--- a/src/HOL/ex/Tarski.thy Tue Nov 07 19:39:53 2006 +0100
+++ b/src/HOL/ex/Tarski.thy Tue Nov 07 19:39:54 2006 +0100
@@ -229,9 +229,9 @@
lemmas CL_imp_PO = CL_subset_PO [THEN subsetD]
-declare CL_imp_PO [THEN Tarski.PO_imp_refl, simp]
-declare CL_imp_PO [THEN Tarski.PO_imp_sym, simp]
-declare CL_imp_PO [THEN Tarski.PO_imp_trans, simp]
+declare CL_imp_PO [THEN PO.PO_imp_refl, simp]
+declare CL_imp_PO [THEN PO.PO_imp_sym, simp]
+declare CL_imp_PO [THEN PO.PO_imp_trans, simp]
lemma (in CL) CO_refl: "refl A r"
by (rule PO_imp_refl)
@@ -382,7 +382,7 @@
apply (subst glb_dual_lub)
apply (simp add: A_def)
apply (rule dualA_iff [THEN subst])
-apply (rule Tarski.lub_in_lattice)
+apply (rule CL.lub_in_lattice)
apply (rule dualPO)
apply (rule CL_dualCL)
apply (simp add: dualA_iff)
@@ -392,7 +392,7 @@
apply (subst glb_dual_lub)
apply (simp add: r_def)
apply (rule dualr_iff [THEN subst])
-apply (rule Tarski.lub_upper)
+apply (rule CL.lub_upper)
apply (rule dualPO)
apply (rule CL_dualCL)
apply (simp add: dualA_iff A_def, assumption)
@@ -520,7 +520,7 @@
-- {* Tarski for glb *}
apply (simp add: glb_dual_lub P_def A_def r_def)
apply (rule dualA_iff [THEN subst])
-apply (rule Tarski.lubH_is_fixp)
+apply (rule CLF.lubH_is_fixp)
apply (rule dualPO)
apply (rule CL_dualCL)
apply (rule f_cl [THEN CLF_dual])
@@ -530,7 +530,7 @@
lemma (in CLF) T_thm_1_glb: "glb P cl = glb {x. (f x, x) \<in> r & x \<in> A} cl"
apply (simp add: glb_dual_lub P_def A_def r_def)
apply (rule dualA_iff [THEN subst])
-apply (simp add: Tarski.T_thm_1_lub [of _ f, OF dualPO CL_dualCL]
+apply (simp add: CLF.T_thm_1_lub [of _ f, OF dualPO CL_dualCL]
dualPO CL_dualCL CLF_dual dualr_iff)
done
@@ -590,7 +590,7 @@
"[| a \<in> A; b \<in> A; interval r a b \<noteq> {}; S \<subseteq> interval r a b; isGlb S cl G;
S \<noteq> {} |] ==> G \<in> interval r a b"
apply (simp add: interval_dual)
-apply (simp add: Tarski.L_in_interval [of _ f]
+apply (simp add: CLF.L_in_interval [of _ f]
dualA_iff A_def dualPO CL_dualCL CLF_dual isGlb_dual_isLub)
done
@@ -687,7 +687,7 @@
lemma (in CLF) Top_in_lattice: "Top cl \<in> A"
apply (simp add: Top_dual_Bot A_def)
apply (rule dualA_iff [THEN subst])
-apply (blast intro!: Tarski.Bot_in_lattice dualPO CL_dualCL CLF_dual f_cl)
+apply (blast intro!: CLF.Bot_in_lattice dualPO CL_dualCL CLF_dual f_cl)
done
lemma (in CLF) Top_prop: "x \<in> A ==> (x, Top cl) \<in> r"
@@ -701,7 +701,7 @@
lemma (in CLF) Bot_prop: "x \<in> A ==> (Bot cl, x) \<in> r"
apply (simp add: Bot_dual_Top r_def)
apply (rule dualr_iff [THEN subst])
-apply (simp add: Tarski.Top_prop [of _ f]
+apply (simp add: CLF.Top_prop [of _ f]
dualA_iff A_def dualPO CL_dualCL CLF_dual)
done
@@ -718,9 +718,9 @@
prefer 2 apply assumption
apply (simp add: A_def)
apply (rule dualA_iff [THEN subst])
-apply (blast intro!: Tarski.Top_in_lattice
+apply (blast intro!: CLF.Top_in_lattice
f_cl dualPO CL_dualCL CLF_dual)
-apply (simp add: Tarski.Top_intv_not_empty [of _ f]
+apply (simp add: CLF.Top_intv_not_empty [of _ f]
dualA_iff A_def dualPO CL_dualCL CLF_dual)
done
@@ -805,7 +805,7 @@
apply (unfold P_def)
apply (rule_tac A = "intY1" in fixf_subset)
apply (rule intY1_subset)
-apply (simp add: Tarski.glbH_is_fixp [OF _ intY1_is_cl, simplified]
+apply (simp add: CLF.glbH_is_fixp [OF _ intY1_is_cl, simplified]
v_def CL_imp_PO intY1_is_cl CLF_def intY1_func intY1_mono)
done
@@ -847,7 +847,7 @@
apply (rule_tac b = "Top cl" in interval_imp_mem)
apply (simp add: v_def)
apply (fold intY1_def)
-apply (rule Tarski.glb_in_lattice [OF _ intY1_is_cl, simplified])
+apply (rule CL.glb_in_lattice [OF _ intY1_is_cl, simplified])
apply (simp add: CL_imp_PO intY1_is_cl, force)
-- {* @{text v} is LEAST ub *}
apply clarify
@@ -857,7 +857,7 @@
apply (unfold v_def)
apply (rule indE)
apply (rule_tac [2] intY1_subset)
-apply (rule Tarski.glb_lower [OF _ intY1_is_cl, simplified])
+apply (rule CL.glb_lower [OF _ intY1_is_cl, simplified])
apply (simp add: CL_imp_PO intY1_is_cl)
apply force
apply (simp add: induced_def intY1_f_closed z_in_interval)
--- a/src/ZF/Constructible/Reflection.thy Tue Nov 07 19:39:53 2006 +0100
+++ b/src/ZF/Constructible/Reflection.thy Tue Nov 07 19:39:54 2006 +0100
@@ -199,7 +199,7 @@
"(!!a. [| Cl(a); Ord(a) |] ==> \<forall>x\<in>Mset(a). P(x) <-> Q(a,x))
==> Closed_Unbounded(ClEx(P))"
apply (unfold ClEx_eq FF_def F0_def M_def)
-apply (rule Reflection.ZF_Closed_Unbounded_ClEx [of Mset _ _ Cl])
+apply (rule ex_reflection.ZF_Closed_Unbounded_ClEx [of Mset _ _ Cl])
apply (rule ex_reflection.intro, assumption)
apply (blast intro: ex_reflection_axioms.intro)
done