisym_def) 
+apply (blast intro: elim:); 
+done
+
+lemma antisymE: "[| antisym(r); <x,y>: r;  <y,x>: r |]  ==>  x=y"
+apply (simp add: antisym_def)
+apply blast
+done
+
+subsubsection{*transitivity*}
+
+lemma transD: "[| trans(r);  <a,b>:r;  <b,c>:r |] ==> <a,c>:r"
+apply (unfold trans_def)
+apply blast
+done
+
+lemma trans_onD: 
+    "[| trans[A](r);  <a,b>:r;  <b,c>:r;  a:A;  b:A;  c:A |] ==> <a,c>:r"
+apply (unfold trans_on_def)
+apply blast
+done
+
+subsection{*Transitive closure of a relation*}
+
+lemma rtrancl_bnd_mono:
+     "bnd_mono(field(r)*field(r), %s. id(field(r)) Un (r O s))"
+apply (rule bnd_monoI)
+apply (blast intro: elim:)+
+done
+
+lemma rtrancl_mono: "r<=s ==> r^* <= s^*"
+apply (unfold rtrancl_def)
+apply (rule lfp_mono)
+apply (rule rtrancl_bnd_mono)+
+apply (blast intro: elim:); 
+done
+
+(* r^* = id(field(r)) Un ( r O r^* )    *)
+lemmas rtrancl_unfold =
+     rtrancl_bnd_mono [THEN rtrancl_def [THEN def_lfp_unfold], standard]
+
+(** The relation rtrancl **)
+
+(*  r^* <= field(r) * field(r)  *)
+lemmas rtrancl_type = rtrancl_def [THEN def_lfp_subset, standard]
+
+(*Reflexivity of rtrancl*)
+lemma rtrancl_refl: "[| a: field(r) |] ==> <a,a> : r^*"
+apply (rule rtrancl_unfold [THEN ssubst])
+apply (erule idI [THEN UnI1])
+done
+
+(*Closure under composition with r  *)
+lemma rtrancl_into_rtrancl: "[| <a,b> : r^*;  <b,c> : r |] ==> <a,c> : r^*"
+apply (rule rtrancl_unfold [THEN ssubst])
+apply (rule compI [THEN UnI2])
+apply assumption
+apply assumption
+done
+
+(*rtrancl of r contains all pairs in r  *)
+lemma r_into_rtrancl: "<a,b> : r ==> <a,b> : r^*"
+apply (rule rtrancl_refl [THEN rtrancl_into_rtrancl])
+apply (blast intro: elim:)+
+done
+
+(*The premise ensures that r consists entirely of pairs*)
+lemma r_subset_rtrancl: "r <= Sigma(A,B) ==> r <= r^*"
+apply (blast intro: r_into_rtrancl)
+done
+
+lemma rtrancl_field: "field(r^*) = field(r)"
+apply (blast intro: r_into_rtrancl dest!: rtrancl_type [THEN subsetD])
+done
+
+
+(** standard induction rule **)
+
+lemma rtrancl_full_induct:
+  "[| <a,b> : r^*;  
+      !!x. x: field(r) ==> P(<x,x>);  
+      !!x y z.[| P(<x,y>); <x,y>: r^*; <y,z>: r |]  ==>  P(<x,z>) |]  
+   ==>  P(<a,b>)"
+apply (erule def_induct [OF rtrancl_def rtrancl_bnd_mono])
+apply (blast intro: elim:); 
+done
+
+(*nice induction rule.
+  Tried adding the typing hypotheses y,z:field(r), but these
+  caused expensive case splits!*)
+lemma rtrancl_induct:
+  "[| <a,b> : r^*;                                               
+      P(a);                                                      
+      !!y z.[| <a,y> : r^*;  <y,z> : r;  P(y) |] ==> P(z)        
+   |] ==> P(b)"
+(*by induction on this formula*)
+apply (subgoal_tac "ALL y. <a,b> = <a,y> --> P (y) ")
+(*now solve first subgoal: this formula is sufficient*)
+apply (erule spec [THEN mp], rule refl)
+(*now do the induction*)
+apply (erule rtrancl_full_induct)
+apply (blast)+
+done
+
+(*transitivity of transitive closure!! -- by induction.*)
+lemma trans_rtrancl: "trans(r^*)"
+apply (unfold trans_def)
+apply (intro allI impI)
+apply (erule_tac b = "z" in rtrancl_induct)
+apply assumption; 
+apply (blast intro: rtrancl_into_rtrancl) 
+done
+
+lemmas rtrancl_trans = trans_rtrancl [THEN transD, standard]
+
+(*elimination of rtrancl -- by induction on a special formula*)
+lemma rtranclE:
+    "[| <a,b> : r^*;  (a=b) ==> P;                        
+        !!y.[| <a,y> : r^*;   <y,b> : r |] ==> P |]       
+     ==> P"
+apply (subgoal_tac "a = b | (EX y. <a,y> : r^* & <y,b> : r) ")
+(*see HOL/trancl*)
+apply (blast intro: elim:); 
+apply (erule rtrancl_induct)
