--- a/src/HOL/Tools/SMT/z3_proof_parser.ML Wed Dec 15 10:12:48 2010 +0100
+++ b/src/HOL/Tools/SMT/z3_proof_parser.ML Wed Dec 15 10:12:48 2010 +0100
@@ -24,7 +24,8 @@
prems: int list,
prop: cterm }
val parse: Proof.context -> typ Symtab.table -> term Symtab.table ->
- string list -> (int * proof_step) list * string list * Proof.context
+ string list ->
+ (int * cterm) list * (int * proof_step) list * string list * Proof.context
end
structure Z3_Proof_Parser: Z3_PROOF_PARSER =
@@ -249,13 +250,17 @@
fun finish (_, _, _, steps, vars, ctxt) =
let
- fun add_prems (p as (k, Proof_Step {prems, ...})) (ps, ids) =
- if Inttab.defined ids k then
- (p :: ps, fold (Inttab.update o rpair ()) prems ids)
- else (ps, ids)
+ fun coll (p as (k, Proof_Step {prems, rule, prop, ...})) (ars, ps, ids) =
+ (case rule of
+ Asserted => ((k, prop) :: ars, ps, ids)
+ | Goal => ((k, prop) :: ars, ps, ids)
+ | _ =>
+ if Inttab.defined ids k then
+ (ars, p :: ps, fold (Inttab.update o rpair ()) prems ids)
+ else (ars, ps, ids))
- val (steps', _) = fold add_prems steps ([], Inttab.make [(~1, ())])
- in (steps', vars, ctxt) end
+ val (ars, steps', _) = fold coll steps ([], [], Inttab.make [(~1, ())])
+ in (ars, steps', vars, ctxt) end
(** core parser **)
--- a/src/HOL/Tools/SMT/z3_proof_reconstruction.ML Wed Dec 15 10:12:48 2010 +0100
+++ b/src/HOL/Tools/SMT/z3_proof_reconstruction.ML Wed Dec 15 10:12:48 2010 +0100
@@ -132,43 +132,70 @@
(** core proof rules **)
(* assumption *)
+
local
- val remove_trigger = @{lemma "trigger t p == p"
- by (rule eq_reflection, rule trigger_def)}
-
- val remove_weight = @{lemma "weight w p == p"
- by (rule eq_reflection, rule weight_def)}
-
- val prep_rules = [@{thm Let_def}, remove_trigger, remove_weight,
- L.rewrite_true]
+ val remove_trigger = mk_meta_eq @{thm SMT.trigger_def}
+ val remove_weight = mk_meta_eq @{thm SMT.weight_def}
+ val remove_fun_app = mk_meta_eq @{thm SMT.fun_app_def}
fun rewrite_conv ctxt eqs = Simplifier.full_rewrite
(Simplifier.context ctxt Simplifier.empty_ss addsimps eqs)
- fun rewrites f ctxt eqs = map (f (Conv.fconv_rule (rewrite_conv ctxt eqs)))
+ val prep_rules = [@{thm Let_def}, remove_trigger, remove_weight,
+ remove_fun_app, L.rewrite_true]
+
+ fun rewrite ctxt eqs = Conv.fconv_rule (rewrite_conv ctxt eqs)
fun burrow_snd_option f (i, thm) = Option.map (pair i) (f thm)
- fun lookup_assm ctxt assms ct =
- (case T.net_instance' burrow_snd_option assms ct of
- SOME ithm => ithm
- | _ => z3_exn ("not asserted: " ^
- quote (Syntax.string_of_term ctxt (Thm.term_of ct))))
+
+ fun lookup_assm assms_net ct =
+ T.net_instance' burrow_snd_option assms_net ct
+ |> Option.map (fn ithm as (_, thm) => (ithm, Thm.cprop_of thm aconvc ct))
in
-fun prepare_assms ctxt rewrite_rules assms =
+
+fun add_asserted outer_ctxt rewrite_rules assms asserted ctxt =
let
- val eqs = rewrites I ctxt [L.rewrite_true] rewrite_rules
- val assms' =
+ val eqs = map (rewrite ctxt [L.rewrite_true]) rewrite_rules
+ val eqs' = union Thm.eq_thm eqs prep_rules
+
+ val assms_net =
assms
- |> rewrites apsnd ctxt (union Thm.eq_thm eqs prep_rules)
+ |> map (apsnd (rewrite ctxt eqs'))
|> map (apsnd (Conv.fconv_rule Thm.eta_conversion))
- in (eqs, T.thm_net_of snd assms') end
+ |> T.thm_net_of snd
+
+ fun revert_conv ctxt = rewrite_conv ctxt eqs' then_conv Thm.eta_conversion
+
+ fun assume thm ctxt =
+ let
+ val ct = Thm.cprem_of thm 1
+ val (thm', ctxt') = yield_singleton Assumption.add_assumes ct ctxt
+ in (Thm.implies_elim thm thm', ctxt') end
-fun asserted ctxt (eqs, assms) ct =
- let val revert_conv = rewrite_conv ctxt eqs then_conv Thm.eta_conversion
- in Thm (T.with_conv revert_conv (snd o lookup_assm ctxt assms) ct) end
+ fun add (idx, ct) ((is, thms), (ctxt, ptab)) =
+ let
+ val thm1 =
+ Thm.trivial ct
+ |> Conv.fconv_rule (Conv.arg1_conv (revert_conv outer_ctxt))
+ val thm2 = singleton (Variable.export ctxt outer_ctxt) thm1
+ in
