complete refactoring of Metis along the lines of Sledgehammer
authorblanchet
Thu, 16 Sep 2010 17:30:29 +0200
changeset 39497 fa16349939b7
parent 39496 a52a4e4399c1
child 39498 e8aef7ea9cbb
complete refactoring of Metis along the lines of Sledgehammer
src/HOL/Tools/Sledgehammer/metis_reconstruct.ML
src/HOL/Tools/Sledgehammer/metis_tactics.ML
src/HOL/Tools/Sledgehammer/metis_translate.ML
--- a/src/HOL/Tools/Sledgehammer/metis_reconstruct.ML	Thu Sep 16 16:54:42 2010 +0200
+++ b/src/HOL/Tools/Sledgehammer/metis_reconstruct.ML	Thu Sep 16 17:30:29 2010 +0200
@@ -9,9 +9,500 @@
 
 signature METIS_RECONSTRUCT =
 sig
+  type mode = Metis_Translate.mode
+
+  val trace: bool Unsynchronized.ref
+  val lookth : (Metis_Thm.thm * 'a) list -> Metis_Thm.thm -> 'a
+  val replay_one_inference :
+    Proof.context -> mode -> (string * term) list
+    -> Metis_Thm.thm * Metis_Proof.inference -> (Metis_Thm.thm * thm) list
+    -> (Metis_Thm.thm * thm) list
 end;
 