+apply (blast intro: elim:)+
+done
+
+
+(**** The relation trancl ****)
+
+(*Transitivity of r^+ is proved by transitivity of r^*  *)
+lemma trans_trancl: "trans(r^+)"
+apply (unfold trans_def trancl_def)
+apply (blast intro: rtrancl_into_rtrancl
+                    trans_rtrancl [THEN transD, THEN compI])
+done
+
+lemmas trancl_trans = trans_trancl [THEN transD, standard]
+
+(** Conversions between trancl and rtrancl **)
 
-defs
-    rtrancl_def "r^* == lfp(field(r)*field(r), %s. id(field(r)) Un (r O s))"
-    trancl_def  "r^+ == r O r^*"
+lemma trancl_into_rtrancl: "<a,b> : r^+ ==> <a,b> : r^*"
+apply (unfold trancl_def)
+apply (blast intro: rtrancl_into_rtrancl)
+done
+
+(*r^+ contains all pairs in r  *)
+lemma r_into_trancl: "<a,b> : r ==> <a,b> : r^+"
+apply (unfold trancl_def)
+apply (blast intro!: rtrancl_refl)
+done
+
+(*The premise ensures that r consists entirely of pairs*)
+lemma r_subset_trancl: "r <= Sigma(A,B) ==> r <= r^+"
+apply (blast intro: r_into_trancl)
+done
+
+(*intro rule by definition: from r^* and r  *)
+lemma rtrancl_into_trancl1: "[| <a,b> : r^*;  <b,c> : r |]   ==>  <a,c> : r^+"
+apply (unfold trancl_def)
+apply blast
+done
+
+(*intro rule from r and r^*  *)
+lemma rtrancl_into_trancl2:
+    "[| <a,b> : r;  <b,c> : r^* |]   ==>  <a,c> : r^+"
+apply (erule rtrancl_induct)
+ apply (erule r_into_trancl)
+apply (blast intro: r_into_trancl trancl_trans) 
+done
+
+(*Nice induction rule for trancl*)
+lemma trancl_induct:
+  "[| <a,b> : r^+;                                       
+      !!y.  [| <a,y> : r |] ==> P(y);                    
+      !!y z.[| <a,y> : r^+;  <y,z> : r;  P(y) |] ==> P(z)        
+   |] ==> P(b)"
+apply (rule compEpair)
+apply (unfold trancl_def, assumption)
+(*by induction on this formula*)
+apply (subgoal_tac "ALL z. <y,z> : r --> P (z) ")
+(*now solve first subgoal: this formula is sufficient*)
+ apply blast
+apply (erule rtrancl_induct)
+apply (blast intro: rtrancl_into_trancl1)+
+done
+
+(*elimination of r^+ -- NOT an induction rule*)
+lemma tranclE:
+    "[| <a,b> : r^+;   
+        <a,b> : r ==> P;  
+        !!y.[| <a,y> : r^+; <y,b> : r |] ==> P   
+     |] ==> P"
+apply (subgoal_tac "<a,b> : r | (EX y. <a,y> : r^+ & <y,b> : r) ")
+apply (blast intro: elim:); 
+apply (rule compEpair)
+apply (unfold trancl_def, assumption)
+apply (erule rtranclE)
+apply (blast intro: rtrancl_into_trancl1)+
+done
+
+lemma trancl_type: "r^+ <= field(r)*field(r)"
+apply (unfold trancl_def)
+apply (blast elim: rtrancl_type [THEN subsetD, THEN SigmaE2])
+done
+
+lemma trancl_mono: "r<=s ==> r^+ <= s^+"
+by (unfold trancl_def, intro comp_mono rtrancl_mono)
+
+
+(** Suggested by Sidi Ould Ehmety **)
+
+lemma rtrancl_idemp [simp]: "(r^*)^* = r^*"
+apply (rule equalityI)
+apply auto
+ prefer 2
+ apply (frule rtrancl_type [THEN subsetD])
+ apply (blast intro: r_into_rtrancl elim:); 
+txt{*converse direction*}
+apply (frule rtrancl_type [THEN subsetD])
+apply (clarify ); 
+apply (erule rtrancl_induct)
+apply (simp add: rtrancl_refl rtrancl_field)
+apply (blast intro: rtrancl_trans)
+done
+
+lemma rtrancl_subset: "[| R <= S; S <= R^* |] ==> S^* = R^*"
+apply (drule rtrancl_mono)
+apply (drule rtrancl_mono)
+apply simp_all
+apply blast
+done
+
+lemma rtrancl_Un_rtrancl:
+     "[| r<= Sigma(A,B); s<=Sigma(C,D) |] ==> (r^* Un s^*)^* = (r Un s)^*"
+apply (rule rtrancl_subset)
+apply (blast dest: r_subset_rtrancl)
+apply (blast intro: rtrancl_mono [THEN subsetD])
+done
+
+(*** "converse" laws by Sidi Ould Ehmety ***)
+
+(** rtrancl **)
+
+lemma rtrancl_converseD: "<x,y>:converse(r)^* ==> <x,y>:converse(r^*)"
+apply (rule converseI)