+ (case lookup_assm assms_net (Thm.cprem_of thm2 1) of
+ NONE =>
+ let val (thm, ctxt') = assume thm1 ctxt
+ in ((is, thms), (ctxt', Inttab.update (idx, Thm thm) ptab)) end
+ | SOME ((i, th), exact) =>
+ let
+ val (thm, ctxt') =
+ if exact then (Thm.implies_elim thm1 th, ctxt)
+ else assume thm1 ctxt
+ val thms' = if exact then thms else th :: thms
+ in
+ ((insert (op =) i is, thms'),
+ (ctxt', Inttab.update (idx, Thm thm) ptab))
+ end)
+ end
+ in fold add asserted (([], []), (ctxt, Inttab.empty)) end
-fun find_assm ctxt (unfolds, assms) ct =
- fst (lookup_assm ctxt assms (Thm.rhs_of (rewrite_conv ctxt unfolds ct)))
end
@@ -715,12 +742,12 @@
fun not_supported r = raise Fail ("Z3: proof rule not implemented: " ^
quote (P.string_of_rule r))
- fun prove_step assms simpset vars r ps ct (cxp as (cx, ptab)) =
+ fun prove_step simpset vars r ps ct (cxp as (cx, ptab)) =
(case (r, ps) of
(* core rules *)
(P.True_Axiom, _) => (Thm L.true_thm, cxp)
- | (P.Asserted, _) => (asserted cx assms ct, cxp)
- | (P.Goal, _) => (asserted cx assms ct, cxp)
+ | (P.Asserted, _) => raise Fail "bad assertion"
+ | (P.Goal, _) => raise Fail "bad assertion"
| (P.Modus_Ponens, [(p, _), (q, _)]) => (mp q (thm_of p), cxp)
| (P.Modus_Ponens_Oeq, [(p, _), (q, _)]) => (mp q (thm_of p), cxp)
| (P.And_Elim, [(p, i)]) => and_elim (p, i) ct ptab ||> pair cx
@@ -774,55 +801,48 @@
SOME p => (p, idx)
| NONE => z3_exn ("unknown proof id: " ^ quote (string_of_int idx)))
- fun prove assms simpset vars (idx, step) (_, cxp as (ctxt, ptab)) =
+ fun prove simpset vars (idx, step) (_, cxp as (ctxt, ptab)) =
let
val P.Proof_Step {rule=r, prems, prop, ...} = step
val ps = map (lookup_proof ptab) prems
val _ = trace_before ctxt idx r
val (thm, (ctxt', ptab')) =
cxp
- |> prove_step assms simpset vars r ps prop
+ |> prove_step simpset vars r ps prop
|> tap (check_after idx r ps prop)
in (thm, (ctxt', Inttab.update (idx, thm) ptab')) end
- val disch_rules = map (pair false)
- [@{thm allI}, @{thm refl}, @{thm reflexive}]
+ val disch_rules = [@{thm allI}, @{thm refl}, @{thm reflexive}]
+ fun all_disch_rules rules = map (pair false) (disch_rules @ rules)
- fun disch_assm thm =
+ fun disch_assm rules thm =
if Thm.nprems_of thm = 0 then Drule.flexflex_unique thm
else
- (case Seq.pull (Thm.biresolution false disch_rules 1 thm) of
- SOME (thm', _) => disch_assm thm'
+ (case Seq.pull (Thm.biresolution false rules 1 thm) of
+ SOME (thm', _) => disch_assm rules thm'
| NONE => raise THM ("failed to discharge premise", 1, [thm]))
- fun discharge outer_ctxt (p, (inner_ctxt, _)) =
+ fun discharge rules outer_ctxt (p, (inner_ctxt, _)) =
thm_of p
|> singleton (ProofContext.export inner_ctxt outer_ctxt)
- |> disch_assm
-
- fun filter_assms ctxt assms =
- let
- fun add_assm r ct =
- (case r of
- P.Asserted => insert (op =) (find_assm ctxt assms ct)
- | P.Goal => insert (op =) (find_assm ctxt assms ct)
- | _ => I)
- in fold (fn (_, P.Proof_Step {rule, prop, ...}) => add_assm rule prop) end
+ |> disch_assm rules
in
fun reconstruct outer_ctxt recon output =
let
val {context=ctxt, typs, terms, rewrite_rules, assms} = recon
- val (steps, vars, ctxt') = P.parse ctxt typs terms output
- val assms' = prepare_assms ctxt' rewrite_rules assms
- val simpset = T.make_simpset ctxt' (Z3_Simps.get ctxt')
+ val (asserted, steps, vars, ctxt1) = P.parse ctxt typs terms output
+
+ val simpset = T.make_simpset ctxt1 (Z3_Simps.get ctxt1)
+
+ val ((is, rules), cxp as (ctxt2, _)) =
+ add_asserted outer_ctxt rewrite_rules assms asserted ctxt1
in
- if Config.get ctxt' SMT_Config.filter_only_facts then
- (filter_assms ctxt' assms' steps [], @{thm TrueI})
+ if Config.get ctxt2 SMT_Config.filter_only_facts then (is, @{thm TrueI})
else
- (Thm @{thm TrueI}, (ctxt', Inttab.empty))
- |> fold (prove assms' simpset vars) steps
- |> discharge outer_ctxt
+ (Thm @{thm TrueI}, cxp)
+ |> fold (prove simpset vars) steps
+ |> discharge (all_disch_rules rules) outer_ctxt
|> pair []
end