 structure Metis_Reconstruct : METIS_RECONSTRUCT =
 struct
 
+open Metis_Translate
+
+val trace = Unsynchronized.ref false
+fun trace_msg msg = if !trace then tracing (msg ()) else ()
+
+datatype term_or_type = Term of Term.term | Type of Term.typ;
+
+fun terms_of [] = []
+  | terms_of (Term t :: tts) = t :: terms_of tts
+  | terms_of (Type _ :: tts) = terms_of tts;
+
+fun types_of [] = []
+  | types_of (Term (Term.Var ((a,idx), _)) :: tts) =
+      if String.isPrefix "_" a then
+          (*Variable generated by Metis, which might have been a type variable.*)
+          TVar (("'" ^ a, idx), HOLogic.typeS) :: types_of tts
+      else types_of tts
+  | types_of (Term _ :: tts) = types_of tts
+  | types_of (Type T :: tts) = T :: types_of tts;
+
+fun apply_list rator nargs rands =
+  let val trands = terms_of rands
+  in  if length trands = nargs then Term (list_comb(rator, trands))
+      else raise Fail
+        ("apply_list: wrong number of arguments: " ^ Syntax.string_of_term_global Pure.thy rator ^
+          " expected " ^ Int.toString nargs ^
+          " received " ^ commas (map (Syntax.string_of_term_global Pure.thy) trands))
+  end;
+
+fun infer_types ctxt =
+  Syntax.check_terms (ProofContext.set_mode ProofContext.mode_pattern ctxt);
+
+(*We use 1 rather than 0 because variable references in clauses may otherwise conflict
+  with variable constraints in the goal...at least, type inference often fails otherwise.
+  SEE ALSO axiom_inf below.*)
+fun mk_var (w,T) = Term.Var((w,1), T);
+
+(*include the default sort, if available*)
+fun mk_tfree ctxt w =
+  let val ww = "'" ^ w
+  in  TFree(ww, the_default HOLogic.typeS (Variable.def_sort ctxt (ww, ~1)))  end;
+
+(*Remove the "apply" operator from an HO term*)
+fun strip_happ args (Metis_Term.Fn(".",[t,u])) = strip_happ (u::args) t
+  | strip_happ args x = (x, args);
+
+fun make_tvar s = TVar (("'" ^ s, 0), HOLogic.typeS)
+
+fun smart_invert_const "fequal" = @{const_name HOL.eq}
+  | smart_invert_const s = invert_const s
+
+fun hol_type_from_metis_term _ (Metis_Term.Var v) =
+     (case strip_prefix_and_unascii tvar_prefix v of
+          SOME w => make_tvar w
+        | NONE   => make_tvar v)
+  | hol_type_from_metis_term ctxt (Metis_Term.Fn(x, tys)) =
+     (case strip_prefix_and_unascii type_const_prefix x of
+          SOME tc => Term.Type (smart_invert_const tc,
+                                map (hol_type_from_metis_term ctxt) tys)
+        | NONE    =>
+      case strip_prefix_and_unascii tfree_prefix x of
+          SOME tf => mk_tfree ctxt tf
+        | NONE    => raise Fail ("hol_type_from_metis_term: " ^ x));
+
+(*Maps metis terms to isabelle terms*)
+fun hol_term_from_metis_PT ctxt fol_tm =
+  let val thy = ProofContext.theory_of ctxt
+      val _ = trace_msg (fn () => "hol_term_from_metis_PT: " ^
+                                  Metis_Term.toString fol_tm)
+      fun tm_to_tt (Metis_Term.Var v) =
+             (case strip_prefix_and_unascii tvar_prefix v of
+                  SOME w => Type (make_tvar w)
+                | NONE =>
+              case strip_prefix_and_unascii schematic_var_prefix v of
+                  SOME w => Term (mk_var (w, HOLogic.typeT))
+                | NONE   => Term (mk_var (v, HOLogic.typeT)) )
+                    (*Var from Metis with a name like _nnn; possibly a type variable*)
+        | tm_to_tt (Metis_Term.Fn ("{}", [arg])) = tm_to_tt arg   (*hBOOL*)
+        | tm_to_tt (t as Metis_Term.Fn (".",_)) =
+            let val (rator,rands) = strip_happ [] t
+            in  case rator of
+                    Metis_Term.Fn(fname,ts) => applic_to_tt (fname, ts @ rands)
+                  | _ => case tm_to_tt rator of
+                             Term t => Term (list_comb(t, terms_of (map tm_to_tt rands)))
+                           | _ => raise Fail "tm_to_tt: HO application"
+            end
+        | tm_to_tt (Metis_Term.Fn (fname, args)) = applic_to_tt (fname,args)
+      and applic_to_tt ("=",ts) =
+            Term (list_comb(Const (@{const_name HOL.eq}, HOLogic.typeT), terms_of (map tm_to_tt ts)))
+        | applic_to_tt (a,ts) =
+            case strip_prefix_and_unascii const_prefix a of
+                SOME b =>
+                  let val c = smart_invert_const b
+                      val ntypes = num_type_args thy c
+                      val nterms = length ts - ntypes
+                      val tts = map tm_to_tt ts
+                      val tys = types_of (List.take(tts,ntypes))
+                  in if length tys = ntypes then
+                         apply_list (Const (c, dummyT)) nterms (List.drop(tts,ntypes))
+                     else
+                       raise Fail ("Constant " ^ c ^ " expects " ^ Int.toString ntypes ^
+                                   " but gets " ^ Int.toString (length tys) ^
+                                   " type arguments\n" ^
+                                   cat_lines (map (Syntax.string_of_typ ctxt) tys) ^
+                                   " the terms are \n" ^
+                                   cat_lines (map (Syntax.string_of_term ctxt) (terms_of tts)))
+                     end
+              | NONE => (*Not a constant. Is it a type constructor?*)
+            case strip_prefix_and_unascii type_const_prefix a of
+                SOME b =>
+                  Type (Term.Type (smart_invert_const b, types_of (map tm_to_tt ts)))
+              | NONE => (*Maybe a TFree. Should then check that ts=[].*)
+            case strip_prefix_and_unascii tfree_prefix a of
+                SOME b => Type (mk_tfree ctxt b)
+              | NONE => (*a fixed variable? They are Skolem functions.*)
+            case strip_prefix_and_unascii fixed_var_prefix a of
+                SOME b =>
+                  let val opr = Term.Free(b, HOLogic.typeT)
+                  in  apply_list opr (length ts) (map tm_to_tt ts)  end
+              | NONE => raise Fail ("unexpected metis function: " ^ a)
+  in
+    case tm_to_tt fol_tm of
+      Term t => t
+    | _ => raise Fail "fol_tm_to_tt: Term expected"
+  end
+
+(*Maps fully-typed metis terms to isabelle terms*)
+fun hol_term_from_metis_FT ctxt fol_tm =
+  let val _ = trace_msg (fn () => "hol_term_from_metis_FT: " ^
+                                  Metis_Term.toString fol_tm)
+      fun cvt (Metis_Term.Fn ("ti", [Metis_Term.Var v, _])) =
+             (case strip_prefix_and_unascii schematic_var_prefix v of
+                  SOME w =>  mk_var(w, dummyT)
+                | NONE   => mk_var(v, dummyT))
+        | cvt (Metis_Term.Fn ("ti", [Metis_Term.Fn ("=",[]), _])) =
+            Const (@{const_name HOL.eq}, HOLogic.typeT)
+        | cvt (Metis_Term.Fn ("ti", [Metis_Term.Fn (x,[]), ty])) =
+           (case strip_prefix_and_unascii const_prefix x of
+                SOME c => Const (smart_invert_const c, dummyT)
+              | NONE => (*Not a constant. Is it a fixed variable??*)
+            case strip_prefix_and_unascii fixed_var_prefix x of
+                SOME v => Free (v, hol_type_from_metis_term ctxt ty)
+              | NONE => raise Fail ("hol_term_from_metis_FT bad constant: " ^ x))
+        | cvt (Metis_Term.Fn ("ti", [Metis_Term.Fn (".",[tm1,tm2]), _])) =
+            cvt tm1 $ cvt tm2
+        | cvt (Metis_Term.Fn (".",[tm1,tm2])) = (*untyped application*)
+            cvt tm1 $ cvt tm2
+        | cvt (Metis_Term.Fn ("{}", [arg])) = cvt arg   (*hBOOL*)
+        | cvt (Metis_Term.Fn ("=", [tm1,tm2])) =
+            list_comb(Const (@{const_name HOL.eq}, HOLogic.typeT), map cvt [tm1,tm2])
+        | cvt (t as Metis_Term.Fn (x, [])) =
+           (case strip_prefix_and_unascii const_prefix x of
+                SOME c => Const (smart_invert_const c, dummyT)
+              | NONE => (*Not a constant. Is it a fixed variable??*)
+            case strip_prefix_and_unascii fixed_var_prefix x of
+                SOME v => Free (v, dummyT)
+              | NONE => (trace_msg (fn () => "hol_term_from_metis_FT bad const: " ^ x);
+                  hol_term_from_metis_PT ctxt t))
+        | cvt t = (trace_msg (fn () => "hol_term_from_metis_FT bad term: " ^ Metis_Term.toString t);
+            hol_term_from_metis_PT ctxt t)
+  in fol_tm |> cvt end
+
+fun hol_term_from_metis FT = hol_term_from_metis_FT
+  | hol_term_from_metis _ = hol_term_from_metis_PT
+
+fun hol_terms_from_fol ctxt mode skolems fol_tms =
+  let val ts = map (hol_term_from_metis mode ctxt) fol_tms
+      val _ = trace_msg (fn () => "  calling type inference:")
+      val _ = app (fn t => trace_msg (fn () => Syntax.string_of_term ctxt t)) ts
+      val ts' = ts |> map (reveal_skolem_terms skolems) |> infer_types ctxt
+      val _ = app (fn t => trace_msg
+                    (fn () => "  final term: " ^ Syntax.string_of_term ctxt t ^
+                              "  of type  " ^ Syntax.string_of_typ ctxt (type_of t)))
+                  ts'
+  in  ts'  end;
+
+(* ------------------------------------------------------------------------- *)
+(* FOL step Inference Rules                                                  *)
+(* ------------------------------------------------------------------------- *)
+
+(*for debugging only*)
+(*
+fun print_thpair (fth,th) =
+  (trace_msg (fn () => "=============================================");
+   trace_msg (fn () => "Metis: " ^ Metis_Thm.toString fth);
+   trace_msg (fn () => "Isabelle: " ^ Display.string_of_thm_without_context th));
+*)
+
+fun lookth thpairs (fth : Metis_Thm.thm) =
+  the (AList.lookup (uncurry Metis_Thm.equal) thpairs fth)
+  handle Option.Option =>
+         raise Fail ("Failed to find Metis theorem " ^ Metis_Thm.toString fth)
+
+fun cterm_incr_types thy idx = cterm_of thy o (map_types (Logic.incr_tvar idx));
+
+(* INFERENCE RULE: AXIOM *)
+
+fun axiom_inf thpairs th = Thm.incr_indexes 1 (lookth thpairs th);
+    (*This causes variables to have an index of 1 by default. SEE ALSO mk_var above.*)
+
+(* INFERENCE RULE: ASSUME *)
+
+val EXCLUDED_MIDDLE = @{lemma "P ==> ~ P ==> False" by (rule notE)}
+
+fun inst_excluded_middle thy i_atm =
+  let val th = EXCLUDED_MIDDLE
+      val [vx] = Term.add_vars (prop_of th) []
+      val substs = [(cterm_of thy (Var vx), cterm_of thy i_atm)]
+  in  cterm_instantiate substs th  end;
+
+fun assume_inf ctxt mode skolems atm =
+  inst_excluded_middle
+      (ProofContext.theory_of ctxt)
+      (singleton (hol_terms_from_fol ctxt mode skolems) (Metis_Term.Fn atm))
+
+(* INFERENCE RULE: INSTANTIATE (Subst). Type instantiations are ignored. Trying
+   to reconstruct them admits new possibilities of errors, e.g. concerning
+   sorts. Instead we try to arrange that new TVars are distinct and that types
+   can be inferred from terms.*)
+
+fun inst_inf ctxt mode skolems thpairs fsubst th =
+  let val thy = ProofContext.theory_of ctxt
+      val i_th   = lookth thpairs th
+      val i_th_vars = Term.add_vars (prop_of i_th) []
+      fun find_var x = the (List.find (fn ((a,_),_) => a=x) i_th_vars)
+      fun subst_translation (x,y) =
+            let val v = find_var x
+                (* We call "reveal_skolem_terms" and "infer_types" below. *)
+                val t = hol_term_from_metis mode ctxt y
+            in  SOME (cterm_of thy (Var v), t)  end
+            handle Option =>
+                (trace_msg (fn() => "\"find_var\" failed for the variable " ^ x ^
+                                       " in " ^ Display.string_of_thm ctxt i_th);
+                 NONE)
+      fun remove_typeinst (a, t) =
+            case strip_prefix_and_unascii schematic_var_prefix a of
+                SOME b => SOME (b, t)
+              | NONE => case strip_prefix_and_unascii tvar_prefix a of
+                SOME _ => NONE          (*type instantiations are forbidden!*)
+              | NONE => SOME (a,t)    (*internal Metis var?*)
+      val _ = trace_msg (fn () => "  isa th: " ^ Display.string_of_thm ctxt i_th)
+      val substs = map_filter remove_typeinst (Metis_Subst.toList fsubst)
+      val (vars,rawtms) = ListPair.unzip (map_filter subst_translation substs)
+      val tms = rawtms |> map (reveal_skolem_terms skolems) |> infer_types ctxt
+      val ctm_of = cterm_incr_types thy (1 + Thm.maxidx_of i_th)
+      val substs' = ListPair.zip (vars, map ctm_of tms)
+      val _ = trace_msg (fn () =>
+        cat_lines ("subst_translations:" ::