+apply (frule rtrancl_type [THEN subsetD])
+apply (erule rtrancl_induct)
+apply (blast intro: rtrancl_refl)
+apply (blast intro: r_into_rtrancl rtrancl_trans)
+done
+
+lemma rtrancl_converseI: "<x,y>:converse(r^*) ==> <x,y>:converse(r)^*"
+apply (drule converseD)
+apply (frule rtrancl_type [THEN subsetD])
+apply (erule rtrancl_induct)
+apply (blast intro: rtrancl_refl)
+apply (blast intro: r_into_rtrancl rtrancl_trans)
+done
+
+lemma rtrancl_converse: "converse(r)^* = converse(r^*)"
+apply (safe intro!: equalityI)
+apply (frule rtrancl_type [THEN subsetD])
+apply (safe dest!: rtrancl_converseD intro!: rtrancl_converseI)
+done
+
+(** trancl **)
+
+lemma trancl_converseD: "<a, b>:converse(r)^+ ==> <a, b>:converse(r^+)"
+apply (erule trancl_induct)
+apply (auto intro: r_into_trancl trancl_trans)
+done
+
+lemma trancl_converseI: "<x,y>:converse(r^+) ==> <x,y>:converse(r)^+"
+apply (drule converseD)
+apply (erule trancl_induct)
+apply (auto intro: r_into_trancl trancl_trans)
+done
+
+lemma trancl_converse: "converse(r)^+ = converse(r^+)"
+apply (safe intro!: equalityI)
+apply (frule trancl_type [THEN subsetD])
+apply (safe dest!: trancl_converseD intro!: trancl_converseI)
+done
+
+lemma converse_trancl_induct:
+"[| <a, b>:r^+; !!y. <y, b> :r ==> P(y);  
+      !!y z. [| <y, z> : r; <z, b> : r^+; P(z) |] ==> P(y) |]  
+       ==> P(a)"
+apply (drule converseI)
+apply (simp (no_asm_use) add: trancl_converse [symmetric])
+apply (erule trancl_induct)
+apply (auto simp add: trancl_converse)
+done
+
+ML
+{*
+val refl_def = thm "refl_def";
+val irrefl_def = thm "irrefl_def";
+val equiv_def = thm "equiv_def";
+val sym_def = thm "sym_def";
+val asym_def = thm "asym_def";
+val antisym_def = thm "antisym_def";
+val trans_def = thm "trans_def";
+val trans_on_def = thm "trans_on_def";
+
+val irreflI = thm "irreflI";
+val symI = thm "symI";
+val symI = thm "symI";
+val antisymI = thm "antisymI";
+val antisymE = thm "antisymE";
+val transD = thm "transD";
+val trans_onD = thm "trans_onD";
+
+val rtrancl_bnd_mono = thm "rtrancl_bnd_mono";
+val rtrancl_mono = thm "rtrancl_mono";
+val rtrancl_unfold = thm "rtrancl_unfold";
+val rtrancl_type = thm "rtrancl_type";
+val rtrancl_refl = thm "rtrancl_refl";
+val rtrancl_into_rtrancl = thm "rtrancl_into_rtrancl";
+val r_into_rtrancl = thm "r_into_rtrancl";
+val r_subset_rtrancl = thm "r_subset_rtrancl";
+val rtrancl_field = thm "rtrancl_field";
+val rtrancl_full_induct = thm "rtrancl_full_induct";
+val rtrancl_induct = thm "rtrancl_induct";
+val trans_rtrancl = thm "trans_rtrancl";
+val rtrancl_trans = thm "rtrancl_trans";
+val rtranclE = thm "rtranclE";
+val trans_trancl = thm "trans_trancl";
+val trancl_trans = thm "trancl_trans";
+val trancl_into_rtrancl = thm "trancl_into_rtrancl";
+val r_into_trancl = thm "r_into_trancl";
+val r_subset_trancl = thm "r_subset_trancl";
+val rtrancl_into_trancl1 = thm "rtrancl_into_trancl1";
+val rtrancl_into_trancl2 = thm "rtrancl_into_trancl2";
+val trancl_induct = thm "trancl_induct";
+val tranclE = thm "tranclE";
+val trancl_type = thm "trancl_type";
+val trancl_mono = thm "trancl_mono";
+val rtrancl_idemp = thm "rtrancl_idemp";
+val rtrancl_subset = thm "rtrancl_subset";
+val rtrancl_Un_rtrancl = thm "rtrancl_Un_rtrancl";
+val rtrancl_converseD = thm "rtrancl_converseD";
+val rtrancl_converseI = thm "rtrancl_converseI";
+val rtrancl_converse = thm "rtrancl_converse";
+val trancl_converseD = thm "trancl_converseD";
+val trancl_converseI = thm "trancl_converseI";
+val trancl_converse = thm "trancl_converse";
+val converse_trancl_induct = thm "converse_trancl_induct";
+*}
+
 end