+          (substs' |> map (fn (x, y) =>
+            Syntax.string_of_term ctxt (term_of x) ^ " |-> " ^
+            Syntax.string_of_term ctxt (term_of y)))));
+  in cterm_instantiate substs' i_th end
+  handle THM (msg, _, _) =>
+         error ("Cannot replay Metis proof in Isabelle:\n" ^ msg)
+
+(* INFERENCE RULE: RESOLVE *)
+
+(* Like RSN, but we rename apart only the type variables. Vars here typically
+   have an index of 1, and the use of RSN would increase this typically to 3.
+   Instantiations of those Vars could then fail. See comment on "mk_var". *)
+fun resolve_inc_tyvars thy tha i thb =
+  let
+    val tha = Drule.incr_type_indexes (1 + Thm.maxidx_of thb) tha
+    fun aux tha thb =
+      case Thm.bicompose false (false, tha, nprems_of tha) i thb
+           |> Seq.list_of |> distinct Thm.eq_thm of
+        [th] => th
+      | _ => raise THM ("resolve_inc_tyvars: unique result expected", i,
+                        [tha, thb])
+  in
+    aux tha thb
+    handle TERM z =>
+           (* The unifier, which is invoked from "Thm.bicompose", will sometimes
+              refuse to unify "?a::?'a" with "?a::?'b" or "?a::nat" and throw a
+              "TERM" exception (with "add_ffpair" as first argument). We then
+              perform unification of the types of variables by hand and try
+              again. We could do this the first time around but this error
+              occurs seldom and we don't want to break existing proofs in subtle
+              ways or slow them down needlessly. *)
+           case [] |> fold (Term.add_vars o prop_of) [tha, thb]
+                   |> AList.group (op =)
+                   |> maps (fn ((s, _), T :: Ts) =>
+                               map (fn T' => (Free (s, T), Free (s, T'))) Ts)
+                   |> rpair (Envir.empty ~1)
+                   |-> fold (Pattern.unify thy)
+                   |> Envir.type_env |> Vartab.dest
+                   |> map (fn (x, (S, T)) =>
+                              pairself (ctyp_of thy) (TVar (x, S), T)) of
+             [] => raise TERM z
+           | ps => aux (instantiate (ps, []) tha) (instantiate (ps, []) thb)
+  end
+
+fun mk_not (Const (@{const_name Not}, _) $ b) = b
+  | mk_not b = HOLogic.mk_not b
+
+(* Match untyped terms. *)
+fun untyped_aconv (Const (a, _)) (Const(b, _)) = (a = b)
+  | untyped_aconv (Free (a, _)) (Free (b, _)) = (a = b)
+  | untyped_aconv (Var ((a, _), _)) (Var ((b, _), _)) =
+    (a = b) (* The index is ignored, for some reason. *)
+  | untyped_aconv (Bound i) (Bound j) = (i = j)
+  | untyped_aconv (Abs (_, _, t)) (Abs (_, _, u)) = untyped_aconv t u
+  | untyped_aconv (t1 $ t2) (u1 $ u2) =
+    untyped_aconv t1 u1 andalso untyped_aconv t2 u2
+  | untyped_aconv _ _ = false
+
+(* Finding the relative location of an untyped term within a list of terms *)
+fun literal_index lit =
+  let
+    val lit = Envir.eta_contract lit
+    fun get _ [] = raise Empty
+      | get n (x :: xs) =
+        if untyped_aconv lit (Envir.eta_contract (HOLogic.dest_Trueprop x)) then
+          n
+        else
+          get (n+1) xs
+  in get 1 end
+
+fun resolve_inf ctxt mode skolems thpairs atm th1 th2 =
+  let
+    val thy = ProofContext.theory_of ctxt
+    val i_th1 = lookth thpairs th1 and i_th2 = lookth thpairs th2
+    val _ = trace_msg (fn () => "  isa th1 (pos): " ^ Display.string_of_thm ctxt i_th1)
+    val _ = trace_msg (fn () => "  isa th2 (neg): " ^ Display.string_of_thm ctxt i_th2)
+  in
+    (* Trivial cases where one operand is type info *)
+    if Thm.eq_thm (TrueI, i_th1) then
+      i_th2
+    else if Thm.eq_thm (TrueI, i_th2) then
+      i_th1
+    else
+      let
+        val i_atm = singleton (hol_terms_from_fol ctxt mode skolems)
+                              (Metis_Term.Fn atm)
+        val _ = trace_msg (fn () => "  atom: " ^ Syntax.string_of_term ctxt i_atm)
+        val prems_th1 = prems_of i_th1
+        val prems_th2 = prems_of i_th2
+        val index_th1 = literal_index (mk_not i_atm) prems_th1
+              handle Empty => raise Fail "Failed to find literal in th1"
+        val _ = trace_msg (fn () => "  index_th1: " ^ Int.toString index_th1)
+        val index_th2 = literal_index i_atm prems_th2
+              handle Empty => raise Fail "Failed to find literal in th2"
+        val _ = trace_msg (fn () => "  index_th2: " ^ Int.toString index_th2)
+    in
+      resolve_inc_tyvars thy (Meson.select_literal index_th1 i_th1) index_th2
+                         i_th2
+    end
+  end;
+
+(* INFERENCE RULE: REFL *)
+
+val REFL_THM = Thm.incr_indexes 2 @{lemma "t ~= t ==> False" by simp}
+
+val refl_x = cterm_of @{theory} (Var (hd (Term.add_vars (prop_of REFL_THM) [])));
+val refl_idx = 1 + Thm.maxidx_of REFL_THM;
+
+fun refl_inf ctxt mode skolems t =
+  let val thy = ProofContext.theory_of ctxt
+      val i_t = singleton (hol_terms_from_fol ctxt mode skolems) t
+      val _ = trace_msg (fn () => "  term: " ^ Syntax.string_of_term ctxt i_t)
+      val c_t = cterm_incr_types thy refl_idx i_t
+  in  cterm_instantiate [(refl_x, c_t)] REFL_THM  end;
+
+(* INFERENCE RULE: EQUALITY *)
+
+val subst_em = @{lemma "s = t ==> P s ==> ~ P t ==> False" by simp}
+val ssubst_em = @{lemma "s = t ==> P t ==> ~ P s ==> False" by simp}
+
+val metis_eq = Metis_Term.Fn ("=", []);
+
+fun get_ty_arg_size _ (Const (@{const_name HOL.eq}, _)) = 0  (*equality has no type arguments*)
+  | get_ty_arg_size thy (Const (c, _)) = (num_type_args thy c handle TYPE _ => 0)
+  | get_ty_arg_size _ _ = 0;
+
+fun equality_inf ctxt mode skolems (pos, atm) fp fr =
+  let val thy = ProofContext.theory_of ctxt
+      val m_tm = Metis_Term.Fn atm
+      val [i_atm,i_tm] = hol_terms_from_fol ctxt mode skolems [m_tm, fr]
+      val _ = trace_msg (fn () => "sign of the literal: " ^ Bool.toString pos)
+      fun replace_item_list lx 0 (_::ls) = lx::ls
+        | replace_item_list lx i (l::ls) = l :: replace_item_list lx (i-1) ls
+      fun path_finder_FO tm [] = (tm, Term.Bound 0)
+        | path_finder_FO tm (p::ps) =
+            let val (tm1,args) = strip_comb tm
+                val adjustment = get_ty_arg_size thy tm1
+                val p' = if adjustment > p then p else p-adjustment
+                val tm_p = List.nth(args,p')
+                  handle Subscript =>
+                         error ("Cannot replay Metis proof in Isabelle:\n" ^
+                                "equality_inf: " ^ Int.toString p ^ " adj " ^
+                                Int.toString adjustment ^ " term " ^
+                                Syntax.string_of_term ctxt tm)
+                val _ = trace_msg (fn () => "path_finder: " ^ Int.toString p ^
+                                      "  " ^ Syntax.string_of_term ctxt tm_p)
+                val (r,t) = path_finder_FO tm_p ps
+            in
+                (r, list_comb (tm1, replace_item_list t p' args))
+            end
+      fun path_finder_HO tm [] = (tm, Term.Bound 0)
+        | path_finder_HO (t$u) (0::ps) = (fn(x,y) => (x, y$u)) (path_finder_HO t ps)
+        | path_finder_HO (t$u) (_::ps) = (fn(x,y) => (x, t$y)) (path_finder_HO u ps)
+        | path_finder_HO tm ps =
+          raise Fail ("equality_inf, path_finder_HO: path = " ^
+                      space_implode " " (map Int.toString ps) ^
+                      " isa-term: " ^  Syntax.string_of_term ctxt tm)
+      fun path_finder_FT tm [] _ = (tm, Term.Bound 0)
+        | path_finder_FT tm (0::ps) (Metis_Term.Fn ("ti", [t1, _])) =
+            path_finder_FT tm ps t1
+        | path_finder_FT (t$u) (0::ps) (Metis_Term.Fn (".", [t1, _])) =
+            (fn(x,y) => (x, y$u)) (path_finder_FT t ps t1)
+        | path_finder_FT (t$u) (1::ps) (Metis_Term.Fn (".", [_, t2])) =
+            (fn(x,y) => (x, t$y)) (path_finder_FT u ps t2)
+        | path_finder_FT tm ps t =
+          raise Fail ("equality_inf, path_finder_FT: path = " ^
+                      space_implode " " (map Int.toString ps) ^
+                      " isa-term: " ^  Syntax.string_of_term ctxt tm ^
+                      " fol-term: " ^ Metis_Term.toString t)
+      fun path_finder FO tm ps _ = path_finder_FO tm ps
+        | path_finder HO (tm as Const(@{const_name HOL.eq},_) $ _ $ _) (p::ps) _ =
+             (*equality: not curried, as other predicates are*)
+             if p=0 then path_finder_HO tm (0::1::ps)  (*select first operand*)
+             else path_finder_HO tm (p::ps)        (*1 selects second operand*)
+        | path_finder HO tm (_ :: ps) (Metis_Term.Fn ("{}", [_])) =
+             path_finder_HO tm ps      (*if not equality, ignore head to skip hBOOL*)
+        | path_finder FT (tm as Const(@{const_name HOL.eq}, _) $ _ $ _) (p::ps)
+                            (Metis_Term.Fn ("=", [t1,t2])) =
+             (*equality: not curried, as other predicates are*)
+             if p=0 then path_finder_FT tm (0::1::ps)
+                          (Metis_Term.Fn (".", [Metis_Term.Fn (".", [metis_eq,t1]), t2]))
+                          (*select first operand*)
+             else path_finder_FT tm (p::ps)
+                   (Metis_Term.Fn (".", [metis_eq,t2]))
+                   (*1 selects second operand*)
+        | path_finder FT tm (_ :: ps) (Metis_Term.Fn ("{}", [t1])) = path_finder_FT tm ps t1
+             (*if not equality, ignore head to skip the hBOOL predicate*)
+        | path_finder FT tm ps t = path_finder_FT tm ps t  (*really an error case!*)
+      fun path_finder_lit ((nt as Const (@{const_name Not}, _)) $ tm_a) idx =
+            let val (tm, tm_rslt) = path_finder mode tm_a idx m_tm
+            in (tm, nt $ tm_rslt) end
+        | path_finder_lit tm_a idx = path_finder mode tm_a idx m_tm
+      val (tm_subst, body) = path_finder_lit i_atm fp
+      val tm_abs = Term.Abs ("x", type_of tm_subst, body)
+      val _ = trace_msg (fn () => "abstraction: " ^ Syntax.string_of_term ctxt tm_abs)
+      val _ = trace_msg (fn () => "i_tm: " ^ Syntax.string_of_term ctxt i_tm)
+      val _ = trace_msg (fn () => "located term: " ^ Syntax.string_of_term ctxt tm_subst)
+      val imax = maxidx_of_term (i_tm $ tm_abs $ tm_subst)  (*ill typed but gives right max*)
+      val subst' = Thm.incr_indexes (imax+1) (if pos then subst_em else ssubst_em)
+      val _ = trace_msg (fn () => "subst' " ^ Display.string_of_thm ctxt subst')
+      val eq_terms = map (pairself (cterm_of thy))
+        (ListPair.zip (OldTerm.term_vars (prop_of subst'), [tm_abs, tm_subst, i_tm]))
+  in  cterm_instantiate eq_terms subst'  end;
+
+val factor = Seq.hd o distinct_subgoals_tac;
+
+fun step ctxt mode skolems thpairs p =
+  case p of
+    (fol_th, Metis_Proof.Axiom _) => factor (axiom_inf thpairs fol_th)
+  | (_, Metis_Proof.Assume f_atm) => assume_inf ctxt mode skolems f_atm
+  | (_, Metis_Proof.Metis_Subst (f_subst, f_th1)) =>
+    factor (inst_inf ctxt mode skolems thpairs f_subst f_th1)
+  | (_, Metis_Proof.Resolve(f_atm, f_th1, f_th2)) =>
+    factor (resolve_inf ctxt mode skolems thpairs f_atm f_th1 f_th2)
+  | (_, Metis_Proof.Refl f_tm) => refl_inf ctxt mode skolems f_tm
+  | (_, Metis_Proof.Equality (f_lit, f_p, f_r)) =>
+    equality_inf ctxt mode skolems f_lit f_p f_r
+
+fun is_real_literal (_, (c, _)) = not (String.isPrefix class_prefix c)
+
+fun replay_one_inference ctxt mode skolems (fol_th, inf) thpairs =
+  let
+    val _ = trace_msg (fn () => "=============================================")
+    val _ = trace_msg (fn () => "METIS THM: " ^ Metis_Thm.toString fol_th)
+    val _ = trace_msg (fn () => "INFERENCE: " ^ Metis_Proof.inferenceToString inf)
+    val th = Meson.flexflex_first_order (step ctxt mode skolems
+                                              thpairs (fol_th, inf))
+    val _ = trace_msg (fn () => "ISABELLE THM: " ^ Display.string_of_thm ctxt th)
+    val _ = trace_msg (fn () => "=============================================")
+    val n_metis_lits =
+      length (filter is_real_literal (Metis_LiteralSet.toList (Metis_Thm.clause fol_th)))
+    val _ = if nprems_of th = n_metis_lits then ()
+            else error "Cannot replay Metis proof in Isabelle."
+  in (fol_th, th) :: thpairs end
+
 end;
--- a/src/HOL/Tools/Sledgehammer/metis_tactics.ML	Thu Sep 16 16:54:42 2010 +0200
+++ b/src/HOL/Tools/Sledgehammer/metis_tactics.ML	Thu Sep 16 17:30:29 2010 +0200
@@ -9,733 +9,34 @@
 
 signature METIS_TACTICS =
 sig
-  val trace: bool Unsynchronized.ref
-  val type_lits: bool Config.T
-  val metis_tac: Proof.context -> thm list -> int -> tactic
-  val metisF_tac: Proof.context -> thm list -> int -> tactic
-  val metisFT_tac: Proof.context -> thm list -> int -> tactic
-  val setup: theory -> theory
+  val trace : bool Unsynchronized.ref
+  val type_lits : bool Config.T
+  val metis_tac : Proof.context -> thm list -> int -> tactic
+  val metisF_tac : Proof.context -> thm list -> int -> tactic
+  val metisFT_tac : Proof.context -> thm list -> int -> tactic
+  val setup : theory -> theory
 end
 
 structure Metis_Tactics : METIS_TACTICS =
 struct
 
 open Metis_Translate
+open Metis_Reconstruct
 
-val trace = Unsynchronized.ref false;
-fun trace_msg msg = if !trace then tracing (msg ()) else ();
+val trace = Unsynchronized.ref false
+fun trace_msg msg = if !trace then tracing (msg ()) else ()
 
 val (type_lits, type_lits_setup) = Attrib.config_bool "metis_type_lits" (K true);
 
-datatype mode = FO | HO | FT  (* first-order, higher-order, fully-typed *)
-
-(* ------------------------------------------------------------------------- *)
-(* Useful Theorems                                                           *)
-(* ------------------------------------------------------------------------- *)
-val EXCLUDED_MIDDLE = @{lemma "P ==> ~ P ==> False" by (rule notE)}
-val REFL_THM = Thm.incr_indexes 2 @{lemma "t ~= t ==> False" by simp}
-val subst_em = @{lemma "s = t ==> P s ==> ~ P t ==> False" by simp}
-val ssubst_em = @{lemma "s = t ==> P t ==> ~ P s ==> False" by simp}
-
-(* ------------------------------------------------------------------------- *)
-(* Useful Functions                                                          *)
-(* ------------------------------------------------------------------------- *)
-
-(* Match untyped terms. *)
-fun untyped_aconv (Const (a, _)) (Const(b, _)) = (a = b)
-  | untyped_aconv (Free (a, _)) (Free (b, _)) = (a = b)
-  | untyped_aconv (Var ((a, _), _)) (Var ((b, _), _)) =
-    (a = b) (* The index is ignored, for some reason. *)
-  | untyped_aconv (Bound i) (Bound j) = (i = j)
-  | untyped_aconv (Abs (_, _, t)) (Abs (_, _, u)) = untyped_aconv t u
-  | untyped_aconv (t1 $ t2) (u1 $ u2) =
-    untyped_aconv t1 u1 andalso untyped_aconv t2 u2
-  | untyped_aconv _ _ = false
-
-(* Finding the relative location of an untyped term within a list of terms *)
-fun get_index lit =
-  let val lit = Envir.eta_contract lit
-      fun get _ [] = raise Empty
-        | get n (x::xs) = if untyped_aconv lit (Envir.eta_contract (HOLogic.dest_Trueprop x))
-                          then n  else get (n+1) xs
-  in get 1 end;
-
-(* ------------------------------------------------------------------------- *)
-(* HOL to FOL  (Isabelle to Metis)                                           *)
-(* ------------------------------------------------------------------------- *)
-
-fun fn_isa_to_met_sublevel "equal" = "=" (* FIXME: "c_fequal" *)
-  | fn_isa_to_met_sublevel x = x
-fun fn_isa_to_met_toplevel "equal" = "="
-  | fn_isa_to_met_toplevel x = x
-
-fun metis_lit b c args = (b, (c, args));
-
-fun metis_term_from_combtyp (CombTVar (s, _)) = Metis_Term.Var s
-  | metis_term_from_combtyp (CombTFree (s, _)) = Metis_Term.Fn (s, [])
-  | metis_term_from_combtyp (CombType ((s, _), tps)) =
-    Metis_Term.Fn (s, map metis_term_from_combtyp tps);
-
-(*These two functions insert type literals before the real literals. That is the
-  opposite order from TPTP linkup, but maybe OK.*)
-
-fun hol_term_to_fol_FO tm =
-  case strip_combterm_comb tm of
-      (CombConst ((c, _), _, tys), tms) =>
-        let val tyargs = map metis_term_from_combtyp tys
-            val args   = map hol_term_to_fol_FO tms
-        in Metis_Term.Fn (c, tyargs @ args) end
-    | (CombVar ((v, _), _), []) => Metis_Term.Var v
-    | _ => raise Fail "non-first-order combterm"
-
-fun hol_term_to_fol_HO (CombConst ((a, _), _, tylist)) =
-      Metis_Term.Fn (fn_isa_to_met_sublevel a, map metis_term_from_combtyp tylist)
-  | hol_term_to_fol_HO (CombVar ((s, _), _)) = Metis_Term.Var s
-  | hol_term_to_fol_HO (CombApp (tm1, tm2)) =
-       Metis_Term.Fn (".", map hol_term_to_fol_HO [tm1, tm2]);
-
-(*The fully-typed translation, to avoid type errors*)
-fun wrap_type (tm, ty) = Metis_Term.Fn("ti", [tm, metis_term_from_combtyp ty]);
-
-fun hol_term_to_fol_FT (CombVar ((s, _), ty)) = wrap_type (Metis_Term.Var s, ty)
-  | hol_term_to_fol_FT (CombConst((a, _), ty, _)) =
-      wrap_type (Metis_Term.Fn(fn_isa_to_met_sublevel a, []), ty)
-  | hol_term_to_fol_FT (tm as CombApp(tm1,tm2)) =
-       wrap_type (Metis_Term.Fn(".", map hol_term_to_fol_FT [tm1,tm2]),
-                  combtyp_of tm)
-
-fun hol_literal_to_fol FO (FOLLiteral (pos, tm)) =
-      let val (CombConst((p, _), _, tys), tms) = strip_combterm_comb tm
-          val tylits = if p = "equal" then [] else map metis_term_from_combtyp tys
-          val lits = map hol_term_to_fol_FO tms
-      in metis_lit pos (fn_isa_to_met_toplevel p) (tylits @ lits) end
-  | hol_literal_to_fol HO (FOLLiteral (pos, tm)) =
-     (case strip_combterm_comb tm of
-          (CombConst(("equal", _), _, _), tms) =>
-            metis_lit pos "=" (map hol_term_to_fol_HO tms)
-        | _ => metis_lit pos "{}" [hol_term_to_fol_HO tm])   (*hBOOL*)
-  | hol_literal_to_fol FT (FOLLiteral (pos, tm)) =
-     (case strip_combterm_comb tm of
-          (CombConst(("equal", _), _, _), tms) =>
-            metis_lit pos "=" (map hol_term_to_fol_FT tms)
-        | _ => metis_lit pos "{}" [hol_term_to_fol_FT tm])   (*hBOOL*);
-
-fun literals_of_hol_term thy mode t =
-      let val (lits, types_sorts) = literals_of_term thy t
-      in  (map (hol_literal_to_fol mode) lits, types_sorts) end;
-
-(*Sign should be "true" for conjecture type constraints, "false" for type lits in clauses.*)
-fun metis_of_type_literals pos (TyLitVar ((s, _), (s', _))) =
-    metis_lit pos s [Metis_Term.Var s']
-  | metis_of_type_literals pos (TyLitFree ((s, _), (s', _))) =
-    metis_lit pos s [Metis_Term.Fn (s',[])]
-
-fun default_sort _ (TVar _) = false
-  | default_sort ctxt (TFree (x, s)) = (s = the_default [] (Variable.def_sort ctxt (x, ~1)));
-
-fun metis_of_tfree tf =
-  Metis_Thm.axiom (Metis_LiteralSet.singleton (metis_of_type_literals true tf));
-
-fun hol_thm_to_fol is_conjecture ctxt mode j skolems th =
-  let
-    val thy = ProofContext.theory_of ctxt
-    val (skolems, (mlits, types_sorts)) =
-     th |> prop_of |> conceal_skolem_terms j skolems
-        ||> (HOLogic.dest_Trueprop #> literals_of_hol_term thy mode)
-  in
-      if is_conjecture then
-          (Metis_Thm.axiom (Metis_LiteralSet.fromList mlits),
-           type_literals_for_types types_sorts, skolems)
-      else
-        let val tylits = filter_out (default_sort ctxt) types_sorts
-                         |> type_literals_for_types
-            val mtylits = if Config.get ctxt type_lits
-                          then map (metis_of_type_literals false) tylits else []
-        in
-          (Metis_Thm.axiom (Metis_LiteralSet.fromList(mtylits @ mlits)), [],
-           skolems)
-        end
-  end;
-
-(* ARITY CLAUSE *)
-
-fun m_arity_cls (TConsLit ((c, _), (t, _), args)) =
-    metis_lit true c [Metis_Term.Fn(t, map (Metis_Term.Var o fst) args)]
-  | m_arity_cls (TVarLit ((c, _), (s, _))) =
-    metis_lit false c [Metis_Term.Var s]
-
-(*TrueI is returned as the Isabelle counterpart because there isn't any.*)
-fun arity_cls (ArityClause {conclLit, premLits, ...}) =
-  (TrueI,
-   Metis_Thm.axiom (Metis_LiteralSet.fromList (map m_arity_cls (conclLit :: premLits))));
-
-(* CLASSREL CLAUSE *)
-
-fun m_class_rel_cls (subclass, _) (superclass, _) =
-  [metis_lit false subclass [Metis_Term.Var "T"], metis_lit true superclass [Metis_Term.Var "T"]];
-
-fun class_rel_cls (ClassRelClause {subclass, superclass, ...}) =
-  (TrueI, Metis_Thm.axiom (Metis_LiteralSet.fromList (m_class_rel_cls subclass superclass)));
-
-(* ------------------------------------------------------------------------- *)
-(* FOL to HOL  (Metis to Isabelle)                                           *)
-(* ------------------------------------------------------------------------- *)
-
-datatype term_or_type = Term of Term.term | Type of Term.typ;
-
-fun terms_of [] = []
-  | terms_of (Term t :: tts) = t :: terms_of tts
-  | terms_of (Type _ :: tts) = terms_of tts;
-
-fun types_of [] = []
-  | types_of (Term (Term.Var ((a,idx), _)) :: tts) =
-      if String.isPrefix "_" a then
-          (*Variable generated by Metis, which might have been a type variable.*)
-          TVar (("'" ^ a, idx), HOLogic.typeS) :: types_of tts
-      else types_of tts
-  | types_of (Term _ :: tts) = types_of tts
-  | types_of (Type T :: tts) = T :: types_of tts;
-
-fun apply_list rator nargs rands =
-  let val trands = terms_of rands
-  in  if length trands = nargs then Term (list_comb(rator, trands))
-      else raise Fail
-        ("apply_list: wrong number of arguments: " ^ Syntax.string_of_term_global Pure.thy rator ^
-          " expected " ^ Int.toString nargs ^
-          " received " ^ commas (map (Syntax.string_of_term_global Pure.thy) trands))
-  end;
-
-fun infer_types ctxt =
-  Syntax.check_terms (ProofContext.set_mode ProofContext.mode_pattern ctxt);
-
-(*We use 1 rather than 0 because variable references in clauses may otherwise conflict
-  with variable constraints in the goal...at least, type inference often fails otherwise.
-  SEE ALSO axiom_inf below.*)
-fun mk_var (w,T) = Term.Var((w,1), T);
-
-(*include the default sort, if available*)
-fun mk_tfree ctxt w =
-  let val ww = "'" ^ w
-  in  TFree(ww, the_default HOLogic.typeS (Variable.def_sort ctxt (ww, ~1)))  end;
-
-(*Remove the "apply" operator from an HO term*)
-fun strip_happ args (Metis_Term.Fn(".",[t,u])) = strip_happ (u::args) t
-  | strip_happ args x = (x, args);
-
-fun make_tvar s = TVar (("'" ^ s, 0), HOLogic.typeS)
-
-fun smart_invert_const "fequal" = @{const_name HOL.eq}
-  | smart_invert_const s = invert_const s
-
-fun hol_type_from_metis_term _ (Metis_Term.Var v) =
-     (case strip_prefix_and_unascii tvar_prefix v of
-          SOME w => make_tvar w
-        | NONE   => make_tvar v)
-  | hol_type_from_metis_term ctxt (Metis_Term.Fn(x, tys)) =
-     (case strip_prefix_and_unascii type_const_prefix x of
-          SOME tc => Term.Type (smart_invert_const tc,
-                                map (hol_type_from_metis_term ctxt) tys)
-        | NONE    =>
-      case strip_prefix_and_unascii tfree_prefix x of
-          SOME tf => mk_tfree ctxt tf
-        | NONE    => raise Fail ("hol_type_from_metis_term: " ^ x));
-
-(*Maps metis terms to isabelle terms*)
-fun hol_term_from_metis_PT ctxt fol_tm =
-  let val thy = ProofContext.theory_of ctxt
-      val _ = trace_msg (fn () => "hol_term_from_metis_PT: " ^
-                                  Metis_Term.toString fol_tm)
-      fun tm_to_tt (Metis_Term.Var v) =
-             (case strip_prefix_and_unascii tvar_prefix v of
-                  SOME w => Type (make_tvar w)
-                | NONE =>
-              case strip_prefix_and_unascii schematic_var_prefix v of
-                  SOME w => Term (mk_var (w, HOLogic.typeT))
-                | NONE   => Term (mk_var (v, HOLogic.typeT)) )
-                    (*Var from Metis with a name like _nnn; possibly a type variable*)
-        | tm_to_tt (Metis_Term.Fn ("{}", [arg])) = tm_to_tt arg   (*hBOOL*)
-        | tm_to_tt (t as Metis_Term.Fn (".",_)) =
-            let val (rator,rands) = strip_happ [] t
-            in  case rator of
-                    Metis_Term.Fn(fname,ts) => applic_to_tt (fname, ts @ rands)
-                  | _ => case tm_to_tt rator of
-                             Term t => Term (list_comb(t, terms_of (map tm_to_tt rands)))
-                           | _ => raise Fail "tm_to_tt: HO application"
-            end
-        | tm_to_tt (Metis_Term.Fn (fname, args)) = applic_to_tt (fname,args)
-      and applic_to_tt ("=",ts) =
-            Term (list_comb(Const (@{const_name HOL.eq}, HOLogic.typeT), terms_of (map tm_to_tt ts)))
-        | applic_to_tt (a,ts) =
-            case strip_prefix_and_unascii const_prefix a of
-                SOME b =>
-                  let val c = smart_invert_const b
-                      val ntypes = num_type_args thy c
-                      val nterms = length ts - ntypes
-                      val tts = map tm_to_tt ts
-                      val tys = types_of (List.take(tts,ntypes))
-                  in if length tys = ntypes then
-                         apply_list (Const (c, dummyT)) nterms (List.drop(tts,ntypes))
-                     else
-                       raise Fail ("Constant " ^ c ^ " expects " ^ Int.toString ntypes ^
-                                   " but gets " ^ Int.toString (length tys) ^
-                                   " type arguments\n" ^
-                                   cat_lines (map (Syntax.string_of_typ ctxt) tys) ^
-                                   " the terms are \n" ^
-                                   cat_lines (map (Syntax.string_of_term ctxt) (terms_of tts)))
-                     end
-              | NONE => (*Not a constant. Is it a type constructor?*)
-            case strip_prefix_and_unascii type_const_prefix a of
-                SOME b =>
-                  Type (Term.Type (smart_invert_const b, types_of (map tm_to_tt ts)))
-              | NONE => (*Maybe a TFree. Should then check that ts=[].*)
-            case strip_prefix_and_unascii tfree_prefix a of
-                SOME b => Type (mk_tfree ctxt b)
-              | NONE => (*a fixed variable? They are Skolem functions.*)
-            case strip_prefix_and_unascii fixed_var_prefix a of
-                SOME b =>
-                  let val opr = Term.Free(b, HOLogic.typeT)
-                  in  apply_list opr (length ts) (map tm_to_tt ts)  end
-              | NONE => raise Fail ("unexpected metis function: " ^ a)
-  in
-    case tm_to_tt fol_tm of
-      Term t => t
-    | _ => raise Fail "fol_tm_to_tt: Term expected"
-  end
+fun is_false t = t aconv (HOLogic.mk_Trueprop HOLogic.false_const);
 
-(*Maps fully-typed metis terms to isabelle terms*)
-fun hol_term_from_metis_FT ctxt fol_tm =
-  let val _ = trace_msg (fn () => "hol_term_from_metis_FT: " ^
-                                  Metis_Term.toString fol_tm)
-      fun cvt (Metis_Term.Fn ("ti", [Metis_Term.Var v, _])) =
-             (case strip_prefix_and_unascii schematic_var_prefix v of
-                  SOME w =>  mk_var(w, dummyT)
-                | NONE   => mk_var(v, dummyT))
-        | cvt (Metis_Term.Fn ("ti", [Metis_Term.Fn ("=",[]), _])) =
-            Const (@{const_name HOL.eq}, HOLogic.typeT)
-        | cvt (Metis_Term.Fn ("ti", [Metis_Term.Fn (x,[]), ty])) =
-           (case strip_prefix_and_unascii const_prefix x of
-                SOME c => Const (smart_invert_const c, dummyT)
-              | NONE => (*Not a constant. Is it a fixed variable??*)
-            case strip_prefix_and_unascii fixed_var_prefix x of
-                SOME v => Free (v, hol_type_from_metis_term ctxt ty)
-              | NONE => raise Fail ("hol_term_from_metis_FT bad constant: " ^ x))
-        | cvt (Metis_Term.Fn ("ti", [Metis_Term.Fn (".",[tm1,tm2]), _])) =
-            cvt tm1 $ cvt tm2
-        | cvt (Metis_Term.Fn (".",[tm1,tm2])) = (*untyped application*)
-            cvt tm1 $ cvt tm2
-        | cvt (Metis_Term.Fn ("{}", [arg])) = cvt arg   (*hBOOL*)
-        | cvt (Metis_Term.Fn ("=", [tm1,tm2])) =
-            list_comb(Const (@{const_name HOL.eq}, HOLogic.typeT), map cvt [tm1,tm2])
-        | cvt (t as Metis_Term.Fn (x, [])) =
-           (case strip_prefix_and_unascii const_prefix x of
-                SOME c => Const (smart_invert_const c, dummyT)
-              | NONE => (*Not a constant. Is it a fixed variable??*)
-            case strip_prefix_and_unascii fixed_var_prefix x of
-                SOME v => Free (v, dummyT)
-              | NONE => (trace_msg (fn () => "hol_term_from_metis_FT bad const: " ^ x);
-                  hol_term_from_metis_PT ctxt t))
-        | cvt t = (trace_msg (fn () => "hol_term_from_metis_FT bad term: " ^ Metis_Term.toString t);
-            hol_term_from_metis_PT ctxt t)
-  in fol_tm |> cvt end
-
-fun hol_term_from_metis FT = hol_term_from_metis_FT
-  | hol_term_from_metis _ = hol_term_from_metis_PT
-
-fun hol_terms_from_fol ctxt mode skolems fol_tms =
-  let val ts = map (hol_term_from_metis mode ctxt) fol_tms
-      val _ = trace_msg (fn () => "  calling type inference:")
-      val _ = app (fn t => trace_msg (fn () => Syntax.string_of_term ctxt t)) ts
-      val ts' = ts |> map (reveal_skolem_terms skolems) |> infer_types ctxt
-      val _ = app (fn t => trace_msg
-                    (fn () => "  final term: " ^ Syntax.string_of_term ctxt t ^
-                              "  of type  " ^ Syntax.string_of_typ ctxt (type_of t)))
-                  ts'
-  in  ts'  end;
-
-fun mk_not (Const (@{const_name Not}, _) $ b) = b
-  | mk_not b = HOLogic.mk_not b;
-
-val metis_eq = Metis_Term.Fn ("=", []);
-
-(* ------------------------------------------------------------------------- *)
-(* FOL step Inference Rules                                                  *)
-(* ------------------------------------------------------------------------- *)
-
-(*for debugging only*)
-(*
-fun print_thpair (fth,th) =
-  (trace_msg (fn () => "=============================================");
-   trace_msg (fn () => "Metis: " ^ Metis_Thm.toString fth);
-   trace_msg (fn () => "Isabelle: " ^ Display.string_of_thm_without_context th));
-*)
-
-fun lookth thpairs (fth : Metis_Thm.thm) =
-  the (AList.lookup (uncurry Metis_Thm.equal) thpairs fth)
-  handle Option =>
-         raise Fail ("Failed to find a Metis theorem " ^ Metis_Thm.toString fth);
-
-fun is_TrueI th = Thm.eq_thm(TrueI,th);
-
-fun cterm_incr_types thy idx = cterm_of thy o (map_types (Logic.incr_tvar idx));
-
-fun inst_excluded_middle thy i_atm =
-  let val th = EXCLUDED_MIDDLE
-      val [vx] = Term.add_vars (prop_of th) []
-      val substs = [(cterm_of thy (Var vx), cterm_of thy i_atm)]
-  in  cterm_instantiate substs th  end;
-
-(* INFERENCE RULE: AXIOM *)
-fun axiom_inf thpairs th = Thm.incr_indexes 1 (lookth thpairs th);
-    (*This causes variables to have an index of 1 by default. SEE ALSO mk_var above.*)
-
-(* INFERENCE RULE: ASSUME *)
-fun assume_inf ctxt mode skolems atm =
-  inst_excluded_middle
-      (ProofContext.theory_of ctxt)
-      (singleton (hol_terms_from_fol ctxt mode skolems) (Metis_Term.Fn atm))
-
-(* INFERENCE RULE: INSTANTIATE (Subst). Type instantiations are ignored. Trying to reconstruct
-   them admits new possibilities of errors, e.g. concerning sorts. Instead we try to arrange
-   that new TVars are distinct and that types can be inferred from terms.*)
-fun inst_inf ctxt mode skolems thpairs fsubst th =
-  let val thy = ProofContext.theory_of ctxt
-      val i_th   = lookth thpairs th
-      val i_th_vars = Term.add_vars (prop_of i_th) []
-      fun find_var x = the (List.find (fn ((a,_),_) => a=x) i_th_vars)
-      fun subst_translation (x,y) =
-            let val v = find_var x
-                (* We call "reveal_skolem_terms" and "infer_types" below. *)
-                val t = hol_term_from_metis mode ctxt y
-            in  SOME (cterm_of thy (Var v), t)  end
-            handle Option =>
-                (trace_msg (fn() => "\"find_var\" failed for the variable " ^ x ^
-                                       " in " ^ Display.string_of_thm ctxt i_th);
-                 NONE)
-      fun remove_typeinst (a, t) =
-            case strip_prefix_and_unascii schematic_var_prefix a of
-                SOME b => SOME (b, t)
-              | NONE => case strip_prefix_and_unascii tvar_prefix a of
-                SOME _ => NONE          (*type instantiations are forbidden!*)
-              | NONE => SOME (a,t)    (*internal Metis var?*)
-      val _ = trace_msg (fn () => "  isa th: " ^ Display.string_of_thm ctxt i_th)
-      val substs = map_filter remove_typeinst (Metis_Subst.toList fsubst)
-      val (vars,rawtms) = ListPair.unzip (map_filter subst_translation substs)
-      val tms = rawtms |> map (reveal_skolem_terms skolems) |> infer_types ctxt
-      val ctm_of = cterm_incr_types thy (1 + Thm.maxidx_of i_th)
-      val substs' = ListPair.zip (vars, map ctm_of tms)
-      val _ = trace_msg (fn () =>
-        cat_lines ("subst_translations:" ::
-          (substs' |> map (fn (x, y) =>
-            Syntax.string_of_term ctxt (term_of x) ^ " |-> " ^
-            Syntax.string_of_term ctxt (term_of y)))));
-  in cterm_instantiate substs' i_th end
-  handle THM (msg, _, _) =>
-         error ("Cannot replay Metis proof in Isabelle:\n" ^ msg)
-
-(* INFERENCE RULE: RESOLVE *)
-
-(* Like RSN, but we rename apart only the type variables. Vars here typically
-   have an index of 1, and the use of RSN would increase this typically to 3.
-   Instantiations of those Vars could then fail. See comment on "mk_var". *)
-fun resolve_inc_tyvars thy tha i thb =
-  let
-    val tha = Drule.incr_type_indexes (1 + Thm.maxidx_of thb) tha
-    fun aux tha thb =
-      case Thm.bicompose false (false, tha, nprems_of tha) i thb
-           |> Seq.list_of |> distinct Thm.eq_thm of
-        [th] => th
-      | _ => raise THM ("resolve_inc_tyvars: unique result expected", i,
-                        [tha, thb])
-  in
-    aux tha thb
-    handle TERM z =>
-           (* The unifier, which is invoked from "Thm.bicompose", will sometimes
-              refuse to unify "?a::?'a" with "?a::?'b" or "?a::nat" and throw a
-              "TERM" exception (with "add_ffpair" as first argument). We then
-              perform unification of the types of variables by hand and try
-              again. We could do this the first time around but this error
-              occurs seldom and we don't want to break existing proofs in subtle
-              ways or slow them down needlessly. *)
-           case [] |> fold (Term.add_vars o prop_of) [tha, thb]
-                   |> AList.group (op =)
-                   |> maps (fn ((s, _), T :: Ts) =>
-                               map (fn T' => (Free (s, T), Free (s, T'))) Ts)
-                   |> rpair (Envir.empty ~1)
-                   |-> fold (Pattern.unify thy)
-                   |> Envir.type_env |> Vartab.dest
-                   |> map (fn (x, (S, T)) =>
-                              pairself (ctyp_of thy) (TVar (x, S), T)) of
-             [] => raise TERM z
-           | ps => aux (instantiate (ps, []) tha) (instantiate (ps, []) thb)
-  end
-
-fun resolve_inf ctxt mode skolems thpairs atm th1 th2 =
-  let
-    val thy = ProofContext.theory_of ctxt
-    val i_th1 = lookth thpairs th1 and i_th2 = lookth thpairs th2
-    val _ = trace_msg (fn () => "  isa th1 (pos): " ^ Display.string_of_thm ctxt i_th1)
-    val _ = trace_msg (fn () => "  isa th2 (neg): " ^ Display.string_of_thm ctxt i_th2)
-  in
-    if is_TrueI i_th1 then i_th2 (*Trivial cases where one operand is type info*)
-    else if is_TrueI i_th2 then i_th1
-    else
-      let
-        val i_atm = singleton (hol_terms_from_fol ctxt mode skolems)
-                              (Metis_Term.Fn atm)
-        val _ = trace_msg (fn () => "  atom: " ^ Syntax.string_of_term ctxt i_atm)
-        val prems_th1 = prems_of i_th1
-        val prems_th2 = prems_of i_th2
-        val index_th1 = get_index (mk_not i_atm) prems_th1
-              handle Empty => raise Fail "Failed to find literal in th1"
-        val _ = trace_msg (fn () => "  index_th1: " ^ Int.toString index_th1)
-        val index_th2 = get_index i_atm prems_th2
-              handle Empty => raise Fail "Failed to find literal in th2"
-        val _ = trace_msg (fn () => "  index_th2: " ^ Int.toString index_th2)
-    in
-      resolve_inc_tyvars thy (Meson.select_literal index_th1 i_th1) index_th2
-                         i_th2
-    end
-  end;
-
-(* INFERENCE RULE: REFL *)
-val refl_x = cterm_of @{theory} (Var (hd (Term.add_vars (prop_of REFL_THM) [])));
-val refl_idx = 1 + Thm.maxidx_of REFL_THM;
-
-fun refl_inf ctxt mode skolems t =
-  let val thy = ProofContext.theory_of ctxt
-      val i_t = singleton (hol_terms_from_fol ctxt mode skolems) t
-      val _ = trace_msg (fn () => "  term: " ^ Syntax.string_of_term ctxt i_t)
-      val c_t = cterm_incr_types thy refl_idx i_t
-  in  cterm_instantiate [(refl_x, c_t)] REFL_THM  end;
-
-fun get_ty_arg_size _ (Const (@{const_name HOL.eq}, _)) = 0  (*equality has no type arguments*)
-  | get_ty_arg_size thy (Const (c, _)) = (num_type_args thy c handle TYPE _ => 0)
-  | get_ty_arg_size _ _ = 0;
-
-(* INFERENCE RULE: EQUALITY *)
-fun equality_inf ctxt mode skolems (pos, atm) fp fr =
-  let val thy = ProofContext.theory_of ctxt
-      val m_tm = Metis_Term.Fn atm
-      val [i_atm,i_tm] = hol_terms_from_fol ctxt mode skolems [m_tm, fr]
-      val _ = trace_msg (fn () => "sign of the literal: " ^ Bool.toString pos)
-      fun replace_item_list lx 0 (_::ls) = lx::ls
-        | replace_item_list lx i (l::ls) = l :: replace_item_list lx (i-1) ls
-      fun path_finder_FO tm [] = (tm, Term.Bound 0)
-        | path_finder_FO tm (p::ps) =
-            let val (tm1,args) = strip_comb tm
-                val adjustment = get_ty_arg_size thy tm1
-                val p' = if adjustment > p then p else p-adjustment
-                val tm_p = List.nth(args,p')
-                  handle Subscript =>
-                         error ("Cannot replay Metis proof in Isabelle:\n" ^
-                                "equality_inf: " ^ Int.toString p ^ " adj " ^
-                                Int.toString adjustment ^ " term " ^
-                                Syntax.string_of_term ctxt tm)
-                val _ = trace_msg (fn () => "path_finder: " ^ Int.toString p ^
-                                      "  " ^ Syntax.string_of_term ctxt tm_p)
-                val (r,t) = path_finder_FO tm_p ps
-            in
-                (r, list_comb (tm1, replace_item_list t p' args))
-            end
-      fun path_finder_HO tm [] = (tm, Term.Bound 0)
-        | path_finder_HO (t$u) (0::ps) = (fn(x,y) => (x, y$u)) (path_finder_HO t ps)
-        | path_finder_HO (t$u) (_::ps) = (fn(x,y) => (x, t$y)) (path_finder_HO u ps)
-        | path_finder_HO tm ps =
-          raise Fail ("equality_inf, path_finder_HO: path = " ^
-                      space_implode " " (map Int.toString ps) ^
-                      " isa-term: " ^  Syntax.string_of_term ctxt tm)
-      fun path_finder_FT tm [] _ = (tm, Term.Bound 0)
-        | path_finder_FT tm (0::ps) (Metis_Term.Fn ("ti", [t1, _])) =
-            path_finder_FT tm ps t1
-        | path_finder_FT (t$u) (0::ps) (Metis_Term.Fn (".", [t1, _])) =
-            (fn(x,y) => (x, y$u)) (path_finder_FT t ps t1)
-        | path_finder_FT (t$u) (1::ps) (Metis_Term.Fn (".", [_, t2])) =
-            (fn(x,y) => (x, t$y)) (path_finder_FT u ps t2)
-        | path_finder_FT tm ps t =
-          raise Fail ("equality_inf, path_finder_FT: path = " ^
-                      space_implode " " (map Int.toString ps) ^
-                      " isa-term: " ^  Syntax.string_of_term ctxt tm ^
-                      " fol-term: " ^ Metis_Term.toString t)
-      fun path_finder FO tm ps _ = path_finder_FO tm ps
-        | path_finder HO (tm as Const(@{const_name HOL.eq},_) $ _ $ _) (p::ps) _ =
-             (*equality: not curried, as other predicates are*)
-             if p=0 then path_finder_HO tm (0::1::ps)  (*select first operand*)
-             else path_finder_HO tm (p::ps)        (*1 selects second operand*)
-        | path_finder HO tm (_ :: ps) (Metis_Term.Fn ("{}", [_])) =
-             path_finder_HO tm ps      (*if not equality, ignore head to skip hBOOL*)
-        | path_finder FT (tm as Const(@{const_name HOL.eq}, _) $ _ $ _) (p::ps)
-                            (Metis_Term.Fn ("=", [t1,t2])) =
-             (*equality: not curried, as other predicates are*)
-             if p=0 then path_finder_FT tm (0::1::ps)
-                          (Metis_Term.Fn (".", [Metis_Term.Fn (".", [metis_eq,t1]), t2]))
-                          (*select first operand*)
-             else path_finder_FT tm (p::ps)
-                   (Metis_Term.Fn (".", [metis_eq,t2]))
-                   (*1 selects second operand*)
-        | path_finder FT tm (_ :: ps) (Metis_Term.Fn ("{}", [t1])) = path_finder_FT tm ps t1
-             (*if not equality, ignore head to skip the hBOOL predicate*)
-        | path_finder FT tm ps t = path_finder_FT tm ps t  (*really an error case!*)
-      fun path_finder_lit ((nt as Const (@{const_name Not}, _)) $ tm_a) idx =
-            let val (tm, tm_rslt) = path_finder mode tm_a idx m_tm
-            in (tm, nt $ tm_rslt) end
-        | path_finder_lit tm_a idx = path_finder mode tm_a idx m_tm
-      val (tm_subst, body) = path_finder_lit i_atm fp
-      val tm_abs = Term.Abs("x", Term.type_of tm_subst, body)
-      val _ = trace_msg (fn () => "abstraction: " ^ Syntax.string_of_term ctxt tm_abs)
-      val _ = trace_msg (fn () => "i_tm: " ^ Syntax.string_of_term ctxt i_tm)
-      val _ = trace_msg (fn () => "located term: " ^ Syntax.string_of_term ctxt tm_subst)
-      val imax = maxidx_of_term (i_tm $ tm_abs $ tm_subst)  (*ill typed but gives right max*)
-      val subst' = Thm.incr_indexes (imax+1) (if pos then subst_em else ssubst_em)
-      val _ = trace_msg (fn () => "subst' " ^ Display.string_of_thm ctxt subst')
-      val eq_terms = map (pairself (cterm_of thy))
-        (ListPair.zip (OldTerm.term_vars (prop_of subst'), [tm_abs, tm_subst, i_tm]))
-  in  cterm_instantiate eq_terms subst'  end;
-
-val factor = Seq.hd o distinct_subgoals_tac;
-
-fun step ctxt mode skolems thpairs p =
-  case p of
-    (fol_th, Metis_Proof.Axiom _) => factor (axiom_inf thpairs fol_th)
-  | (_, Metis_Proof.Assume f_atm) => assume_inf ctxt mode skolems f_atm
-  | (_, Metis_Proof.Metis_Subst (f_subst, f_th1)) =>
-    factor (inst_inf ctxt mode skolems thpairs f_subst f_th1)
-  | (_, Metis_Proof.Resolve(f_atm, f_th1, f_th2)) =>
-    factor (resolve_inf ctxt mode skolems thpairs f_atm f_th1 f_th2)
-  | (_, Metis_Proof.Refl f_tm) => refl_inf ctxt mode skolems f_tm
-  | (_, Metis_Proof.Equality (f_lit, f_p, f_r)) =>
-    equality_inf ctxt mode skolems f_lit f_p f_r
-
-fun real_literal (_, (c, _)) = not (String.isPrefix class_prefix c);
-
-fun translate_one ctxt mode skolems (fol_th, inf) thpairs =
-  let
-    val _ = trace_msg (fn () => "=============================================")
-    val _ = trace_msg (fn () => "METIS THM: " ^ Metis_Thm.toString fol_th)
-    val _ = trace_msg (fn () => "INFERENCE: " ^ Metis_Proof.inferenceToString inf)
-    val th = Meson.flexflex_first_order (step ctxt mode skolems
-                                              thpairs (fol_th, inf))
-    val _ = trace_msg (fn () => "ISABELLE THM: " ^ Display.string_of_thm ctxt th)
-    val _ = trace_msg (fn () => "=============================================")
-    val n_metis_lits =
-      length (filter real_literal (Metis_LiteralSet.toList (Metis_Thm.clause fol_th)))
-    val _ = if nprems_of th = n_metis_lits then ()
-            else error "Cannot replay Metis proof in Isabelle."
-  in (fol_th, th) :: thpairs end
+fun have_common_thm ths1 ths2 =
+  exists (member Thm.eq_thm ths1) (map Meson.make_meta_clause ths2)
 
 (*Determining which axiom clauses are actually used*)
 fun used_axioms axioms (th, Metis_Proof.Axiom _) = SOME (lookth axioms th)
   | used_axioms _ _ = NONE;
 
-(* ------------------------------------------------------------------------- *)
-(* Translation of HO Clauses                                                 *)
-(* ------------------------------------------------------------------------- *)
-
-fun type_ext thy tms =
-  let val subs = tfree_classes_of_terms tms
-      val supers = tvar_classes_of_terms tms
-      and tycons = type_consts_of_terms thy tms
-      val (supers', arity_clauses) = make_arity_clauses thy tycons supers
-      val class_rel_clauses = make_class_rel_clauses thy subs supers'
-  in  map class_rel_cls class_rel_clauses @ map arity_cls arity_clauses
-  end;
-
-(* ------------------------------------------------------------------------- *)
-(* Logic maps manage the interface between HOL and first-order logic.        *)
-(* ------------------------------------------------------------------------- *)
-
-type logic_map =
-  {axioms: (Metis_Thm.thm * thm) list,
-   tfrees: type_literal list,
-   skolems: (string * term) list}
-
-fun const_in_metis c (pred, tm_list) =
-  let
-    fun in_mterm (Metis_Term.Var _) = false
-      | in_mterm (Metis_Term.Fn (".", tm_list)) = exists in_mterm tm_list
-      | in_mterm (Metis_Term.Fn (nm, tm_list)) = c=nm orelse exists in_mterm tm_list
-  in  c = pred orelse exists in_mterm tm_list  end;
-
-(*Extract TFree constraints from context to include as conjecture clauses*)
-fun init_tfrees ctxt =
-  let fun add ((a,i),s) Ts = if i = ~1 then TFree(a,s) :: Ts else Ts in
-    Vartab.fold add (#2 (Variable.constraints_of ctxt)) []
-    |> type_literals_for_types
-  end;
-
-(*transform isabelle type / arity clause to metis clause *)
-fun add_type_thm [] lmap = lmap
-  | add_type_thm ((ith, mth) :: cls) {axioms, tfrees, skolems} =
-      add_type_thm cls {axioms = (mth, ith) :: axioms, tfrees = tfrees,
-                        skolems = skolems}
-
-(*Insert non-logical axioms corresponding to all accumulated TFrees*)
-fun add_tfrees {axioms, tfrees, skolems} : logic_map =
-     {axioms = map (rpair TrueI o metis_of_tfree) (distinct (op =) tfrees) @
-               axioms,
-      tfrees = tfrees, skolems = skolems}
-
-fun string_of_mode FO = "FO"
-  | string_of_mode HO = "HO"
-  | string_of_mode FT = "FT"
-
-val helpers =
-  [("c_COMBI", (false, map (`I) @{thms COMBI_def})),
-   ("c_COMBK", (false, map (`I) @{thms COMBK_def})),
-   ("c_COMBB", (false, map (`I) @{thms COMBB_def})),
-   ("c_COMBC", (false, map (`I) @{thms COMBC_def})),
-   ("c_COMBS", (false, map (`I) @{thms COMBS_def})),
-   ("c_fequal", (false, map (rpair @{thm equal_imp_equal})
-                            @{thms fequal_imp_equal equal_imp_fequal})),
-   ("c_True", (true, map (`I) @{thms True_or_False})),
-   ("c_False", (true, map (`I) @{thms True_or_False})),
-   ("c_If", (true, map (`I) @{thms if_True if_False True_or_False}))]
-
-fun is_quasi_fol_clause thy =
-  Meson.is_fol_term thy o snd o conceal_skolem_terms ~1 [] o prop_of
-
-(* Function to generate metis clauses, including comb and type clauses *)
-fun build_map mode0 ctxt cls ths =
-  let val thy = ProofContext.theory_of ctxt
-      (*The modes FO and FT are sticky. HO can be downgraded to FO.*)
-      fun set_mode FO = FO
-        | set_mode HO =
-          if forall (is_quasi_fol_clause thy) (cls @ ths) then FO else HO
-        | set_mode FT = FT
-      val mode = set_mode mode0
-      (*transform isabelle clause to metis clause *)
-      fun add_thm is_conjecture (metis_ith, isa_ith) {axioms, tfrees, skolems}
-                  : logic_map =
-        let
-          val (mth, tfree_lits, skolems) =
-            hol_thm_to_fol is_conjecture ctxt mode (length axioms) skolems
-                           metis_ith
-        in
-           {axioms = (mth, Meson.make_meta_clause isa_ith) :: axioms,
-            tfrees = union (op =) tfree_lits tfrees, skolems = skolems}
-        end;
-      val lmap = {axioms = [], tfrees = init_tfrees ctxt, skolems = []}
-                 |> fold (add_thm true o `I) cls
-                 |> add_tfrees
-                 |> fold (add_thm false o `I) ths
-      val clause_lists = map (Metis_Thm.clause o #1) (#axioms lmap)
-      fun is_used c =
-        exists (Metis_LiteralSet.exists (const_in_metis c o #2)) clause_lists
-      val lmap =
-        if mode = FO then
-          lmap
-        else
-          let
-            val helper_ths =
-              helpers |> filter (is_used o fst)
-                      |> maps (fn (c, (needs_full_types, thms)) =>
-                                  if not (is_used c) orelse
-                                     needs_full_types andalso mode <> FT then
-                                    []
-                                  else
-                                    thms)
-          in lmap |> fold (add_thm false) helper_ths end
-  in (mode, add_type_thm (type_ext thy (map prop_of (cls @ ths))) lmap) end
-
 val clause_params =
   {ordering = Metis_KnuthBendixOrder.default,
    orderLiterals = Metis_Clause.UnsignedLiteralOrder,
@@ -749,20 +50,12 @@
    variablesWeight = 0.0,
    literalsWeight = 0.0,
    models = []}
-val refute_params = {active = active_params, waiting = waiting_params}
-
-fun refute cls =
-  Metis_Resolution.new refute_params {axioms = cls, conjecture = []}
-  |> Metis_Resolution.loop
-
-fun is_false t = t aconv (HOLogic.mk_Trueprop HOLogic.false_const);
-
-fun common_thm ths1 ths2 = exists (member Thm.eq_thm ths1) (map Meson.make_meta_clause ths2);
-
+val resolution_params = {active = active_params, waiting = waiting_params}
 
 (* Main function to start Metis proof and reconstruction *)
 fun FOL_SOLVE mode ctxt cls ths0 =
   let val thy = ProofContext.theory_of ctxt
+      val type_lits = Config.get ctxt type_lits
       val th_cls_pairs =
         map (fn th => (Thm.get_name_hint th, Clausifier.cnf_axiom thy th)) ths0
       val ths = maps #2 th_cls_pairs
@@ -770,7 +63,8 @@
       val _ = app (fn th => trace_msg (fn () => Display.string_of_thm ctxt th)) cls
       val _ = trace_msg (fn () => "THEOREM CLAUSES")
       val _ = app (fn th => trace_msg (fn () => Display.string_of_thm ctxt th)) ths
-      val (mode, {axioms, tfrees, skolems}) = build_map mode ctxt cls ths
+      val (mode, {axioms, tfrees, skolems}) =
+        build_logic_map mode ctxt type_lits cls ths
       val _ = if null tfrees then ()
               else (trace_msg (fn () => "TFREE CLAUSES");
                     app (fn TyLitFree ((s, _), (s', _)) =>
@@ -784,21 +78,22 @@
       case filter (is_false o prop_of) cls of
           false_th::_ => [false_th RS @{thm FalseE}]
         | [] =>
-      case refute thms of
+      case Metis_Resolution.new resolution_params {axioms = thms, conjecture = []}
+           |> Metis_Resolution.loop of
           Metis_Resolution.Contradiction mth =>
             let val _ = trace_msg (fn () => "METIS RECONSTRUCTION START: " ^
                           Metis_Thm.toString mth)
                 val ctxt' = fold Variable.declare_constraints (map prop_of cls) ctxt
                              (*add constraints arising from converting goal to clause form*)
                 val proof = Metis_Proof.proof mth
-                val result = fold (translate_one ctxt' mode skolems) proof axioms
+                val result = fold (replay_one_inference ctxt' mode skolems) proof axioms
                 and used = map_filter (used_axioms axioms) proof
                 val _ = trace_msg (fn () => "METIS COMPLETED...clauses actually used:")
                 val _ = app (fn th => trace_msg (fn () => Display.string_of_thm ctxt th)) used
                 val unused = th_cls_pairs |> map_filter (fn (name, cls) =>
-                  if common_thm used cls then NONE else SOME name)
+                  if have_common_thm used cls then NONE else SOME name)
             in
-                if not (null cls) andalso not (common_thm used cls) then
+                if not (null cls) andalso not (have_common_thm used cls) then
                   warning "Metis: The assumptions are inconsistent."
                 else
                   ();
--- a/src/HOL/Tools/Sledgehammer/metis_translate.ML	Thu Sep 16 16:54:42 2010 +0200
+++ b/src/HOL/Tools/Sledgehammer/metis_translate.ML	Thu Sep 16 17:30:29 2010 +0200
@@ -1,5 +1,7 @@
 (*  Title:      HOL/Tools/Sledgehammer/metis_translate.ML
     Author:     Jia Meng, Cambridge University Computer Laboratory and NICTA
+    Author:     Kong W. Susanto, Cambridge University Computer Laboratory
+    Author:     Lawrence C. Paulson, Cambridge University Computer Laboratory
     Author:     Jasmin Blanchette, TU Muenchen
 
 Translation of HOL to FOL for Metis.
@@ -28,6 +30,12 @@
     CombApp of combterm * combterm
   datatype fol_literal = FOLLiteral of bool * combterm
 
+  datatype mode = FO | HO | FT
+  type logic_map =
+    {axioms: (Metis_Thm.thm * thm) list,
+     tfrees: type_literal list,
+     skolems: (string * term) list}
+
   val type_wrapper_name : string
   val bound_var_prefix : string
   val schematic_var_prefix: string
@@ -68,6 +76,10 @@
   val tfree_classes_of_terms : term list -> string list
   val tvar_classes_of_terms : term list -> string list
   val type_consts_of_terms : theory -> term list -> string list
+  val string_of_mode : mode -> string
+  val build_logic_map :
+    mode -> Proof.context -> bool -> thm list -> thm list
+    -> mode * logic_map
 end
 
 structure Metis_Translate : METIS_TRANSLATE =
@@ -369,23 +381,23 @@
         |   stripc  x =  x
     in stripc(u,[]) end
 
-fun type_of (Type (a, Ts)) =
-    let val (folTypes,ts) = types_of Ts in
+fun combtype_of (Type (a, Ts)) =
+    let val (folTypes, ts) = combtypes_of Ts in
       (CombType (`make_fixed_type_const a, folTypes), ts)
     end
-  | type_of (tp as TFree (a, _)) = (CombTFree (`make_fixed_type_var a), [tp])
-  | type_of (tp as TVar (x, _)) =
+  | combtype_of (tp as TFree (a, _)) = (CombTFree (`make_fixed_type_var a), [tp])
+  | combtype_of (tp as TVar (x, _)) =
     (CombTVar (make_schematic_type_var x, string_of_indexname x), [tp])
-and types_of Ts =
-    let val (folTyps, ts) = ListPair.unzip (map type_of Ts) in
-      (folTyps, union_all ts)
-    end
+and combtypes_of Ts =
+  let val (folTyps, ts) = ListPair.unzip (map combtype_of Ts) in
+    (folTyps, union_all ts)
+  end
 
 (* same as above, but no gathering of sort information *)
-fun simp_type_of (Type (a, Ts)) =
-      CombType (`make_fixed_type_const a, map simp_type_of Ts)
-  | simp_type_of (TFree (a, _)) = CombTFree (`make_fixed_type_var a)
-  | simp_type_of (TVar (x, _)) =
+fun simple_combtype_of (Type (a, Ts)) =
+    CombType (`make_fixed_type_const a, map simple_combtype_of Ts)
+  | simple_combtype_of (TFree (a, _)) = CombTFree (`make_fixed_type_var a)
+  | simple_combtype_of (TVar (x, _)) =
     CombTVar (make_schematic_type_var x, string_of_indexname x)
 
 (* Converts a term (with combinators) into a combterm. Also accummulates sort
@@ -396,27 +408,27 @@
       in  (CombApp (P', Q'), union (op =) tsP tsQ)  end
   | combterm_from_term thy _ (Const (c, T)) =
       let
-        val (tp, ts) = type_of T
+        val (tp, ts) = combtype_of T
         val tvar_list =
           (if String.isPrefix skolem_theory_name c then
              [] |> Term.add_tvarsT T |> map TVar
            else
              (c, T) |> Sign.const_typargs thy)
-          |> map simp_type_of
+          |> map simple_combtype_of
         val c' = CombConst (`make_fixed_const c, tp, tvar_list)
       in  (c',ts)  end
   | combterm_from_term _ _ (Free (v, T)) =
-      let val (tp,ts) = type_of T
+      let val (tp, ts) = combtype_of T
           val v' = CombConst (`make_fixed_var v, tp, [])
       in  (v',ts)  end
   | combterm_from_term _ _ (Var (v, T)) =
-      let val (tp,ts) = type_of T
+      let val (tp,ts) = combtype_of T
           val v' = CombVar ((make_schematic_var v, string_of_indexname v), tp)
       in  (v',ts)  end
   | combterm_from_term _ bs (Bound j) =
       let
         val (s, T) = nth bs j
-        val (tp, ts) = type_of T
+        val (tp, ts) = combtype_of T
         val v' = CombConst (`make_bound_var s, tp, [])
       in (v', ts) end
   | combterm_from_term _ _ (Abs _) = raise Fail "HOL clause: Abs"
@@ -518,4 +530,226 @@
 fun type_consts_of_terms thy ts =
   Symtab.keys (fold (add_type_consts_in_term thy) ts Symtab.empty);
 
+(* ------------------------------------------------------------------------- *)
+(* HOL to FOL  (Isabelle to Metis)                                           *)
+(* ------------------------------------------------------------------------- *)
+
+datatype mode = FO | HO | FT  (* first-order, higher-order, fully-typed *)
+
+fun string_of_mode FO = "FO"
+  | string_of_mode HO = "HO"
+  | string_of_mode FT = "FT"
+
+fun fn_isa_to_met_sublevel "equal" = "=" (* FIXME: "c_fequal" *)
+  | fn_isa_to_met_sublevel x = x
+fun fn_isa_to_met_toplevel "equal" = "="
+  | fn_isa_to_met_toplevel x = x
+
+fun metis_lit b c args = (b, (c, args));
+
+fun metis_term_from_combtyp (CombTVar (s, _)) = Metis_Term.Var s
+  | metis_term_from_combtyp (CombTFree (s, _)) = Metis_Term.Fn (s, [])
+  | metis_term_from_combtyp (CombType ((s, _), tps)) =
+    Metis_Term.Fn (s, map metis_term_from_combtyp tps);
+
+(*These two functions insert type literals before the real literals. That is the
+  opposite order from TPTP linkup, but maybe OK.*)
+
+fun hol_term_to_fol_FO tm =
+  case strip_combterm_comb tm of
+      (CombConst ((c, _), _, tys), tms) =>
+        let val tyargs = map metis_term_from_combtyp tys
+            val args   = map hol_term_to_fol_FO tms
+        in Metis_Term.Fn (c, tyargs @ args) end
+    | (CombVar ((v, _), _), []) => Metis_Term.Var v
+    | _ => raise Fail "non-first-order combterm"
+
+fun hol_term_to_fol_HO (CombConst ((a, _), _, tylist)) =
+      Metis_Term.Fn (fn_isa_to_met_sublevel a, map metis_term_from_combtyp tylist)
+  | hol_term_to_fol_HO (CombVar ((s, _), _)) = Metis_Term.Var s
+  | hol_term_to_fol_HO (CombApp (tm1, tm2)) =
+       Metis_Term.Fn (".", map hol_term_to_fol_HO [tm1, tm2]);
+
+(*The fully-typed translation, to avoid type errors*)
+fun wrap_type (tm, ty) = Metis_Term.Fn("ti", [tm, metis_term_from_combtyp ty]);
+
+fun hol_term_to_fol_FT (CombVar ((s, _), ty)) = wrap_type (Metis_Term.Var s, ty)
+  | hol_term_to_fol_FT (CombConst((a, _), ty, _)) =
+      wrap_type (Metis_Term.Fn(fn_isa_to_met_sublevel a, []), ty)
+  | hol_term_to_fol_FT (tm as CombApp(tm1,tm2)) =
+       wrap_type (Metis_Term.Fn(".", map hol_term_to_fol_FT [tm1,tm2]),
+                  combtyp_of tm)
+
+fun hol_literal_to_fol FO (FOLLiteral (pos, tm)) =
+      let val (CombConst((p, _), _, tys), tms) = strip_combterm_comb tm
+          val tylits = if p = "equal" then [] else map metis_term_from_combtyp tys
+          val lits = map hol_term_to_fol_FO tms
+      in metis_lit pos (fn_isa_to_met_toplevel p) (tylits @ lits) end
+  | hol_literal_to_fol HO (FOLLiteral (pos, tm)) =
+     (case strip_combterm_comb tm of
+          (CombConst(("equal", _), _, _), tms) =>
+            metis_lit pos "=" (map hol_term_to_fol_HO tms)
+        | _ => metis_lit pos "{}" [hol_term_to_fol_HO tm])   (*hBOOL*)
+  | hol_literal_to_fol FT (FOLLiteral (pos, tm)) =
+     (case strip_combterm_comb tm of
+          (CombConst(("equal", _), _, _), tms) =>
+            metis_lit pos "=" (map hol_term_to_fol_FT tms)
+        | _ => metis_lit pos "{}" [hol_term_to_fol_FT tm])   (*hBOOL*);
+
+fun literals_of_hol_term thy mode t =
+      let val (lits, types_sorts) = literals_of_term thy t
+      in  (map (hol_literal_to_fol mode) lits, types_sorts) end;
+
+(*Sign should be "true" for conjecture type constraints, "false" for type lits in clauses.*)
+fun metis_of_type_literals pos (TyLitVar ((s, _), (s', _))) =
+    metis_lit pos s [Metis_Term.Var s']
+  | metis_of_type_literals pos (TyLitFree ((s, _), (s', _))) =
+    metis_lit pos s [Metis_Term.Fn (s',[])]
+
+fun default_sort _ (TVar _) = false
+  | default_sort ctxt (TFree (x, s)) = (s = the_default [] (Variable.def_sort ctxt (x, ~1)));
+
+fun metis_of_tfree tf =
+  Metis_Thm.axiom (Metis_LiteralSet.singleton (metis_of_type_literals true tf));
+
+fun hol_thm_to_fol is_conjecture ctxt type_lits mode j skolems th =
+  let
+    val thy = ProofContext.theory_of ctxt
+    val (skolems, (mlits, types_sorts)) =
+     th |> prop_of |> conceal_skolem_terms j skolems
+        ||> (HOLogic.dest_Trueprop #> literals_of_hol_term thy mode)
+  in
+    if is_conjecture then
+      (Metis_Thm.axiom (Metis_LiteralSet.fromList mlits),
+       type_literals_for_types types_sorts, skolems)
+    else
+      let
+        val tylits = filter_out (default_sort ctxt) types_sorts
+                     |> type_literals_for_types
+        val mtylits =
+          if type_lits then map (metis_of_type_literals false) tylits else []
+      in
+        (Metis_Thm.axiom (Metis_LiteralSet.fromList(mtylits @ mlits)), [],
+         skolems)
+      end
+  end;
+
+val helpers =
+  [("c_COMBI", (false, map (`I) @{thms COMBI_def})),
+   ("c_COMBK", (false, map (`I) @{thms COMBK_def})),
+   ("c_COMBB", (false, map (`I) @{thms COMBB_def})),
+   ("c_COMBC", (false, map (`I) @{thms COMBC_def})),
+   ("c_COMBS", (false, map (`I) @{thms COMBS_def})),
+   ("c_fequal", (false, map (rpair @{thm equal_imp_equal})
+                            @{thms fequal_imp_equal equal_imp_fequal})),
+   ("c_True", (true, map (`I) @{thms True_or_False})),
+   ("c_False", (true, map (`I) @{thms True_or_False})),
+   ("c_If", (true, map (`I) @{thms if_True if_False True_or_False}))]
+
+(* ------------------------------------------------------------------------- *)
+(* Logic maps manage the interface between HOL and first-order logic.        *)
+(* ------------------------------------------------------------------------- *)
+
+type logic_map =
+  {axioms: (Metis_Thm.thm * thm) list,
+   tfrees: type_literal list,
+   skolems: (string * term) list}
+
+fun is_quasi_fol_clause thy =
+  Meson.is_fol_term thy o snd o conceal_skolem_terms ~1 [] o prop_of
+
+(*Extract TFree constraints from context to include as conjecture clauses*)
+fun init_tfrees ctxt =
+  let fun add ((a,i),s) Ts = if i = ~1 then TFree(a,s) :: Ts else Ts in
+    Vartab.fold add (#2 (Variable.constraints_of ctxt)) []
+    |> type_literals_for_types
+  end;
+
+(*Insert non-logical axioms corresponding to all accumulated TFrees*)
+fun add_tfrees {axioms, tfrees, skolems} : logic_map =
+     {axioms = map (rpair TrueI o metis_of_tfree) (distinct (op =) tfrees) @
+               axioms,
+      tfrees = tfrees, skolems = skolems}
+
+(*transform isabelle type / arity clause to metis clause *)
+fun add_type_thm [] lmap = lmap
+  | add_type_thm ((ith, mth) :: cls) {axioms, tfrees, skolems} =
+      add_type_thm cls {axioms = (mth, ith) :: axioms, tfrees = tfrees,
+                        skolems = skolems}
+
+fun const_in_metis c (pred, tm_list) =
+  let
+    fun in_mterm (Metis_Term.Var _) = false
+      | in_mterm (Metis_Term.Fn (".", tm_list)) = exists in_mterm tm_list
+      | in_mterm (Metis_Term.Fn (nm, tm_list)) = c=nm orelse exists in_mterm tm_list
+  in  c = pred orelse exists in_mterm tm_list  end;
+
+(* ARITY CLAUSE *)
+fun m_arity_cls (TConsLit ((c, _), (t, _), args)) =
+    metis_lit true c [Metis_Term.Fn(t, map (Metis_Term.Var o fst) args)]
+  | m_arity_cls (TVarLit ((c, _), (s, _))) =
+    metis_lit false c [Metis_Term.Var s]
+(*TrueI is returned as the Isabelle counterpart because there isn't any.*)
+fun arity_cls (ArityClause {conclLit, premLits, ...}) =
+  (TrueI,
+   Metis_Thm.axiom (Metis_LiteralSet.fromList (map m_arity_cls (conclLit :: premLits))));
+
+(* CLASSREL CLAUSE *)
+fun m_class_rel_cls (subclass, _) (superclass, _) =
+  [metis_lit false subclass [Metis_Term.Var "T"], metis_lit true superclass [Metis_Term.Var "T"]];
+fun class_rel_cls (ClassRelClause {subclass, superclass, ...}) =
+  (TrueI, Metis_Thm.axiom (Metis_LiteralSet.fromList (m_class_rel_cls subclass superclass)));
+
+fun type_ext thy tms =
+  let val subs = tfree_classes_of_terms tms
+      val supers = tvar_classes_of_terms tms
+      and tycons = type_consts_of_terms thy tms
+      val (supers', arity_clauses) = make_arity_clauses thy tycons supers
+      val class_rel_clauses = make_class_rel_clauses thy subs supers'
+  in  map class_rel_cls class_rel_clauses @ map arity_cls arity_clauses
+  end;
+
+(* Function to generate metis clauses, including comb and type clauses *)
+fun build_logic_map mode0 ctxt type_lits cls ths =
+  let val thy = ProofContext.theory_of ctxt
+      (*The modes FO and FT are sticky. HO can be downgraded to FO.*)
+      fun set_mode FO = FO
+        | set_mode HO =
+          if forall (is_quasi_fol_clause thy) (cls @ ths) then FO else HO
+        | set_mode FT = FT
+      val mode = set_mode mode0
+      (*transform isabelle clause to metis clause *)
+      fun add_thm is_conjecture (metis_ith, isa_ith) {axioms, tfrees, skolems}
+                  : logic_map =
+        let
+          val (mth, tfree_lits, skolems) =
+            hol_thm_to_fol is_conjecture ctxt type_lits mode (length axioms)
+                           skolems metis_ith
+        in
+           {axioms = (mth, Meson.make_meta_clause isa_ith) :: axioms,
+            tfrees = union (op =) tfree_lits tfrees, skolems = skolems}
+        end;
+      val lmap = {axioms = [], tfrees = init_tfrees ctxt, skolems = []}
+                 |> fold (add_thm true o `I) cls
+                 |> add_tfrees
+                 |> fold (add_thm false o `I) ths
+      val clause_lists = map (Metis_Thm.clause o #1) (#axioms lmap)
+      fun is_used c =
+        exists (Metis_LiteralSet.exists (const_in_metis c o #2)) clause_lists
+      val lmap =
+        if mode = FO then
+          lmap
+        else
+          let
+            val helper_ths =
+              helpers |> filter (is_used o fst)
+                      |> maps (fn (c, (needs_full_types, thms)) =>
+                                  if not (is_used c) orelse
+                                     needs_full_types andalso mode <> FT then
+                                    []
+                                  else
+                                    thms)
+          in lmap |> fold (add_thm false) helper_ths end
+  in (mode, add_type_thm (type_ext thy (map prop_of (cls @ ths))) lmap) end
+
 end;